Combinatorial numbers and Egorychev method (MathJax)

These are binomial coefficients, Stirling numbers, Catalan numbers, Harmonic numbers, Eulerian numbers and Bernoulli numbers, as in the book Integral representation and the Computation of Combinatorial Sums by G. P. Egorychev.

The collection including a list of all identities proved is available here (part 1 and 2, formal power series and residue operators):

and here (part 3, complex variables) This includes a number of identities from H.W. Gould's book Combinatorial identities as well as L. Saalschütz's book on Bernoulli numbers.

We now have a new section as of March 2023 "computer search" which includes hypergeometric identities that can prove challenging even for computer algebra systems, such as

$${n\choose m} n^m = (-1)^n \sum_{k=0}^n {n\choose k} (-1)^k {n-m+k\choose k} {kn+m\choose m}$$

As of January 2024 "computer search" continues with rare identities such as (the 42 identity)

$${4p-2\choose p} = (-1)^m \sum_{k=0}^n {n+p\choose k+p} (-1)^k {k+p-1\choose k+p-m} {2k+1-p\choose p}$$

also featuring Narayana and Catalan numbers. These computer identities have ranges of validity (boundary conditions) which are documented in the text.

Here are the slides from Hosam Mahmoud's talk on Egorychev method at Catholic University on November 9, 2022: History and examples of Egorychev method.

The 2023 paper "Egorychev method: a hidden treasure" by Riedel and Mahmoud is at the following Springer link.

My home page is here. There is a no MathJax version of these formulas if they are not being displayed, it uses images and can be found here.
This is the list of identities in the above document, typeset with MathJax, including links to the posts where they first appeared.

Part 1 and 2

Egorychev method in formal power series

  1. MSE 2384932
  2. $$\sum_{l=0}^m (-4)^l {m\choose l} {2l\choose l}^{-1} \sum_{k=0}^n \frac{(-4)^k}{2k+1} {n\choose k} {2k\choose k}^{-1} {k+l\choose l} = \frac{1}{2n+1-2m}$$

  3. MSE 2472978
  4. $$\sum_{l=0}^n {n\choose l}^2 (x+y)^{2l} (x-y)^{2n-2l} = \sum_{l=0}^n {2l\choose l} {2n-2l\choose n-l} x^{2l} y^{2n-2l}$$

  5. MSE 2719320
  6. $$\sum_{k=0}^n {n\choose k} \frac{1}{k+c} = {n+c\choose c}^{-1} \frac{(-1)^c}{c} \left(1-2^{n+1} \sum_{q=0}^{c-1} {n+q\choose q} (-1)^q\right)$$

  7. MSE 2830860
  8. $$\sum_{j=0}^{n-k} (-1)^j {2k+2j\choose j} {n+k+j+1\choose n-k-j} = [[(n-k) \; \text{is even}]] = \frac{1+(-1)^{n-k}}{2}$$

  9. MSE 2904333
  10. $$\sum_{k=0}^{b-1} {a+k-1\choose a-1} p^a (1-p)^k = \sum_{k=a}^{a+b-1} p^k (1-p)^{a+b-k-1}$$

  11. MSE 2950043
  12. $$(-1)^{n+k} {n\brack k} = \sum_{j=0}^{n-k} (-1)^j {n-1+j\choose n-k+j} {2n-k\choose n-k-j} {n-k+j\brace j}$$

  13. MSE 3049572
  14. $${m+n\choose s+1} - {n\choose s+1} = \sum_{q=0}^s \frac{m}{q+1} {m+1+2q\choose q} {n-2-2q\choose s-q}$$

  15. MSE 3051713
  16. $$\sum_{k=q}^{2n} {2n+k\choose 2k} \frac{(2k-1)!!}{(k-q)!} (-1)^k$$ is zero when $q$ is odd and $$\frac{(-1)^{n+q/2}}{2^{2n}} \frac{(2n+q)!}{(n-q/2)!\times (n+q/2)!}$$ otherwise.

  17. MSE 3068381
  18. $$\sum_{j=n}^{2n} \sum_{k=j+1-n}^j (-1)^j 2^{j-k} {2n\choose j} {j\brace k} {k\brack j+1-n}$$

  19. MSE 3138710
  20. $$\sum_{j=0}^{\lfloor n/2\rfloor} {m+j+k\choose m-j+1} \frac{n}{n-j} {n-j\choose j} = {n+k+m\choose m+1}$$

  21. MSE 3196998
  22. $$F_{2n+2} = \sum_{p=0}^n \sum_{q=0}^n {n-p\choose q} {n-q\choose p}$$

  23. MSE 3245099
  24. $$\sum_{q=0}^{K-1} {K-1+q\choose K-1} \frac{a^qb^K+a^kb^q}{(a+b)^{q+K}} = 1$$

  25. MSE 3260307
  26. $${r+2n-1\choose n-1} - {2n-1\choose n-1} = \sum_{k=1}^{n-1} {2k-1\choose k} {r+2(n-k)-1\choose r+n-k}$$

  27. MSE 3285142
  28. $$\sum_{k=1}^n \left(-\frac{1}{4}\right)^k {2k\choose k}^2 \frac{1}{1-2k} {n+k-2\choose 2k-2}$$ is zero when $n$ is odd and $$\left[\left(\frac{1}{4}\right)^m {2m\choose m} \frac{1}{1-2m}\right]^2$$ when $n=2m$ is even

  29. MSE 3333597
  30. $$\sum_{n=0}^N \sum_{k=0}^N \frac{(-1)^{n+k}}{n+k+1} {N\choose n} {N\choose k} {N+n\choose n} {N+k\choose k} = \frac{1}{2N+1}$$

  31. MSE 3342361
  32. $$\sum_{k=3}^n (-1)^k {n\choose k} \sum_{j=1}^{k-2} {j(n+1)+k-3\choose n-2} = (-1)^{n-1} \left[ {n\choose 2} - {2n+1\choose n-2} \right]$$

  33. MSE 3383557
  34. $$n\sum_{k=0}^n \frac{(-1)^k}{2n-k} {2n-k\choose k} x^k y^{2n-2k} = \frac{1}{2^{2n}} \sum_{k=0}^n {2n\choose 2k} y^{2k} (y^2-4x)^{n-k}$$

  35. MSE 3441855
  36. $$\sum_{k=0}^n (-1)^k 4^{n-k} {2n-k\choose k} = 2n+1$$

  37. MSE 3577193
  38. $$\sum_{k=0}^l {k\choose m} {k\choose n} = \sum_{k=0}^n (-1)^k {l+1\choose m+k+1} {l-k\choose n-k}$$

  39. MSE 3583191
  40. $$\sum_{j=0}^k {2n\choose 2j} {n-j\choose k-j} = \frac{4^k n}{n+k} {n+k\choose n-k}$$

  41. MSE 3592240
  42. $$\sum_{q=m}^{n-k} (-1)^{q-m} {k-1+q\choose k-1} {q\brace m} {n\brack q+k} = {n-1\choose m} {n-m\brack k}$$

  43. MSE 3604802
  44. $$\sum_{q=0}^N (-1)^q {2q\choose q} {N+q\choose N-q} \frac{q^2}{(q+1)^2} = (-1)^N + \frac{1}{N(N+1)}$$

  45. MSE 3619182
  46. $$\sum_{k=0}^n {n\choose k}^2 \sum_{l=0}^k {k\choose l} {n\choose l} {2n-l\choose n} = \sum_{k=0}^n {n\choose k}^2 {n+k\choose k}^2$$

  47. MSE 3638162
  48. $$\sum_{k=1}^n (-1)^{a-k} {a\choose k} {b+k\choose b+1} = {b\choose a-1}$$

  49. MSE 3661349
  50. $$\sum_{q=0}^k (-1)^{q-j} {n+q\choose q} {n+k-q\choose k-q} {2n\choose n+j-q} = {2n\choose n}$$ where $0\le j\le k.$

  51. MSE 3706767
  52. $$\sum_{k=m}^n {k+m\choose 2m} {2n+1\choose n+k+1} = {n\choose m} 4^{n-m}$$

  53. MSE 3737197
  54. $$\sum_{j=0}^k {k\choose j} {j/2\choose n} (-1)^{n-j} = \frac{k}{n} 2^{k-2n} {2n-k-1\choose n-1}$$

  55. MSE 3825092
  56. $$\sum_{k=1}^n (-1)^{n-k} k^n {n+1\choose n-k} = 1$$

  57. MSE 3845061
  58. $$\sum_{q=a+1}^n {q-1\choose a} {n-q\choose k-a} = {n\choose k+1}$$ or alternatively $$\sum_{q=0}^n {q\choose a} {n-q\choose b} = {n+1\choose a+b+1}$$

