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On the computation of character values for finite
Chevalley groups of exceptional type

Meinolf Geck

Abstract: We discuss various computational issues around the
problem of determining the character values of finite Chevalley
groups, in the framework provided by Lusztig’s theory of char-
acter sheaves. Some of the remaining open questions (concerning
certain roots of unity) for the cuspidal unipotent character sheaves
of groups of exceptional type are resolved.
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1. Introduction

Let p be a prime and k = Fp be an algebraic closure of the field with p
elements. Let G be a connected reductive algebraic group over k and assume
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276 Meinolf Geck

that G is defined over the finite subfield Fq ⊆ k, where q is a power of p. Let
F : G → G be the corresponding Frobenius map. Then the group of rational
points GF = G(Fq) is called a “finite group of Lie type”. (For the basic
theory of these groups, see [4], [10], [21].) We are concerned with the problem
of computing the values of the irreducible characters of GF . The work of
Lusztig [33], [41], [45] has led to a general program for solving this problem.
In this framework, one seeks to establish certain identities of class functions
on GF of the form Rx = ζχA, where Rx denotes an “almost character”
(that is, an explicitly defined linear combination of the irreducible characters
of GF ) and χA denotes the characteristic function of a suitable F -invariant
“character sheaf” A on G; here, ζ is an algebraic number of absolute value 1.
This program has been successfully carried out in many cases (see [21, §2.7]
for a survey), but not in complete generality.

This paper is part of an ongoing project (involving various authors) to
complete the program of establishing identities Rx = ζχA as above including
the explicit determination of the scalars ζ. We shall solve this problem here
in a number of previously open cases for G simple of exceptional type.

The above identities Rx = ζχA take a particularly striking form when A
is a cuspidal character sheaf and G is a simple algebraic group, and this is
our main focus here. In that case, the set {g ∈ GF | χA(g) �= 0} is contained
in a single F -stable conjugacy class Σ of G; furthermore, the values of χA

are determined by the choice of an element g1 ∈ ΣF and a certain irreducible
character ψ of the finite group of components AG(g1) = CG(g1)/C◦

G(g1). By
[41, 0.4], the general case can be reduced to the “cuspidal” case assuming
that the cohomological induction functor RG

L (see [32], [10, §9.1]) is explicitly
known, where L ⊆ G is any F -stable Levi subgroup of a not necessarily
F -stable parabolic subgroup of G.

A crucial ingredient in this whole program is the problem of identifying
“good” choices for g1 ∈ ΣF as above. If Σ is a unipotent class, then one can use
the concept of “split” elements; see Beynon–Spaltenstein [1] and Shoji [55]. In
general, there are a few rare cases where one can single out a representative
g1 ∈ ΣF simply by looking at the order or the structure of the centralisers.
At the other extreme, all g1 ∈ ΣF may have the same centraliser order. In
such cases, we use the following techniques: 1) Steinberg’s cross-section [59]
for regular elements or, more generally, Lusztig’s “C-small” classes [43]; 2) ra-
tionality properties of characters; 3) powermaps and congruence conditions
for character values.

When dealing with concrete examples, we will usually assume that G is
simple, simply connected in order to facilitate the use of the above techniques
and computations with semisimple elements. Our aim is to achieve something
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On the computation of character values 277

close to the famous Cambridge ATLAS [6], where no explicit representatives of
conjugacy classes are given, but the classes can be almost uniquely identified
by some formal properties, like 2) or 3). For many applications of character
theory (for examples, see [21, App. A.10]) this is entirely sufficient. In Sec-
tion 4, we develop some techniques that will help us identifying such “good”
choices for g1 ∈ ΣF . (Note, however, that there does not yet seem to be a
universally applicable definition of what “good” should mean.)

But first we need to address another essential point: the explicit evaluation
of the Deligne–Lusztig characters RG

T (θ), where T is any F -stable maximal
torus of G and θ ∈ Irr(T F ). There is a character formula in [7] which reduces
that problem to the computation of Green functions. The formula involves
some technical issues of a purely group-theoretical nature. It will be known
to the experts how to deal with this, but the details are not readily available
so we include them here in Sections 2 and 3 (following, and slightly revising
Lübeck [30]). We hope that this will be useful as a reference in other contexts
as well.

Finally, in Sections 5–7, we explicitly deal with cuspidal character sheaves
in groups of types F4, E6, E7. Much of this is inspired by Lusztig [38] (values
of characters on unipotent elements) and Shoji [52] (values of unipotent char-
acters for classical groups); an additional complication here is that unipotent
characters of exceptional groups may have non-rational values. We heavily
rely on computer calculations, where we use Michel’s extremely powerful ver-
sion of CHEVIE [47]. In addition to the general functions concerning Weyl
groups, reflection subgroups and their character tables, there are programs in
[47] for producing information about the unipotent characters of GF (degrees,
Fourier matrices etc.), and for computing (generalised) Green functions, which
turn out to be particularly helpful for our purposes here. Combined with pre-
vious work by a number of authors (for precise references see Sections 5–7),
we can now state:

Let G be simple of type G2, F4, E6 or E7. Then the scalars ζ in the
identities Rx = ζχA for cuspidal unipotent character sheaves A are explicitly
known. In all cases considered, there is a “good” choice of g1 ∈ ΣF such that
ζ = 1.

As far as simple groups of exceptional type are concerned, what remains
to be done is to deal with a number of cuspidal character sheaves for G
of type E8 (which are all unipotent) and with the non-unipotent cuspidal
character sheaves for G of type E6 and E7. For type E8, see [27] (plus work
in progress); the remaining cases for E6, E7 (which only occur when G is
simply connected with a non-trivial center), will be considered in [22].
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278 Meinolf Geck

1.1. Notation and conventions. The set of (complex) irreducible charac-
ters of a finite group Γ is denoted by Irr(Γ). We work over a fixed subfield
K ⊆ C, which is algebraic over Q, invariant under complex conjugation and
“large enough”, that is, K contains sufficiently many roots of unity and K is
a splitting field for Γ and all its subgroups. Thus, χ(g) ∈ K for all χ ∈ Irr(Γ)
and g ∈ Γ. When required, we will assume chosen an embedding of K into
Ql, where Ql is the field of l-adic numbers for some prime l. If α : Γ → Γ is
a group automorphism, we say that g1, g2 ∈ Γ are α-conjugate if there exists
some g ∈ Γ such that g2 = g−1g1α(g).

2. Fusion of F -stable maximal tori

We keep the general notation from the introduction. Let T 0 be a maximally
split torus of G, that is, T 0 is an F -stable maximal torus contained in an
F -stable Borel subgroup B ⊆ G. Let Φ be the root system of G with respect
to T 0, and let Φ+ ⊆ Φ be the set of positive roots determined by B. Let
W := NG(T 0)/T 0 be the Weyl group of T 0 and � : W → Z�0 be the length
function. We have W = 〈wα | α ∈ Φ〉 where wα ∈ W denotes the reflection
with root α. We have G = 〈T 0,Uα (α ∈ Φ)〉 where Uα ⊆ G denotes the root
subgroup corresponding to α. The Frobenius map F induces a permutation
α �→ α† of Φ such that F (Uα) = Uα† for all α ∈ Φ. We denote by σ : W → W

the automorphism induced by F . For each w ∈ W , let ẇ ∈ NG(T 0) be a
representative; if σ(w) = w, then we tacitly assume that F (ẇ) = ẇ.

It is well known that the GF -conjugacy classes of F -stable maximal tori
of G are parametrised by the σ-conjugacy classes of W . Given w ∈ W ,
let g ∈ G be such that ẇ = g−1F (g). (The existence of g relies on Lang’s
Theorem, which will be used many times in what follows, without further
explicit reference.) Then T := gT 0g

−1 is a corresponding F -stable maximal
torus, unique up to conjugation by elements of GF ; in this situation, we also
say that T is “of type w”. (See [4, §2.3] for further details.) For the evaluation
of Deligne–Lusztig characters, we shall need to relate GF -conjugacy classes of
F -stable maximal tori of G to those in certain connected reductive subgroups
of maximal rank. Since this is crucial for the explicit computations that we
need to carry out, we will explain the details here; see also Lübeck [30], [31].

2.1. Subsystem subgroups. As in Carter [3, §2], we consider subsets Φ′ ⊆
Φ that are themselves root systems and are closed in the sense that, whenever
α, β ∈ Φ′ and α + β ∈ Φ, then α + β ∈ Φ′. Given such a Φ′, there is a
corresponding closed connected reductive subgroup H ′ ⊆ G generated by T 0
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On the computation of character values 279

and the subgroups Uα for α ∈ Φ′. Here, Φ′ is the root system of H ′ with
respect to T 0 and

W (Φ′) := 〈wα | α ∈ Φ′〉 = NH′(T 0)/T 0

is the Weyl group of H ′. Let Ξ be the set of all pairs (Φ′, w) where Φ′ ⊆ Φ
is a subset as above and w ∈ W is such that w(α†) ∈ Φ′ for all α ∈ Φ′.
Given (Φ′, w) ∈ Ξ, we form the corresponding subgroup H ′ ⊆ G as above;
then F (H ′) = ẇ−1H ′ẇ; note that ẇUαẇ

−1 = Uw(α) for all α ∈ Φ. Hence,
writing ẇ = g−1F (g) for some g ∈ G, the subgroup gH ′g−1 is F -stable and
uniquely determined by (Φ′, w), up to conjugation by an element of GF . It
is known (see Carter [3], Deriziotis [8], Mizuno [48]) that the GF -conjugacy
classes of F -stable subgroups gH ′g−1 as above are parametrised by the pairs
in Ξ modulo the equivalence relation defined by: (Φ′

1, w1) ∼ (Φ′
2, w2) if there

exists some x ∈ W such that x(Φ′
1) = Φ′

2 and x−1w2σ(x)w−1
1 ∈ W (Φ′

1). (The
above statement concerning GF -conjugacy classes of F -stable maximal tori is
a very special case of this correspondence.) Note that (Φ′, w) ∼ (Φ′, uw) for all
(Φ′, w) ∈ Ξ and u ∈ W (Φ′); thus, one could also consider pairs (Φ′,W (Φ′)w)
but we find it more convenient in our setting here to work with the above
definition of Ξ.

2.2. The relation ∼ on Ξ. For future reference, we briefly indicate how the
relation ∼ comes about. (Note that the discussion in [3, §2] assumes that the
subgroup H ′ corresponding to Φ′ is itself F -stable, which will not always be
the case if σ �= idW ; furthermore, [3, §2] only considers GF -conjugacy for the
subgroups corresponding to a fixed Φ′.) So let (Φ′

1, w1) and (Φ′
2, w2) be pairs

in Ξ; let g1, g2 ∈ G be such that g−1
1 F (g1) = ẇ1 and g−1

2 F (g2) = ẇ2. We have
the corresponding F -stable subgroups giH

′
ig

−1
i , where H ′

i := 〈T 0,Uα (α ∈
Φ′

i)〉 for i = 1, 2. Suppose now that g1H
′
1g

−1
1 and g2H

′
2g

−1 are conjugate
in GF ; so g̃g1H

′
1g

−1
1 g̃−1 = g2H

′
2g

−1
2 for some g̃ ∈ GF . Setting ĝ := g−1

2 g̃g1,
we have ĝH ′

1ĝ
−1 = H ′

2 and there exists some h2 ∈ H ′
2 such that ĝT 0ĝ

−1 =
h2T 0h

−1
2 . Then n := h−1

2 ĝ ∈ NG(T 0) and nH ′
1n

−1 = H ′
2. Hence, x(Φ′

1) =
Φ′

2, where x is the image of n in W . We now have g1 = g̃−1g2ĝ = g̃−1g2h2n
and a straightforward computation yields that

ẇ1 = g−1
1 F (g1) =

(
n−1ẇ2F (n)

)(
F (n)−1ẇ−1

2 h−1
2 ẇ2F (h2)F (n)

)
.

We have F (H ′
2) = ẇ−1

2 H ′
2ẇ2 and so ẇ−1

2 h−1
2 ẇ2F (h2) ∈ F (H ′

2). Further-
more, F (n)−1F (H ′

2)F (n) = F (n−1H ′
2n) = F (H ′

1) = ẇ−1
1 H ′

1ẇ1. Hence, we
obtain ẇ1 = n−1ẇ2F (n)ẇ−1

1 h1ẇ1 for some h1 ∈ H ′
1. Thus, n−1ẇ2F (n)ẇ−1

1 ∈
NG(T 0) ∩ H ′

1 and so x−1w2σ(x)w−1
1 ∈ W (Φ′

1), as desired. Conversely, if
(Φ′

1, w1) ∼ (Φ′
2, w2), then one needs to run the above argument backwards.
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280 Meinolf Geck

2.3. Let us fix a pair (Φ′, w) ∈ Ξ. As already noted, we have (Φ′, w) ∼
(Φ′, uw) for all u ∈ W (Φ′). By [33, Lemma 1.9], the coset W (Φ′)w contains
a unique element of minimal length; let us denote this element by d. Thus,
when considering equivalence classes of pairs (Φ′, d) ∈ Ξ, we may assume
without loss of generality that d has minimal length in the coset W (Φ′)d.
(Note that Lübeck [30] does not make this assumption on d.) We define a
new Frobenius map F ′ : G → G by F ′(g) := ḋF (g)ḋ−1 for g ∈ G. Then we
have F ′(H ′) = H ′, where H ′ = 〈T 0,Uα (α ∈ Φ′)〉. The map induced by F ′

on W is given by

(a) σ′ : W → W , w �→ dσ(w)d−1.

Clearly, T 0 is also an F ′-stable maximal torus of H ′. We claim that

(b) T 0 is a maximally split torus of H ′ with respect to F ′.

This is seen as follows. The group B′ = 〈T 0,Uα (α ∈ Φ+ ∩ Φ′)〉 is a Borel
subgroup of H ′ (see [4, §3.5]). Since T 0 ⊆ B′, it is sufficient to show that
B′ is F ′-stable. For this purpose, let α ∈ Φ+ ∩ Φ′. By [33, Lemma 1.9], we
have d−1(α) ∈ Φ+ and so ḋ−1Uαḋ = U d−1(α) ⊆ B = F (B). Consequently,
we have Uα ⊆ ḋF (B)ḋ−1 = F ′(B). Since also T 0 = F ′(T 0) ⊆ F ′(B), we
conclude that B′ ⊆ F ′(B). Furthermore, B′ ⊆ H ′ = F ′(H ′) and so B′ ⊆
F ′(B)∩F ′(H ′) = F ′(B∩H ′) = F ′(B′). Hence, we must have B′ = F ′(B′),
as claimed. Thus, if Δ′ is the unique set of simple roots in Φ+ ∩ Φ′, then we
have W (Φ′) = 〈S′〉 where

(c) S′ := {wα | α ∈ Δ′} and σ′(S′) = S′.

In particular, (W (Φ′), S′) is a Coxeter system and σ′(W (Φ′)
)

= W (Φ′).

2.4. In the setting of §2.3, where (Φ, d) ∈ Ξ, let us also fix an element g ∈ G
such that g−1F (g) = ḋ. Then T d := gT 0g

−1 ⊆ G is an F -stable maximal
torus of type d. Furthermore, if H ′ = 〈T 0,Uα (α ∈ Φ′)〉 and Hd := gH ′g−1,
then T d ⊆ Hd and F (Hd) = Hd. Now Remark 2.3(b) immediately implies
that Bd := gB′g−1 is an F -stable Borel subgroup of Hd and so T d is a
maximally split torus of Hd. Let W d := NHd

(T d)/T d be the Weyl group
of Hd. We denote by σd : W d → W d the automorphism induced by F .
Then the conjugation map γg : G → G, x �→ g−1xg, induces an embedding
γ̄g : W d ↪→ W , where

W (Φ′) = γ̄g(W d) ⊆ W and γ̄g ◦ σd = σ′ ◦ γ̄g.
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On the computation of character values 281

Via the isomorphism γ̄g : W d → W (Φ′), the σd-conjugacy classes of W d

correspond to the σ′-conjugacy classes of W (Φ′). Thus, the HF
d -conjugacy

classes of F -stable maximal tori of Hd are parametrised by the σ′-conjugacy
classes of W (Φ′). More precisely, if w′ ∈ W (Φ′), then an F -stable maximal
torus T ′ ⊆ Hd of type w′ (inside Hd) is given by T ′ := hT dh

−1 where
h ∈ Hd is such that h−1F (h) = γ−1

g (ẇ′) = gẇ′g−1.

