We now have a new section as of March 2023 "computer search" which includes hypergeometric identities that can prove challenging even for computer algebra systems, such as
$${n\choose m} n^m = (-1)^n \sum_{k=0}^n {n\choose k} (-1)^k {n-m+k\choose k} {kn+m\choose m}$$
As of January 2024 "computer search" continues with rare identities such as (the 42 identity)
$${4p-2\choose p} = (-1)^m \sum_{k=0}^n {n+p\choose k+p} (-1)^k {k+p-1\choose k+p-m} {2k+1-p\choose p}$$
also featuring Narayana and Catalan numbers. These computer identities have ranges of validity (boundary conditions) which are documented in the text. These are in chronological order so that the most recent work is at the end.Here are the slides from Hosam Mahmoud's talk on Egorychev method at Catholic University on November 9, 2022: History and examples of Egorychev method.
The 2023 paper "Egorychev method: a hidden treasure" by Riedel and Mahmoud is at the following Springer link.
My home page is here. There is a no MathJax version of these formulas if they are not being displayed, it uses images and can be found here.$${n\brace n-m} = (-1)^{n-m} \sum_{k=0}^n (-1)^k {m-1+k\choose m-n+k} {2n-m\choose n-m-k} {n \brace k}$$
$$n^m = \sum_{k=0}^n (-1)^k {n\brack n-k} {n-k+m\brace n}$$
$${n\choose m} {2n-m\choose n} = (-1)^{n-m} \sum_{k=0}^{n-m} (-1)^k {n+k\choose n}^2 {2n-m\choose n-m-k}$$
$$n = (-1)^{n+1} \sum_{k=0}^n (-1)^k {m+k\choose m} {m+n\choose n-k-1} {m-1+k\choose m-n+k} $$
$${n-2\choose m-1} = \frac{(-1)^{m-1}}{n-1} \sum_{k=0}^n (-1)^k {n+k\choose n-m-1} {n+1\choose k+1} {2k\choose m-1}$$
$${n+m\choose m-1} {n-1\choose m-1} \frac{1}{m} = (-1)^n \sum_{k=0}^n (-1)^k {k\choose m} \frac{1}{k+1} {2k\choose k} {n+k\choose n-k}$$
$$n+m = \sum_{k=0}^n (-1)^k {n+m\choose n-k-1} {m-1+k\choose k} {n+m+k\choose n}$$
$${n\choose m} {m+1\choose n-m} = (-1)^n \sum_{k=0}^n (-1)^k {n\choose k} {k\choose m} {k+1\choose m+1}$$
$${n-1\choose m} = (-1)^m \sum_{k=0}^n (-1)^k {m+k\choose m} {2n\choose n+k} {n-1+k\choose k}$$
$$n-m^2 = (-1)^m \sum_{k=0}^n (-1)^k {n+m\choose n-k-1} {m-1+k\choose k} {m-1+k\choose m}$$
$${n\choose m} {m\choose p} = (-1)^m \sum_{k=0}^n (-1)^k {m\choose k} {k\choose p} {k-p+n\choose k}$$
$${2p-1\choose p-1} = (-1)^p \sum_{k=0}^{n-m} (-1)^k {2n-m\choose n-m-k} {n-1+k\choose k} {k-p+n\choose p}$$
$${n-1\choose p} = (-1)^p \sum_{k=0}^{n-m} (-1)^k {p+k\choose k} {2n-m\choose n-m-k} {n-1+ k\choose k}$$ $${2n-m\choose n-1} - {n-1\choose m-2} = (-1)^{n-m} \sum_{k=0}^{n-m} (-1)^k {n-m+1+k\choose k} {2n-m\choose n-m-k} {n-1+ k\choose k}$$
$${3n+1-m\choose 2n+1} = (-1)^{n-m} \sum_{k=0}^{n-m} (-1)^k {n-m+k\choose k} {2n-k\choose n-m-k} {2n+1\choose k}$$