  59. MSE 3885278
  60. $$\sum_{k\ge 0} \frac{(2k+1)^2}{(p+k+1)(q+k+1)} {2p\choose p-k} {2q\choose q-k} = \frac{1}{p+q+1} {2p+2q\choose p+q}$$

  61. MSE 3559223
  62. With $$G_{n,j} = \sum_{k=1}^n \frac{k^j (-1)^{n-k} {n\choose k}}{\frac{1}{2}n(n+1)-k}$$ we have $$G_{n,j} = \frac{(\frac{1}{2} n(n+1))^{j-1}n!}{\prod_{q=1}^n (\frac{1}{2} n(n+1)-q)} - [[j\gt n]] n! \sum_{q=0}^{j-1-n} \left(\frac{1}{2} n(n+1)\right)^q {j-1-q\brace n}$$

  63. MSE 3926409
  64. $$\sum_{p=q}^k (-1)^p {k\choose p} (q-p)^k = \sum_{p=q}^k \left\langle k \atop p \right\rangle$$

  65. MSE 3942039
  66. $$\sum_{k=0}^n (-1)^k \frac{2^{n-k} {n\choose k}}{(m+k+1) {m+k\choose k}} = \sum_{k=0}^n \frac{n\choose k}{m+k+1}$$

  67. MSE 3956698
  68. $$\sum_{k\ge 1} \left[{\lfloor \frac{k}{2}\rfloor \choose m} + {\lceil \frac{k}{2}\rceil \choose m} \right] {n-1\choose k-1} = 2^{n-2m} {n-m\choose m-1} \frac{n+1}{m}$$

  69. MSE 3993530
  70. $$\sum_{k=0}^n \left\langle {n\atop k}\right\rangle x^{n-k} = (1-x)^n \sum_{k=0}^n {n\brace k} k! \left(\frac{x}{1-x}\right)^k$$

  71. MSE 4008277
  72. $$\sum_{k=0}^r k^p {m\choose k} {n\choose r-k} = \sum_{j=0}^p m^\underline{j} {m+n-j\choose m+n-r} {p\brace j}$$

  73. MSE 4031272 (Li Shanlan identity)
  74. $${m+k\choose k}^2 = \sum_{q=0}^m {k\choose m-q}^2 {2k+q\choose q}$$

  75. MSE 4034224 (Eulerian numbers, Stirling numbers first and second kind)
  76. Two alternate representations of second order Eulerian numbers: $$\sum_{j=0}^k (-1)^{k-j} {2n+1\choose k-j} {n+j\brace j} = \sum_{j=0}^{n-k} (-1)^j {2n+1\choose j} {2n-k-j+1\brack n-k-j+1}$$

  77. MSE 4037172 (Eulerian numbers, associated Stirling numbers first and second kind)
  78. Two alternate representations of second order Eulerian numbers: $$\sum_{j=0}^k (-1)^{k-j} {n-j\choose k-j} \left\{\!\!\left\{ n+j\atop j \right\}\!\!\right\} = \sum_{j=0}^{n-k+1} (-1)^{n-k-j+1} {n-j\choose k-1} \left[\!\!\left[ n+j\atop j \right]\!\!\right]$$

  79. MSE 4037946 (Eulerian numbers, associated Stirling numbers first and second kind)
  80. $${n\brack n-k} - {n\brace n-k} = \sum_{j=0}^k \left({n+j-1\choose 2k} - {n+k-j\choose 2k}\right) \left\langle\!\!\left\langle {k\atop j}\right\rangle\!\!\right\rangle$$

  81. MSE 4055292
  82. $$\sum_{k=0}^{2n} (-1)^k {n+k\choose k}^{-1} {2n\choose k} {2k\choose k} = 1$$

  83. MSE 4054024
  84. $$\sum_{k=1}^n {2n-2k\choose n-k} \frac{H_{2k}-2H_k}{2n-2k-1} {2k\choose k} = \frac{1}{n} \left[ 4^n - 3{2n-1\choose n} \right]$$

  85. MSE 4084763
  86. $$\sum_{q=0}^n {n\choose q} q^k = \sum_{q=1}^k n^\underline{q} {k\brace q} 2^{n-q}$$

  87. MSE 4095795
  88. $$\sum_{r=0}^n r^k = (n+1)\sum_{q=1}^k n^\underline{q} \frac{1}{q+1} {k\brace q}$$

  89. MSE 4098492
  90. $$\sum_{k=0}^n {k\choose m} {n-k\choose r-m} = {n+1\choose r+1}$$

  91. MSE 4127695
  92. $$\sum_{r=0}^n 2^{n-r} {n+r\choose r} = 4^n$$

  93. MSE 4131219
  94. With $$\mathcal{K}_k(x; n) = \sum_{j=0}^k (-1)^j {x\choose j} {n-x\choose k-j}$$ we have $$\sum_{\ell=0}^n \mathcal{K}_\ell(x;n) = 2^m {n-x\choose m}$$

  95. MSE 4139722
  96. $$B_n = \sum_{k=0}^n (-1)^k \frac{1}{k+1} H_{k+1} (k+2)! {n+1\brace k+1} + (-1)^{n+1} (n+1)$$

  97. MSE 4192271
  98. $$\sum_{q\ge k} {m+1\choose 2q+1} {q\choose k} = {m-k\choose k} 2^{m-2k}$$

  99. MSE 4212878
  100. $$\sum_{k=1}^{n-1} k{n\choose k} \frac{(2n-2k-1)!!}{(2n-1)!!} \sim \frac{1}{2}\sqrt{e}$$

  101. A different obstacle from Concrete Mathematics by Knuth, Graham, and Patashnik
  102. $$\sum_{k=0}^n {n+k\choose 2k} {2k\choose k} \frac{(-1)^k}{k+1+m} = \frac{(-1)^n \times m^\underline{n}}{(n+m+1)^\underline{n+1}}$$

  103. MO 291738 (not quite the same as previous)
  104. $$\sum_{k=0}^n \frac{(-1)^k}{2k+1} {n+k\choose n-k} {2k\choose k} = \frac{1}{2n+1}$$

  105. A Stirling number identity by Gould
  106. $${n\brack n-k} = (-1)^k {n\choose k} \sum_{j=0}^k {k\choose k} \sum_{q=0}^j (-1)^q {j+1\choose q+1} {j+qn+q\choose qn+q}^{-1} {j+qn+q\brace qn+q}$$

  107. A Stirling number identity by Gould II
  108. $${n\brack n-k} = (-1)^k {n-1\choose k} \sum_{j=0}^k (-1)^j {k+1\choose j+1} {jn+k\choose k}^{-1} {jn+k\brace jn}$$

  109. Schläfli's identity for Stirling numbers
  110. $${n\brack n-k} = \sum_{q=0}^k (-1)^{k-q} {n+q-1\choose n-k-1} {n+k\choose k-q} {k+q\brace q}$$

  111. Stirling numbers and Faulhaber's formula
  112. $$\sum_{k=0}^n k^p = \sum_{j=1}^{p+1} n^j \sum_{k=j}^{p+1} \frac{1}{k} {p+1\brace k} (-1)^{k-j} {k\brack j} \\ = \frac{1}{p+1} n^{p+1} + \frac{1}{2} n^p + \sum_{k=1}^{p-1} {p\choose k} \frac{B_{p+1-k}}{p+1-k} n^k$$

  113. Stirling numbers and binomial coefficient
  114. $$\sum_{k=0}^n (-1)^k {n\choose k} (x-k)^{n+j} = \sum_{k=0}^j {x-n\choose k} (n+k)! {n+j\brace n+k}$$

  115. Stirling numbers and a double binomial coefficient
  116. $$\sum_{k=0}^n (-1)^k {x\choose k} k^r = \sum_{k=0}^r (-1)^k {x\choose k} {n-x\choose n-k} k! {r\brace k}$$

  117. Stirling numbers and a double binomial coefficient II
  118. $$\sum_{k=0}^n (-1)^k {n\choose k} k^{n+j} = (-1)^n (n+j)! \sum_{k=0}^j {j-n\choose j-k} {n\choose k} \frac{k!}{(k+j)!} {k+j\brace k}$$