The following result describes the fusion from F -stable maximal tori in
Hd to F -stable maximal tori in G; see also Lübeck [30, §4.1(2)] (but note
that slightly different conventions and assumptions are used in [30]).

Lemma 2.5. In the above setting, let T ′ ⊆ Hd be an F -stable maximal
torus of type w′ ∈ W (Φ′). Then T ′ ⊆ G is an F -stable maximal torus of type
w′d ∈ W . In particular, a maximally split torus of Hd is of type d (relative
to G).

Proof. Recall that g−1F (g) = ḋ and that T d = gT 0g
−1 is a maximally split

torus of Hd. As above, let h ∈ Hd be such that T ′ = hT dh
−1 and h−1F (h) =

γ−1
g (ẇ′) = gẇ′g−1. Then T ′ = hgT 0g

−1h−1 and (hg)−1F (hg) ∈ NG(T 0).
Now

(hg)−1F (hg) = g−1h−1F (h)F (g) = g−1(gẇ′g−1)F (g) = ẇ′ḋ.

Hence, T ′ is an F -stable maximal torus of type ẇd in G.

Example 2.6. Let G be simple of type G2; then σ = idW and the permu-
tation α �→ α† is the identity. Let Δ = {α1, α2} be the set of simple roots in
Φ+, where α1 is long and α2 is short. There are two particular subsystems
Φ′ ⊆ Φ that occur in the classification of cuspidal character sheaves on G
(see the proof of [36, Prop. 20.6]). Up to W -conjugacy, these are Φ′

0 of type
A1 ×A1, spanned by {α2, α0}, and Φ′′

0 ⊆ Φ of type A2, spanned by {α1, α0}.
(Here, α0 ∈ Φ denotes the unique root of maximal height in Φ.) There is only
one equivalence class of pairs (Φ′, w) ∈ Ξ under ∼ where Φ′ = Φ′

0; a represen-
tative is given by (Φ′

0, d1) with d1 = 1W . There are two equivalence classes
of pairs (Φ′, w) ∈ Ξ where Φ′ = Φ′′

0; representatives are given by (Φ′′
0, d1)

with d1 = 1W , and by (Φ′′
0, d2) with d2 = wα2 (and d2 has minimal length in

W (Φ′′
0)d2). The information is summarised in Table 1 (which is a model for

the tables in later sections).
In that table, Δ′ is the set of simple roots in Φ+ ∩ Φ′. Furthermore, we

define σ′
i ∈ Aut(W (Φ′)) by σ′

i(w) = diwd
−1
i for w ∈ W . Then σ′

i induces a
permutation of the simple reflections in W (Φ′); see Remark 2.3. This permu-
tation, in cycle notation, is indicated in the fourth column of the table; note
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282 Meinolf Geck

Table 1: Subsystems for type G2

Φ′ Δ′ di permutation σ′
i-classes

A1×A1 α2, 2α1+3α2 d1 = 1W () 4
A2 α1, α1+3α2 d1 = 1W () 3

d2 = wα2 (1, 2) 3

that this permutation refers to the simple roots in Δ′, not to those in Δ. The
last column contains the number of σ′

i-conjugacy classes of W (Φ′).
Now consider the fusion of F -stable maximal tori described by Lemma 2.5.

In each case, we need to work out representatives of the σ′
i-conjugacy classses

of W (Φ′), multiply these by di and identify the conjugacy class of W to
which the new element belongs. Here, of course, this can be done by hand, but
for larger W , such computations are conveniently done using the computer
algebra system CHEVIE [20], [47], for example.

2.7. Centralisers of semisimple elements. Let C be an F -stable con-
jugacy class of semisimple elements of G. It is well-known that C ∩ T 0 is
non-empty and a single orbit under the action of W ; furthermore, C◦

G(t), for
t ∈ C ∩ T 0, is a connected reductive subgroup of the type considered above
(see, e.g., [4, §3.5, §3.7]). Thus, we are led to consider the subset Ξ◦ ⊆ Ξ
consisting of all pairs (Φ′, w) ∈ Ξ, for which there exists some t ∈ T 0 such
that

Φ′ = {α ∈ Φ | α(t) = 1} and F (t) = ẇ−1tw.

Then the GF -conjugacy classes of subgroups of the form C◦
G(s), where s ∈ GF

is semisimple, are parametrised by the pairs in Ξ◦ modulo the equivalence
relation ∼ on Ξ◦. (See again [3], [8], [48].) Given a pair (Φ′, w) ∈ Ξ◦, a
corresponding semisimple element s ∈ GF is obtained as follows. Let t ∈ T 0
be such that Φ′ = {α ∈ Φ | α(t) = 1} and F (t) = ẇ−1tw; then C◦

G(t) =
〈T 0,Uα (α ∈ Φ′)〉. Let g ∈ G be such that g−1F (g) = ẇ and set s := gtg−1.
Then F (s) = s and C◦

G(s) = gC◦
G(t)g−1.

Note that, if d ∈ W has minimal length in the coset W (Φ′)w, then w =
w′d for some w′ ∈ W (Φ′) and we still have F (t) = ḋ−1tḋ (since ẇ′ ∈ CG(t)).
Hence, again, we may assume without loss of generality that w = d and so
the discussions in Remarks 2.3, 2.4, and Lemma 2.5 apply. The subsystems
Φ′ ⊆ Φ which can arise at all as the root system of C◦

G(t), for some t ∈ T 0,
are characterised in [8, §2.3]; given such a subset Φ′ ⊆ Φ, the condition of
whether there is some w ∈ W such that (Φ′, w) ∈ Ξ◦ may also depend on
the isogeny type of G and the Fq-rational structure on G; see [3, §5] and [8,
Chap. 2] for further details.
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3. On the evaluation of Deligne–Lusztig characters

Let T ⊆ G be an F -stable maximal torus and θ ∈ Irr(T F ) be an irreducible
character. Then we have a corresponding virtual character RG

T (θ) of GF , as
defined by Deligne–Lusztig [7] (see also [4, Chap. 7]). These virtual characters
span a significant subspace of the space of all class functions on GF (see
the introduction of [33] and [21, Cor. 2.7.13] for a more precise measure of
what “significant” means). It is known that, if u ∈ GF is unipotent, then
QG

T (u) := RG
T

(
θ
)
(u) ∈ Z does not depend on θ; the function u �→ QG

T (u)
is called a Green function. We now have the following important character
formula.

Let g̃ ∈ GF and write g̃ = su = us, where s ∈ GF is semisimple and
u ∈ GF is unipotent. Then, setting Hs := C◦

G(s), we have

RG
T

(
θ
)
(g̃) = 1

|HF
s |

∑
x∈GF :x−1sx∈T

QHs

xTx−1(u) θ(x−1sx).

Note that, firstly, Hs is connected and reductive; secondly, if x−1sx ∈ T F ,
then xTx−1 is an F -stable maximal torus contained in Hs; furthermore, u
is known to belong to Hs. (See [7, 4.2] or [4, 7.2.8] for further details.) In
particular, the formula shows that all values of RG

T (θ) belong to the field
Q(θ(t) | t ∈ T F ). We also see that, if s is not conjugate in GF to an element
of T F , then RG

T

(
θ
)
(g) = 0.

We now explain how the above formula can be evaluated explicitly; for
this purpose, we need to

(1) know the values of the Green functions of Hs,
(2) deal with the sum over all x ∈ GF such that x−1sx ∈ T .

As far as (1) is concerned, see the surveys in [10, Chap. 13] and [21, §2.8].
In any case, for G simple of exceptional type, explicit tables are known by
Beynon–Spaltenstein [1] and Shoji [51]. (The fact that these tables remain
valid whenever p is a “good” prime for G follows from [54, Theorem 5.5]; see
also [19] for “bad” p.) The tables can be obtained via the function ICCTable
of Michel’s version of CHEVIE [47]. As far as (2) is concerned, the following
result provides a first simplification.

Lemma 3.1 (See [21, 2.2.23]). In the above setting, assume that s is conjugate
in GF to an element in T F . Let T 1, . . . ,Tm be representatives of the HF

s -
conjugacy classes of F -stable maximal tori of Hs that are conjugate in GF

to T . For each i, let g̃i ∈ GF be such that T i = g̃iT g̃−1
i . Then

RG
T

(
θ
)
(g̃) =

∑
1�i�m

QHs

T i
(u) 1

|W (Hs,T i)F |
∑

y∈W (G,T i)F
θ(g̃−1

i ẏ−1sẏg̃i)
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where W (G,T i) = NG(T i)/T i and W (Hs,T i) = NHs(T i)/T i.

Now note that the subgroup T F ⊆ GF is not really computationally
accessible, and the same is true for T F

1 , . . . ,T
F
m. All we can do explicitly are

computations within T 0. Hence, in order to proceed, we use a different model
for RG

T (θ), as already constructed in [7]. Assume that T is of type w ∈ W
and let g1 ∈ G be such that g−1

1 F (g1) = ẇ. Then define

T 0[w] := {t ∈ T | F (t) = ẇ−1tẇ} = g−1
1 T F g1 ⊆ G.

Let θ′ ∈ Irr(T 0[w]) be the irreducible character defined by θ′(t) := θ(g1tg
−1
1 )

for all t ∈ T 0[w]. Then we have RG
T (θ) = Rθ′

w , where the right hand side is
constructed directly from (w, θ′) (see [21, 2.3.18] for further details). Thus,
the virtual characters RG

T (θ) may equally well be defined in terms of pairs
(w, θ′), where w ∈ W and θ′ ∈ Irr(T 0[w]) — and the latter set of pairs (w, θ′)
is, indeed, computationally accessible.

We can now apply the results in the previous section, especially the dis-
cussions in Remark 2.4 and Lemma 2.5. Let g̃ = su = us ∈ GF as above and
Hs := C◦

G(s). Let T ′ ⊆ Hs be a maximally split torus and g ∈ G be such
that T ′ = gT 0g

−1. Then g−1F (g) ∈ NG(T 0) and we denote by d ∈ W the
image of g−1F (g) in W . Let t := g−1sg ∈ T 0 and Φ′ := {α ∈ Φ | α(t) = 1}.
Then F (t) = ẇ−1tẇ and (Φ′, d) ∈ Ξ◦ parametrises the GF -conjugacy class
of Hs; furthermore, we have that d has minimal length in W (Φ′)d. As in
Remark 2.3, we define σ′ ∈ Aut(W ) by σ′(w) = dσ(w)d−1 for w ∈ W ; then
σ′(W (Φ′)

)
= W (Φ′).

(∗) Let w′
1, . . . , w

′
m ∈ W (Φ′) be representatives of the σ′-conjugacy classes

of W (Φ′) such that w′
id is σ-conjugate in W to w. For each i let us fix

an element xi ∈ W such that w = x−1
i w′

idσ(xi).

For 1 � i � m let hi ∈ Hs be such that h−1
i F (hi) = gẇ′

ig
−1, and set

T i := hiT
′h−1

i ⊆ Hd. Then, by Lemma 2.5, T 1, . . . ,Tm are maximal tori
as required in Lemma 3.1. For 1 � i � m define T 0[w′

id] ⊆ T 0 analogously
to T 0[w] above; then T 0[w′

id] = ẋiT 0[w]ẋ−1
i (see [21, 2.3.20]). So, given θ′ ∈

Irr(T 0[w]) as above, we can define a character θ′i ∈ Irr(T 0[w′
id]) by

θ′i(t) := θ′(ẋ−1
i tẋi) for t ∈ T 0[w′

id].

Now let CW ,σ(w) = {x ∈ W | xw = wσ(x)} be the σ-centraliser of w
in W ; then ẋT 0[w]ẋ−1 = T 0[w] for all x ∈ CW ,σ(w). Defining CW ,σ(w′

id)
analogously, we have ẋT 0[w′

id]ẋ−1 = T 0[w′
id] for all x ∈ CW ,σ(w′

id). Let also

CW (Φ′),σ′(w′
i) = {x ∈ W (Φ′) | xw′

i = w′
iσ

′(x)} = W (Φ′) ∩ CW ,σ(w′
id).

For the author's personal use only.

For the author's personal use only.



On the computation of character values 285

With this notation, we can now state the following result; see also Lübeck
[30, Satz 2.1] for a slightly different formulation.

Lemma 3.2. In the above setting, we have W (Hs,T i)F ∼= CW (Φ′),σ′(w′
i)

and ∑
y∈W (G,T i)F

θ(g̃−1
i ẏ−1sẏg̃i) =

∑
c

θ′i(ċ−1tċ) for 1 � i � m,

where c runs over all elements of CW ,σ(w′
id). In particular, if θ = 1T is the

trivial character of T F , then the above sum equals |CW ,σ(w′
id)| for 1 � i � m.

Proof. Recall that T = g1T 0g
−1
1 , T ′ = gT 0g

−1 and T i = hiT
′h−1

i for all i.
Hence, setting g̃i := higẋig

−1
1 ∈ G, we have g̃iT g̃−1

i = T i for all i. Since T
and T i are GF -conjugate, we can replace hi by hit

′
i for a suitable t′i ∈ T ′ such

that F (g̃i) = g̃i (see the argument in the proof of [4, Prop. 3.3.3]). Thus, the
elements g̃i are as required in Lemma 3.1. Next, by [4, Prop. 3.3.6], we have
a group isomorphism

CW ,σ(w′
id)

∼−→ W (G,T i)F , c �→ higċg
−1h−1

i .

(Recall that higT 0g
−1h−1

i = T i and (hig)−1F (hig) = ẇ′
iḋ.) Hence, we have

∑
y∈W (G,T i)F

θ(g̃−1
i ẏ−1sẏg̃i) =

∑
c

θ(g̃−1
i higċ

−1g−1h−1
i shigċg

−1h−1
i g̃i)

where c runs over all elements of CW ,σ(w′
id). Now g−1h−1

i shig = t; hence, the
terms in the above sum on the right hand side are given by

θ(g̃−1
i higċ

−1tċg−1h−1
i g̃i) = θ(g1ẋ

−1
i ċ−1tċẋig

−1
1 ) = θ′i(ċ−1tċ)

for all c ∈ CW ,σ(w′
id), as required. Finally, consider the assertion concerning

W (Hs,T i)F . Let W s = NHs(T ′)/T ′ and σs : W s → W s be induced by F .
Let H ′ = C◦

G(t) = g−1Hsg and F ′ : H ′ → H ′ be as in Remark 2.3; recall
that F ′ induces σ′ ∈ Aut(W (Φ′)). As discussed in Remark 2.4, conjugation
by g induces a bijection between the σ′-conjugacy classes in W (Φ′) and the
σs-conjugacy classes in W s. Thus, we have W (Hs,T i)F ∼= W (H ′,T ′

i)F
′

where T ′
i ⊆ H ′ is an F ′-stable maximal torus of type w′

i ∈ W (Φ′) (relative
to F ′). Again by [4, Prop. 3.3.6], the group W (H ′,T ′

i)F
′ is isomorphic to

CW (Φ′),σ′(w′
i).

The point about the above result is that the formula on the right hand side
of the identity can be explicitly and effectively computed, once a character
θ′ ∈ Irr(T 0[w]) has been specified: all we need to know is the action of W on
T 0, plus information concerning various σ-conjugacy classes in W .
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Example 3.3. Assume that g̃ = su = us where u ∈ Hs is regular unipotent.
Then QHs

T i
(u) = 1 for 1 � i � m (see [7, Theorem 9.16]). Let θ = 1T be the

trivial character of T F . Then

RG
T

(
1T

)
(g) = |CW ,σ(w)|

∑
1�i�m

|CW (Φ′),σ′(w′
i)|−1.

Indeed, this is now clear by Lemmas 3.1 and 3.2. Note that, since the maximal
tori T and T i are conjugate in GF , we have W (G,T )F ∼= W (G,T i)F and,
hence, W (G,T i)F ∼= CW ,σ(w) for 1 � i � m.

Example 3.4. Assume that G is of split type; then σ = idW . Then we define

RG
φ := 1

|W |
∑

w∈W
φ(w)RG

Tw
(1) for φ ∈ Irr(W ),

where Tw ⊆ G is an F -stable maximal torus of type w and 1 stands for the
trivial character of T F

w . (This is a very special case of [33, (3.7.1)].) We also
have

RG
Tw

(1) =
∑

φ∈Irr(W )
φ(w)RG

φ for all w ∈ W ;

so knowing the RG
Tw

(1)’s is equivalent to knowing the RG
φ ’s. Also assume now

that g̃ = su = us is such that s ∈ T F
0 . Then one easily sees that

RG
φ (g̃) =

∑
ψ∈Irr(W s)

m(ψ, φ)RHs

ψ (u) for any φ ∈ Irr(W ),

where W s = NHs(T 0)/T 0 ⊆ W is the Weyl group of Hs and m(ψ, φ)
denotes the multiplicity of ψ ∈ Irr(W s) in the restriction of φ. Thus, here
the question of finding the fusion of F -stable maximal tori from Hs to G
has been absorbed into the question of decomposing the restriction of any
φ ∈ Irr(W ) to W s.