$${n\choose m} = (-1)^{n+m} \sum_{k=0}^n (-1)^k {n\choose k} {n-m+k\choose k} {m-k+n\choose m}$$
$${n-m-1\choose m-1} = \sum_{k=0}^n (-1)^k {n-1+k\choose n-m+k} {2m\choose m+k} {m-1+k\choose k}$$
$$n^2 = \sum_{k=0}^n (-1)^k {k-n\choose n}^2 {2n+1\choose k}$$
$$(-1)^{(n+1)/2} \frac{n+1}{2} \times \frac{1+(-1)^{n+1}}{2} = \sum_{k=0}^n (-1)^k {n-k\choose k} {2k-n\choose n} {2k\choose n-1}$$
$$\frac{(2n)!}{2^n n!} = (-1)^n \sum_{k=0}^n (-1)^k {2n\choose n+k} {n+k\brack k}$$
$${n\choose m} n^m = (-1)^n \sum_{k=0}^n {n\choose k} (-1)^k {n-m+k\choose k} {kn+m\choose m}$$
$${n\choose m} 2^m = (-1)^n \sum_{k=0}^n {n\choose k} (-1)^k {2k\choose m} {n-m+k\choose k}$$
$${n\choose m}^3 = \sum_{k=0}^n {n\choose k} {k\choose m} {m\choose k-m} {n-m+k\choose n}$$
$${n\choose m} m! = (-1)^n \sum_{k=0}^n {n\choose k} (-1)^k {n-m+k\choose n-m} k^m$$
$${2n-m-1\choose n-1} = (-1)^n \sum_{k=0}^n (-1)^k {2n\choose n+k} {m-1+k\choose k-n+m} {n-1+k\choose n}$$
$${2n-m\choose m} = (-1)^{n+m} \sum_{k=0}^n {2n+1\choose k} (-1)^k {2m-k\choose m} {2n-k\choose n}$$
$${n\choose m} = (-1)^{n+m} \sum_{k=0}^n {n\choose k} (-1)^k {nm-k+m\choose m} {n-m+k\choose k}$$
$${n\choose m} = (-1)^{n+m} \sum_{k=0}^n {n+m\choose m+k} (-1)^k {m-1+k \choose k-n+m} {n+m+k\choose m}$$
$${n\choose m} {2n-m\choose n} {3n-2m\choose n-m} = \sum_{k=0}^n {2n-m\choose n-m-k}^2 {m+k\choose k} {n+k\choose m+k}$$
$$1 = (-1)^m \sum_{k=0}^n (-1)^k {2n\choose n+k} {n-1+k\choose n-m+k} {n-1+k\choose n}$$
$$\frac{1}{n-m+1} {n+1\choose m+1} {n+1\choose m} \left[ (n+1) {n+1\choose m+1} - m {n\choose m+1} \right] \\ = \sum_{k=0}^n {n+1\choose k+1} {n-k\choose m-k} {n+k+1\choose k+1} {n-m\choose k}$$
$$\frac{(n+m)!}{2^m \times (n-m)! \times m!} = (-1)^n \sum_{k=0}^n (-1)^k {n+m\choose m+k} {m+k\brack k} {k-m\choose n-m}$$
$$\frac{1}{n+1} {n+m\choose m} {n-1\choose m-1} = (-1)^n \sum_{k=0}^n (-1)^k {k\choose m} {n+k\choose 2k} \frac{1}{k+1} {2k\choose k}$$
$${n\choose m}^2 = \sum_{k=0}^n {m+k\choose m-k} {2k\choose k} {n\choose m+k}$$
$$2^{n-m} = \sum_{k=0}^n (-1)^k {n+m-k\choose k} {2n-2k\choose n-k}$$
$${2 n - p \choose m - p} = (-1)^{n+m+p} \sum_{k=0}^n {2 n + 1\choose k} (-1)^k {2 n - k\choose n} {m - k\choose m - p}$$
$${n-m-1\choose p} = (-1)^{m+1} \sum_{k=0}^n (-1)^k {m-1+k\choose k}^2 {n+m\choose m+k} {n-1+k\choose p}$$
$${4p-2\choose p} = (-1)^m \sum_{k=0}^n {n+p\choose k+p} (-1)^k {k+p-1\choose k+p-m} {2k+1-p\choose p}$$
$$\frac{(n+m)!}{2^m (n-m)! m!} = (-1)^n \sum_{k=0}^n (-1)^k {n + m\choose m + k} {n - m + k\choose k} {m + k + 1\brace k + 1}$$
$${n + m - 1 - p\choose n - 1} = (-1)^{n+p+1} \sum_{k=0}^n {m - k\choose p - k} (-1)^k {2 m\choose k - n + m} {-n + k\choose m}$$
$${n-m-p \choose m} = \sum_{k=0}^n (-1)^k {p+m\choose p+k} {n-m+k\choose m} {p-1+k\choose k}$$