  119. Stirling numbers and Bernoulli polynomials
  120. $$\sum_{k=0}^n (-1)^k {n+x\choose n-k} \frac{1}{k+1} = \frac{1}{n!} \sum_{k=0}^n {n+1\brack k+1} B_k(x)$$

  121. Central binomial coefficients and Stirling numbers
  122. $$\sum_{k=0}^n {2k\choose k} \frac{k^r}{2^{2k}} = \frac{2n+1}{2^{2n}} {2n\choose n} \sum_{k=0}^r {n\choose k} \frac{1}{2k+1} k! {r\brace k}$$

  123. Single variable monomial and two binomial coefficients
  124. $$x^n = (-1)^{m+n} \sum_{k=0}^{m+1} {x+k-1\choose m} \sum_{p=0}^k (-1)^p {m+1\choose p} (k-p)^n$$

  125. Use of an Iverson bracket
  126. $$\sum_{k=0}^n {2k+1\choose j} = \frac{(-1)^{j+1}}{2^{j+2}} \left\{ \sum_{k=0}^{j+1} (-1)^k {2n+3\choose k} 2^k + 1 \right\}$$

  127. Use of an Iverson bracket II
  128. $$\sum_{k=0}^n (-1)^k {j+k\choose j} = \frac{(-1)^j}{2^{j+1}} \left\{ (-1)^n \sum_{k=0}^j (-1)^k {n+j+1\choose k} 2^k + (-1)^j \right\}$$

  129. Use of an Iverson bracket III
  130. $$\sum_{k=0}^n {x\choose n-k} {x\choose n+k} = \frac{1}{2} \left\{{2x\choose 2n} + {x\choose n}^2\right\}$$

  131. Basic example
  132. $$\sum_{k=0}^{\lfloor n/2\rfloor} {x\choose 2k} {x\choose n-2k} = \frac{1}{2} {2x\choose n} + \frac{1}{2} (-1)^{/2} {x\choose n/2} \frac{1+(-1)^n}{2}$$

  133. Basic example continued
  134. $$\sum_{k=0}^{\lfloor n/2\rfloor} {x\choose 2k} {2n-x\choose n-2k} = = \frac{1}{2} \left\{ {2n\choose n} + (-1)^n 2^{2n} {\frac{x-1}{2} \choose n} \right\}$$

  135. An identity by Erik Sparre Andersen
  136. $$\sum_{k=0}^r {x\choose k} {-x\choose n-k} = \frac{n-r}{n} {x-1\choose r} {-x\choose n-r}$$

  137. Very basic example
  138. $$\sum_{k=0}^{\lfloor n/2\rfloor} {x\choose k} {x-k\choose n-2k} 2^{n-2k} = {2x\choose n}$$

  139. An identity by Karl Goldberg
  140. $$\sum_{k=0}^n {x\choose k} {y+k\choose n-k} 2^{2k} = \sum_{k=0}^n {2x\choose k} {y\choose n-k} 2^k = \sum_{k=0}^n {2x\choose k} {2x+y-k\choose n-k}$$

  141. Sum producing a square root
  142. $$\sum_{k=0}^n {2x\choose 2k} {x-k\choose n-k} = \frac{x}{x+n} {x+n\choose 2n} 2^{2n} = \frac{2^{2n}}{(2n)!} \prod_{k=0}^{n-1} (x^2-k^2)$$

  143. Sum producing a square root II
  144. $$\sum_{k=0}^n {2x+1\choose 2k+1} {x-k\choose n-k} = \frac{2x+1}{2n+1} {x+n\choose 2n} 2^{2n} = \frac{2x+1}{(2n+1)!} \prod_{k=0}^{n-1} ((2x+1)^2-(2k+1)^2)$$

  145. Use of an Iverson bracket IV
  146. $$\sum_{k=0}^n (-1)^k {x\choose n-k} {x\choose n+k} = \frac{1}{2} \left\{ {x\choose n}+{x\choose n}^2 \right\}$$

  147. Binomial coefficient manipulation
  148. $$\sum_{k=0}^n (-1)^k {2n\choose k} {2x-2n\choose x-k} = \frac{1}{2} (-1)^n \left\{ {x\choose n}+{x\choose n}^2 \right\} {2x\choose x} {2x\choose 2n}^{-1}$$

  149. Four binomial sums
  150. $$\sum_{k=0}^n (-1)^k {x\choose k} {2n-x\choose n-k} = \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k {x\choose k} {2n-2x\choose n-2k} \\ = (-1)^n \sum_{k=0}^n (-1)^k {2n-k\choose n-k} {2n-x\choose k} 2^k \\ = \sum_{k=0}^n (-1)^k 2^k {x\choose k} {2n-k\choose n} \\ = \frac{2^n}{n!} \prod_{k=0}^{n-1} (2k+1-x) = (-1)^n 2^{2n} {\frac{x-1}{2} n}$$

  151. Power term and two binomial coefficients
  152. $$\sum_{k=0}^n {n\choose k}^2 k^r = \sum_{k=0}^r {n\choose k} {2n-k\choose n} k! {r\brace k}$$

  153. Use of an Iverson bracket V
  154. $$\sum_{k=0}^n (-1)^k {2n\choose k}^2 = \frac{1}{2} (-1)^n \left\{ {2n\choose n} + {2n\choose n}^2 \right\}$$

  155. Use of an Iverson bracket VI
  156. $$\sum_{k=0}^{\lfloor n/2 \rfloor} {2n\choose 2k}^2 = \frac{1}{4} {4n\choose 2n} + \frac{1}{4} (-1)^n {2n\choose n} + \frac{1+(-1)^n}{4} {2n\choose n}^2$$

  157. Appearance of the constants three and five
  158. $$2^{2n} \sum_{k=0}^n {n\choose k} {2k\choose k} = \sum_{k=0}^n {2n-2k\choose n-k} {2k\choose k} 5^k$$ $$2^{2n} \sum_{k=0}^n (-1)^k {n\choose k} {2k\choose k} = \sum_{k=0}^n (-1)^k {2n-2k\choose n-k} {2k\choose k} 3^k$$

  159. Generating function of a binomial term
  160. $$\sum_{k=0}^n {2n-2k\choose n-k} {2k\choose k} \frac{x}{x+k} = 2^{2n} {x+n\choose n}^{-1} {n+x-1/2\choose n}$$

  161. Double square root
  162. $$\sum_{k=0}^n {2n-2k\choose n-k} {2k\choose k} \frac{1}{(2k-1)(2n-2k+1)} = \frac{2^{4n}}{2n(2n+1)} {2n\choose n}^{-1} $$

  163. Central Delannoy numbers
  164. $$\sum_{k=0}^n {4n-4k\choose 2n-2k} {4k\choose 2k} = 2^{4n-1} + 2^{2n-1} {2n\choose n}$$ $$\sum_{k=0}^n {4n-4k-2\choose 2n-2k-1} {4k+2\choose 2k+1} = 2^{4n-1} - 2^{2n-1} {2n\choose n}$$

  165. A case of factorization
  166. $$\sum_{k=0}^n (-1)^k {n+k\choose 2k} {2k\choose k} \frac{x}{x+k} = (-1)^n {x+n\choose n}^{-1} {x-1\choose n}$$

  167. Two identities due to Grosswald
  168. $$\sum_{k=0}^n (-1)^k {n\choose k} {n+2r+k\choose n+r} 2^{n-k} = (-1)^{n/2} \frac{1+(-1)^n}{2} {n+r\choose n} {n+r\choose n/2} {n+2r\choose r}$$ $$\sum_{k=0}^{n-r} (-1)^k {n\choose k+r} {n+k+r\choose k} 2^{n-r-k} = (-1)^{(n-r)/2} \frac{1+(-1)^{n-r}}{2} {n\choose (n-r)/2}$$

  169. Appearance of the constant three
  170. $$\sum_{k=0}^{2n} (-1)^k {2n\choose k} {2n+2k\choose n+k} 3^{2n-k} = {2n\choose n}$$

  171. Very basic example
  172. $$\sum_{k=0}^n {4n+1\choose 2n-2k} {k+n\choose n} = 2^{2n} {3n\choose n}$$

  173. Very basic example II
  174. $$\sum_{k=0}^n (-1)^k {2n\choose n-k} {2n+2k+1\choose 2k} = (-1)^n (n+1) 2^{2n}$$

  175. Nested square root
  176. $$\sum_{k=0}^n {2k\choose k} {2n-k\choose n} \frac{k}{(2n-k)\times 2^k} = (-1)^n 2^{2n} {-1/4\choose n}$$

