

Dynkin Diagrams of Simple Lie Algebras

 $\mathcal{L}_{0}(3)$ $\mathcal{L}_{0}(3)$

Neuigkeiten über Lie-Algebren

Kolloquium Tübingen

17. Juli 2017

Meinolf

Geck

The greatest mathematical paper of all time

A. J. Coleman, The Mathematical Intelligencer 11 (1989), 29-38

Euclid's *Elements*, Newton's *Principia*, . . . and in the past 200 years:

Wilhelm Killing (1847–1923), *Die Zusammensetzung der stetigen, endlichen Transformationsgruppen II*, Mathematische Annalen **33** (1888), 1–48.

MathSciNet Review MR1007036 by Jean Dieudonné:

"Many mathematicians will disagree, [...]. One may however observe that:

- (1) nobody had tackled the problem before Killing;
- (2) he solved it by methods he invented;
- (3) nobody collaborated with him for that solution;
- (4) the result became a most important milestone in modern mathematics.

I think it is not so easy to find papers exhibiting all those features"

Lie algebra = infinitesimal version of a transformation group

A vector space L equipped with a product $x \cdot y$ such that

- $\bullet \quad x \cdot x = 0,$
- $x \cdot (y \cdot z) + y \cdot (z \cdot x) + z \cdot (x \cdot y) = 0$ (Jacobi identity).

Usually write $x \cdot y$ as [x, y] (Lie bracket).

Example. Vector product in $L = \mathbb{R}^3$:

Example. Matrices: $L = M_n(\mathbb{C})$ with bracket $[A, B] = A \cdot B - B \cdot A$; denote $\mathfrak{gl}_n(\mathbb{C})$. Subalgebra $\mathfrak{sl}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \operatorname{Trace}(A) = 0\}$.

An infinite-dimensional example

Start with $R = \mathbb{C}[X, X^{-1}]$ (Laurent polynomials).

A linear map $D: R \to R$ is called a derivation if

$$D(f \cdot g) = f \cdot D(g) + D(f) \cdot g$$
 for all $f, g \in R$.

Example: D = usual (formal) derivative with respect to X.

$$D(X^n) = nX^{n-1}, \qquad D(X^{-1}) = -X^{-2}, \qquad \text{etc}$$

Let L = vector space of all derivations of R.

Exercise: If $D, D' \in L$, then $[D, D'] = D \circ D' - D' \circ D \in L$. So L is a Lie algebra.

For $m \in \mathbb{Z}$, we set $L_m(f) = -X^{m+1} \cdot D(f)$ for $f \in R$. Then:

- $\{L_m \mid m \in \mathbb{Z}\}$ is a vector space basis of L.
- $[L_m, L_n] = (m-n)L_{m+n}$ for all $m, n \in \mathbb{Z}$.

L is called "Witt algebra" \longrightarrow important in mathematical physics.

A subspace $U \subseteq L$ is called an ideal if $[u, x] \in U$ and $[x, u] \in U$ for all $x \in L$, $u \in U$. In this case, $\overline{L} = L/U$ also is a Lie algebra. So L "built up" from U and \overline{L} .

Definition. *L* is called simple if $L \neq \{0\}$, the bracket is not identically zero and there is no proper ideal in *L*.

Cartan–Killing (\sim **1890)**: The finite-dimensional simple Lie algebras over $\mathbb C$ are classified by "Dynkin diagrams".

Infinite families: Lie algebras of matrices

$$A_n \leftrightarrow \mathfrak{sl}_{n+1}(\mathbb{C}), \quad B_n \leftrightarrow \mathfrak{so}_{2n+1}(\mathbb{C}), \quad C_n \leftrightarrow \mathfrak{sp}_{2n}(\mathbb{C}), \quad D_n \leftrightarrow \mathfrak{so}_{2n}(\mathbb{C}).$$

Exceptional algebras:

 $\dim \mathfrak{g}_2=14,\quad \dim \mathfrak{f}_4=52,\quad \dim \mathfrak{e}_6=78,\quad \dim \mathfrak{e}_7=133,\quad \dim \mathfrak{e}_8=248.$

S. GARIBALDI, *E*₈, the most exceptional group. Bull. AMS **53** (2016), 643–671.

"The Lie algebra ϵ_8 or Lie group E_8 was first sighted by a human being sometime in summer or early fall of 1887, by Wilhelm Killing as part of his program to classify the semisimple finite-dimensional Lie algebras over the complex numbers. [...]

Since then, it has been a source of fascination for mathematicians and others in its role as the largest of the exceptional Lie algebras. [...]