$$(2n+1)^p = (-1)^{n+m} \sum_{k=0}^n {2n\choose k-1} {2n-k\choose n-m-k} (-1)^k k^p$$
$${2p\choose p} = \sum_{k=0}^n (-1)^k {2p\choose k} {m-k+p\choose p} {n+p-k\choose p}$$
$$1 = (-1)^{n+m+p+1} \sum_{k=0}^{m-p} (-1)^k {m-1+k\choose n-1} {m-1+k\choose p-1} {2m-p\choose m-p-k}$$
$${n-1\choose p-1}^2 = (-1)^m \sum_{k=0}^n {p-1+k\choose k} (-1)^k {n-1+k\choose m} {2n\choose n+k} {k+n-p\choose k}$$
$${2n-1\choose p} = (-1)^{m+p} \sum_{k=0}^n {n-1+k\choose k} (-1)^k {n-1+k\choose m} {2n\choose n+k} {2k+p\choose p}$$
$${2n\choose n} {n\choose m} = \sum_{k=0}^n {n+1\choose 2k+1} {n+k\choose m+k} {m+k\choose m}$$
$${n+m\choose 2m}^2 = (-1)^n \sum_{k=0}^n {n+k\choose n-k} {2k\choose 2m} {2k-2m\choose k-m} (-1)^k$$
$${n+m\choose m} = (-1)^n \sum_{k=0}^n (-1)^k {n+k\choose n} {n+m\choose m+k} {p+k\choose m}$$
$${2n\choose n+m} = \sum_{k=0}^n (-1)^k {n-m+k\choose k} {2n-k\choose n-m-k} {2n\choose n+m-k}$$
$${n\choose m}^2 = (-1)^m \sum_{k=0}^n (-1)^k {k\choose m} {2n-k\choose k} {2n-2k\choose n-k}$$
$${n+m\choose 2m} = (-1)^m \sum_{k=0}^n {n+m\choose m+k} (-1)^k {p-k\choose n-m} {2m+k\choose k}$$
$${n\choose m} 2^m = (-1)^m \sum_{k=0}^n {n\choose k} (-1)^k {2k\choose m} {p-k\choose n-m}$$
$$\frac{(2p)!}{p!} = (-1)^{p+m} \sum_{k=0}^{p+m} (n-k)^p (-1)^k {2p\choose p+m-k} {r-k\choose p}$$
$$2^{n-2m} \frac{(n+m)!}{(n-m)! m!} = (-1)^m \sum_{k=0}^n {n+m\choose m+k} (-1)^k {p-2k\choose n-m} {m+k+1\brace k+1}$$
$$2^p {2p\choose p} = (-1)^m \sum_{k=0}^n {n-k+p\choose p} (-1)^k {2k\choose p} {2p\choose m-k+p}$$
$$n^m = (-1)^m \sum_{k=0}^n {n-1+k\choose k} (-1)^k k^m {2n\choose n+k}$$
$${n\choose m} {n-1\choose n-m} \frac{1}{n-m+1} = (-1)^{n+m} \sum_{k=0}^n \frac{1}{k+1} {2k\choose k} (-1)^k {n-k\choose m} {n+k\choose n-k}$$
$${y-x\choose n} = (-1)^n \sum_{k=0}^{n} {x-k\choose n-k} {x+1\choose k} (-1)^k {y+1-k\choose n}$$
$${n+m\choose n} {n\choose m} \frac{1}{m+1} = (-1)^n \sum_{k=0}^n (-1)^k \frac{1}{k+1} {2k\choose k} {k+1\choose m+1} {n+k\choose n-k}$$
$${n\choose m} m! q^{n-m} = \sum_{k=0}^n {n\choose k} (-1)^k {p-qk\choose n-m} (r-k)^m$$
$$p^{n-m} q^m {n\choose m} = (-1)^m \sum_{k=0}^n {n\choose k} (-1)^k {x-pk\choose n-m} {y+qk\choose m}$$
$${n-1\choose m-1} = (-1)^{m+1} \sum_{k=0}^n {2n\choose n+k} (-1)^k {m-1+k\choose k} {n-1+k\choose k}$$
$${n+m\choose 2m}^2 = (-1)^n \sum_{k=0}^n {n+k\choose 2k} {2k\choose m+k} (-1)^k {k+m\choose k-m}$$
$${2m-1\choose p} = (-1)^{p+1} \sum_{k=0}^n {n+m\choose m+k} (-1)^k {m-1+k\choose m} {k-m+p\choose p}$$
$${n\choose m} = (-1)^{m+p} \sum_{k=0}^{n-p} (-1)^k {n\choose p+k} {x-k\choose n-m} {m+k\choose k}$$
$$(n+1)^m = (-1)^{n+m} \sum_{k=0}^n (-1)^k {2n-k\choose n} {2n+1\choose k} (n-k)^m$$