  177. Harmonic numbers and a squared binomial coefficient
  178. $$\sum_{k=1}^n {n\choose k}^2 H_k = {2n\choose n} (2H_n - H_{2n})$$

  179. Harmonic numbers and a double binomial coefficient
  180. $$\sum_{k=1}^n (-1)^k {n\choose k} {n+k-1\choose k} H_k = \frac{(-1)^n}{n}$$ $$\sum_{k=1}^n (-1)^k {n\choose k} {n+k-1\choose k} H_{n+k-1} = \frac{(-1)^n}{n}$$

  181. Two instances of a Harmonic number
  182. $$\sum_{k=1}^n (-1)^{k-1} {n\choose k} {n+k\choose k} \frac{1}{k} = 2 H_n$$

  183. Legendre Polynomials
  184. $$P_n(x) = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k {n\choose k} {2n-2k\choose n} x^{n-2k}$$ $$P_n(x) = \left[\frac{x-1}{2}\right]^n \sum_{k=0}^n {n\choose k}^2 \left[\frac{x+1}{x-1}\right]^k$$ $$P_n(x) = (-1)^n \sum_{k=0}^n {n\choose k} {n+k\choose k} (-1)^k \left[\frac{x+1}{2}\right]^k$$ $$P_n(x) = \sum_{k=0}^n {n\choose k} {n+k\choose k} \left[\frac{x-1}{2}\right]^k$$

  185. Legendre Polynomials and a square root
  186. $$P_n(x) = \sum_{k=0}^n {n\choose k} {2k\choose k} 2^{-k} \sqrt{x^2-1}^k \left[x-\sqrt{x^2-1}\right]^{n-k}$$ $$P_n(x) = \sum_{k=0}^{\lfloor n/2\rfloor} {n\choose 2k} {2k\choose k} 2^{-2k} x^{n-2k} (x^2-1)^k$$

  187. Legendre Polynomials and a double square root
  188. $$\sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} x^{2k} = 2^{2n} x^n P_n((x+1/x)/2) = 2^{2n} \frac{2}{\pi} \int_0^{\pi/2} (x^2 \sin^2 t + \cos^2 t)^n \; dt$$ $$\sum_{k=0}^n {-1/2\choose k} {-1/2\choose n-k} x^{2k} = (-1)^n x^n P_n((x+1/x)/2) = \sum_{k=0}^n (-1)^k {n\choose k} {k-1/2\choose n} x^{2k}$$

  189. MSE 4304623
  190. $$\sum_{r=0}^n \frac{1}{4^r} {2r\choose r} = \frac{1}{2^n} \sum_{q=0}^n {n+q\choose n} \frac{1}{2^q} (n-q+1) = {n+1/2\choose n} $$

  191. Legendre Polynomials, trigonometric terms and a contour integral
  192. $$P_n(x) = \frac{1}{\pi} \int_0^\pi (x+\sqrt{x^2-1} \times \cos t)^n \; dt$$ $$P_n(x) = \frac{1}{m} \sum_{k=0}^{m-1} \left(x+\sqrt{x^2-1} \times \cos \frac{2\pi k}{m}\right)^n$$ $$P_n(x) = \frac{1}{2^n} \frac{1}{2\pi i} \int_{|t-x|=\varepsilon} \frac{(t^2-1)^n}{(t-x)^{n+1}} \; dt$$

  193. Sum independent of a variable
  194. $$\sum_{k=0}^n {x+ky\choose k} {p-x-ky\choose n-k} = \begin{cases} y^{p+1} (y-1)^{n-p-1}, & 0\le p\le n-1 \\ \frac{y^{n+1}-1}{y-1}, & p=n \\ \end{cases}$$

  195. Polynomial in three variables
  196. $$\sum_{k=0}^n {x+kt\choose k} {y-kt\choose n-k} = \sum_{k=0}^n {x+y-k\choose n-k} t^k$$

  197. An identity by Van der Corput
  198. $$\sum_{k=1}^{n-1} {kx\choose k} {nx-kx\choose n-k} \frac{1}{kx(nx-kx)} = \frac{2}{nx} {nx\choose n} \sum_{k=1}^{n-1} \frac{1}{nx-n+k}$$

  199. MSE 4316037 Logarithm, binomial coefficient and harmonic numbers
  200. $$[z^n] \frac{1}{(1-z)^{\alpha+1}}\log\frac{1}{1-z} = {n+\alpha\choose n} (H_{n+\alpha} - H_\alpha)$$

  201. An identity credited to Chung
  202. $$\sum_{k=1}^n \frac{1}{k} {kx-2\choose k-1} {nx-kx\choose n-k} = \frac{1}{x} {nx\choose n}$$

  203. MSE 4317353 A Catalan number convolution
  204. $$C_{n-1} = \sum_{k=1}^{\lfloor n/2\rfloor} 2^{n-2k} {n-2\choose n-2k} \frac{1}{k} {2k-2\choose k-1}$$

  205. Odd index binomial coefficients
  206. $$\sum_{k=0}^{n-1} {2x\choose 2k+1} {x-k-1\choose n-k-1} = \frac{n}{x+n} 2^{2n} {x+n\choose 2n}$$ $$\sum_{k=0}^{n-1} {2x\choose 2k+1} {x-k-1\choose n-k} = \frac{x+n}{2n+1} 2^{2n+1} {x+n-1\choose 2n}$$

  207. MSE 4325592 A sum of inverse binomial coefficients
  208. $$\sum_{k=1}^{a-b} \frac{(a-b-k)!}{(a+1-k)!} = \frac{1}{b} \left[\frac{1}{b!}-\frac{(a-b)!}{a!}\right]$$

  209. Inverted sum index
  210. $$\sum_{k=a}^n (-1)^k {k\choose a} {n+k\choose 2k} 2^{2k} \frac{2n+1}{2k+1} = (-1)^n {n+a\choose 2a} 2^{2a}$$

  211. MSE 4351714 A Catalan number recurrence
  212. $$\sum_{j=1}^{n+1} {n+j\choose 2j-1} (-1)^{n+j} C_{n+j-1} = 0$$

  213. An identity by Graham and Riordan
  214. $$\sum_{k=0}^n \frac{2k+1}{n+k+1} {x-k-1\choose n-k} {x+k\choose n+k} = {x\choose n}^2$$

  215. Square root term
  216. $$\sum_{k=0}^{\lfloor n/2\rfloor} {n+1\choose 2k+1} {x+k\choose n} = {2x\choose n}$$ $$\sum_{k=0}^{\lfloor (n+1)/2\rfloor} {n+1\choose 2k} {x+k\choose n} = {2x+1\choose n}$$

  217. An identity by Machover and Gould
  218. $$\sum_{k=0}^n {x\choose 2k} {x-2k\choose n-k} 2^{2k} = {2x\choose 2n}$$ $$\sum_{k=0}^n {x+1\choose 2k+1} {x-2k\choose n-k} 2^{2k+1} = {2x+2\choose 2n+1}$$

  219. Moriarty identity by H.T.Davis et al.
  220. $$\sum_{k=0}^{n-p} {2n+1\choose 2p+2k+1} {p+k\choose k} = {2n-p\choose p} 2^{2n-2p}$$ $$\sum_{k=0}^{n-p} {2n+1\choose 2p+2k} {p+k\choose k} = \frac{n}{2n-p} {2n-p\choose p} 2^{2n-2p}$$

  221. Inverse Moriarty identity by Marcia Ascher.
  222. $$\sum_{k=r}^{\lfloor n/2\rfloor} (-1)^k {n-k\choose k} {k\choose r} 2^{n-2k} = (-1)^r {n+1\choose 2r+1}$$ $$\sum_{k=r}^{\lfloor n/2\rfloor} (-1)^k \frac{n}{n-k} {n-k\choose k} {k\choose r} 2^{n-2k-1} = (-1)^r {n+1\choose 2r+1}$$

  223. Moriarty identity by Egorychev
  224. $$\sum_{k=m}^n (-1)^k 2^{2k} {k\choose m} \frac{n}{n+k} {n+k\choose 2k} = (-1)^n 2^{2m} \frac{n}{n+m} {n+m\choose 2m}$$

  225. MSE 4462359 Two binomial coefficients
  226. $$\sum_{q=0}^m \frac{(-1)^{q-1}}{q+1} {k+q\choose q} {k\choose q} = \frac{(-1)^{m+1}}{k+1} {k-1\choose m} {k+1+m\choose k}$$