If we know some statement for all groups except E_8 , then we do not really know it."

How does a Dynkin diagram determine a simple Lie algebra?

If diagram has nodes $1, \ldots, n$, then form "Cartan matrix" $A = (a_{ij})_{1 \le i,j \le n}$ where:

- $a_{ii} = 2$ for all i; $a_{ij} = 0$ if $i \neq j$ are not joined by an edge;
- if $i \neq j$ are joined by a single edge, set $a_{ij} = a_{ji} = -1$;
- if $i \neq j$ are joined by $m \geqslant 2$ edges (arrow towards j), set $a_{ij} = -1$, $a_{ji} = -m$.

$$B_3 \quad \stackrel{1}{\bullet} \stackrel{2}{\longleftarrow} \stackrel{3}{\bullet} \qquad \qquad M = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Chevalley generators ("épinglage") of corresponding Lie algebra *L*:

- $L = \langle e_i, f_i, h_i \mid 1 \leqslant i \leqslant n \rangle_{\text{Lie}}$,
- $[e_i, f_i] = h_i$, $[e_i, f_j] = 0$ (if $i \neq j$), $[h_i, e_j] = a_{ij}e_j$, $[h_i, f_j] = -a_{ji}f_j$.
- $H := \langle h_1, \dots, h_n \rangle_{\mathbb{C}}$ "Cartan" subalgebra of L.

This determines *L* up to isomorphism.

Vector space basis of L

Consider \mathbb{R}^n with standard basis $\{\alpha_1, \dots, \alpha_n\}$. Define

$$s_i: \mathbb{R}^n \to \mathbb{R}^n, \qquad \alpha_j \mapsto \alpha_j - a_{ij}\alpha_i.$$

Then $s_i^2 = \mathrm{id}_n$ and $W = \langle s_1, \dots, s_n \rangle \subseteq \mathrm{GL}_n(\mathbb{R})$ is a finite reflection group.

 $\Phi := \{ w(\alpha_i) \mid w \in W, 1 \le i \le n \}$ is the abstract "root system" associated with A. Corresponding Lie algebra L has basis $\{h_1, \ldots, h_n\} \cup \{e_\alpha \mid \alpha \in \Phi\}$.

"Root strings" (Killing): Let $\alpha, \beta \in \Phi$, $\alpha \neq \pm \beta$.

Let $p=p_{lpha,eta}\geqslant 0$ and $q=q_{lpha,eta}\geqslant 0$ be maximal such that

$$\beta - q\alpha$$
, ..., $\beta - \alpha$, β , $\beta + \alpha$, ..., $\beta + p\alpha \in \Phi$.

C. CHEVALLEY (1955): e_{α} can be chosen such that $e_{\alpha_i} = \pm e_i$, $e_{-\alpha_i} = \pm f_i$ and $[e_{\alpha}, e_{\beta}] = \pm (q_{\alpha,\beta} + 1)e_{\alpha+\beta}$ whenever $\alpha, \beta, \alpha + \beta \in \Phi$ (and with this normalization, the e_{α} are unique up to sign).

An aside: root systems and lattices

Let $\Gamma := \text{all } \mathbb{Z}$ -linear combinations of roots $\alpha \in \Phi$. Then Γ is a "lattice" in \mathbb{R}^n . Conversely, let $\Gamma \subseteq \mathbb{R}^n$ be a lattice.

- Γ is integral if $(x, y) \in \mathbb{Z}$ for $x, y \in \Gamma$; then Γ is even if $(x, x) \in 2\mathbb{Z}$ for $x \in \Gamma$.
- Dual lattice $\Gamma^* := \{x \in \mathbb{R}^n \mid (x,y) \in \mathbb{Z} \text{ for all } y \in \Gamma\}$; if Γ integral, then $\Gamma \subseteq \Gamma^*$.
- Γ is unimodular if Γ is integral and $\Gamma = \Gamma^*$.

Up to isomorphism, there is only one even unimodular lattice in \mathbb{R}^8 . (History goes back to around 1870, before Lie and Killing.) This is given by

$$\Gamma_8 := \{(x_i) \in \mathbb{R}^8 \mid 2x_i \in \mathbb{Z}, x_i - x_j \in \mathbb{Z}, \sum_i x_i \in 2\mathbb{Z}\}.$$

The set $R := \{x \in \Gamma_8 \mid (x, x) = 2\}$ contains precisely 240 vectors; these form the "root system" associated with the Dynkin diagram E_8 .