$${n\choose m} {n-1\choose m} = (-1)^{n+1} \sum_{k=0}^n {2n\choose n+k} (-1)^k {n+k-m-1\choose n-m-1} {m-1+k\choose m} {n-1+k\choose n-1}$$
$$\frac{(n+m)!}{n!} = (-1)^n \sum_{k=0}^n (r+k)^m {n+k\choose n} (-1)^k {n+m\choose m+k}$$
$$\frac{(n+p)!}{2^p (n-p)! p!} {n-p\choose m-p} = (-1)^m \sum_{k=0}^m {n-k\choose m-k} (-1)^k {p+k+1\brace k+1} {m+k\choose p+k} {p+n\choose p+k}$$
$${n-1\choose p-1} {m\choose p} = (-1)^p \sum_{k=0}^n (-1)^k {n+1\choose k+1} {n+k\choose p+k} {k-m+p\choose p}$$
$$m^m = (-1)^n \sum_{k=0}^n {n+m\choose m+k} (-1)^k k^m {m-1+k\choose m-n+k}$$
$${2p\choose p} = (-1)^{m+p} \sum_{k=0}^n {n-k+p\choose p} {m-k\choose p} (-1)^k {2p\choose k-m+p}$$
$${n-1\choose m-1} = (-1)^{n+m} \sum_{k=0}^n {n+m+k\choose m} (-1)^k {n-m+k\choose k} {2n\choose n+k} {n-1+k\choose k}$$
$${n\choose m} \left[ {n\choose m} + \frac{n-m}{m+1} {n+1\choose m+1} \right] = (-1)^{n+m} \sum_{k=0}^{n-m} {n+k\choose m+k} (-1)^k {n-m\choose k} {m+k+1\choose m+1}$$
$$\frac{(2m)! (2n-2m)!}{m! (n-m)! n!} = (-1)^m \sum_{k=0}^n {2m\choose k} (-1)^k {2n-2m\choose n-k}$$
$$2^{n-m} {n-p\choose m-p} = (-1)^m \sum_{k=0}^n (-1)^k {x+k\choose m-p} {y-2k\choose n-m} {n-p\choose k-p}$$
$${xp-1\choose p} = (-1)^m \sum_{k=0}^n {xk+p\choose p} (-1)^k {p-1+k\choose m-1} {n+p\choose k+p}$$
$$(n-m)^p = \sum_{k=0}^n (n+k)^p {n+m\choose m+k} (-1)^k {m-1+k\choose k}$$
$${n\choose m} (-1)^{n-m} \left[ {m+1\choose p+1} \frac{2n-m+1}{m+1} - {m\choose p+1} \right] \\ = \sum_{k=0}^n {n\choose m+k} (-2)^k {m+k\choose p+k} {p+k+1\choose p+1}$$
$${2p-1\choose p} = (-1)^{n+m+p} \sum_{k=0}^n {n+m\choose m+k} (-1)^k {k+m-1\choose k+m-n} {k+m-p\choose p}$$
$${2m-1\choose p} = (-1)^{p+1} \sum_{k=0}^n {n+m\choose m+k} (-1)^k {k-m+p\choose p} {k+m-1\choose m}$$
$${x-p-1\choose m-p} = (-1)^{n+p+m} \sum_{k=0}^n {m-k\choose p-k} (-1)^k {x\choose k} {x-1-k\choose n-k}$$
$${x-p\choose p} = (-1)^{m+p} \sum_{k=0}^n {n+p\choose k+p} (-1)^k {x+k\choose p} {p+k-1\choose p+k-m}$$
$${\ell n + x-1 + p\choose p} = (-1)^{m+p} \sum_{k=0}^n {n-1+k\choose m} {2n\choose n+k} {\ell k - x\choose p} (-1)^k {n-1+k\choose k}$$
$${n\choose m+1} {m+1\choose p+1} = (-1)^n \sum_{k=0}^n {n\choose k} {k+1\choose p+1} {x+k\choose m-p} {m-n\choose k}$$
$${n-p\choose m-p} \ell^{m-p} = (-1)^{n+m+p} \sum_{k=0}^n (-1)^k {n+k\choose m+k} {n-p\choose k-p} {x-\ell k\choose m-p}$$
$$\ell^p {2p\choose p} = (-1)^m \sum_{k=0}^n (-1)^k {\ell k +x\choose p} {n-k+p\choose p} {2p\choose k-m+p}$$
$${x-p\choose m} = (-1)^n \sum_{k=0}^n {x\choose k} (-1)^k {x-1-k\choose n-k} {k-p\choose m}$$
$${n\choose m} \ell^m = (-1)^m \sum_{k=0}^n {n\choose k} {x-k\choose n-m} (-1)^k {\ell k + y\choose m}$$
$${x-\ell m \choose p} = (-1)^{n+m} \sum_{k=0}^n {\ell k + x\choose p} {n+m\choose m+k} (-1)^k {m+k-1\choose m+k-n}$$