Example 3.5. Let G be simple of type F4, where p �= 2. There exists an
involution s ∈ T F

0 such that H ′ := CG(s) has a root system of type B4
(see §7.3 below for further details). Furthermore, there is a unipotent element
u ∈ HF such that, if we let Σ be the GF -conjugacy class of su, then ΣF splits
into five conjugacy classes in GF , with centraliser orders 8q8, 8q8, 4q4, 4q4, 4q4

(see §7.10 for more details). The condition on the centraliser orders uniquely
determines the conjugacy class of u in H ′. Now let u′ ∈ H ′F be one of the
unipotent elements such that su′ ∈ Σ and |CG(su′)F | = 8q8.
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Let W ′ ⊆ W be the Weyl group of H ′. Then Irr(W ′) is parametrised
by the bi-partitions of 4. By the output of the function ICCTable in Michel’s
version of CHEVIE [47], the only ψ ∈ Irr(W ′) such that RH′

ψ (u′) �= 0 are
ψ(4,−), ψ(3,1), ψ(−,4), ψ(22,−), ψ(2,2). Furthermore, we have

RH′

ψ(4,−)
(u′) = 1, RH′

ψ(3,1)
(u′) = q, RH′

ψ(−,4)
(u′) = RH′

ψ(22,−)
(u′) = RH′

ψ(2,2)
(u′) = q2.

In order to evaluate the formula for RG
φ in Example 3.4, we need to know

the multiplicities m(ψ, φ) for ψ ∈ Irr(W ′) and φ ∈ Irr(W ); these are readily
available via the function InductionTable of CHEVIE [47]. This yields the
following values:

RG
φ′′

9,6
(su′) = RG

φ4,8(su
′) = RG

φ′′
1,12

(su′) = q2,

RG
φ12,4(su

′) = RG
φ′

9,6
(su′) = RG

φ′
1,12

(su′) = 0,

where we use the notation of Carter [4, p. 413] for the irreducible characters
of W . (CHEVIE uses the same notation; the conversion to the notation defined
and used by Lusztig [33] is displayed in Table 2.) The knowledge of the above
values will turn out to be useful in the further discussion in §7.10.

Table 2: Conventions for the labelling of Irr(W ) for type F4

φ1,0 φ′′
1,12 φ′

1,12 φ1,24 φ′′
2,4 φ′

2,16 φ′
2,4 φ′′

2,16 φ4,8 φ9,2 φ′′
9,6 φ′

9,6 φ9,10
11 13 12 14 23 24 21 22 41 91 93 92 94

φ′
6,6 φ′′

6,6 φ12,4 φ4,1 φ′′
4,7 φ′

4,7 φ4,13 φ′′
8,3 φ′

8,9 φ′
8,3 φ′′

8,9 φ16,5
61 62 121 42 44 43 45 83 84 81 82 161

The labels φ1,0 etc. are those in [4, p. 413];
the labels 11 etc. those of Lusztig [33, 4.10].

4. Characteristic functions and conjugacy classes

Let Ĝ denote the set of character sheaves on G (up to isomorphism), as
defined by Lusztig [35]. If A ∈ Ĝ is F -invariant, that is, we have F ∗A ∼= A,
then the choice of an isomorphism φ : F ∗A

∼→ A gives rise to a characteristic
function χA : GF → Ql (where l �= p is a prime); see [39, §5]. The isomorphism
φ can be chosen such that the values of χA are cyclotomic integers and the
standard inner product of χA with itself is 1. Hence, we may assume that χA

is a function with values in K. The various functions arising in this way form
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an orthonormal basis of the space of class functions on GF . (See [37, §25];
these results hold unconditionally because of the “cleanness” established in
[44].) Similarly to the situation for Irr(GF ), we have a partition Ĝ =

∐
s Ĝs

where s runs over the semisimple elements (up to conjugation) in a group G∗

dual to G (see [41, 1.2].) The character sheaves in Ĝs, where s = 1, are called
unipotent character sheaves.

In the case where A is a cuspidal character sheaf (and G is simple), the
characteristic functions χA can be evaluated in a simple way. We begin with
some general remarks concerning conjugacy classes.

4.1. Parametrisation of GF -conjugacy classes. Let Σ be an F -stable
conjugacy class of G. Let us fix a representative g1 ∈ ΣF and set AG(g1) :=
CG(g1)/C◦

G(g1). Then F induces an automorphism of AG(g1) that we denote
by the same symbol. Given a ∈ AG(g1), let ȧ ∈ CG(g1) be a representative
of a and write ȧ = x−1F (x) for some x ∈ G. Then ga := xg1x

−1 ∈ GF ;
let Ca be the GF -conjugacy class of ga. A standard argument (using Lang’s
Theorem, see [58, I, 2.7]) shows that Ca only depends on a; furthermore
ΣF =

⋃
a∈AG(g1) Ca, where Ca = Ca′ if and only if a, a′ are F -conjugate in

AG(g1). Now there are two natural operations on the GF -conjugacy classes
contained in ΣF .

(a) The first one is denoted by ShG and called the Shintani map. Let C

be a GF -conjugacy class contained in ΣF ; thus, C = Ca for some a ∈ AG(g1).
Let g ∈ C and write g = x−1F (x) for some x ∈ G. Then g′ := xgx−1 ∈ GF

and the GF -conjugacy class of g′ does not depend on the choice of g or x; we
denote that class by ShG(C). By Digne–Michel [9, Chap. IV, Prop. 1.1], we
have

ShG(Ca) = Cḡ1a (a ∈ AG(g1))

where ḡ1 denotes the image of g1 ∈ CG(g1) in AG(g1).
(b) The second one, defined in [41, 3.1], only plays a role when Z(G) �=

{1}. Let z ∈ Z(G) and write z = t−1F (t) for some t ∈ G. (We could even
take t ∈ T 0.) As above, let C = Ca be a GF -conjugacy class contained in
ΣF . One easily sees that γz(C) := tCt−1 is a conjugacy class in GF and does
not depend on the choice of t; furthermore, we have

γz(Ca) = Cz̄a (a ∈ AG(g1))

where z̄ ∈ AG(g1) denotes the image of z under the natural map Z(G) →
AG(g1).
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4.2. Characteristic functions of cuspidal character sheaves. Assume
that G is a simple algebraic group. Let A be a cuspidal character sheaf on
G such that F ∗A ∼= A. (See [35, Def. 3.10]; such an A may be unipotent
or not.) Then there exists an F -stable conjugacy class Σ of G and an ir-
reducible, G-equivariant Ql-local system E on Σ such that F ∗E ∼= E and
A = IC(Σ, E)[dim Σ]; see [35, 3.12]. Let us fix g1 ∈ ΣF and set AG(g1) :=
CG(g1)/C◦

G(g1), as above. We further assume that:

(∗) the local system E is one-dimensional and, hence, corresponds to an
F -invariant linear character ψ : AG(g1) → K× (via [42, 19.7]).

(This assumption will be satisfied in all examples that we consider.) Now (∗)
implies that the function ψ : AG(g1) → K× is constant on the F -conjugacy
classes of AG(g1). Hence, we obtain a class function χg1,ψ : GF → K by setting

χg1,ψ(g) :=
{

q(dimG−dimΣ)/2ψ(a) if g ∈ Ca for some a ∈ AG(g1),
0 if g �∈ ΣF .

(Note that there are cases where dimG−dim Σ is not even; in such a case, we
also need to fix a square root of q in K. This is typically done by fixing once
and for all a square root √p ∈ K and then setting √

q := √
pf if q = pf with

f � 1.) Since E is one-dimensional, we can choose an isomorphism F ∗E ∼→ E
such that the induced map on the stalk Eg1 is given by scalar multiplication by
q(dimG−dimΣ)/2. Then this isomorphism canonically induces an isomorphism
φ : F ∗A

∼→ A and χg1,ψ is the corresponding characteristic function χA, of
norm 1 with respect to the standard inner product. (This follows from the
fact that A is “clean” [44], using the construction in [42, 19.7].) We shall also
set

λA := ψ(ḡ1) where ḡ1 denotes the image of g1 in AG(g1).

Then λA is a root of unity that only depends on A (see Shoji [53, Theorem 3.3],
[53, Prop. 3.8]); it is a useful invariant of A. In this context, we have the
following basic problem, formulated by Lusztig [41, 0.4(a)]:

(♣) Express the functions χg1,ψ as explicit linear combinations of Irr(GF ).

This problem is solved in many cases, but not in complete generality. Some
examples in small rank cases (types A1, C2, 3D4, . . .) are mentioned in [17,
Example 7.8]. We will produce further examples below.

For G simple of exceptional type, many cuspidal character sheaves turn
out to be unipotent. (Exceptions only occur in types E6 and E7.) So it is of
particular importance to address theses cases.
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4.3. Cuspidal unipotent character sheaves. Assume that G is simple, of
split type (so σ = idW ). Let Unip(GF ) denote the set of unipotent characters
of GF . By [33, Main Theorem 4.23], Unip(GF ) is parametrised by a certain
set X(W ) which only depends on W ; we shall write Unip(GF ) = {ρx | x ∈
X(W )}. For each x ∈ X(W ), we also have a corresponding almost character
Rx, defined as an explicit linear combination of Unip(GF ); see [33, 4.24.1].
The matrix of multiplicities 〈ρx, Rx′〉 (x, x′ ∈ X(W )) is Lusztig’s non-abelian
Fourier matrix; see also [4, §13.6]. There is an embedding Irr(W ) ↪→ X(W ),
φ �→ xφ, such that

Rxφ
= RG

φ = 1
|W |

∑
w∈W

φ(w)RG
Tw

(1) for φ ∈ Irr(W ).

Thus, the values of Rxφ
can be computed using the character table of W and

the results discussed in Section 3. Finally, the unipotent character sheaves
on G are also parametrised by X(W ); see [37, Theorem 23.1] (plus the “clean-
ness” in [44]). If x ∈ X(W ) is such that Ax is cuspidal and F -invariant, then
we have a corresponding characteristic function χg1,ψ as in §4.2. In this situ-
ation, there is the following solution of (♣) in §4.2. For all x ∈ X(W ) such
that Ax is cuspidal, we have

(♣′) Rx = ζχg1,ψ for some scalar ζ ∈ K of absolute value 1.

If p is sufficiently large, then this is part of Lusztig [41, Theorem 0.8]. For
arbitrary p, this is part of the main results of Shoji [53], [54], (The latter results
hold without condition on p, thanks to the “cleanness” in [44].) The scalars ζ
are determined by Shoji [52], [56] for G of classical type. For exceptional types,
there are a number of cases where the scalars ζ remain to be determined, and
it is one purpose of this paper to reduce the number of open cases.

The following technical result will be needed in Section 6.

Lemma 4.4. In the setting of §4.1, let a ∈ AG(g1) and z ∈ Z(G). Then
every ρ ∈ Unip(GF ) takes the same value on Ca and on Cz̄a.

Proof. Let g ∈ Ca. By §4.1(b) we have Cz̄a = γz(Ca). Hence, writing z =
t−1F (t) for some t ∈ G, we have g′ := tgt−1 ∈ Cz̄a. Let ρ ∈ Unip(GF ). In
order to show that ρ(g) = ρ(g′), we use a regular embedding G ⊆ G̃ (see, e.g.,
[21, §1.7]). Thus, G̃ is a connected reductive group with a connected center
and G, G̃ have the same derived subgroup; furthermore, G̃ is also defined
over Fq and we denote the corresponding Frobenius map again by F . Now
Z(G) ⊆ Z(G̃) and so, since Z(G̃) is connected, we can write z = t̃−1F (t̃)
where t̃ ∈ Z(G̃). Then h := tt̃−1 ∈ G̃

F and so hgh−1 = tt̃−1gt̃t−1 = tgt−1 =
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g′, that is, g and g′ are conjugate in G̃
F . Since ρ is unipotent, there exists

some F -stable maximal torus T ⊆ G such that ρ occurs in RG
T (1) (where 1

stands for the trivial character of T F ). There is an F -stable maximal torus
T̃ ⊆ G̃ such that T ⊆ T̃ . Since RG

T (1) is the restriction of RG̃
T̃

(1) to GF (see
[21, Remark 2.3.16]), there exists some ρ̃ ∈ Unip(G̃) such that ρ occurs in
the restriction of ρ̃ to GF . But it is known that ρ̃|GF is irreducible (see [21,
Lemma 2.3.14]) and so ρ is equal to the restriction of ρ̃. Thus, we certainly
have ρ(g) = ρ̃(g) = ρ̃(g′) = ρ(g′).

Example 4.5. Let G be simple of type G2. In this case, the complete charac-
ter table of GF is known; see Chang–Ree [5] (p �= 2, 3), Enomoto [11] (p = 3)
and Enomoto–Yamada [12] (p = 2). Now, there are four cuspidal character
sheaves, and they are all unipotent; see [36, §20], [53, §6, §7]. From the known
character tables, the above identities (♣′) and the required scalars ζ can be
easily extracted. For example, if p �= 2, 3, then the four functions Y1, Y2, Y3, Y4
printed on [5, p. 411] are characteristic functions of the four cuspidal character
sheaves on G.

Let us go back to the general case. Implicit in (♣) and (♣′) is the problem
of choosing a convenient representative g1 ∈ ΣF . In a number of cases, Σ con-
sists of regular elements in G. In such a case, there are additional techniques
to single out a canonical choice for g1 ∈ ΣF ; see Corollary 4.8 below.

4.6. Regular elements. An element g ∈ G is called regular, if dimCG(g)
is as small as possible; it is known that this is equivalent to the condition
that dimCG(g) = dimT 0. Furthermore, let g = su = us be the Jordan
decomposition of g (where s is semisimple and u is unipotent). Then g is
regular if and only if u is regular in C◦

G(s). (For all this see, for example,
[10, §12.1].) By Steinberg [59, Theorem 1.2], every semisimple element of G
is the semisimple part of some regular element; finally, two regular elements
of G are conjugate if and only if their semisimple parts are conjugate. In
particular, all regular unipotent elements are conjugate.

Assume now that G is simple and simply connected. Then a cross-section
for the conjugacy classes of regular elements has been found by Steinberg [59].
Let us write B = UT 0 where U is the unipotent radical of B. Let B− ⊆ G be
the opposite Borel subgroup; then B− = U−T 0, where U− is the unipotent
radical of B−, and we have U ∩U− = {1}. Let wc := wα1 · · ·wαr ∈ W be a
Coxeter element, where r = dimT 0 and α1, . . . , αr is a fixed enumeration of
the simple roots in Φ+. Then the required cross-section is given by

Nẇc := U ẇc ∩ ẇcU
− ⊆ U ẇcU ⊆ BẇcB.
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Indeed, by [59, Theorem 1.4, Lemma 7.3], all elements of Nẇc are regular and
every regular element of G is conjugate to exactly one element in Nẇc . And
everything takes place inside the single double coset U ẇcU ; note that this
depends on the choice of the representative ẇc of wc ∈ W . The following
result is a very special case of the results on “C-small” classes in [43, §5],
so we include the proof here. (It is already mentioned in the proof of [38,
Lemma 8.10].)

Proposition 4.7 (Steinberg, He–Lusztig). Assume that G is simple and sim-
ply connected. Let Σ be a G-conjugacy class of regular elements.

(a) The set Σ ∩U ẇcU �= ∅ is a single U -orbit (under conjugation).
(b) The set Σ ∩BẇcB �= ∅ is a single B-orbit (under conjugation).
(c) In (a), the stabilisers are trivial; in (b) they are equal to Z(G).

Proof. By He–Lusztig [24, Theorem 3.6(ii)], the map

U ×Nẇc → U ẇcU , (u, z) �→ uzu−1,

is bijective. (A closely related result is stated in [59, Prop. 8.9], but since the
proof is omitted there, we cite [24]; see also [2, §10].) Let us denote by g the
unique element in Σ ∩Nẇc ; in particular, g ∈ Σ ∩U ẇcU .