(A further famous example in dimension 24: the Leech lattice → Conway's finite simple groups. See, e.g., J-P. Serre, A Course in Arithmetic, or W. Ebeling, Lattices and Codes, Springer-Verlag.)

C. Chevalley (\sim 1955/1960): Algebraic analogues of Lie groups.

Simple Lie algebra $L + \text{ field } k \longrightarrow \text{ group } G_L(k)$.

(Mimic exponential "exp(e_{α})" over arbitrary field k; then $G_L(k) = \langle \text{"exp}(te_{\alpha})\text{"} \mid \alpha \in \Phi, t \in k \rangle$.)

• k algebraically closed: $G_L(k)$ simple algebraic group over k,

$$SL_n(k)$$
, $Sp_{2n}(k)$, $SO_n(k)$, $E_8(k)$, ...

k finite → new families (at the time) of finite simple groups,

e.g.,
$$|E_8(\mathbb{F}_q)| = q^{248} + \text{lower powers of } q$$
 (where q is a prime power).

Textbook references:

- BOURBAKI, Groupes et algèbres de Lie, 1968/1975;
- STEINBERG, Lectures on Chevalley groups, 1967/68 (now available from AMS);
- HUMPHREYS, Introduction to Lie algebras and representation theory, 1972;
- CARTER, Simple groups of Lie type, 1972;
- ERDMANN-WILDON, Introduction to Lie algebras, 2006.

So what are the news about Lie algebras?

GEORGE LUSZTIG, arXiv:1309.1382 (3 pages):

"The Lie group of type E_8 can be obtained from the graph E_8 by a method of Chevalley (1955),

simplified using theory of canonical basis (1990)."

→ 3 more papers:
one by Lusztig, two by myself.

Why look for a simplification?

- Construction of *L* is an issue, especially for exceptional types.
- Chevalley's construction of $G_L(k)$ relies on choice of e_{α} 's.
- J. TITS 1966: Start with vector space M of correct dimension, fix basis $\{h_1,\ldots,h_n\}\cup\{e_\alpha\mid\alpha\in\Phi\}$ and try to define Lie bracket for basis elements. Relies on systematic study of sign choices in Chevalley's normalisaztion of e_α .
- J-P. SERRE 1966: Start with free Lie algebra generators $\{e_i, f_i \mid 1 \le i \le n\}$ and add defining relations (nowadays called "Serre relations") to obtain a presentation. Very elegant, does not resolve issue of making choices for the e_{α} 's.
- C.-M. RINGEL 1990: Fix orientation of Dynkin diagram and use the representation theory of quivers and Hall polynomials. Then e_{α} 's correspond to well-defined indecomposable objects in certain category of modules.
- Pre-cursor of "canonical bases", still relies on 2^{n-1} choices of orientations.

The simplified construction

Recall "root strings": Let $\alpha, \beta \in \Phi$, $\alpha \neq \pm \beta$. Then

$$p_{\alpha,\beta} := \max\{i \geqslant 0 \mid \beta + i\alpha \in \Phi\}$$
 and $q_{\alpha,\beta} := \max\{j \geqslant 0 \mid \beta - j\alpha \in \Phi\}.$

Let M be a vector space over $\mathbb C$ of the "correct" dimension, with a given basis $\{u_1,\ldots,u_n\}\cup\{v_\alpha\mid\alpha\in\Phi\}$. Define linear maps $e_i,f_i\colon M\to M$ by

$$e_i(u_j) := |a_{ji}| v_{\alpha_i}, \qquad e_i(v_{\alpha}) := \left\{ \begin{array}{ll} (q_{\alpha_i,\alpha} + 1) v_{\alpha + \alpha_i} & \text{if } \alpha + \alpha_i \in \Phi, \\ u_i & \text{if } \alpha = -\alpha_i, \\ 0 & \text{otherwise}; \\ f_i(u_j) := |a_{ji}| v_{-\alpha_i}, \qquad f_i(v_{\alpha}) := \left\{ \begin{array}{ll} (p_{\alpha_i,\alpha} + 1) v_{\alpha - \alpha_i} & \text{if } \alpha - \alpha_i \in \Phi, \\ u_i & \text{if } \alpha = \alpha_i, \\ 0 & \text{otherwise}. \end{array} \right.$$

(Note: Matrices of e_i , f_i have entries in $\mathbb{Z}_{\geqslant 0}$ — in fact, in $\{0, 1, 2, 3\}$.)