$${m-1\choose p} = (-1)^p \sum_{k=0}^n {p+k\choose p} {n+k\choose m+k} {n+m\choose m+k} {k+m-1\choose k} (-1)^k$$
$${n\choose m} {m\choose p} = (-1)^{n+p} \sum_{k=0}^n {n\choose k} {k-m\choose n-m} {k+m-p\choose k} {n-k+p\choose p} (-1)^k$$
$$\frac{2^{4n}}{2n+1} {2n\choose n}^{-1} = \sum_{m=0}^n \frac{1}{2m+1} {2m\choose m} {2n-2m\choose n-m}$$
$$\frac{1}{q} {n\choose k} = \sum_{p=0}^k (-1)^p {q-1-n+k\choose p} {n+1\choose k-p} \frac{1}{p+1} {q+k\choose p+1}^{-1}$$
$${2n\choose n}^{-1} \sum_{k=1}^n \frac{2^k}{k} {2n-k\choose n-k} = H_{2n} - \frac{1}{2} H_n$$
$$\sum_{k=0}^n (-1)^{n-k} {n\choose k} k^{n+a} = (n+a)! \sum_{q=1}^a {n\choose q} [z^{a+q}] (\exp(z)-z-1)^q$$
$$\sum_{k=0}^n \frac{1}{ak+b} {2k\choose k} {2n-2k\choose n-k} = \frac{4^n}{b} \prod_{k=1}^n \frac{ak+b-a/2}{ak+b}$$
$$\sum_{q\ge 0} {n\choose q} {n-q\choose q} - \sum_{q\ge 0} {n\choose q+1} {n-q-1\choose q} = -\frac{1}{2} [v^{n+1}] \sqrt{\frac{1-3v}{1+v}}$$
$$\sum_{k=1}^n x_k \prod_{q=1, q\ne k}^n \frac{x_k+yx_q}{x_k-x_q} = \sum_{k=1}^n x_k$$
$$\sum_{q=0}^n \mathcal{K}_q(m_0;n) \mathcal{K}_q(m_1;n) = (-1)^{\Delta^-/2} \frac{\Delta^+!}{(\Delta^+/2)!} \frac{(2n-\Delta^+)!}{(n-\Delta^+/2)!} \frac{1}{n!}$$
$${m\choose k}^{-1} \frac{m}{k-1} = \sum_{q\ge 0} {m+q\choose k}^{-1}$$
$${-1/2\choose n+1} {-1/2\choose n-1} = \frac{1}{2^{4n}} \sum_{k=0}^n (-1)^k {2n\choose k} {4n-2k\choose 2n} {2n-2k\choose n-k+1} 2^{2k}$$
$$\sum_{k=1}^{2n-1} (-1)^{k-1} k {2n\choose k}^{-1} = \frac{n}{n+1}$$
$$\begin{align*} & v_j = \sum_{m=j}^k (-1)^{k-m} {k+m\choose 2m} {m\choose j}\\ & -\frac{1}{2} j(j-1) v_{j-1} + j(j-1)v_j + \frac{3}{2} j(j+1) v_{j+1} = - \frac{1}{2} k(k+1) v_{j-1} \\ \end{align*}$$
$$\delta_{m,j} (1+P)^n = \sum_{r=0}^n \sum_{a=0}^m \sum_{b=0}^r {n-m\choose r-m+a} {m\choose a} {n-r\choose j-r+b} {r\choose b} (-1)^{a+b+j-r} P^{a+b}$$
$$Q(n;a,b) = \sum_{p=0}^a \sum_{q=0}^b {p+q\choose p} {n-p-q\choose a-p} {n-p-q\choose b-q}$$ $$Q(n; a,b) = {n\choose a} {n\choose b} + Q(n-1; a-1,b) + Q(n-1; a,b-1)$$
$$\sum_{k=0}^n (-1)^k {n\choose k} {n+k\choose k} {k\choose j} = (-1)^n {n\choose j} {n+j\choose j}$$
$$\sum_{k=0}^r {r-k\choose m} {s+k\choose n} = {s+r+1\choose n+m+1}$$
$$\sum_{q=0}^{2m} (-1)^q {p-1+q\choose q} {2m+2p+q-1\choose 2m-q} 2^q = (-1)^m {p-1+m\choose m}$$
$$\sum_{k=0}^{\lfloor m/2\rfloor} {n\choose k} (-1)^k {m-2k+n-1\choose n-1} = {n\choose m}$$
$$\sum_{k=0}^n k{2n\choose n+k} = \frac{1}{2} n {2n\choose n}$$
$$\sum_{k=0}^n 2^{-k} {n+k\choose k} = 2^n$$
$$\sum_{m=0}^n {n\choose m} \sum_{k=0}^{n+1} \frac{1}{a+bk+1} {a+bk\choose m} {k-n-1\choose k} = {n\choose m}$$
$$\sum_{k=0}^n {2n+1\choose 2k+1} {m+k\choose 2n} = {2m\choose 2n}$$