(a) Given any g′ ∈ Σ ∩ U ẇcU , we can write g′ = uzu−1 where u ∈ U
and z ∈ Nẇc . Thus, the two elements z and g in Nẇc are conjugate in G. But
then we must have z = g and so g′ is conjugate to g under U .

(b) Take any g′ ∈ Σ ∩ BẇcB. Since BẇcB = UT 0ẇcU , we can write
g′ = u1tẇcu2 where u1, u2 ∈ U and t ∈ T 0. By [59, Lemma 7.6], we can
further write tẇc = t̃ẇct̃

−1 for some t̃ ∈ T 0. Then

t̃−1g′t̃ = t̃−1u1tẇcu2t̃ = (t̃−1u1t̃)ẇc(t̃−1u2t̃) ∈ U ẇcU .

So we have t̃−1g′t̃ = uzu−1 where u ∈ U and z ∈ Nẇc . Thus, z ∈ Nẇc and
g ∈ Nẇc are conjugate in G and so z = g. Hence, g′ is conjugate to g under B.

(c) The bijectivity of the above map U × Nẇc → U ẇcU immediately
implies that CU (g) = {1}; thus, the stabilisers are trivial in (a). For (b), we
must show that StabB(g) = Z(G). So let b ∈ B be such that bgb−1 = g.
Writing g = vẇc (where v ∈ U ) and b = ut (where u ∈ U and t ∈ T 0), we
obtain

vẇc = g = bgb−1 = utvẇct
−1u−1 = (utvt−1)ẇc

(
ẇ−1
c tẇct

−1)u−1.

Setting t̃ := ẇ−1
c tẇct

−1 ∈ T 0, we see that the left hand side lies in the double
coset U ẇcU , and the right hand side lies in the double coset U ẇct̃U . But
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then the sharp form of the Bruhat decomposition implies that t̃ = 1 and
so t = ẇ−1

c tẇc. By [59, Remarks 7.7(b)], this forces t ∈ Z(G). But then
u ∈ CU (g) and so u = 1. Hence, StabB(g) ⊆ Z(G); the reverse inclusion is
clear.

Corollary 4.8. In the setting of Proposition 4.7, assume that Σ is F -stable
and F (ẇc) = ẇc. Then there exists a unique GF -conjugacy class C ⊆ ΣF

such that C ∩UF ẇcU
F �= ∅. Furthermore, we have C ∩Nẇc �= ∅.

Proof. By Proposition 4.7, the group U acts transitively on X := Σ∩U ẇcU
by conjugation, and we have StabU (x) = {1} for all x ∈ X; in particu-
lar, StabU (x) is connected. A standard application of Lang’s Theorem (see,
e.g., [21, Prop. 1.4.9]) shows that XF �= ∅ and that XF is a single UF -
orbit. Thus, there exists a unique GF -conjugacy class C ⊆ ΣF such that
C ∩ (U ẇcU )F �= ∅. Note that (U ẇcU )F = UF ẇcU

F , by the sharp form of
the Bruhat decomposition.

Finally note that, since F (ẇc) = ẇc, we have F (Nẇc) = Nẇc . Let g be
the unique element in Σ ∩ Nẇc . Then we also have F (g) ∈ Σ ∩ Nẇc and so
F (g) = g. Hence, g ∈ ΣF and g ∈ UF ẇcU

F . So C must be the GF -conjugacy
class of g.

Example 4.9. Let G, Σ, C be as in Corollary 4.8. Then, clearly, we also have
C∩BF ẇcB

F �= ∅. Since the stabilisers for the action of B on Σ∩BẇcB are
equal to Z(G), the set (Σ∩BẇcB)F will split into finitely many BF -orbits,
indexed by the F -conjugacy classes of Z(G). More precisely, let g be the
unique element in C ∩ Nẇc . Let z1, . . . , zr ∈ Z(G) be representatives of the
F -conjugacy classes of Z(G), where z1 = 1. For 1 � i � r, we set gi := tigt

−1
i ,

where ti ∈ T 0 is such that zi = t−1
i F (ti); here, we also assume t1 = 1. Then

g1, . . . , gr are representatives of the BF -orbits on (Σ ∩ BẇcB)F (see [58, I,
2.7]). Hence,

(a) (Σ ∩BẇcB)F =
(
C1 ∩BF ẇcB

F ) ∪ . . . ∪
(
Cr ∩BF ẇcB

F ),
where Ci is the GF -conjugacy class of gi, for all i. Since zi = t−1

i F (ti) ∈ Z(G),
the map CG(g)F → CG(gi)F , x �→ tixt

−1
i , is bijective. In particular, we have

(b) |C| = |Ci| for 1 � i � r.

The union in (a) may not be disjoint; but Ci = Cj can only happen if the
images of zi and zj in AG(g) are F -conjugate. Now, it is known that AG(g)
is abelian, see [58, III, 1.16 and 1.17]; so, for example, if the natural map
Z(G) → AG(g) is injective and F acts trivially on AG(g), then the Ci are all
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distinct. (This will cover most examples that we consider.) Finally, we note
the implication:

(c) Z(G)F = {1} ⇒ (Σ ∩BẇcB)F = C ∩BF ẇcB
F .

Indeed, if Z(G)F = {1}, then all elements of Z(G) are F -conjugate and so
r = 1.

Lemma 4.10. Let G, Σ, C be as in Corollary 4.8. Assume, furthermore,
that G is of split type, that Σ = Σ−1, and that the union in Example 4.9(a)
is disjoint.

(a) There is a permutation i �→ i′ (of order 2) of the set {1, . . . , r} such
that C−1

i = Ci′ for 1 � i � r.
(b) If r is odd (e.g., if Z(G)F = {1}), then we have Ci = C−1

i for 1 � i � r.

Proof. First note that C−1
i ⊆ Σ−1 = Σ for 1 � i � r. We claim that

C−1
i ∩BF ẇcB

F �= ∅ for all i.

To see this, it is enough to show that Ci ∩BF ẇ−1
c BF �= ∅. Now note that

w−1
c also is a Coxeter element (of minimal length); it is well-known that wc

and w−1
c are conjugate in W . By [43, 0.2], [16, Cor. 3.7(a)], we have

|Ci ∩BF ẇBF | = |Ci ∩BF ẇ′BF |

for any two elements w,w′ ∈ W that are conjugate in W and of minimal
length in their conjugacy class. In particular, we can conclude that

|C−1
i ∩BF ẇcB

F | = |Ci ∩BF ẇ−1
c BF | = |Ci ∩BF ẇcB

F | �= 0

for all i, as required. Thus, the above claim is proved.
(a) Let i ∈ {1, . . . , r}. By the above claim, C−1

i is a GF -conjugacy class
that is contained in (Σ ∩ BẇcB)F . So, by Example 4.9(a), we must have
C−1

i = Ci′ for some i′ ∈ {1, . . . , r}. Since the Ci are all distinct, i′ is uniquely
determined by i; furthermore, the map i �→ i′ is a permutation (of order 2)
of the set {1, . . . , r}.

(b) Assume that r is odd. Then there must be some i0 ∈ {1, . . . , r} such
that i0 = i′0, that is, Ci0 = C−1

i0
. Now recall that Ci0 is the GF -conjugacy class

of gi0 , where gi0 = ti0gt
−1
i0

and ti0 ∈ T 0 is such that zi0 = t−1
i0
F (ti0). There

exists some x ∈ GF such that g−1
i0 = xgi0x

−1. It follows that g−1 = ygy−1,
where y := t−1

i0
xti0 . Now F (y) = F (ti0)−1xF (ti0) = z−1

i0
t−1
i0
xti0zi0 = y, since

zi0 ∈ Z(G). Thus, we have shown that C = C−1. Then the same argument,
applied to any i ∈ {1, . . . , r}, also yields that Ci = C−1

i .
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The following example (pointed out to the author by G. Malle) shows
that the situation is really different when r is even.

Example 4.11. Let G = SL2(k) with p �= 2. Then Z(G) has order 2 and
so r = 2. Let Σ be the class of regular unipotent elements; we certainly have
Σ = Σ−1. Let B be the Borel subgroup consisting of the upper triangular
matrices in G; also let W = 〈s1〉. Then one checks that

g :=
(

1 0
1 1

)
∈ ΣF ∩U ṡ1U

F where ṡ1 :=
(

0 −1
1 0

)
.

So the unique class C in Corollary 4.8 is the GF -conjugacy class of g. Now
ΣF splits into two classes in GF , with representatives g and

g′ :=
(

1 0
ξ 1

)
∈ ΣF , where ξ ∈ F×

q is not a square in F×
q .

(One checks that, indeed, g′ ∈ BF ṡ1B
F but g′ �∈ UF ṡ1U

F .) Furthermore,
one checks that g and g−1 are conjugate in GF if and only if −1 is a square in
F×
q , that is, if and only if q ≡ 1 mod 4. Hence, if q ≡ 3 mod 4, then C �= C−1.

Remark 4.12. Assume that G is of split type (then σ = idW ). Let Σ be an
arbitrary F -stable conjugacy class of G and w ∈ W . For any g ∈ ΣF denote
by Cg the GF -conjugacy class of g. Then the cardinalities |Cg∩BF ẇBF | can
be computed using the representation theory of GF ; see, e.g., [43, 1.2(a)]. For
this purpose, we consider the induced character IndGF

BF (1) (where 1 stands for
the trivial character of BF ) and let Hq be the corresponding Hecke algebra,
that is, the endomorphism algebra of a KGF -module affording IndGF

BF (1). This
algebra has a standard basis usually denoted by {Tw | w ∈ W }, where

T 2
wα

= qT1 + (q − 1)Twα for every simple root α ∈ Φ.

There is a bijection, φ ↔ φ(q), between Irr(W ) and the irreducible characters
of Hq (which is canonical once a square root √

q ∈ K has been fixed; see,
e.g., [23, §9.3].) Via this correspondence, the irreducible characters of GF

that occur in IndGF

BF (1) are parametrised by Irr(W ) (see, e.g., [23, §8.4]); we
denote by [φ] ∈ Irr(GF ) the character corresponding to φ ∈ Irr(W ). Then
we have:

(a) |Cg ∩BF ẇBF | = |BF |
|CG(g)F |

∑
φ∈Irr(W )

φ(q)(Tw) [φ](g)
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for any w ∈ W and any g ∈ GF . (See [43, 1.2(a)] and [16, Remark 3.6]
for further details and references.) The values φ(q)(Tw) are explicitly known
(or there are explicit combinatorial algorithms); see [23]. Hence, if we have
sufficient information on the values of [φ] ∈ Irr(GF ), then we can work out
the cardinality |Cg ∩BF ẇBF |, and this will be useful to identify Cg ⊆ ΣF .

Assume now that we are in the setting of §4.6, where G is simple and
simply connected, Σ consists of regular elements and w = wc is a Coxeter
element. Also assume that the natural map Z(G) → AG(g1) is injective and
F acts trivially on AG(g1). Let C1, . . . , Cr be the GF -conjugacy classes that
are contained in ΣF and have a non-empty intersection with BF ẇcB

F . Then,
by Example 4.9, we have r = |Z(G)| and each set Ci ∩BF ẇcB

F is a single
BF -orbit, of size |BF |/r. Hence, the above identity (a) can be expressed as
follows.

(b)
∑

φ∈Irr(W )
φ(q)(Tw) [φ](g) =

{
1
r |CG(g)F | if g ∈ C1 ∪ . . . ∪ Cr,

0 if g ∈ ΣF \ (C1 ∪ . . . ∪ Cr).

This identity can be exploited to obtain information on the character values
[φ](g) and, hence, potentially, on the unknown scalars ζ in §4.3(♣′); see the
proof of Proposition 6.5 below for an example.

5. Cuspidal unipotent character sheaves in type E6

Throughout this section, let G be simple, simply connected of type E6. Let
q = pf (where f � 1) be such that F : G → G defines an Fq-rational
structure. Except for §5.6 (at the very end), we assume that G is of split
type; thus, σ = idW and the permutation α �→ α† of Φ is the identity. Let
Δ = {α1, α2, α3, α4, α5, α6} be the set of simple roots in Φ+, where the la-
belling is chosen as follows.

α2

α1 α3 α4 α5 α6

�

� � � � �

If p = 3, then the cuspidal character sheaves and almost characters have been
considered by Hetz [25]. So assume from now on that p �= 3. Let α0 ∈ Φ be
the unique root of maximal height and consider the subsystem Φ0 ⊆ Φ of
type A2 × A2 × A2 spanned by {α1, α2, α3, α5, α6, α0}. The relevance of this
particular example is that Φ0 occurs in the classification of cuspidal unipotent
character sheaves on G; see [36, Prop. 20.3] (and also the remarks in [54, 5.2]).
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Using CHEVIE, we find that the unique set Δ0 of simple roots in Φ0 ∩ Φ+ is
given by

Δ0 = { α1, α2, α3, α5, α6, α′
0 := α1+α2+2α3+3α4+2α5+α6 }.

(In the Dynkin diagram of Δ0, the node α′
0 is joined to α2.) There are three

equivalence classes of pairs (Φ′, w) ∈ Ξ under ∼, where Φ′ = Φ0; representa-
tives (Φ0, di), where di ∈ W has minimal length in W (Φ0)di for i = 1, 2, 3,
are given in Table 3. In that table, an expression like 4315 · · · means the
product wα4wα3wα1wα5 · · · in W . Otherwise, the conventions are the same
as in Example 2.6. In particular, recall that the permutation in the second
column refers to the simple roots in Δ0, as listed above, not to those in Δ.
(So, e.g., the cycle (3, 4, 6) means that α3 �→ α5 �→ α′

0 �→ α3.)

Table 3: The subsystem Φ0 for type E6

di permutation σ′
i-classes

d1 = 1W () 27
d2 = 431543654 (1, 4)(2, 6)(3, 5) 9
d3 = 425431654234 (1, 5, 2)(3, 4, 6) 3

5.1. The subgroup H ′ = 〈T 0,Uα (α ∈ Φ0)〉. For each root α ∈ Φ, denote
by α∨ : k× → T 0 the corresponding coroot. Since G is simply connected,
every t ∈ T 0 has a unique expression t = h(ξ1, . . . , ξ6) :=

∏
1�i�6 α

∨
i (ξi)

where ξi ∈ k× for 1 � i � 6. By [21, Example 1.5.6], we have

Z(G) = {h(ξ, 1, ξ−1, 1, ξ, ξ−1) | ξ ∈ k×, ξ3 = 1}.

A similar computation shows that

Z(H ′) = {h(ξ, 1, ξ−1, 1, ζ, ζ−1) | ξ, ζ ∈ k×, ξ3 = ζ3 = 1}.

Thus, Z(H ′) is generated by Z(G) and any fixed t ∈ Z(H ′) \ Z(G). Since
q is not a power of 3, we have |Z(G)| = 3 and |Z(H ′)| = 9. Given t =
h(ξ, 1, ξ−1, 1, ζ, ζ−1) ∈ Z(H ′) (where ξ3 = ζ3 = 1), we have CG(t) = H ′ if
and only if ξ �= ζ. Furthermore, one easily checks that

ḋ−1
2 tḋ2 = z2(t)t−1 where z2(t) := h

(
ξζ, 1, (ξζ)−1, 1, ξζ, (ξζ)−1) ∈ Z(G),

ḋ−1
3 tḋ3 = z3(t)t where z3(t) := h

(
ξζ−1, 1, ξ−1ζ, 1, ξζ−1, ξ−1ζ

)
∈ Z(G).
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These two relations show that all elements in Z(H ′) \ Z(G) are conjugate
in G. In particular, if we choose ζ = ξ−1 �= 1, then ḋ−1

2 tḋ2 = t−1. Thus, if C
denotes the G-conjugacy class of the elements in Z(H ′) \ Z(G), then

F (C) = C, C = C−1 and C = Z(G)C.

In order to see that C is F -stable, we argue as follows. If q ≡ 1 mod 3,
then F (z) = z for all z ∈ Z(H ′). On the other hand, if q ≡ 2 mod 3, then
F (z) = z−1 for all z ∈ Z(H ′) and, hence, Z(H ′)F = {1}. But, if t =
h(ξ, 1, ξ−1, 1, ζ, ζ−1) ∈ C with ζ = ξ−1 �= 1 as above, then F (t) = t−1 =
ḋ−1

2 tḋ2 ∈ C, as required.