Theorem. LUSZTIG (1990) + G. (Proc. Amer. Soc., 2017)

Consider the Lie algebra $\mathfrak{gl}(M)$ and let $L := \langle e_i, f_i \mid 1 \leqslant i \leqslant n \rangle_{\mathsf{Lie}} \subseteq \mathfrak{gl}(M)$.

Then *L* is a simple Lie algebra corresponding to the given Dynkin diagram.

Example: Type G_2 with Cartan matrix $A = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$.

• \mathbb{R}^2 with standard basis $\{\alpha_1, \alpha_2\}$. Matrices $s_1, s_2 \in GL_2(\mathbb{R})$ given by

$$s_1 = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad s_2 = \begin{pmatrix} 1 & 0 \\ 3 & -1 \end{pmatrix}.$$

• Applying s_1, s_2 repeatedly to $\alpha_1 = (1, 0), \alpha_2 = (0, 1),$ we obtain

$$\Phi = \{\pm(1,0), \pm(0,1), \pm(1,1), \pm(1,2), \pm(1,3), \pm(2,3)\}.$$

• Simple Lie algebra $L = \langle e_1, e_2, f_1, f_2 \rangle_{\text{Lie}} \subseteq \mathfrak{gl}_{14}(\mathbb{C})$. For example:

 e_1, e_2 upper triangular f_1, f_2 lower triangular

(A dot stands for 0)

Resolving sign issue in Chevalley's basis

We can transport the basis $\{u_1, \ldots, u_n\} \cup \{v_\alpha \mid \alpha \in \Phi\}$ from M to L and obtain:

Corollary.

• There is a basis $\{\tilde{h}_1, \dots, \tilde{h}_n\} \cup \{e_\alpha \mid \alpha \in \Phi\}$ of L such that:

$$[e_i, \tilde{h}_j] = |a_{ji}|e_{\alpha_i}, \qquad [e_i, e_{\alpha}] = \left\{ \begin{array}{ll} (q_{\alpha_i, \alpha} + 1)e_{\alpha + \alpha_i} & \text{if } \alpha + \alpha_i \in \Phi, \\ \tilde{h}_i & \text{if } \alpha = -\alpha_i, \\ 0 & \text{otherwise}; \end{array} \right.$$

$$[f_i, \tilde{h}_j] = |a_{ji}|e_{-\alpha_i}, \qquad [f_i, e_{\alpha}] = \left\{ \begin{array}{ll} (p_{\alpha_i, \alpha} + 1)e_{\alpha - \alpha_i} & \text{if } \alpha - \alpha_i \in \Phi, \\ \tilde{h}_i & \text{if } \alpha = \alpha_i, \\ 0 & \text{otherwise}. \end{array} \right.$$

- This basis of L is unique up to a global constant.
- In particular, the structure constants in the equations $[e_{\alpha}, e_{\beta}] = N_{\alpha\beta}e_{\alpha+\beta}$ (for $\alpha, \beta, \alpha + \beta \in \Phi$) are uniquely determined up to a global constant.

Where do the formulae for the action of e_i , f_i come from?

- ≈ 1985: Introduction of quantised enveloping algebras of Lie algebras
 (Drinfeld, Jimbo), as Hopf algebra deformations depending on a parameter *v*.
 Origins in mathematical physics, quantum integrable systems, . . .
- Early 1990's: Discovery of "canonical bases" (Lusztig) and "crystal bases" (Kashiwara). Specialisation v → 1 gives rise to canonical bases in irreducible representations of ordinary simple Lie algebras.

LUSZTIG (1990 + J. Comb. Algebra 2017). Consider $L \hookrightarrow \mathfrak{gl}(M)$, as above. This is an irreducible representation and $\{u_1,\ldots,u_n\} \cup \{v_\alpha \mid \alpha \in \Phi\}$ is the "canonical basis" of M in the above sense. (\hookrightarrow Explains why formulae are "natural".)

Explicit/simple construction of L and, hence, also of $G_L(k)$, useful for:

- algorithmic problems: nilpotent orbits, matrix group recognition project, ...;
- teaching courses on Lie algebras ("existence theorem").

My motivation for studying Lie algebras and Chevalley groups

Group theory = study of symmetries

Continuous → Lie groups

- "Atoms" of symmetry: finite **simple** groups.
- A highlight of 20th century mathematics: Classification.
 (first announced 1981 completed 2004: Aschbacher, Smith 12000 pages of proof)
- 2nd generation proof: D. Gorenstein, R. Lyons, R. Solomon, Math. Survey and Monographs, Amer. Math. Soc., 1994 –?? (currently 6 volumes).

The Periodic Table Of Finite Simple Groups