$$(-1)^p \sum_{q=r}^p {p\choose q} {q\choose r} (-1)^q q^{p-r} = \frac{p!}{r!}$$
$$\sum_{k=0}^n {n\choose k} 2^{n-k} {k\choose \lfloor k/2\rfloor} = {2n+1\choose n}$$
Verify that $f_1(n,k) = f_2(n,k)$ where $$f_1(n,k) = \sum_{v=0}^n \frac{(2k+2v)!}{(k+v)! \times v! \times (2k+v)!\times (n-v)!} 2^{-v}$$ and $$f_2(n,k) = \sum_{m=0}^{\lfloor n/2\rfloor} \frac{1}{(k+m)!\times m!\times (n-2m)!} 2^{n-4m}$$
If $$T(n) = \sum_{k=1}^{\lfloor n/2\rfloor} (-1)^{k+1} {n-k\choose k} T(n-k)$$ for $n\ge 2$ then $$T_n = C_{n-1} = \frac{1}{n} {2n-2\choose n-1}$$
$$\sum_{k=0}^n \sum_{l=0}^n (-1)^{k+l} {n+k-l\choose n} {k+l\choose n} {n\choose k} {n\choose l} = (-1)^m {2m\choose m}$$
$$\sum_{k=0}^{2m+1} {n\choose k} 2^k {n-k\choose \lfloor (2m+1-k)/2\rfloor} = {2n+1\choose 2m+1}$$
$$\sum_{k=m}^n (-1)^{n+k} \frac{2k+1\choose n+k+1} {n\choose k} {n+k\choose k}^{-1} {k\choose m} {k+m\choose m} = \delta_{mn}$$
$$\sum_{k=0}^n {n\choose k}^3 = \sum_{k=\lceil n/2\rceil}^n {n\choose k}^2 {2k\choose n}$$
$$ \sum_s {n+s\choose k+l} {k\choose s} {l\choose s} = {n\choose k} {n\choose l}$$
$$\sum_{-\lfloor n/3\rfloor}^{\lfloor n/3\rfloor} (-1)^k {2n\choose n+3k} = 2\times 3^{n-1}$$
$$\sum_{k=0}^\rho {2x+1\choose 2k} {x-k\choose \rho-k} = \frac{2x+1}{2\rho+1} {x+\rho\choose 2\rho} 2^{2\rho}$$
$$\sum_{k=0}^{\min(a,b)} {x+y+k\choose k} {x\choose b-k} {y\choose a-k} = {x+a\choose b} {y+b\choose a}$$
$$\sum_{q=0}^n {n\choose 2q} {n-2q\choose p-q} 2^{2q} = {2n\choose 2p}$$
$$\sum_{k=0}^{n-1} \left(\sum_{q=0}^k {n\choose q}\right) \left(\sum_{q=k+1}^n {n\choose q}\right) = \frac{1}{2} n {2n\choose n}$$
$$(1-x)^{2k+1} \sum_{n\ge 0} {n+k-1\choose k} {n+k\choose k} x^n = \sum_{j\ge 0} {k-1\choose j-1} {k+1\choose j} x^j$$
$$\sum_{k=0}^{\lfloor n/3\rfloor} (-1)^k {n+1\choose k} {2n-3k\choose n} = \sum_{k=\lfloor n/2\rfloor}^n {n+1\choose k} {k\choose n-k}$$
$$\sum_{k=0}^{\lfloor (m+n)/2 \rfloor} {n\choose k} (-1)^k {m+n-2k\choose n-1} = {n\choose m+1}$$
$$\sum_{k=0}^n {n\choose k} {n+k\choose k} F_{k+1} = \sum_{k=0}^n {n\choose k} {n+k\choose k} (-1)^{n-k} F_{2k+1}$$
$$\sum_{p,q\ge 0} {n-p\choose q} {n-q\choose p} = F_{2n+2}$$
$$\sum_{r=0}^n {r+n-1\choose n-1} {3n-r\choose n} = \frac{1}{2} \left( {4n\choose 2n} + {2n\choose n}^2\right)$$
$$[x^\mu y^\nu] \frac{1}{2} (1-x-y-\sqrt{1-2x-2y-2xy+x^2+y^2}) = \frac{1}{\mu+\nu-1} {\mu+\nu-1\choose \nu} {\mu+\nu-1\choose \mu}$$
$$\sum_{r=1}^{n+1} \frac{1}{r+1} {2r\choose r} {m+n-2r\choose n+1-r} = {m+n\choose n}$$
$$\sum_{k\ge 0} {n+k\choose m+2k} {2k\choose k} \frac{(-1)^k}{k+1} = {n-1\choose m-1}$$
$$\sum_k {tk+r\choose k} {tn-tk+s\choose n-k} \frac{r}{tk+r} = {tn+r+s\choose n}$$
$$\sum_{q=0}^{n-2} \sum_{k=1}^n {k+q\choose k} {2n-q-k-1\choose n-k+1} = n \times {2n\choose n+2}$$