  227. Polynomial identity
  228. $$\sum_{k=1}^n (-1)^{k-1} {n\choose k} \frac{f(x-k)}{k} = H_n f(x) - f'(x)$$

  229. Polynomial identity II
  230. $$f(x+y) = y {y+n\choose n} \sum_{k=0}^n (-1)^k {n\choose k} \frac{f(x-k)}{y+k}$$

  231. Worpitzky-Nielsen series
  232. $$f(x+y) = (-1)^m \sum_{k=0}^{m+1} {x+k-1\choose m} \sum_{j=0}^k (-1)^j {m+1\choose j} f(j-k+y)$$

  233. MSE 4517120 A sum of inverse binomial coefficients
  234. $$\sum_{k=0}^n {m+k\choose m}^{-1} = \frac{m}{m-1} \left[1-{m+n\choose m-1}^{-1}\right]$$

  235. MSE 4520057 Symmetric Bernoulli number identity
  236. $$(-1)^n \sum_{g=0}^m \frac{B_{n+g+1}}{n+g+1} {m\choose g} + (-1)^m \sum_{g=0}^n \frac{B_{m+g+1}}{m+g+1} {n\choose g} = - \frac{1}{n+m+1} {n+m\choose m}^{-1}$$

  237. Polynomial identity III
  238. $$\sum_{k=0}^n (-1)^k {2n\choose n+k} \frac{f(y+k^2)}{x^2-k^2} = (-1)^n \frac{f(x^2+y)}{2x(x-n)} {x+n\choose 2n}^{-1} + \frac{1}{2} {2n\choose n} \frac{f(y)}{x^2}$$

  239. Polynomial identity IV
  240. $$\sum_{k=0}^n (-1)^k {n\choose k} {k+r\choose k}^{-1} f(y-k) = - \sum_{k=1}^r (-1)^k {r\choose k} {k+n\choose k}^{-1} f(y+k)$$

  241. MSE 4540192 Symmetry in a simple proof
  242. $$\sum_{q=0}^{\lfloor n/2\rfloor} (n-2q)^n {n\choose q} (-1)^q = 2^{n-1} n!$$

  243. Free functional term
  244. $$\sum_{k=0}^n (-1)^k {x\choose k} \sum_{j=0}^k (-1)^j {k\choose j} f(j) = (-1)^n {x-1\choose n} \sum_{k=0}^n (-1)^k {n\choose k} \frac{x f(k)}{x-k}$$

  245. MSE 4547110 Inverse central binomial coefficient
  246. $$\sum_{k=1}^n \frac{(-1)^{k+1} 2^{2k}}{k} {n\choose k} {2k\choose k}^{-1} = 2 H_{2n} - H_n$$

  247. MSE 1402886 Inverse binomial coefficient
  248. $$\sum_{r=0}^n (-1)^r {n\choose r}^{-1} = (1+(-1)^n) \frac{n+1}{n+2}$$

  249. MSE 4552694 A pair of binomial transforms
  250. $$\alpha_{n} = \sum_{k=0}^{n} \binom{n+k}{n-k}\beta_{k} \Leftrightarrow \beta_{n} = \sum_{k=0}^{n} (-1)^{n-k}\frac{2k+1}{2n+1} \binom{2n+1}{n-k}\alpha_{k}$$

  251. Polynomial with inverse binomial coefficients
  252. $$\sum_{k=0}^n x^k {n\choose k}^{-1} = (n+1) \left(\frac{x}{1+x}\right)^{n+1} \sum_{k=1}^{n+1} \frac{1}{k} \frac{1+x^k}{1+x} \left(\frac{1+x}{x}\right)^k$$

  253. Harmonic numbers with inverse binomial coefficients
  254. $$\sum_{k=1}^{2n-1} (-1)^{k-1} {2n\choose k}^{-1} H_k = \frac{1}{2} \frac{n}{(n+1)^2} + \frac{1}{2}\frac{1}{n+1} H_{2n}$$

  255. Simon's identity
  256. $$\sum_{k=0}^n {n\choose k} {n+k\choose k} x^k = \sum_{k=0}^n {n\choose k} {n+k\choose k} (-1)^{n-k} (x+1)^k$$

  257. Identity from Abramowitz and Stegun / Schläfli's formula
  258. $${n\brack m} = (-1)^{n-m} \sum_{k=0}^{n-m} (-1)^k {n-1+k\choose n-m+k} {2n-m\choose n-m-k} {n-m+k\brace k}, \quad\text{and} \\ {n\brace m} = (-1)^{n-m} \sum_{k=0}^{n-m} (-1)^k {n-1+k\choose n-m+k} {2n-m\choose n-m-k} {n-m+k\brack k}$$

  259. Bernoulli / Stirling number identity
  260. $$B_n = \sum_{k=0}^n (-1)^k {n+1\choose k+1} {n+k\brace k} {n+k\choose k}^{-1}$$

  261. Recurrence relation from DLMF
  262. $${k\choose h} {n\brack k} = \sum_{j=k-h}^{n-h} {n\choose j} {n-j\brack h} {j\brack k-h}\quad\text{and} \\ {k\choose h} {n\brace k} = \sum_{j=k-h}^{n-h} {n\choose j} {n-j\brace h} {j\brace k-h}$$

  263. Bernoulli, Fibonacci and Lucas numbers
  264. $$\sum_{k=0}^{\lfloor n/2\rfloor} {n\choose 2k} \left(\frac{5}{9}\right)^k B_{2k} F_{n-2k} = \frac{n}{6} L_{n-1} + \frac{n}{3^n} L_{2n-2}$$

  265. Bernoulli / exponential convolution
  266. $$B_n = \frac{1}{m(1-m^n)} \sum_{k=0}^{n-1} m^k {n\choose k} B_k \sum_{j=1}^{m-1} j^{n-k}$$

  267. Bernoulli identity by Munch
  268. $$B_n = \frac{1}{n+1} \sum_{k=1}^n \sum_{j=1}^k (-1)^j j^n {n+1\choose k-j} {n\choose k}^{-1}$$

  269. Bernoulli identity by Kronecker
  270. $$B_{2n} = \sum_{j=2}^{2n+1} (-1)^{j-1} {2n+1\choose j} \frac{1}{j} \sum_{k=1}^{j-1} k^{2n}$$

  271. Computing Bernoulli numbers
  272. $$B_{n+1} = \frac{n+1}{2(1-2^{n+1})} \sum_{k=0}^n \frac{(-1)^k}{2^k} k! {n\brace k},\quad\text{and}\quad \\ B_{n+1} = \frac{n+1}{2^{n+1}(2^{n+1}-1)} \sum_{k=0}^n (-1)^{k+1} \sum_{j=0}^k (-1)^j {n+1\choose j} (k-j)^n$$

From the Saalschütz text

  1. Worpitzky's identity
  2. $$x^n = \sum_{k=0}^{n-1} {x+k\choose n} \left\langle {n \atop k} \right\rangle$$

  3. MSE 4627726: Quadruple binomial coefficient
  4. $$2^N = \sum_{m=0}^N \sum_{r=0}^n \sum_{s=0}^m (-1)^{n+m} (-2)^{r+s} {n\choose r} {m\choose s} {N-r\choose m} {N-s\choose n}$$

  5. MSE 4627918: Alternating power sum
  6. $$\sum_{k=0}^m k^\ell (-1)^k {n\choose k} = (-1)^m n {n-1\choose m} \sum_{k=1}^\ell \frac{1}{n-k} m^{\underline{k}} {\ell\brace k}$$

  7. MSE 4227433: Squared power sum
  8. $$\sum_{k=1}^n k^\ell {n\choose k}^2 = \sum_{k=1}^\ell {2n-k\choose n} n^{\underline{k}} {\ell\brace k}$$

  9. MSE 4428892: Ordinary power sum
  10. $$\sum_{q=1}^n q^k = (n+1) n \sum_{q=1}^k {k\brace q} \frac{(n-1)^{\underline{q-1}}}{q+1}$$

  11. MSE 3932757: Stirling numbers and a tree-function like term
  12. $$\sum_{k=0}^m {m\choose k} {n+k+1\brace k+1} k! = \sum_{k=0}^m {m\choose k} (-k)^{m-k} (k+1)^{n+k}$$

  13. MSE 4641290: A vanishing variable
  14. $$\sum_{k=1}^n \frac{\prod_{1\le r\le n, r\ne m} (x+k-r)} {\prod_{1\le r\le n, r\ne k} (k-r)} = 1$$

