Meinolf Geck
Universität Stuttgart
Fachbereich
Mathematik
IDSR - Lehrstuhl für
Algebra
Pfaffenwaldring 57
D-70569 Stuttgart
Tel.: +49 (0) 711 68565367;   Büro:
8.350;  
email: meinolf.geck(at)mathematik.uni-stuttgart.de
Lehre/Teaching:
Skripte (auch zum Selbststudium geeignet); Kommentare sehr
willkommen:
BSc/MSc-Arbeiten: Liste der am
Lehrstuhl für Algebra betreuten Abschlussarbeiten. Themen,
für BSc, Master oder Lehramt, werden individuell vereinbart, sowohl
rein theoretische als auch solche mit Programmier-Komponenten
(GAP oder
OSCAR). Bei Interesse
bitte einfach per email (z.B.) anfragen.
PhD students (with links to their
theses)
Mitglied/PI im SFB-TRR 195 "Symbolische Werkzeuge in der Mathematik und ihre Anwendung".
Anglo-Franco-German Representation Theory
network.
Editor:
Science China
Mathematics,
Archiv
der Mathematik,
Carpathian Journal of Mathematics
Click on a book for additional information/errata
Some recent, and selected older papers (for the full list
of publications, click here):
(Several preprints are also available on the
arXiv.)
Publications related to teaching:
- On the Jordan-Chevalley decomposition of a matrix, preprint at
arXiv:2205.05432.
- On Jacob's construction of the rational canonical form of a matrix,
Electron. J. Linear Algebra 36 (2020), 177-182.
- Eigenvalues and polynomial equations, Amer. Math.
Monthly, 126 (November 2019), 933--935.
- Eigenvalues of real symmetric matrices, Amer. Math.
Monthly 122 (May 2015), 482-483
- On the characterization of Galois extensions, Amer. Math.
Monthly 121 (August/September 2014), 637-639; siehe auch
FreedomMathDance.
- Algebra: Gruppen, Ringe, Körper - Mit einer Einführung
in die Darstellungstheorie endlicher Gruppen. Edition Delkhofen, 2014.
vi+150pp., EAN 978-3936413-15-1.
Software (all comments welcome, bug reports, suggestions for
improvements etc!):
- ChevLie - A Julia package for
constructing Lie algebras and Chevalley groups;
version 1.1 (January 2020). See also my paper at
J. Softw. Algebra Geom.
(2020).
- A GAP program for computing
the Frobenius normal form and also the
Jordan-Chevalley decomposition of a matrix, even large ones
over a finite field. (This is the version of 12.5.2022; the older version
is here.)
- PyCox - A Python version of
CHEVIE-GAP; in
particular, it can compute Kazhdan-Lusztig cells, even for type E_8;
latest version: 1.6180. See
also my paper at LMS
J. Comput. Math. 15 (2012).
- The CHEVIE project;
see also Jean Michel's
gap3-jm and
Gapjm.jl.
Slides from some talks: Virtual Nikolaus
Conference (December 2020); Kolloquium
Tübingen (July 2017); In memoriam Fokko
du Cloux (September 2007).
Links (Conferences, workshops, ...):
The
RepNet Virtual Seminar
Recent articles in
arXiv:math.RT
Short CV:
- 1983-1988 Studies of Mathematics, RWTH Aachen.
- 1983-1989 Scholarship by German Academic Scholarship Foundation
(Studienstiftung).
- 1988-1989 Postgraduate visiting student, University of Warwick,
England.
- 1990 Ph.D., RWTH Aachen.
- 1991 Bennigsen-Foerder Prize (jointly with K. Lux).
- 1994 Habilitation, RWTH Aachen.
- 1995-1999 Chercheur CNRS, Université Paris 7, France.
- 1999-2005 Professor, Université Lyon 1, France.
- 2005-2012 6th Century Professor, University of Aberdeen, Scotland.
- 2012-? Lehrstuhl für Algebra, Universität
Stuttgart.
Data
protection information
Impressum
(legal notice)
|