$$\sum_{q=0}^l {q+k\choose k} {l-q\choose k} = {l+k+1\choose 2k+1}$$
$$\sum_{k=0}^n k {m+k\choose m+1} = \frac{nm+2n+1}{m+3} {n+m+1\choose m+2}$$
$$\sum_{k=1}^n 2^{n-k} {k\choose\lfloor k/2\rfloor} = -2^{n+1} + (2n+2+(n\mod 2)) {n\choose \lfloor n/2 \rfloor}$$
$$\sum_{q=0}^{m-1} {n-1+q\choose q} x^n (1-x)^q + \sum_{q=0}^{n-1} {m-1+q\choose q} x^q (1-x)^m = 1$$
$$\sum_{k=0}^n (-1)^k {p+q+1\choose k} {p+n-k\choose n-k} {q+n-k\choose n-k} = {p\choose n} {q\choose n}$$
$$\sum_{k=0}^n {n\choose k} {pn-n\choose k} {pn+k\choose k} = {pn\choose n}^2$$
$$\sum_{r=0}^{\min(m,n,p)} {m\choose r} {n\choose r} {p+m+n-r\choose m+n} = {p+m\choose m} {p+n\choose n}$$
$$\sum_{p=0}^l \sum_{q=0}^p (-1)^q {m-p\choose m-l} {n\choose q} {m-n\choose p-q} = 2^l {m-n\choose l}$$
$$\sum_{q=0}^n (n-2q)^k {n\choose 2q+1} = \sum_{q=0}^{k+1} {n\choose q} 2^{n-q-1}\times q!\times {k+1\brace q+1} - \frac{1}{2}\times n!\times {k+1\brace n+1}$$
$$\sum_{q=0}^n q {2n\choose n+q} {m+q-1\choose 2m-1} = m \times 4^{n-m} \times {n\choose m}$$
With $$b_k^n = \sum_{l=1}^k (-1)^{k-l} l^n {n+1\choose k-l}$$ we show that $b_k^n = b_{n+1-k}^n$ where $0\le k\le n+1.$
We have a random variable $X$ where $$\mathrm{P}[X=k] = {N\choose 2n+1}^{-1} {N-k\choose n} {k-1\choose n}$$ for $k=n+1,\ldots, N-n$ and zero otherwise. We show that these probabilities sum to one and compute the mean and the variance.
The Narayana number is $$N(n,m) = \frac{1}{n} {n\choose m} {n\choose m-1}$$ and we introduce $$A(n,k,l) = \sum_{i_0+i_1+\cdots+i_k=n \atop j_0+j_1+\cdots+j_k=l} \prod_{t=0}^k N(i_t, j_t+1)$$ where the compositions for $n$ are regular and the ones for $l$ are weak. We seek to verify that $$A(n,k,l) = \frac{k+1}{n} {n\choose l} {n\choose l+k+1}.$$
Same as previous, generalized.
$$ (-1)^m \frac{(n+m)!}{(n-m)!} \left(\frac{d}{dz}\right)^{n-m} (1-z^2)^n = (1-z^2)^m \left(\frac{d}{dz}\right)^{n+m} (1-z^2)^n$$
$$r^k (r+n)! = \sum_{m=0}^k (r+n+m)! (-1)^{k+m} \sum_{p=0}^{k-m} {k\choose p} {k+1-p\brace m+1} n^p$$
$$\sum_{k=0}^n \sum_{q=0}^k (-1)^q {k\choose q} {n-1-qm\choose k-1} = [z^n] \frac{1}{1-w-w^2-\cdots-w^m}$$
$${n\brace m} = \sum_{k=m}^n {k\choose m} \sum_{q=0}^k (-1)^{n} {n+q-m\brace k} (-1)^{k} {k\brack q} {n\choose n+q-m}$$
$$\sum_{k=0}^m \frac{q}{pk+q} {pk+q\choose k} {pm-pk\choose m-k} = {mp+q\choose m}$$
$$\sum_{k=q}^{n-1} \frac{q}{k} {2n-2k-2\choose n-k-1} {2k-q-1\choose k-1} = {2n-q-2\choose n-1}$$
$$\sum_{k=0}^n \frac{x}{x+kz} {x+kz\choose k} \frac{y}{y+(n-k)z} {y+(n-k)z\choose n-k} = \frac{x+y\choose x+y+nz} {x+y+nz\choose n} $$
We have $$P_n(x+y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$$ where $$P_n(x) = x(x+an)^{n-1}$$ is an Abel polynomial.