  15. MSE 4644963: From trigonometric to rational
  16. $$\sum_{k=1}^N (-1)^k (\cos \frac{k\pi}{N})^{N-m} (\sin\frac{k\pi}{N})^m = \frac{1+(-1)^m}{2} (-1)^{m/2} \frac{N}{2^{N-1}}$$

  17. MSE 4657112: Triple combinatorial numbers to constant
  18. $$1=\sum_{p=0}^n (-1)^p {n+q\choose n-p-1} {n+p\choose n-q-1} {p+q\choose p}$$ $$1=(-1)^q \sum_{p=0}^n (-1)^p {n+q\choose n-p-1} {n+p\choose n-q-1} {p+q\brack p}$$

Computer search

  1. MSE 4667102: Two different representations of a coefficient
  2. $$\sum_{k=0}^r {n\choose 2k} {n-2k\choose r-k} = \sum_{k=r}^n {n\choose k} {2k\choose 2r} \left(\frac{3}{4}\right)^{n-k} \left(\frac{1}{2}\right)^{2k-2r}$$

  3. MSE 4675665: Rational term of constant degree
  4. $$\sum_{k=0}^n k^2 {n+k\choose k} = \frac{1}{2} (n+1)^2 {2n+2\choose n-1}$$

  5. MSE 4666141: Double square root
  6. $$2^m \sum_{k=0}^m \sum_{j=0}^p (-1)^j {k\choose j} {m-k\choose p-j} {m\choose k} {1/2(m+k-1)\choose m} = (-1)^p {m\choose p}^2$$

  7. MSE 4699857: Four auxiliary variables
  8. $${n+c\choose a} {n+d\choose b} = \sum_{q=0}^{a+b} {a-c+d\choose q-c} {b-d+c\choose q-d} {n+q\choose a+b}$$

  9. MSE 4703564: A family of odd polynomials
  10. $$[x^{2p}] P_{m,n}(x) = [x^{2p}] \sum_{k=0}^m {2x+2k\choose 2k+1} {n+m-k-x-1/2\choose m-k} = 0$$

  11. MSE 4713851: A sum with a zero value
  12. $$\sum_{k=0}^n (-1)^k \frac{1}{m-k} {m-k\choose k} \frac{1}{m+2n-2k} {m+2n-2k\choose n-k} = 0$$

  13. MSE 4722503: Euler numbers and Stirling numbers
  14. $$E_{n} = 2^{2n-1} \sum_{\ell=1}^{n} \frac{(-1)^\ell}{\ell+1} {n\brace \ell} \left(3\left(\frac{1}{4}\right)^{\Large {\overline{\ell}}} - \left(\frac{3}{4}\right)^{\Large {\overline{\ell}}}\right)$$ $$E_{2n} = -4^{2n} \sum_{\ell=1}^{2n} \frac{(-1)^\ell}{\ell+1} {2n\brace \ell} \left(\frac{3}{4}\right)^{\Large {\overline{\ell}}}$$

  15. MSE 495371: Even-index binomial coefficient convolution
  16. $$\sum_{j=k}^{\lfloor n/2\rfloor} {n\choose 2j} {j\choose k} = \frac{1}{2} \frac{n}{n-k} 2^{n-2k} {n-k\choose k}$$

  17. MSE 4731417: Kravchuk polynomials
  18. $$\begin{align*} K_k & = \sum_{j=0}^k (-q)^j (q-1)^{k-j} {n-j\choose k-j} {X\choose j} \\ K_k & = \sum_{j=0}^k (-1)^j q^{k-j} {n-k+j\choose j} {n-X\choose k-j} \end{align*} $$

  19. MSE 4762542: Binomial-Bernoulli convolution
  20. $$\begin{align*} & \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \frac{1}{\alpha^{2k+1}} \frac{B_{2k+2}}{(n-2k)! (2k+2)!} \\ & = \frac{1}{2} \frac{n+2-2\alpha}{(n+2)!} + \frac{1}{\alpha^{n+1} (n+1)!} \sum_{j=0}^{\alpha-1} j^{n+1}. \end{align*}$$

  21. MSE 4774167 : Two probabilities
  22. $$\sum_{k=q}^n {k-1\choose q-1} p^q (1-p)^{k-q} = \sum_{k=q}^n {n\choose k} p^k (1-p)^{n-k}$$

  23. MSE 4791957 : Motzkin numbers
  24. $$a_{n+2} = a_{n+1} + \sum_{k=0}^n a_k a_{n-k} \Longrightarrow a_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1}{k+1} {2k\choose k} {n\choose 2k}$$

  25. MSE 4821034 : An inverse binomial coefficient
  26. $$\sum_{q=0}^n {n\choose q} \frac{q}{q+1} {2n\choose q+1}^{-1} = \frac{1}{n+1}$$

  27. MSE 4830342 : Euler numbers, Stirling numbers and Touchard polynomials
  28. $$E_n = -\sqrt{2} \;\sum_{k=0}^n {n\brace k} \frac{k!}{\sqrt{2}^k} \cos(3\pi (k+1)/4) = 2 \int_0^\infty \exp(-t) \cos(t) T_n(-t) \; dt$$

  29. MSE 4832009 : A triple binomial
  30. $$\sum_{k=j}^{\lfloor n/2\rfloor} \frac{1}{4^k} {n\choose 2k} {k\choose j} {2k\choose k} = \frac{1}{2^n} {2n-2j\choose n-j} {n-j\choose j}$$

  31. MSE 4843051 : Double sum with an absolute value
  32. $$\sum_{p=0}^{n-1} \sum_{q=0}^n |n-p-q| {n+p-q\choose p} {n-p+q-1\choose q} = n 4^{n-1}$$

  33. MSE 4850609 :Inverse central binomial coefficient in sum
  34. $$\sum_{k=0}^n {n\choose k} {n+r\choose k} {2n\choose 2k}^{-1} = 4^n {2n\choose n}^{-1} \sum_{p=0}^{r-1} {r-1\choose p} {2p\choose p} 4^{-p} {n+1/2\choose n-p}$$

Computer search II

  1. MSE 4902676: Inverse central binomial coefficient

    $$\frac{2^{4n}}{2n+1} {2n\choose n}^{-1} = \sum_{m=0}^n \frac{1}{2m+1} {2m\choose m} {2n-2m\choose n-m}$$

  2. MSE 4906245: Another inverse binomial coefficient

    $$\frac{1}{q} {n\choose k} = \sum_{p=0}^k (-1)^p {q-1-n+k\choose p} {n+1\choose k-p} \frac{1}{p+1} {q+k\choose p+1}^{-1}$$

Part 3

Egorychev method in complex variables

  1. Introductory example for the method

    $$\sum_{k=0}^n (-1)^k {n\choose k} {n+k\choose k} {k\choose j} = (-1)^n {n\choose j} {n+j\choose j}$$

  2. Introductory example for the method, convergence about zero

    $$\sum_{k=0}^r {r-k\choose m} {s+k\choose n} = {s+r+1\choose n+m+1}$$

  3. Introductory example for the method, an interesting substitution

    $$\sum_{q=0}^{2m} (-1)^q {p-1+q\choose q} {2m+2p+q-1\choose 2m-q} 2^q = (-1)^m {p-1+m\choose m}$$

  4. Introductory example for the method, another interesting substitution

    $$\sum_{k=0}^{\lfloor m/2\rfloor} {n\choose k} (-1)^k {m-2k+n-1\choose n-1} = {n\choose m}$$

  5. Introductory example for the method, yet another interesting substitution

    $$\sum_{k=0}^n k{2n\choose n+k} = \frac{1}{2} n {2n\choose n}$$

  6. Using an Iverson bracket only

    $$\sum_{k=0}^n 2^{-k} {n+k\choose k} = 2^n$$

  7. Verifying that a certain sum vanishes

    $$\sum_{m=0}^n {n\choose m} \sum_{k=0}^{n+1} \frac{1}{a+bk+1} {a+bk\choose m} {k-n-1\choose k} = {n\choose m}$$

  8. A case of radical cancellation

    $$\sum_{k=0}^n {2n+1\choose 2k+1} {m+k\choose 2n} = {2m\choose 2n}$$

  9. Basic usage of exponentiation integral

    $$(-1)^p \sum_{q=r}^p {p\choose q} {q\choose r} (-1)^q q^{p-r} = \frac{p!}{r!}$$

  10. Introductory example for the method, eliminating odd-even dependence

    $$\sum_{k=0}^n {n\choose k} 2^{n-k} {k\choose \lfloor k/2\rfloor} = {2n+1\choose n}$$