5.2. The conjugacy class Σ ⊆ G. Let us fix an element s1 ∈ C; since C is
F -stable, we may assume that F (s1) = s1. Now H ′

1 := CG(s1) is conjugate
to H ′ in G. Let u1 ∈ H ′

1 be regular unipotent; since all regular unipotent
elements in H ′

1 are conjugate in H ′
1, we may assume that F (u1) = u1. Let Σ

be the G-conjugacy class of g1 := s1u1; then Σ is F -stable since F (g1) = g1.
Since Z(G)C = C = C−1, one also deduces that Z(G)Σ = Σ = Σ−1. We claim
that

AG(g1) is generated by s̄1 and all z̄ for z ∈ Z(G);
here, for any c ∈ CG(g1), we denote by c̄ the image of c in AG(g1). Indeed,
we have CG(g1) = CH′

1
(u1) and so C◦

G(g1) = C◦
H′

1
(u1). Since we are in good

characteristic (inside H ′
1
∼= H ′, which is of type A2×A2×A2) and Z(H ′

1) is
finite, it follows that AG(g1) = AH′

1
(u1) ∼= Z(H ′

1), where the isomorphism is
induced by the natural map Z(H ′

1) ⊆ CH′
1
(u1) → AH′

1
(u1); see [10, §12.3].

Note also that ḡ1 = s̄1. By §5.1, we have that Z(H ′) is generated by Z(G)
and any fixed element in Z(H ′) \ Z(G). Consequently, Z(H ′

1) is generated
by Z(G) and s1, which implies the above claim.

Note that F acts trivially on AG(g1) if q ≡ 1 mod 3. On the other hand,
if q ≡ 2 mod 3, then F (z) = z−1 for all z ∈ Z(G) and, hence, F acts non-
trivially on AG(g1); in this case, we have AG(g1)F = 〈s̄1〉 ∼= Z/3Z. Hence, the
set ΣF splits into an odd number (either 9 or 3) of conjugacy classes in GF .
So, among these classes, there must be at least one that is equal to its inverse;
we now choose g1 ∈ ΣF to be in such a class; thus, g1 is conjugate to g−1

1
in GF (and not just in G). Note also that, using Lemma 4.10(b), we could
fix the GF -conjugacy class of g1 completely, by requiring that g1 ∈ C, where
C is the GF -conjugacy class determined by Σ (and the choice of ẇc) as in
Corollary 4.8.

5.3. Cuspidal unipotent character sheaves. First we consider the group
G̃ := G/Z(G). Let π : G → G̃ be the canonical map; let Σ̃ := π(Σ) and
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g̃1 := π(g1). By the proof of [36, Prop. 20.3(a)] (see also [54, 4.6, 5.2]), there
are two cuspidal unipotent character sheaves Ã1 and Ã2 of G̃; they have
support Σ̃ and they are F -invariant. As explained in the proof of [36, Cor. 20.4]
(see also [54, p. 347]), the local systems (see §4.2) associated with Ã1 and
Ã2 are one-dimensional; they correspond to linear characters ψ̃1 and ψ̃2 of
AG̃(g̃1), such that ψ̃1(¯̃g1) = θ and ψ̃2(¯̃g1) = θ2, where 1 �= θ ∈ K× is a fixed
third root of unity. (Here, ¯̃g1 denotes the image of g̃1 in AG̃(g̃1).) Now use π to
go back to G. First note that π canonically induces a group homomorphism
π̄ : AG(g1) → AG̃(g̃1). Hence, we obtain irreducible characters of AG(g1) by
setting

ψ1 := ψ̃1 ◦ π̄ ∈ Irr(AG(g1)) and ψ2 := ψ̃2 ◦ π̄ ∈ Irr(AG(g1)).

By the proof of [36, Prop. 20.3(b)], A1 := π∗Ã1 and A2 := π∗Ã2 are cuspidal
unipotent character sheaves on G (and these are the only ones); they have
support Σ and they correspond to the linear characters ψ1 and ψ2 of AG(g1).
(See the general reduction techniques described in [34, 2.10].) Finally note
that, clearly, the image of Z(G) in AG(g1) is contained in ker(π̄). Hence, we
have

ψ1(s̄1) = θ, ψ2(s̄1) = θ2, ψ1(z̄) = ψ2(z̄) = 1 for z ∈ Z(H ′
1)F .

(Recall that ḡ1 = s̄1.) Thus, ψ1 and ψ2 are completely determined, where ψ2
is the complex conjugate of ψ1. Furthermore, the roots of unity attached to
A1 and A2 as in §4.2 are λA1 = θ and λA2 = θ2. Using ψ1 and ψ2, we can
now write down characteristic functions of A1 and A2, as in §4.2; we have
χg1,ψi = χg̃1,ψ̃i

◦ π for i = 1, 2. (Recall that Σ = Z(G)Σ and so Σ = π−1(Σ̃).)

5.4. Unipotent characters and almost characters. Let G̃ = G/Z(G)
and π : G → G̃ as above. First note that the unipotent characters of GF

and G̃
F can be canonically identified via π (see, e.g., [21, Prop. 2.3.15]).

As discussed in §4.3, the unipotent characters are parametrised by a certain
set X(W ) (which only depends on W ). This set is further partitioned into
“families”; the interesting family for us is the one which contains x ∈ X(W )
such that ρx ∈ Unip(GF ) is cuspidal; it is given as follows (see the tables in
[4, p. 480] and [33, p. 363]).

x ∈ X(W ) : (1, 1) (1, ε) (g2, 1) (g3, 1) (1, r) (g2, ε) (g3, θ) (g3, θ
2)

ρx ∈ Unip(GF ) : [80s] [20s] [60s] [10s] [90s] D4[r] E6[θ] E6[θ2]

Here, labels such as 80s, 20s etc. denote irreducible characters of W (as in [33,
Chap. 4]); then [80s], [20s] etc. are the corresponding irreducible constituents
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of IndGF

BF (1) where 1 stands for the trivial character of BF ; the characters
E6[θ] and E6[θ2] are cuspidal unipotent; D4[r] is a further non-cuspidal char-
acter. (Note also that, for example, the “g3” in (g3, θ) and (g3, θ

2) has nothing
to do with elements in GF ; these are just notations for parameters in X(W ).)
For each x ∈ X(W ) we also have a unipotent almost character Rx, formed
using the entries of the corresponding Fourier matrix (the relevant part of
which is printed in [4, p. 457]). In particular, we have:

R(g3,θ) := 1
3
(
[80s] + [20s] − [10s] − [90s] + 2E6[θ] − E6[θ2]

)
,

R(g3,θ2) := 1
3
(
[80s] + [20s] − [10s] − [90s] − E6[θ] + 2E6[θ2]

)
.

Now consider the two cuspidal unipotent character sheaves A1 and A2 de-
scribed above, with characteristic functions χg1,ψ1 and χg1,ψ2 . By the main
result of [54, §4] (see also [54, 5.2]), there are scalars ζ, ζ ′ ∈ K of absolute
value 1 such that

R(g3,θ) = ζχg1,ψ1 and R(g3,θ2) = ζ ′χg1,ψ2 .

(More precisely, in [54, §4], this is proved for G̃ but the discussion in §5.3
shows that this also holds for G, with ψ1 and ψ2 as above.) By [15, Table 1],
the characters E6[θ] and E6[θ2] are complex conjugate to each other, and their
values lie in the field Q(θ); furthermore, all characters [φ] (where φ ∈ Irr(W ))
are rational-valued; see [15, Prop. 5.6]. We conclude that the class functions
R(g3,θ) and R(g3,θ2) are complex conjugate to each other, and their values lie
in Q(θ). Now, since dimG− dim Σ = dimT 0 = 6, we have

R(g3,θ)(g1) = ζχg1,ψ1(g1) = ζq3 ∈ Q(θ),
R(g3,θ2)(g1) = ζ ′χg1,ψ2(g1) = ζ ′q3 ∈ Q(θ).

Thus, we can already conclude that ζ ′ = ζ. Since g1 is conjugate to g−1
1 in GF ,

we have E6[θ](g1) = E6[θ](g−1
1 ) = E6[θ](g1) = E6[θ2](g1). Consequently, we

also have R(g3,θ)(g1) = R(g3,θ2)(g1) and so ζ = ζ ′ = ζ. Since ζ ∈ Q(θ),
this implies that ζ ∈ Q. And since ζ has absolute value 1, we must have
ζ = ζ ′ = ±1.

Proposition 5.5. In the above setting, recall that g1 ∈ ΣF is conjugate to g−1
1

in GF . Then we have ζ = ζ ′ = 1, that is, R(g3,θ) = χg1,ψ1 and R(g3,θ2) = χg1,ψ2 .

Proof. (See also [18, Remark 3.3].) Inverting the matrix relating unipotent
characters and unipotent almost characters, we obtain:

E6[θ] = 1
3
(
R80s + R20s −R10s −R90s + 2R(g3,θ) −R(g3,θ2)

)
.
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Using the formula for Rφ in §4.3, the (known) character table of W and
Example 3.3, we find that

R80s(g1) = R20s(g1) = R90s(g1) = 0 and R10s(g1) = ε,

where ε = ±1 is such that q ≡ ε mod 3. This yields E6[θ](g1) = 1
3(−ε+ζq3) ∈

Q, where the left hand side is an algebraic integer. Hence, 3 must divide
ζq3 − ε ∈ Z. Since ζ = ±1, the only possibility is that ζ = 1.

Table 4: Values of E6[θ] on ΣF

q ≡ 1 mod 3 {1̄, z̄, z̄2} {s̄1, s̄1z̄, s̄1z̄
2} {s̄2

1, s̄
2
1z̄, s̄

2
1z̄

2}
E6[θ] 1

3 (q3 − 1) 1
3 (q3 − 1) + q3θ 1

3 (q3 − 1) + q3θ2

q ≡ 2 mod 3 1̄ s̄1 s̄2
1

E6[θ] 1
3 (q3 + 1) 1

3 (q3 + 1) + q3θ 1
3 (q3 + 1) + q3θ2

(Here, g1 = s1u1 ∈ ΣF is such that g1 and g−1
1 are conjugate in GF .)

The resulting values of E6[θ] on the conjugacy classes of GF that are
contained in ΣF are displayed in Table 4, where z denotes a non-trivial el-
ement in Z(G) when q ≡ 1 mod 3. (Recall that ΣF splits into 9 classes if
q ≡ 1 mod 3, and into 3 classes if q ≡ 2 mod 3; these classes are parametrised
by representatives of the F -conjugacy classes of AG(g1) ∼= Z(H ′

1).)

5.6. Twisted type. Let G be as above (of type E6) but let now F̃ : G → G
be a Frobenius map (corresponding to an Fq-rational structure on G) such
that (G, F̃ ) is non-split. Then the induced automorphism σ : W → W is
given by conjugation with the longest element w0 ∈ W . The permutation
α �→ α† of Φ is of order 2, such that α†

1 = α6, α†
3 = α5, α†

2 = α2 and α†
4 = α4.

The two cuspidal unipotent character sheaves A1 and A2 considered above
are also F̃ -stable; see [36, Cor. 20.4] and its proof. In all essential points, we
can further argue as above, so we just state the main results. To begin with,
the subsystem Φ0 ⊆ Φ is invariant under †. Again, there are three equivalence
classes of pairs (Φ′, w) ∈ Ξ under ∼, where Φ′ = Φ0; representatives (Φ0, di),
where di ∈ W has minimal length in W (Φ0)di for i = 1, 2, 3, are given as
follows.

di permutation σ′
i-classes

d1 = 1W (1, 5)(3, 4) 9
d2 = 431543654 (1, 3)(2, 6)(4, 5) 27
d′3 = 423143542314354 (1, 6, 5, 3, 2, 4) 3
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Given t = h(ξ1, . . . , ξ6) ∈ T 0, with ξ ∈ k× for all i, we now have

F̃ (t) = h(ξq6, ξ
q
2, ξ

q
5, ξ

q
4, ξ

q
3, ξ

q
1) for all ξ ∈ k×.

Recall that Z(H ′) = {h(ξ, 1, ξ−1, 1, ζ, ζ−1) | ξ, ζ ∈ k×, ξ3 = ζ3 = 1}; also
recall the definition of the G-conjugacy class C from §5.1.

Let t = h(ξ, 1, ξ−1, 1, ζ, ζ−1) ∈ Z(H ′). Assume first that q ≡ 1 mod 3.
Then F̃ (t) = t if and only if ξ = ζ−1. Thus, there exists some t ∈ Z(H ′)F̃ such
that CG(t) = H ′. On the other hand, if q ≡ 2 mod 3, then one checks that
F̃ (t) = ḋ−1

2 tḋ2 for all t ∈ Z(H ′). In particular, there exists some t ∈ Z(H ′)
such that CG(t) = H ′ and F̃ (t) = ḋ−1

2 tḋ2. Hence, in both cases, the class C
is F̃ -stable. We now define Σ as in §5.2; let g1 ∈ ΣF̃ . It follows again that

AG(g1) is generated by s̄1 and all z̄ for z ∈ Z(G).

We obtain characteristic functions χg1,ψ1 and χg1,ψ2 for A1 and A2, respec-
tively, by exactly the same formulae as in §5.3.

Now let us turn to the unipotent characters and almost characters of GF̃ .
The unipotent characters are parametrised by the same set X(W ) as before
in §5.4; the notation for the characters in the 8-element family is now as
follows.

x ∈ X(W ) : (1, 1) (1, ε) (g2, 1) (g3, 1) (1, r) (g2, ε) (g3, θ) (g3, θ
2)

ρ̃x ∈ Unip(GF̃ ) : 2E6[1] [φ12,4] [φ4,8] [φ′
6,6] [φ′′

6,6] [φ16,5] 2E6[θ] 2E6[θ2]

Here, we use the notation in [4, p. 481]. Thus, φ12,4, φ′
6,6 etc. are irreducible

characters of W σ := {w ∈ W | σ(w) = w} (a Weyl group of type F4); then
[φ12,4], [φ′

6,6] etc. are the corresponding irreducible constituents of IndGF̃

BF̃ (1);
characters denoted like 2E6[1] are cuspidal unipotent. (We refer to [4] instead
of [33], because the table of unipotent characters for twisted E6 is not explic-
itly printed in [33].)

For each x ∈ X(W ) we also have a corresponding unipotent almost char-
acter R̃x of GF̃ . Since G, F̃ is not of split type, there is no canonical choice
for these almost characters; they are only well-defined up to multiplication
by roots of unity. But, by [33, 4.19], we can choose R̃x such that, for each
x′ ∈ X(W ), the multiplicity of ρ̃x′ ∈ Unip(GF̃ ) in R̃x is equal to that of
ρx′ ∈ Unip(GF ) in the almost character Rx of GF . In particular, this yields
the two formulae:

R̃(g3,θ) := 1
3
(2E6[1] + [φ12,4] − [φ′

6,6] − [φ′′
6,6] + 2·2E6[θ] − 2E6[θ2]

)
,
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R̃(g3,θ2) := 1
3
(2E6[1] + [φ12,4] − [φ′

6,6] − [φ′′
6,6] − 2E6[θ] + 2·2E6[θ2]

)
.

Furthermore, if φ ∈ Irr(W ) is such that xφ belongs to the above 8-element
family of X(W ), then the above choice leads to the following formula for R̃xφ

:

R̃xφ
= R̃φ := − 1

|W |
∑

w∈W
φ(ww0)RG

Tw
(1).

(Indeed, according to [33, 4.19], one needs to take the “preferred extension”
of φ as in [36, 17.2], in order for the formula 〈ρ̃x′ , R̃φ〉 = 〈ρx′ , Rφ〉 to hold;
since the a-invariants of all φ as above are 3, this leads to the minus sign in
the definition of R̃φ. See also [33, Prop. 7.11].) Now, by the main results of
Shoji [54, §4] (see also [54, 4.8, 5.2]), there are scalars ζ, ζ ′ ∈ K of absolute
value 1 such that

R̃(g3,θ) = ζχg1,ψ1 and R̃(g3,θ2) = ζ ′χg1,ψ2 .

By the same argument as in §5.4, we can choose g1 ∈ ΣF̃ such that g1 is
conjugate to g−1

1 in GF̃ . Hence, as before, we already know that ζ ′ = ζ = ζ =
±1. So it only remains to decide whether ζ equals 1 or −1.

Proposition 5.7. Recall that g1 ∈ ΣF̃ is conjugate to g−1
1 in GF̃ . With

R̃(g3,θ) and R̃(g3,θ2) as specified above, we have ζ = ζ ′ = 1.

Proof. As in the proof of Proposition 5.5, we invert the matrix relating unipo-
tent characters and unipotent almost characters of GF̃ ; this yields the iden-
tity:

2E6[θ] = 1
3
(
R̃80s + R̃20s − R̃10s − R̃90s + 2R̃(g3,θ) − R̃(g3,θ2)

)
.