$$\sum_{m=0}^n (-1)^m {2n+2m\choose n+m} {n+m\choose n-m} = (-1)^n 2^{2n} $$
$$\sum_{k=0 \atop k\,\mathrm{odd}}^m {2n\choose 2n-k} {2m-2n\choose m-k} = \frac{1}{2} {2m\choose m} + (-1)^{m 1} 2^{2m-1} {n-1/2\choose m}$$
$$\sum_{j=0}^n (-1)^{n+j} {n\brack j} {m+j\brace k} = \frac{n!}{k!} \sum_{q=0}^k {k\choose q} {q\choose n} (-1)^{k-q} q^m$$
$$[z^k] \frac{1}{\sqrt{1-4z}} \left(\frac{1-\sqrt{1-4z}}{2z}\right)^n = {n+2k\choose k}$$
$$\sum_{k=1}^{m-1} \sin^{2q}(k\pi/m) = m\frac{1}{2^{2q}} {2q\choose q} + m \frac{1}{2^{2q-1}} \sum_{l=1}^{\lfloor q/m \rfloor} {2q\choose q-lm} (-1)^{lm}$$
The binomial coefficient sum $$\sum_{j=-\lfloor n/p\rfloor}^{\lfloor n/p\rfloor} (-1)^j {2n\choose n-pj}$$ is given by $$[z^n] \left(\sum_{q=0}^{\lfloor p/2\rfloor} \frac{p}{p-q} {p-q\choose q} (-1)^q z^q\right)^{-1} \sum_{q=0}^{\lfloor (p-1)/2\rfloor} {p-1-q\choose q} (-1)^q z^q$$
$$\sum_{k=0}^n {2k+1\choose k} {m-(2k+1)\choose n-k} = \sum_{k=0}^n {m+1\choose k}$$
$$\sum_{m\ge 0} m^{m+n} \frac{z^m}{m!} = \frac{1}{(1-T(z))^{2n+1}} \sum_{k=0}^n \left\langle\!\!\left\langle {n\atop k} \right\rangle\!\!\right\rangle T(z)^k$$
$$\sum_{n\ge 0} {n+r\brace n} z^n = \frac{1}{(1-z)^{2r+1}} \sum_{k=0}^r \left\langle\!\!\left\langle {r\atop k} \right\rangle\!\!\right\rangle z^k$$
A Stirling cycle number generating function and Eulerian numbers of the second order (II)$$\sum_{n\ge 0} {n+r+1\brack n+1} z^{n} = \frac{1}{(1-z)^{2r+1}} \sum_{k=0}^r \left\langle\!\!\left\langle {r\atop r-k} \right\rangle\!\!\right\rangle z^k$$
$${q-j+k\choose k} + (-1)^k {j\choose k} = \sum_{\ell=0}^{\lfloor k/2\rfloor} {q/2+\ell\choose 2\ell} \left({q/2-j+k-\ell\choose k-2\ell} + {q/2-j+k-\ell-1\choose k-2\ell} \right)$$
$$\sum_{j=0}^k {2j\choose j+q} {2k-2j\choose k-j} = 4^k - \sum_{j=k-q+1}^k {2k+1\choose j}$$
$$\sum_{k=0}^n {2n+1\choose 2k+1} {m+k\choose 2n} = {2m\choose 2n}$$
$$\sum_{q=0}^n {q\choose n-q} (-1)^{n-q} {2q+1\choose q+1} = 2^{n+1}-1$$
$$\sum_{k=0}^n {n+k\brace k} {2n\choose n+k} \frac{(-1)^k}{k+1} = B_n {2n\choose n} \frac{1}{n+1}$$
With $f(z)$ the OGF and $g(w)$ the EGF of a sequence we have $$g(w) = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{f(z)}{z} \exp(w/z) \; dz.$$
$$\sum_{q=0}^r (-1)^{q+r} {r\brack q} {n+q-1\brace k} = \frac{(-1)^{k-r}}{(k-r)!} \sum_{p=0}^{k-r} {k-r\choose p} (-1)^p (p+r)^{n-1} $$
$$\sum_{k=0}^n {n\choose k} {k/2\choose m} = \frac{n}{m} {n-m-1\choose m-1} 2^{n-2m}$$
$$[z^n] \log^2 \frac{2}{1+\sqrt{1-4z}} = {2n\choose n} (H_{2n-1}-H_n) \frac{1}{n}$$
$$\sum_{k=0}^n {n+1\brack k+1} B_k = \frac{n!}{n+1}$$
$$\sum_{q=0}^K (-1)^q {2n+1-q\choose q} {2n-2q\choose K-q} = \frac{1}{2} (1+(-1)^K)$$
$$\sum_{k=0}^n (-1)^k {n+1\choose k+1} \left[ \frac{1}{f^k(x)} \right]^{(n)} f^{k+1}(x) = [f(x)]^{(n)}$$
$$2^n {2r\choose r} {2r+n\choose r} {r+n\choose n/2} = \sum_{k=0}^n (-1)^k {k+r\choose r} {2k+2r\choose k+r} {n-k+r\choose r} {2n-2k+2r\choose n-k+r}$$
$$2^{n-m} 3^m = (-1)^n \sum_{k=0}^n (-1)^k {m+3k\choose k} {n+2k\choose n-k}$$