  11. Introductory example for the method, proving equality of two double hypergeometrics

    Verify that $f_1(n,k) = f_2(n,k)$ where $$f_1(n,k) = \sum_{v=0}^n \frac{(2k+2v)!}{(k+v)! \times v! \times (2k+v)!\times (n-v)!} 2^{-v}$$ and $$f_2(n,k) = \sum_{m=0}^{\lfloor n/2\rfloor} \frac{1}{(k+m)!\times m!\times (n-2m)!} 2^{n-4m}$$

  12. A remarkable case of factorization

    If $$T(n) = \sum_{k=1}^{\lfloor n/2\rfloor} (-1)^{k+1} {n-k\choose k} T(n-k)$$ for $n\ge 2$ then $$T_n = C_{n-1} = \frac{1}{n} {2n-2\choose n-1}$$

  13. Evaluating a quadruple hypergeometric

    $$\sum_{k=0}^n \sum_{l=0}^n (-1)^{k+l} {n+k-l\choose n} {k+l\choose n} {n\choose k} {n\choose l} = (-1)^m {2m\choose m}$$

  14. An integral representation of a binomial coefficient involving the floor function

    $$\sum_{k=0}^{2m+1} {n\choose k} 2^k {n-k\choose \lfloor (2m+1-k)/2\rfloor} = {2n+1\choose 2m+1}$$

  15. Evaluating another quadruple hypergeometric

    $$\sum_{k=m}^n (-1)^{n+k} \frac{2k+1\choose n+k+1} {n\choose k} {n+k\choose k}^{-1} {k\choose m} {k+m\choose m} = \delta_{mn}$$

  16. An identity by Strehl

    $$\sum_{k=0}^n {n\choose k}^3 = \sum_{k=\lceil n/2\rceil}^n {n\choose k}^2 {2k\choose n}$$

  17. Shifting the index variable and applying Leibniz' rule

    $$ \sum_s {n+s\choose k+l} {k\choose s} {l\choose s} = {n\choose k} {n\choose l}$$

  18. Working with negative indices

    $$\sum_{-\lfloor n/3\rfloor}^{\lfloor n/3\rfloor} (-1)^k {2n\choose n+3k} = 2\times 3^{n-1}$$

  19. Two companion identities by Gould

    $$\sum_{k=0}^\rho {2x+1\choose 2k} {x-k\choose \rho-k} = \frac{2x+1}{2\rho+1} {x+\rho\choose 2\rho} 2^{2\rho}$$

  20. Exercise 1.3 from Stanley's Enumerative Combinatorics

    $$\sum_{k=0}^{\min(a,b)} {x+y+k\choose k} {x\choose b-k} {y\choose a-k} = {x+a\choose b} {y+b\choose a}$$

  21. Counting m-subsets

    $$\sum_{q=0}^n {n\choose 2q} {n-2q\choose p-q} 2^{2q} = {2n\choose 2p}$$

  22. Method applied to an iterated sum

    $$\sum_{k=0}^{n-1} \left(\sum_{q=0}^k {n\choose q}\right) \left(\sum_{q=k+1}^n {n\choose q}\right) = \frac{1}{2} n {2n\choose n}$$

  23. A pair of two double hypergeometrics

    $$(1-x)^{2k+1} \sum_{n\ge 0} {n+k-1\choose k} {n+k\choose k} x^n = \sum_{j\ge 0} {k-1\choose j-1} {k+1\choose j} x^j$$

  24. A two phase application of the method

    $$\sum_{k=0}^{\lfloor n/3\rfloor} (-1)^k {n+1\choose k} {2n-3k\choose n} = \sum_{k=\lfloor n/2\rfloor}^n {n+1\choose k} {k\choose n-k}$$

  25. An identity from Mathematical Reflections

    $$\sum_{k=0}^{\lfloor (m+n)/2 \rfloor} {n\choose k} (-1)^k {m+n-2k\choose n-1} = {n\choose m+1}$$

  26. A triple Fibonacci-binomial coefficient convolution

    $$\sum_{k=0}^n {n\choose k} {n+k\choose k} F_{k+1} = \sum_{k=0}^n {n\choose k} {n+k\choose k} (-1)^{n-k} F_{2k+1}$$

  27. Fibonacci numbers and the residue at infinity

    $$\sum_{p,q\ge 0} {n-p\choose q} {n-q\choose p} = F_{2n+2}$$

  28. Permutations containing a given subsequence

    $$\sum_{r=0}^n {r+n-1\choose n-1} {3n-r\choose n} = \frac{1}{2} \left( {4n\choose 2n} + {2n\choose n}^2\right)$$

  29. An example of Lagrange inversion

    $$[x^\mu y^\nu] \frac{1}{2} (1-x-y-\sqrt{1-2x-2y-2xy+x^2+y^2}) = \frac{1}{\mu+\nu-1} {\mu+\nu-1\choose \nu} {\mu+\nu-1\choose \mu}$$

  30. A binomial coefficient - Catalan number convolution

    $$\sum_{r=1}^{n+1} \frac{1}{r+1} {2r\choose r} {m+n-2r\choose n+1-r} = {m+n\choose n}$$

  31. A new obstacle from Concrete Mathematics

    $$\sum_{k\ge 0} {n+k\choose m+2k} {2k\choose k} \frac{(-1)^k}{k+1} = {n-1\choose m-1}$$

  32. Abel-Aigner identity from Table 202 of Concrete Mathematics

    $$\sum_k {tk+r\choose k} {tn-tk+s\choose n-k} \frac{r}{tk+r} = {tn+r+s\choose n}$$

  33. Reducing the form of a double hypergeometric

    $$\sum_{q=0}^{n-2} \sum_{k=1}^n {k+q\choose k} {2n-q-k-1\choose n-k+1} = n \times {2n\choose n+2}$$

  34. Basic usage of the Iverson bracket

    $$\sum_{q=0}^l {q+k\choose k} {l-q\choose k} = {l+k+1\choose 2k+1}$$

  35. Basic usage of the Iverson bracket II

    $$\sum_{k=0}^n k {m+k\choose m+1} = \frac{nm+2n+1}{m+3} {n+m+1\choose m+2}$$

  36. Use of a double Iverson bracket

    $$\sum_{k=1}^n 2^{n-k} {k\choose\lfloor k/2\rfloor} = -2^{n+1} + (2n+2+(n\mod 2)) {n\choose \lfloor n/2 \rfloor}$$

  37. Iverson bracket and an identity by Gosper, generalized

    $$\sum_{q=0}^{m-1} {n-1+q\choose q} x^n (1-x)^q + \sum_{q=0}^{n-1} {m-1+q\choose q} x^q (1-x)^m = 1$$

  38. Factoring a triple hypergeometric sum

    $$\sum_{k=0}^n (-1)^k {p+q+1\choose k} {p+n-k\choose n-k} {q+n-k\choose n-k} = {p\choose n} {q\choose n}$$

  39. Factoring a triple hypergeometric sum II

    $$\sum_{k=0}^n {n\choose k} {pn-n\choose k} {pn+k\choose k} = {pn\choose n}^2$$

  40. Factoring a triple hypergeometric sum III

    $$\sum_{r=0}^{\min(m,n,p)} {m\choose r} {n\choose r} {p+m+n-r\choose m+n} = {p+m\choose m} {p+n\choose n}$$

  41. A triple hypergeometric sum IV

    $$\sum_{p=0}^l \sum_{q=0}^p (-1)^q {m-p\choose m-l} {n\choose q} {m-n\choose p-q} = 2^l {m-n\choose l}$$

  42. Basic usage of exponentiation integral to obtain Stirling number formulae

    $$\sum_{q=0}^n (n-2q)^k {n\choose 2q+1} = \sum_{q=0}^{k+1} {n\choose q} 2^{n-q-1}\times q!\times {k+1\brace q+1} - \frac{1}{2}\times n!\times {k+1\brace n+1}$$

  43. Three phase application including Leibniz' rule

    $$\sum_{q=0}^n q {2n\choose n+q} {m+q-1\choose 2m-1} = m \times 4^{n-m} \times {n\choose m}$$

  44. Symmetry of the Euler-Frobenius coefficient

    With $$b_k^n = \sum_{l=1}^k (-1)^{k-l} l^n {n+1\choose k-l}$$ we show that $b_k^n = b_{n+1-k}^n$ where $0\le k\le n+1.$

  45. A probability distribution with two parameters

    We have a random variable $X$ where $$\mathrm{P}[X=k] = {N\choose 2n+1}^{-1} {N-k\choose n} {k-1\choose n}$$ for $k=n+1,\ldots, N-n$ and zero otherwise. We show that these probabilities sum to one and compute the mean and the variance.