By the above definition of R̃φ and the formula in Example 3.3, we obtain

R̃80s(g1) = R̃20s(g1) = R̃90s(g1) = 0 and R̃10s(g1) = ε,

where ε = ±1 is such that q ≡ ε mod 3. This yields the relation 2E6[θ](g1) =
1
3(ζq3 − ε), which implies that ζ = 1 regardless of whether ε is +1 or −1.

6. Cuspidal unipotent character sheaves in type E7

Throughout this section, let G be simple, simply connected of type E7. Let
q = pf (where f � 1) be such that F : G → G defines an Fq-rational struc-
ture. Here, G is of split type; thus, σ = idW and the permutation α �→ α†

of Φ is the identity. Let Δ = {α1, α2, α3, α4, α5, α6, α7} be the set of simple
roots in Φ+, where the labelling is chosen as follows.
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α2

α1 α3 α4 α5 α6 α7

�

� � � � � �

If p = 2, then the cuspidal character sheaves and almost characters have been
considered by Hetz [26]. So assume from now on that p �= 2. Let α0 ∈ Φ
be the unique root of maximal height and consider the subsystem Φ0 ⊆ Φ of
type A3×A3×A1 spanned by {α1, α2, α3, α5, α6, α7, α0}. Again, the relevance
of this particular example is that Φ0 occurs in the classification of cuspidal
unipotent character sheaves on G; see [36, Prop. 20.3] (and also [54, 5.2]).
Using CHEVIE, we find that the unique set Δ0 of simple roots in Φ0 ∩ Φ+ is
given by

Δ0 = { α1, α2, α3, α5, α6, α7, α
′
0 := α1+2α2+2α3+4α4+3α5+2α6+α7 }.

Furthermore, there are four equivalence classes of pairs (Φ′, w) ∈ Ξ under ∼,
where Φ′ = Φ0; representatives (Φ0, di), where di ∈ W has minimal length in
W (Φ0)di for i = 1, 2, 3, 4, are given in Table 5, where we use similar notational
conventions as in the previous section. (Note that, in the Dynkin diagram of
Δ0, the node α′

0 is joined to α3, not to α1.)

Table 5: The subsystem Φ0 for type E7

di permutation σ′
i-classes

d1 = 1W () 50
d2 = 423143542654317654234 (1, 6)(3, 5)(4, 7) 10
d3 = 4234542346542347654234 (1, 7)(4, 6) 50
d4 = 42314354231435465423143542654 (1, 4)(3, 5)(6, 7) 10

6.1. The subgroup H ′ = 〈T 0,Uα (α ∈ Φ0)〉. As in §5.1, every t ∈ T 0
has a unique expression t = h(ξ1, . . . , ξ7) :=

∏
1�i�7 α

∨
i (ξi) where ξi ∈ k× for

1 � i � 7. By [21, Example 1.5.6], we have

Z(G) = {h(1, ξ, 1, 1, ξ, 1, ξ) | ξ = ±1 ∈ k} ∼= Z/2Z.

A similar computation shows that

Z(H ′) = {h(1,±1, 1, 1, ξ, ξ2, ξ−1) | ξ ∈ k×, ξ4 = 1} ∼= Z/2Z× Z/4Z.

Since q is not a power of 2, we have |Z(G)| = 2 and |Z(H ′)| = 8. Given t =
h(1,±1, 1, 1, ξ, ξ2, ξ−1) ∈ Z(H ′) (where ξ4 = 1), we have CG(t) = H ′ if and
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only if ξ2 �= 1. The elements h(1,−1, 1, 1, 1, 1, 1) and h(1, 1, 1, 1,−1, 1,−1)
have a centraliser of type D6 × A1. Furthermore, one easily checks that

ḋ−1
2 tḋ2 = zt, ḋ−1

3 tḋ3 = t−1, ḋ−1
4 tḋ4 = zt−1,

where z := h
(
1, ξ2, 1, 1, ξ2, 1, ξ2) ∈ Z(G). These three relations show that all

elements t ∈ Z(H ′) such that CG(t) = H ′ are conjugate in G. Thus, if C
denotes the G-conjugacy class of these elements, then

F (C) = C, C = C−1 and C = Z(G)C.

In order to see that C is F -stable, we argue as follows. If q ≡ 1 mod 4,
then F (z) = z for all z ∈ Z(H ′). On the other hand, if q ≡ 3 mod 4, then
F (z) = z−1 for all z ∈ Z(H ′) and, hence, Z(H ′)F is a Klein four group. If
t ∈ Z(H ′) ∩ C as above, then F (t) = t−1 = ḋ−1

3 tḋ3 ∈ C, as required.
As in §5.2, we fix an element s1 ∈ CF and set H ′

1 := CG(s1). We pick
a regular unipotent element u1 ∈ H ′F

1 and let Σ be the G-conjugacy class
of g1 := s1u1. Again, we see that Σ is F -stable and Z(G)Σ = Σ = Σ−1.
Furthermore, AG(g1) ∼= Z(H ′

1) has order 8 and

AG(g1) = 〈s̄1, z̄〉 where z is the non-trivial element of Z(G).

Now F acts trivially on AG(g1), regardless of the congruence class of q mod-
ulo 4. Hence, the set ΣF always splits into 8 conjugacy classes in GF (each
with centraliser order 8q7), which are parametrised by the 8 elements of
AG(g1). However, now it is less obvious whether we can choose g1 ∈ ΣF such
that g1 is conjugate to g−1

1 in GF . We will come back to this issue in §6.4.
(Since Z(G) has order 2, we can not use the argument in Lemma 4.10(b).)

6.2. Cuspidal unipotent character sheaves. By an argument entirely
analogous to that in §5.3 (but now using [36, Prop. 20.5] and its proof),
we see that there are two F -invariant cuspidal unipotent character sheaves
A1 and A2 on G. (Again, they are pulled back from G̃ = G/Z(G) via the
canonical map π : G → G̃.) The local systems associated with A1 and A2 are
one-dimensional; they correspond to linear characters ψ1 and ψ2 of AG(g1)
such that

ψ1(s̄1) = i, ψ2(s̄1) = −i, ψ1(z̄) = ψ2(z̄) = 1 for z ∈ Z(H ′
1)F ,

where i ∈ K is fixed such that i2 = −1. (Recall that ḡ1 = s̄1.) Thus, ψ1
and ψ2 are completely determined, where ψ2 is the complex conjugate of ψ1.
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Furthermore, the roots of unity attached to A1 and A2 as in §4.2 are λA1 =
i and λA2 = −i. Using ψ1 and ψ2, we can now write down characteristic
functions of A1 and A2, as in §4.2. The values are given as follows, where
1 �= z ∈ Z(G).

{1̄, z̄} {s̄2
1, s̄

2
1z̄} {s̄1, s̄1z̄} {s̄−1

1 , s̄−1
1 z̄}

χg1,ψ1 q7/2 −q7/2 iq7/2 −iq7/2

χg1,ψ2 q7/2 −q7/2 −iq7/2 iq7/2

Note that, here, we have dimG − dim Σ = dimT 0 = 7. We set qn/2 := √
qn

for any n � 1, where √
q ∈ K has been fixed as described in §4.2.

Table 6: Unipotent almost characters for type E7

R512′
a

= R(1,1) := 1
2
(
[512′a] + [512a] − E7[ξ] − E7[−ξ]

)
,

R512a = R(1,ε) := 1
2
(
[512′a] + [512a] + E7[ξ] + E7[−ξ]

)
,

R(g2,1) := 1
2
(
[512′a] − [512a] − E7[ξ] + E7[−ξ]

)
,

R(g2,ε) := 1
2
(
[512′a] − [512a] + E7[ξ] − E7[−ξ]

)
.

6.3. Unipotent characters and almost characters. Exactly as in §5.4,
the unipotent characters of GF can be canonically identified with those of
G̃

F , where G̃ = G/Z(G). Again, they are parametrised by a certain set
X(W ) (which only depends on W ). We use the notation in the table on [33,
pp. 364–365]; also note the special remarks concerning type E7 (and E8) on
[33, p. 362]. The unipotent almost characters are also parametrised by X(W ).
The interesting cases for us are displayed in Table 6, where ξ = i√q ∈ K. In
that table, 512′a and 512a are irreducible characters of W ; then [512′a] and
[512a] are the corresponding constituents of IndGF

BF (1); the characters E7[±ξ]
are cuspidal unipotent. (Note also that the “g2” in (g2, 1) and (g2, ε) has
nothing to do with elements in GF .)

Now consider the two character sheaves A1 and A2 described above, with
characteristic functions χg1,ψ1 and χg1,ψ2 . By the main result of [54, §4] (see
also [54, 5.2]), there are scalars ζ, ζ ′ ∈ K of absolute value 1 such that

R(g2,1) = ζχg1,ψ1 and R(g2,ε) = ζ ′χg1,ψ2 .

(Again, in [54, §4], this is proved for G̃ but the discussion in §6.2 shows
that this also holds for G, with ψ1 and ψ2 as above.) By [15, Table 1], the
characters E7[ξ] and E7[−ξ] are complex conjugate to each other, and their
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values lie in the field Q(ξ). Furthermore, all characters [φ] (where φ ∈ Irr(W ))
have their values in Q(√q); see [15, Prop. 5.6]. We conclude that R(g2,1) and
R(g2,ε) are complex conjugate to each other, and their values lie in Q(i,√q).
Since

R(g2,1)(g1) = ζq7/2 and R(g2,ε)(g1) = ζ ′q7/2,

we can already conclude that ζ ′ = ζ.

6.4. On the choice of g1 ∈ ΣF . We now come back to the issue of finding
a “good” representative g1 ∈ ΣF . Recall that Z(G) has order 2. By Exam-
ple 4.9, there are precisely two GF -conjugacy classes C,C ′ ⊆ ΣF which have
a non-empty intersection with BF ẇcB

F . We let g1 ∈ C ∪C ′. To fix the nota-
tion, we let C be the GF -conjugacy class associated with Σ (and the choice
of ẇc) as in Corollary 4.8; by the construction in Example 4.9, C ′ is the GF -
conjugacy class parametrised by z̄ ∈ AG(g1). The table in §6.2 now shows
that χg1,ψ1 and χg1,ψ2 have the same value on all elements in C ∪ C ′. Using
the formula in Example 3.3, the (known) character table of W and the re-
quired computations concerning σ′-conjugacy classes in W , we find that the
restrictions of the almost characters R512′a and R512a to ΣF are identically
zero. Finally, the relations in Table 6 can be inverted and yield the following
relations:

[512′a] = 1
2
(
R512′a + R512a + ζχg1,ψ1 + ζ ′χg1,ψ2

)
,

[512a] = 1
2
(
R512′a + R512a − ζχg1,ψ1 − ζ ′χg1,ψ2

)
,

E7[ξ] = 1
2
(
−R512′a + R512a − ζχg1,ψ1 + ζ ′χg1,ψ2

)
,

E7[−ξ] = 1
2
(
−R512′a + R512a + ζχg1,ψ1 − ζ ′χg1,ψ2

)
.

So the above discussion implies that E7[ξ](g) = (ζ− ζ)q7/2 for all g ∈ C ∪C ′.
Next recall that Σ = Σ−1. So, by Lemma 4.10(a), we have {C−1, C ′−1} =
{C,C ′} which implies that E7[ξ](g−1) = (ζ − ζ)q7/2 for all g ∈ C ∪ C ′. But
the left hand side also equals E7[ξ](g) = (ζ − ζ)q7/2. This implies that ζ = ζ
and, consequently, ζ = ζ ′ = ±1 (since ζ has absolute value 1). Then all the
values of [512a], [512′a] and E7[±ξ] on ΣF are determined (up to ζ = ±1); see
Table 7.

Now, how important is it to determine the scalar ζ = ±1 exactly? The
above expressions for E7[±ξ] show that E7[ξ](g) = E7[−ξ](g) ∈ Z for all
g ∈ GF \ ΣF . In other words, the two characters E7[ξ] and E7[−ξ] can only
(!) be distinguished by their values on elements in ΣF , where they are given
by Table 7. The same is also true for [512′a] and [512a]. Thus, up to simulta-
neously exchanging the names of [512′a], [512a] and of E7[ξ], E7[−ξ], we could
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Table 7: Values of [512′a], [512a] and E7[±ξ] on ΣF

(ζ = ζ ′ = ±1) {1̄, z̄} {s̄2
1, s̄

2
1z̄} {s̄1, s̄1z̄} {s̄−1

1 , s̄−1
1 z̄}

[512′a] ζq7/2 −ζq7/2 0 0
[512a] −ζq7/2 ζq7/2 0 0
E7[ξ] 0 0 −iζq7/2 iζq7/2

E7[−ξ] 0 0 iζq7/2 −iζq7/2

(The classes labelled by 1̄ and z̄ correspond to C and C ′.)

assume “without loss of generality” that ζ = 1. For most applications of char-
acter theory, this is entirely sufficient. — However, it is actually possible to
determine ζ exactly.

Proposition 6.5. Recall that g1 ∈ C ∪ C ′ where C and C ′ are the two GF -
conjugacy classes that are contained in ΣF and have a non-empty intersection
with BF ẇcB

F . Then ζ = ζ ′ = 1, that is, R(g2,1) = χg1,ψ1 and R(g2,ε) = χg1,ψ2 .

Proof. Let us denote the GF -conjugacy classes in Table 7 by C1, . . . , C8 (from
left to right); in particular, C = C1 and C ′ = C2. We will now try to evaluate
the formula in Remark 4.12(b) for elements g ∈ ΣF . For this purpose, we
write X(W ) = X◦ ∪ {x1, x2} where x1 = (g2, 1) and x2 = (g2, ε). Since
every unipotent character of GF is a linear combination of unipotent almost
characters, we have

[φ] = [φ]◦ + α1(φ)Rx1 + α2(φ)Rx2 for each φ ∈ Irr(W ),

where α1(φ), α2(φ) ∈ K and [φ]◦ is a linear combination of {Rx | x ∈ X◦}.
Setting

B :=
∑

φ∈Irr(W )
φ(q)(Twc)α1(φ) and D(g) :=

∑
φ∈Irr(W )

φ(q)(Twc)[φ]◦(g)

for g ∈ ΣF , we obtain
∑

φ∈Irr(W )
φ(q)(Tw)[φ](g) = D(g) + B·

(
Rx1(g) + Rx2(g)

)
.

Now we note the following. Let x ∈ X◦ and consider the possible values of
Rx on C1, . . . , C8. Since Rx is a linear combination of unipotent characters,
Rx takes the same value on C2i−1, C2i for i = 1, . . . , 4 (see Lemma 4.4).
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Using Table 7, we see that the values of Rx1 on C1, . . . , C8 are given by
u, u,−u,−u, iu, iu,−iu,−iu and those of Rx2 are u, u,−u,−u,−iu,−iu, iu, iu
(where u = ζq7/2). Since Rx is orthogonal to both Rx1 and Rx2 , we conclude
that the values of Rx must be x, x, x, x, y, y, y, y for some x, y ∈ K. What is
important here is that D(g) takes the same value on all g ∈ C1∪C2∪C3∪C4;
let us denote by D0 this common value of D(g) on C1 ∪ C2 ∪ C3 ∪ C4.

Next, the explicitly known matrix relating unipotent characters and uni-
potent almost characters shows that

α1(512′a) = α2(512′a) = 1
2 , α1(512a) = α2(512a) = −1

2 ,

and α1(φ) = α2(φ) = 0 for all φ �= 512′a, 512a. Furthermore, we have

(512′a)(q)(Twc) = q7/2 and (512a)(q)(Twc) = −q7/2,

by known results on character values of Hecke algebras (see [23, Exam-
ple 9.2.9(b)]; these values are readily available within CHEVIE [47]). This
yields B = q7/2. Furthermore, Rx1 , Rx2 take value ζq7/2 on elements in C1∪C2,
and value −ζq7/2 on elements in C3 ∪ C4. Hence, we obtain:

∑
φ∈Irr(W )

φ(q)(Tw)[φ](g) =
{

D0 + 2ζq7 if g ∈ C1 ∪ C2,
D0 − 2ζq7 if g ∈ C3 ∪ C4.

By Remark 4.12(b), the left hand side equals 4q7 or 0, according to whether
g ∈ C1 ∪ C2 or g ∈ ΣF \ (C1 ∪ C2). Thus, 0 = D0 − 2ζq7 and, consequently,
4q7 = D0 + 2ζq7 = 4ζq7. In particular, ζ = 1.