  46. An identity involving Narayana numbers

    The Narayana number is $$N(n,m) = \frac{1}{n} {n\choose m} {n\choose m-1}$$ and we introduce $$A(n,k,l) = \sum_{i_0+i_1+\cdots+i_k=n \atop j_0+j_1+\cdots+j_k=l} \prod_{t=0}^k N(i_t, j_t+1)$$ where the compositions for $n$ are regular and the ones for $l$ are weak. We seek to verify that $$A(n,k,l) = \frac{k+1}{n} {n\choose l} {n\choose l+k+1}.$$

  47. Convolution of Narayana polynomials

    Same as previous, generalized.

  48. A property of Legendre polynomials

    $$ (-1)^m \frac{(n+m)!}{(n-m)!} \left(\frac{d}{dz}\right)^{n-m} (1-z^2)^n = (1-z^2)^m \left(\frac{d}{dz}\right)^{n+m} (1-z^2)^n$$

  49. A sum of factorials, OGF and EGF of the Stirling numbers of the second kind

    $$r^k (r+n)! = \sum_{m=0}^k (r+n+m)! (-1)^{k+m} \sum_{p=0}^{k-m} {k\choose p} {k+1-p\brace m+1} n^p$$

  50. Fibonacci, Tribonacci, Tetranacci

    $$\sum_{k=0}^n \sum_{q=0}^k (-1)^q {k\choose q} {n-1-qm\choose k-1} = [z^n] \frac{1}{1-w-w^2-\cdots-w^m}$$

  51. Stirling numbers of two kinds, binomial coefficients

    $${n\brace m} = \sum_{k=m}^n {k\choose m} \sum_{q=0}^k (-1)^{n} {n+q-m\brace k} (-1)^{k} {k\brack q} {n\choose n+q-m}$$

  52. An identity involving involving two binomial coefficients and a fractional term

    $$\sum_{k=0}^m \frac{q}{pk+q} {pk+q\choose k} {pm-pk\choose m-k} = {mp+q\choose m}$$

  53. Double chain of a total of three integrals

    $$\sum_{k=q}^{n-1} \frac{q}{k} {2n-2k-2\choose n-k-1} {2k-q-1\choose k-1} = {2n-q-2\choose n-1}$$

  54. Rothe-Hagen identity

    $$\sum_{k=0}^n \frac{x}{x+kz} {x+kz\choose k} \frac{y}{y+(n-k)z} {y+(n-k)z\choose n-k} = \frac{x+y\choose x+y+nz} {x+y+nz\choose n} $$

  55. Abel polynomials are of binomial type

    We have $$P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$$ where $$P_n(x) = x(x+an)^{n-1}$$ is an Abel polynomial.

  56. A summation identity with four poles

    $$\sum_{m=0}^n (-1)^m {2n+2m\choose n+m} {n+m\choose n-m} = (-1)^n 2^{2n} $$

  57. A summation identity over odd indices with a branch cut

    $$\sum_{k=0 \atop k\,\mathrm{odd}}^m {2n\choose 2n-k} {2m-2n\choose m-k} = \frac{1}{2} {2m\choose m} + (-1)^{m 1} 2^{2m-1} {n-1/2\choose m}$$

  58. A Stirling-number identity

    $$\sum_{j=0}^n (-1)^{n+j} {n\brack j} {m+j\brace k} = \frac{n!}{k!} \sum_{q=0}^k {k\choose q} {q\choose n} (-1)^{k-q} q^m$$

  59. A Catalan-Central binomial coefficient convolution

    $$[z^k] \frac{1}{\sqrt{1-4z}} \left(\frac{1-\sqrt{1-4z}}{2z}\right)^n = {n+2k\choose k}$$

Post Scriptum sections

  1. A trigonometric sum

    $$\sum_{k=1}^{m-1} \sin^{2q}(k\pi/m) = m\frac{1}{2^{2q}} {2q\choose q} + m \frac{1}{2^{2q-1}} \sum_{l=1}^{\lfloor q/m \rfloor} {2q\choose q-lm} (-1)^{lm}$$

  2. A class of polynomials similar to Fibonacci and Lucas Polynomials

    The binomial coefficient sum $$\sum_{j=-\lfloor n/p\rfloor}^{\lfloor n/p\rfloor} (-1)^j {2n\choose n-pj}$$ is given by $$[z^n] \left(\sum_{q=0}^{\lfloor p/2\rfloor} \frac{p}{p-q} {p-q\choose q} (-1)^q z^q\right)^{-1} \sum_{q=0}^{\lfloor (p-1)/2\rfloor} {p-1-q\choose q} (-1)^q z^q$$

  3. Partial row sums in Pascal's triangle

    $$\sum_{k=0}^n {2k+1\choose k} {m-(2k+1)\choose n-k} = \sum_{k=0}^n {m+1\choose k}$$

  4. The tree function and Eulerian numbers of the second order

    $$\sum_{m\ge 0} m^{m+n} \frac{z^m}{m!} = \frac{1}{(1-T(z))^{2n+1}} \sum_{k=0}^n \left\langle\!\!\left\langle {n\atop k} \right\rangle\!\!\right\rangle T(z)^k$$

  5. A Stirling set number generating function and Eulerian numbers of the second order

    $$\sum_{n\ge 0} {n+r\brace n} z^n = \frac{1}{(1-z)^{2r+1}} \sum_{k=0}^r \left\langle\!\!\left\langle {r\atop k} \right\rangle\!\!\right\rangle z^k$$

    A Stirling cycle number generating function and Eulerian numbers of the second order (II)

    $$\sum_{n\ge 0} {n+r+1\brack n+1} z^{n} = \frac{1}{(1-z)^{2r+1}} \sum_{k=0}^r \left\langle\!\!\left\langle {r\atop r-k} \right\rangle\!\!\right\rangle z^k$$

  6. Another case of factorization

    $${q-j+k\choose k} + (-1)^k {j\choose k} = \sum_{\ell=0}^{\lfloor k/2\rfloor} {q/2+\ell\choose 2\ell} \left({q/2-j+k-\ell\choose k-2\ell} + {q/2-j+k-\ell-1\choose k-2\ell} \right)$$

  7. An additional case of factorization

    $$\sum_{j=0}^k {2j\choose j+q} {2k-2j\choose k-j} = 4^k - \sum_{j=k-q+1}^k {2k+1\choose j}$$

  8. Contours and a binomial square root

    $$\sum_{k=0}^n {2n+1\choose 2k+1} {m+k\choose 2n} = {2m\choose 2n}$$

  9. A careful examination of contours

    $$\sum_{q=0}^n {q\choose n-q} (-1)^{n-q} {2q+1\choose q+1} = 2^{n+1}-1$$

  10. Stirling numbers, Bernoulli numbers and Catalan numbers from Concrete Mathematics by Graham, Knuth and Patashnik

    $$\sum_{k=0}^n {n+k\brace k} {2n\choose n+k} \frac{(-1)^k}{k+1} = B_n {2n\choose n} \frac{1}{n+1}$$

  11. Transforming an OGF into an EGF

    With $f(z)$ the OGF and $g(w)$ the EGF of a sequence we have $$g(w) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f(z)}{z} \exp(w/z) \; dz.$$

  12. Stirling numbers of the first and second kind

    $$\sum_{q=0}^r (-1)^{q+r} {r\brack q} {n+q-1\brace k} = \frac{(-1)^{k-r}}{(k-r)!} \sum_{p=0}^{k-r} {k-r\choose p} (-1)^p (p+r)^{n-1} $$

  13. An identity by Carlitz

    $$\sum_{k=0}^n {n\choose k} {k/2\choose m} = \frac{n}{m} {n-m-1\choose m-1} 2^{n-2m}$$

  14. Logarithm of the Catalan number OGF

    $$[z^n] \log^2 \frac{2}{1+\sqrt{1-4z}} = {2n\choose n} (H_{2n-1}-H_n) \frac{1}{n}$$

  15. A Bernoulli / Stirling number identity

    $$\sum_{k=0}^n {n+1\brack k+1} B_k = \frac{n!}{n+1}$$

  16. Formal power series vs contour integration

    $$\sum_{q=0}^K (-1)^q {2n+1-q\choose q} {2n-2q\choose K-q} = \frac{1}{2} (1+(-1)^K)$$