7. Cuspidal character sheaves in type F4

Throughout this section, let G be simple of type F4; here we have Z(G) =
{1}. Let q = pf (where f � 1) be such that F : G → G defines an Fq-rational
structure. Here, G is of split type; thus, σ = idW and the permutation α �→ α†

of Φ is the identity. Let Δ = {α1, α2, α3, α4} be the set of simple roots in Φ+,
where the labelling is chosen as follows.

α1 α2 α3 α4
� � � �>

Except for §7.12 (at the very end), we will assume that p �= 2, 3. The subsys-
tems of Φ occurring in the classification of cuspidal character sheaves are given
by Table 8; see [36, Prop. 21.3] and its proof. (We use the same notational
conventions as in the previous sections.)
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Table 8: Subsystems for type F4

Φ′ Δ′ di perm. σ′
i-classes

A2×A2 α1, α3, α4, α1+3α2+4α3+2α4 d1 = 1W () 9
d2 = 232432 (1, 4)(2, 3) 9

A3×A1 α1, α2, α4, α1+2α2+4α3+2α4 d1 = 1W () 10
d2 = 3234323 (1, 4) 10

B4 α1, α2, α3, α2+2α3+2α4 d1 = 1W () 20
C3×A1 α2, α3, α4, 2α1+3α2+4α3+2α4 d1 = 1W () 20

We begin by working out the center of H ′ = 〈T 0,Uα (α ∈ Φ′)〉 in each
case.

7.1. The subsystem Φ′ of type A2 × A2. In this case, we have

Z(H ′) = {h(1, 1, ξ, ξ−1) | ξ ∈ k×, ξ3 = 1} ∼= Z/3Z.

Given t ∈ Z(H ′), we have CG(t) = H ′ if and only if t �= 1. Furthermore,
one checks that ḋ−1

2 tḋ2 = t−1. Hence, the two elements t ∈ Z(H ′) such that
CG(t) = H ′ are conjugate in G. If C denotes the G-conjugacy class of these
elements, then C = C−1; furthermore, F (C) = C. Indeed, if q ≡ 1 mod 3,
then F (t) = t for all t ∈ Z(H ′). On the other hand, if q ≡ 2 mod 3, then
F (t) = t−1 for all t ∈ Z(H ′). If t ∈ Z(H ′)∩C, then F (t) = t−1 = ḋ−1

2 tḋ2 ∈ C,
as required.

7.2. The subsystem Φ′ of type A3 × A1. In this case, we have

Z(H ′) = {h(1, 1, ξ2, ξ) | ξ ∈ k×, ξ4 = 1} ∼= Z/4Z.

Given t = h(1, 1, ξ2, ξ) ∈ Z(H ′) (where ξ4 = 1), we have CG(t) = H ′ if
and only if ξ2 �= 1. (Note that the element h(1, 1, 1,−1) has a centraliser of
type B4.) Furthermore, one checks that ḋ−1

2 tḋ2 = h(1, 1, ξ2, ξ−1) = t−1. Hence,
the two elements t ∈ Z(H ′) such that CG(t) = H ′ are conjugate in G. If C
denotes the G-conjugacy class of these elements, then C = C−1; furthermore,
F (C) = C. Indeed, if q ≡ 1 mod 4, then F (t) = t for all t ∈ Z(H ′). On
the other hand, if q ≡ 3 mod 4, then F (t) = t−1 for all t ∈ Z(H ′). If t ∈
Z(H ′) ∩ C, then F (t) = t−1 = ḋ−1

2 tḋ2 ∈ C, as required.

7.3. The subsystem Φ′ of type B4. In this case, we have

Z(H ′) = {h(1, 1, ξ, 1) | ξ ∈ k×, ξ2 = 1} ∼= Z/2Z.
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Hence, if s1 := h(1, 1,−1, 1) ∈ Z(H ′), then CG(s1) = H ′. (This element s1
is conjugate to the element h(1, 1, 1,−1) mentioned above.)

7.4. The subsystem Φ′ of type C3 × A1. In this case, we have

Z(H ′) = {h(1, ξ, 1, ξ) | ξ ∈ k×, ξ2 = 1} ∼= Z/2Z.

Hence, if s1 := h(1,−1, 1,−1) ∈ Z(H ′), then CG(s1) = H ′.

7.5. The unipotent class F4(a3). In total, there are seven cuspidal char-
acter sheaves on G; they are all unipotent and F -invariant; see [41, 1.7] and
[53, §6, §7]. Let A be any of these seven cuspidal character sheaves and write
A = IC(Σ, E)[dim E ] where Σ is an F -stable conjugacy class of G and E is an
F -invariant irreducible local system on Σ. In all cases, E is one-dimensional,
so condition (∗) in §4.2 is satisfied. Furthermore, let O0 be the conjugacy
class of the unipotent part of an element in Σ. Then O0 is the unipotent
class denoted by F4(a3) in [57, §5]. (The identification of O0 follows from [41,
Prop. 1.16] if p is sufficiently large; by Taylor [60], it is enough to assume that
p > 3. For small values of p, one can also use explicit computations in a matrix
realisation of G and the results of Lawther [29].) We have AG(u) ∼= S4 for
u ∈ O0, and there exists some u ∈ OF

0 such that F acts trivially on AG(u);
see Shoji [50]. Thus, OF

0 splits into five conjugacy classes in GF , correspond-
ing to the five conjugacy classes of S4. As in [50], we denote representatives
of those five GF -conjugacy classes by x14, . . . , x18. We have |C◦

G(xi)F | = q12

in each case; the groups AG(xi) are as follows.

AG(x14)F ∼= S4, (cycle type (1111)),
AG(x15)F ∼= D8, (cycle type (22)),
AG(x16)F ∼= Z/2Z× Z/2Z, (cycle type (211)),
AG(x17)F ∼= Z/4Z, (cycle type (4)),
AG(x18)F ∼= Z/3Z, (cycle type (31)).

Thus, the five representatives xi (i = 14, . . . , 18) can be distinguished from
each other by the structure of the group AG(xi)F . Now let n ∈ Z be such
that p ∤ n. Since O0 is uniquely determined by its dimension, each u ∈ O0
is conjugate to un in G; it then also follows that each xi is conjugate to xni
in GF , for i = 14, . . . , 18. We shall make use of this remark for n = 2 in the
discussion below.

Now we turn to the detailed description of the seven cuspidal character
sheaves of G, where we follow Lusztig [36, §20, §21] and Shoji [53, §6]. In
each case, we will determine the scalar ζ in the identity (♣′); see §4.3. We
deal with the various cases in order of increasing difficulty.
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7.6. The cuspidal character sheaves A3, A4. Let s1 ∈ GF be semisimple
such that H ′

1 = CG(s1) has a root system Φ′ of type A2×A2; recall from §7.1
that Z(H ′

1) ∼= Z/3Z and this is generated by s1. Let u1 ∈ H ′F
1 be a regular

unipotent element and Σ be the conjugacy class of g1 := s1u1. As in §5.2, one
sees that Σ = Σ−1 and that AG(g1) ∼= Z/3Z is generated by the image ḡ1
of g1 in AG(g1). By [53, (6.2.4)(c)], there are two cuspidal character sheaves
Ai = IC(Σ, Ei)[dim Σ] where i = 3, 4. Let 1 �= θ ∈ K× be a fixed third root
of unity. Then E3 corresponds to the linear character ψ3 : AG(g1) → K× such
that ψ3(ḡ1) = θ and E4 corresponds to the linear character ψ4 : AG(g1) → K×

such that ψ4(ḡ1) = θ2. By [53, (6.4.1)], A3 is parametrised by (g3, θ) ∈ X(W )
and A4 is parametrised by (g3, θ

2) ∈ X(W ). By the main result of [53, §6],
there are scalars ζ, ζ ′ ∈ K of absolute value 1 such that R(g3,θ) = ζχg1,ψ3 and
R(g3,θ2) = ζ ′χg1,ψ4 , where the almost characters R(g3,θ) and R(g3,θ2) are defined
as the following linear combinations of unipotent characters:

R(g3,θ) := 1
3
(
[φ12,4] + F II

4 [1] − [φ′
6,6] − [φ′′

6,6] + 2F4[θ] − F4[θ2]
)
,

R(g3,θ2) := 1
3
(
[φ12,4] + F II

4 [1] − [φ′
6,6] − [φ′′

6,6] − F4[θ] + 2F4[θ2]
)
.

Here, we use the notation in [4, p. 479], with analogous conventions as in the
previous sections. Thus, φ12,4 etc. are irreducible characters of W ; then [φ12,4]
etc. are the corresponding irreducible constituents of IndGF

BF (1); characters
denoted like F II

4 [1] are cuspidal unipotent. (In this section we refer to [4]
instead of [33], because the full 21 × 21 Fourier matrix related to type F4 is
printed on [4, p. 456], and that matrix will be needed for several arguments
below.) By Lemma 4.10(b), we can choose g1 ∈ ΣF to be conjugate to g−1

1
in GF . By an argument analogous to that in §5.4, one sees that R(g3,θ) and
R(g3,θ2) are complex conjugate to each other. So we conclude that

ζ = ζ ′ = ±1 and R(g3,θ)(g1) = R(g3,θ2)(g1) = ζq2.

Inverting the matrix relating unipotent characters and unipotent almost char-
acters, we obtain the following relation:

F4[θ] = 1
3
(
R(12,4) + R(1,λ3) −R(6,6)′ −R(6,6)′′ + 2R(g3,θ) −R(g3,θ2)

)
,

where we just write, for example, R(12,4) instead of Rφ(12,4) . Using CHEVIE
and the formula in Example 3.3, we find that

R(12,4)(g1) = R(6,6)′′(g1) = 0, R(6,6)′(g1) = 1.
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By [53, (6.2.2)], the pair (1, λ3) also parametrises a cuspidal character sheaf,
which will be supported on a conjugacy class distinct from Σ. By the main re-
sult of [53, §6], a characteristic function of that character sheaf equals R(1,λ3),
up to multiplication by a scalar. Hence, we have R(1,λ3)(g1) = 0 and we obtain
F4[θ](g1) = 1

3(−1 + ζq2). Since the left hand side is an algebraic integer, this
forces that ζ = 1. Thus, we have shown that

(a) R(g3,θ) = χg1,ψ3 and R(g3,θ2) = χg1,ψ4 ;

recall that, here, we fixed g1 ∈ ΣF such that g1 is conjugate to g−1
1 in GF .

The values of F4[θ] and F4[θ2] on ΣF are given by the following table.

1̄ s̄1 s̄2
1

F4[θ] 1
3(q2 − 1) 1

3(q2 − 1) + q2θ 1
3(q2 − 1) + q2θ2

F4[θ2] 1
3(q2 − 1) 1

3(q2 − 1) + q2θ2 1
3(q2 − 1) + q2θ

This table also shows that g1 ∈ ΣF is uniquely determined (up to GF -
conjugation) by the property that g1 is conjugate to g−1

1 in GF .

7.7. The cuspidal character sheaves A5, A6. Let s1 ∈ GF be semisimple
such that H ′

1 = CG(s1) has a root system Φ′ of type A3×A1; recall from §7.2
that Z(H ′

1) ∼= Z/4Z and this is generated by s1. Let u1 ∈ H ′F
1 be a regular

unipotent element and Σ be the conjugacy class of g1 := s1u1. As above, one
sees that Σ = Σ−1 and that AG(g1) ∼= Z/4Z is generated by ḡ1 ∈ AG(g1). By
[53, (6.2.4)(d)], there are two cuspidal character sheaves Ai = IC(Σ, Ei)[dim Σ]
where i = 5, 6; here, E5 corresponds to the linear character ψ5 : AG(g1) → K×

such that ψ5(ḡ1) = i (where i2 = −1 in K) and E6 corresponds to the linear
character ψ6 : AG(g1) → K× such that ψ6(ḡ1) = −i. By [53, (6.4.1)], A5 is
parametrised by (g4, i) ∈ X(W ) and A6 is parametrised by (g4,−i) ∈ X(W ).
By the main result of [53, §6], there are scalars ζ, ζ ′ ∈ K of absolute value 1
such that R(g4,i) = ζχg1,ψ5 and R(g4,−i) = ζ ′χg1,ψ6 , where

R(g4,i) := 1
4
(
[φ12,4] − [φ′

9,6] + [φ′
1,12] − F II

4 [1] − [φ′′
9,6] − F I

4[1]
+ [φ′′

1,12] + [φ4,8] + 2F4[i] − 2F4[−i]
)
;

there is a similar expression for R(g4,−i) where the roles of F4[i] and F4[−i] are
interchanged. By Lemma 4.10(b), we can choose g1 ∈ ΣF to be conjugate in
GF to g−1

1 . As in §7.6, we conclude that ζ = ζ ′ = ±1. Inverting the matrix
relating unipotent characters and unipotent almost characters, we obtain:

F4[i] = 1
4
(
R(12,4) −R(9,6)′ + R(1,12)′ −R(1,λ3) −R(9,6)′′
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−R(g′2,ε) + R(1,12)′′ + R(4,8) + 2R(g4,i) − 2R(g4,−i)
)
.

Using Example 3.3, we find that Rφ(g) = 0 for all g ∈ ΣF and all φ ∈
Irr(W ) occurring in the sum on the right hand side. Again, by [53, (6.2.2)],
the pair (g′2, ε) also parametrises a cuspidal character sheaf, which will be
supported on a conjugacy class distinct from Σ. By the main result of [53,
§6], a characteristic function of that character sheaf equals R(g′2,ε), up to
multiplication by a scalar. Hence, we also have R(g′2,ε)(g) = 0 for all g ∈ ΣF .
A similar argument shows that R(1,λ3)(g1) = 0. This yields the following table
for the values of F4[i] on ΣF :

1̄ ḡ2
1 ḡ1 ḡ−1

1
F4[i] 0 0 ζiq2 −ζiq2

F4[−i] 0 0 −ζiq2 ζiq2

We can now draw the following conclusions. Let C1, C2, C3, C4 be the four
conjugacy classes of GF into which ΣF splits (not necessarily ordered as in the
above table). We have Σ = Σ−1, so taking inverses permutes the four classes.
The table shows that we can arrange the notation such that C4 = C−1

3 , where
C3 = ShG(C1) and C4 = ShG(C2); see §4.1(a). Since g1 ∈ ΣF is conjugate
in GF to g−1

1 , this forces that C1 = C−1
1 , C2 = C−1

2 and g1 ∈ C1 ∪ C2. By
Lemma 4.10(b), we can further fix the notation such that C1∩BF ẇcB

F �= ∅
and C2 ∩BF ẇcB

F = ∅. Then we claim:

(a) ζ =
{

1 if g1 ∈ C1,
−1 if g1 ∈ C2.

This is seen by an argument entirely analogous to the proof of Proposition 6.5,
based on the formula in Remark 4.12(b). The data required for that argument
(that is, the constants α1(φ), α2(φ) and the values φ(q)(Twc)) are now given
as follows. We have α1(φ) = α2(φ) = 1

4 for φ ∈ {φ′
1,12, φ

′′
1,12, φ4,8, φ12,4}, and

α1(φ) = α2(φ) = 0 otherwise; furthermore, if α1(φ) �= 0, then φ(q)(Twc) = q2;
we omit further details.

7.8. The cuspidal character sheaf A1. Let Σ be the unipotent class of G
denoted by F4(a3), as already introduced in §7.5. We take g1 := x14 ∈ ΣF ;
hence, F acts trivially on AG(g1) ∼= S4. We also remarked in §7.5 that g1 is
conjugate in GF to g−1

1 . As in [53, (6.2.4)(a)], there is a cuspidal character
sheaf A1 = IC(Σ, E)[dim Σ] where E corresponds to the sign character sgn ∈
Irr(AG(g1)). In [53, §6], it is not stated explicitly to which parameter in X(W )
the character sheaf A1 corresponds, but this is easily found as follows, using
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the information already available from §7.6. (See also the argument in [38,
Lemma 8.8].) We claim that A1 is parametrised by (1, λ3) ∈ X(W ). Assume,
if possible, that this is not the case. By Shoji’s results [51] on the Green
functions of GF , we can compute Rφ(g1) for any φ ∈ Irr(W ). (These results
are known to hold whenever p �= 2, 3; see [54, Theorem 5.5] and [14, §3].)
In particular, we obtain R(6,6)′′(g1) = 0, R(6,6)′(g1) = 2q4 and R(12,4)(g1) =
q4. Since R(g3,θ) and R(g3,θ2) are zero on unipotent elements (see §7.6), we
conclude that F4[θ](g1) = 1

3(q4 − 2q4) = −q4/3, contradiction since p �= 3.
Hence, A1 is parametrised by (1, λ3). By the main result of [53, §6], there is
a scalar ζ ∈ K of absolute value 1 such that R(1,λ3) = ζχg1,sgn. The exact
expression of R(1,λ3) as a linear combination of 21 unipotent characters is
obtained from the Fourier matrix on [4, p. 456] and the list of labels for
unipotent characters on [4, p. 479]; we will not print it here.

It was first shown by Kawanaka [28, §4] that ζ = 1, assuming that p, q
are sufficiently large; Lusztig [38, 8.6, 8.12] shows this assuming that q satis-
fies a certain congruence condition. Since Kawanaka’s results on generalised
Gelfand–Graev representations are now known to hold whenever q is a power
of a good prime p (see Taylor [60]), we can conclude that ζ = 1 holds uncon-
ditionally (but recall our standing assumption that p > 3).

We can also argue as follows. Consider again the formula for F4[i] in §7.7.
Using Shoji’s results on Green functions, we can compute the values of Rφ

on unipotent elements, for all φ occurring in that formula. Furthermore, we
have R(g′2,ε)(g1) = R(g4,±i)(g1) = 0. This yields that F4[i](g1) = −1

4q
4(ζq2−1).

Since g1 is GF -conjugate to g−1
1 , we have ζ = ζ. Since F4[i](g1) is an algebraic

integer, we must have ζ = 1.

Table 9: Some character values on the unipotent class F4(a3)

x14 (1111) x15 (22) x16 (211) x17 (4) x18 (31)
[φ′

1,12] 1
8q

4(q2−1)+3q4 1
8q

4(q2−1) 1
8q

4(1−q2) 1
8q

4(1−q2) 1
8q

4(q2−1)
[φ′′

1,12] 1
8q

4(q2−1) 1
8q

4(q2−1)+q4 1
8q

4(1−q2) 1
8q

4(1−q2) 1
8q

4(q2−1)
F4[−1] 1

4q
4(1−q2) 1

4q
4(1−q2) 1

4q
4(q2−1)+q4 1

4q
4(q2−1) 1

4q
4(1−q2)

F4[i] 1
4q

4(1−q2) 1
4q

4(1−q2) 1
4q

4(q2−1) 1
4q

4(q2−1)+q4 1
4q

4(1−q2)

7.9. Character values on F4(a3). Once R(1,λ3) has been determined, we
can determine all character values on GF

uni, where Guni denotes the unipotent
variety of G. Indeed, the 25 unipotent almost characters Rφ (for φ ∈ Irr(W ))
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remain linearly independent upon restriction to GF
uni; they are explicitly com-

puted by Shoji [51]. (As mentioned above, Shoji’s results remain valid when-
ever p �= 2, 3.) Hence, together with the “cuspidal” almost character R(1,λ3),
we obtain 26 linearly independent functions on GF

uni. Since there are also 26
unipotent conjugacy classes of GF (see [50, Theorem 2.1]), we obtain a basis
for the space of class functions on GF

uni. Note that all the remaining unipo-
tent almost characters are orthogonal to the functions in that basis, which
implies that they are identically zero on GF

uni. In §7.11 below, we shall need
the values of some unipotent characters on OF

0 , with O0 as in §7.5. The values
displayed in Table 9 will allow us to distinguish the various GF -conjugacy
classes contained in OF

0 . These values are easily obtained from the functions
UnipotentCharacters and ICCTable in Michel’s version of CHEVIE [47].

7.10. The cuspidal character sheaf A7. Let s1 := h(1, 1,−1, 1) ∈ T F
0 and

H ′
1 := CG(s1); then H ′

1 has a root system Φ′ of type B4 (see §7.3); recall
that Z(H ′

1) ∼= Z/2Z and this is generated by s1. Consider the natural isogeny
β : H ′

1 → H
′
1 := SO9(k) (defined over Fq). Let O be the unipotent class of

H ′
1 such that the elements β(u) ∈ H

′
1, for u ∈ O, have Jordan type (5, 3, 1).

Let Σ be the conjugacy class of s1u, where u ∈ O. Now O is F -stable and
so Σ is also F -stable. By Shoji [50, Table 4], and the correction discussed by
Fleischmann–Janiszczak [13, p. 233], we have:

(a) There exists an element g1 ∈ ΣF such that AG(g1) is dihedral of
order 8 and F acts trivially on AG(g1); we have |CG(g1)F | = 8q8.

Thus, the set ΣF splits into five conjugacy classes in GF , with centraliser or-
ders 8q8, 8q8, 4q4, 4q4, 4q4. So there are two possibilities for the GF -conjugacy
class of g1 as in (a). (We just choose one of them; this choice does not affect
the result at the end. By §4.1(a) and [9, Chap. I, Prop. 7.2], we also see that
the two classes are interchanged by the Shintani map ShG.) Now, by [53,
(6.2.4)(e)], there is a cuspidal character sheaf A7 = IC(Σ, E)[dim Σ] where E
corresponds to the sign character sgn ∈ Irr(AG(g1)). By [53, (6.2.2)], A7 is
parametrised either by the pair (g2, ε) or by the pair (g′2, ε) in X(W ). We
can easily fix this as follows. We note that the eigenvalue λA7 = sgn(ḡ1) in
§4.2 must be 1 since ḡ1 is in the center of AG(g1). But there are also cer-
tain eigenvalues for the almost characters, where λRx = −1 for x = (g2, ε),
and λRx = 1 for x = (g′2, ε); see [53, (6.2.2)]. By the main result of [53, §6],
there is a scalar ζ ∈ K of absolute value 1 such that Rx = ζχ(g1,sgn) where
x ∈ {(g2, ε), (g′2, ε)} and where the eigenvalues of the character sheaves do
match those of the almost characters (see [54, 4.6]). Hence,

(b) A7 is parametrised by (g′2, ε) ∈ X(W ) and R(g′2,ε) = ζχg1,sgn.
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The exact expression of R(g′2,ε) as a linear combination of 18 unipotent char-
acters is obtained from the Fourier matrix on [4, p. 456] and the list of labels
for unipotent characters on [4, p. 479]; we will not print it here. We claim:

(c) With g1 as in (a), we have ζ = 1.

This is seen as follows. We use again the following identity from §7.7:

F4[i] = 1
4
(
R(12,4) −R(9,6)′ + R(1,12)′ −R(1,λ3) −R(9,6)′′

−R(g′2,ε) + R(1,12)′′ + R(4,8) + 2R(g4,i) − 2R(g4,−i)
)
.

Now all Rφ (φ ∈ Irr(W )) are rational-valued. Since F4[i] = F4[−i] and
R(g4,i) = R(g4,−i), we conclude that R(g′2,ε) is invariant under complex conju-
gation and, hence, ζ = ±1. Now evaluate F4[i] on g1 ∈ ΣF . Note that R(1,λ3)
and R(g4,±i) have support on conjugacy classes that are distinct from ΣF and,
hence, their value is zero on g1; see §7.7 and §7.8. By Example 3.5, we obtain

R(9,6)′′(g1) = R(4,8)(g1) = R(1,12)′′(g1) = q2,

R(12,4)(g1) = R(9,6)′(g1) = R(1,12)′(g1) = 0.

(Recall that g1 is chosen such that |CG(g1)F | = 8q8.) Since R(g′2,ε)(g1) = ζq4,
we obtain F4[i](g1) = 1

4q
2(1 − ζq2). Since the left hand side is an algebraic

integer, we deduce that ζ = 1. Thus, (c) is proved. Finally, we note:

(d) If g1 = s1u1 is as in (a), then u1 is GF -conjugate to x14 or x15.

Indeed, since CG(g1) ⊆ CG(g2
1) = CG(u2

1) and u2
1 is GF -conjugate to u1 ∈ O0,

we conclude that 8 divides |CG(u1)F |. Hence, the only possibilities are that u1
is GF -conjugate to x14 or x15. I conjecture that for one of the two possibilities
of g1 = s1u1 as in (a), we do have that u1 is GF -conjugate to x14 (but the
choice of that g1 may depend on q mod 4).

7.11. The cuspidal character sheaf A2. Let s1 ∈ GF be semisimple such
that H ′

1 = CG(s1) has a root system Φ′ of type C3 × A1; recall from §7.4
that Z(H ′

1) ∼= Z/2Z and this is generated by s1. Now we have a natural
isogeny β : Sp4(k)× SL2(k) → H ′

1 (defined over Fq). Let O be the unipotent
class of H ′

1 that corresponds to unipotent elements of Jordan type (4, 2)×(2)
under β. We start by picking any element u1 ∈ OF and let Σ be the conjugacy
class of g1 := s1u1. We have dimG − dim Σ = 6 and |CG(g1)F | = 4q6; one
easily sees that Σ = Σ−1. Now there is some 1 �= a ∈ AG(g1) such that

AG(g1) = 〈ḡ1〉 × 〈a〉 ∼= Z/2Z× Z/2Z (with trivial F -action).
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By [53, (6.2.4)(b)], there is a cuspidal character sheaf A2 = IC(Σ, E)[dim Σ]
where E corresponds to a non-trivial ψ ∈ Irr(AG(g1)) (further specified be-
low). By [53, (6.2.2)], A2 is parametrised either by the pair (g2, ε) or by the
pair (g′2, ε) in X(W ). By §7.10(b), we conclude that A2 must be parametrised
by (g2, ε); in particular, ψ(ḡ1) = λA2 = −1. We can now also fix the element
a ∈ AG(g1) such that ψ(a) = 1. By the main result of [53, §6], there is a
scalar ζ ∈ K of absolute value 1 such that R(g2,ε) = ζχg1,ψ, where

R(g2,ε) := 1
4
(
[φ12,4] + [φ′

9,6] − [φ′
1,12] − F II

4 [1] − 2[φ16,5]
+ 2F4[−1] + [φ′′

9,6] − F I
4[1] − [φ′′

1,12] + [φ4,8]
)
.

Let C1, C2, C3, C4 be the four GF -conjugacy classes into which ΣF splits
(initially ordered in no particular way). For each i, we denote C

[2]
i := {g2 |

g ∈ Ci}. Writing g1 = s1u1 as above, we have u1 ∈ O0; furthermore, u1, u
2
1

are GF -conjugate and so g2
1 = u2

1 ∈ O0 (see §7.5). We claim that the notation
can be arranged such that

(a) x14 ∈ C
[2]
1 , x15 ∈ C

[2]
2 and x16 ∈ C

[2]
3 = C

[2]
4 .

Depending on how we choose g1 ∈ ΣF , the scalar ζ is then determined as
follows.

(b) ζ =
{

1 if g1 ∈ C1 ∪ C2,
−1 if g1 ∈ C3 ∪ C4.

This is proved as follows. Inverting the matrix relating unipotent characters
and unipotent almost characters, we obtain:

F4[−1] = 1
4
(
R(12,4) + R(9,6)′ −R(1,12)′ −R(1,λ3) − 2R(16,5)

+ 2R(g2,ε) + R(9,6)′′ −R(g′2,ε) −R(1,12)′′ + R(4,8)
)
.

Now we evaluate this on g1 ∈ ΣF . By §7.8 and §7.10, we have R(1,λ3)(g1) =
R(g′2,ε)(g1) = 0. By a computation entirely analogous to that in Example 3.5,
we obtain R(16,5)(g1) = q and

R(12,4)(g1) = R(9,6)′(g1) = R(9,6)′′(g1) = R(1,12)′(g1) = R(1,12)′′(g1) = 0;

this does not depend on how we choose g1 ∈ ΣF . Since R(g2,ε) takes the values
ζq3, ζq3,−ζq3,−ζq3 on the representatives in ΣF parametrised by 1̄, a, ḡ1, aḡ1,
this yields the following values for F4[−1] on ΣF .
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1̄ a ḡ1 aḡ1

F4[−1] 1
2q(ζq

2 − 1) 1
2q(ζq

2 − 1) −1
2q(ζq

2 + 1) −1
2q(ζq

2 + 1)

By [15, Table 1], the character F4[−1] is rational-valued, so we must have
ζ = ±1. Regardless of whether ζ equals 1 or −1, two of the above values are
1
2q(q

2−1), and two of them are −1
2q(q

2+1). Thus, two of the above values are
even integers, and two of them are odd integers. Now compare with Table 9:

F4[−1](x16) ≡ 1 mod 2 and F4[−1](xi) ≡ 0 mod 2 for i �= 16.

By a well-known fact from the general character theory of finite groups,
we have F4[−1](g2

1) ≡ F4[−1](g1) mod 2. Hence, if g1 ∈ ΣF is such that
F4[−1](g1) is odd, then g2

1 must be GF -conjugate to x16. Since there are
two GF -conjugacy classes in ΣF on which the value of F4[−1] is odd, we
conclude that x16 ∈ C

[2]
i for two values of i ∈ {1, 2, 3, 4}; we arrange the

notation such that these two values are i = 3 and i = 4. Now choose g1 ∈ ΣF

such that g1 ∈ C3 ∪ C4. Since F4[−1](g1) is given by the entry correspond-
ing to 1̄ ∈ AG(g1) in the above table, we conclude that 1

2q(ζq
2 − 1) must

be odd and so ζ = −1. Thus, (a) and (b) are proved as far as C3 and C4
are concerned. On the other hand, let us choose g1 ∈ ΣF \ (C3 ∪ C4). Then
F4[−1](g1) = 1

2q(ζq
2 − 1) must be even and so ζ = 1. So all that remains to

be done is to identity i, j ∈ {14, . . . , 18} such that xi ∈ C
[2]
1 and xj ∈ C

[2]
2 .

For this purpose, we consider the characters [φ′
1,12] and [φ′′

1,12].
Using the ingredients of the CHEVIE function LusztigMapb explained in

[47, §7] (which relies on the theoretical fact that the indicator function of a
GF -conjugacy class is “uniform”, see [17, §8]), we can compute

∑
g∈ΣF ρ(g) for

any ρ ∈ Unip(GF ). Since all elements in ΣF have the same centraliser order,
we can actually compute the sum of the four values of ρ on C1, C2, C3, C4.
Applying this to ρ = [φ′

1,12], we find that the result is −q. Consequently, the
four values of [φ′

1,12] on C1, C2, C3, C4 cannot all have the same parity. Hence,
there exists some g ∈ ΣF such that [φ′

1,12](g) ≡ [φ′
1,12](x14) mod 2. But then

we also have

[φ′
1,12](g2) ≡ [φ′

1,12](g) ≡ [φ′
1,12](x14) mod 2.

Since [φ′
1,12](xi) �≡ [φ′

1,12](x14) mod 2 for i �= 14 (see Table 9), we conclude
that g2 is GF -conjugate to x14. Thus, we can arrange the notation such that
x14 ∈ C

[2]
1 . Then a completely analogous argument using the character [φ′′

1,12]
shows that x15 ∈ C

[2]
2 . Thus, (a) and (b) are proved. The above table of values

also shows that the values of F4[−1] on the classes parametrised by 1̄ and ḡ1
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have a different parity; similarly for a and aḡ1. Hence, we can fix the notation
for C3 and C4 such that C3 = ShG(C1) and C4 = ShG(C2) (see §4.1(a)).

Finally, we remark that we can also obtain an explicit representative
in ΣF . Indeed, using CHEVIE, we can easily compute the full W -orbit of
s1; by inspection, s′1 := h(−1,−1, 1, 1) ∈ T F

0 belongs to that orbit, that is, s′1
is conjugate to s1 in GF . Using the explicit expression (in terms of Chevalley
generators of GF ) for x16 in [50, Table 5], we can check that s′1 commutes
with x16. Hence, we have g1 := s′1x16 ∈ ΣF ; since g1 = x2

16, we must have
ζ = −1 for this choice of g1.

7.12. The cases where p = 2, 3. In the above discussion, we assumed
that p �= 2, 3. For p = 2, the scalars ζ in the identities Rx = ζχA have been
determined by Marcelo–Shinoda [46, §4] and [18, §5]. Now assume that p = 3.
For those cuspidal character sheaves A where the corresponding conjugacy
class Σ is unipotent (there are three of them), the scalars ζ are also determined
by [46, §4]. By [53, §7.2], the remaining four cuspidal character sheaves are
analogous to those denoted above by A2, A5, A6 and A7. One checks that
the discussions in §7.7, 7.10, 7.11 can be applied almost verbatim to the case
p = 3, and yield the same results. The Green functions for p = 3 are known
by [46] (see also [19, §5])).
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