![]() |
KerMor
0.9
Model order reduction for nonlinear dynamical systems and nonlinear approximation
|
Norm: Static class for commonly used norms on sets of vectors. More...
Norm: Static class for commonly used norms on sets of vectors.
All norm functions perform their respective computations on each column of a given matrix!
This class is part of the framework
Homepage
http://www.morepas.org/software/index.htmlDocumentation
http://www.morepas.org/software/kermor/index.htmlLicense
KerMor license conditions Static Public Member Functions | |
static function rowvec < double > n = | L2 (matrix< double > x) |
Returns the discrete \(L^2\) norm for each column vector in x. More... | |
static function vecs = | normalizeL2 (vecs) |
static function rowvec < double > n = | L1 (matrix< double > x) |
Returns the discrete \(L^1\) norm for each column vector in x. More... | |
static function rowvec < double > n = | Linf (matrix< double > x) |
Returns the discrete \(L^\infty\) norm for each column vector in x. More... | |
static function rowvec < double > n = | LG (matrix< double > x, G) |
Returns the \(\vG\)-induced norm for each column vector in \(\vX\). More... | |
Returns the discrete \(L^1\) norm for each column vector in x.
x | A matrix \(\vX\) containing column vectors \(\vx_i\) |
n | The \(L^1\) norm \(\norm{\vx}{1} = \sum\limits_{i=1}^d|x_i|\) for each column vector \(\vx\in\R^d\) in \(\vX\) |
Definition at line 59 of file Norm.m.
Referenced by data.ApproxTrainData.getErrorsFor().
Returns the discrete \(L^2\) norm for each column vector in x.
x | A matrix \(\vX\) containing column vectors \(\vx_i\) |
n | The \(L^2\) norm \(\norm{\vx}{2} = \sqrt{\sum\limits_{i=1}^dx_i^2}\) for each column vector \(\vx\in\R^d\) in \(\vX\) |
Definition at line 39 of file Norm.m.
Referenced by ModelAnalyzer.analyzeError(), testing.DEIM.compareDEIM_Full_Jacobian(), ModelAnalyzer.compareRedFull(), testing.DEIM.computeDEIMErrors(), testing.DEIM.effectivityAnalysis(), models.muscle.AMuscleConfig.geta0(), testing.DEIM.getApproxErrorFullRed(), ModelAnalyzer.getATDError(), testing.DEIM.getDEIMErrorsAtXForParams_plots(), testing.DEIM.getDEIMReducedModelErrors(), data.ApproxTrainData.getErrorsFor(), ModelAnalyzer.getRedErrForParamSamples(), ModelAnalyzer.getTrajApproxError(), testing.DEIM.getTrajApproxErrorDEIMEstimates(), Utils.getTube(), models.motorunit.experiments.InitialConditions(), general.interpolation.KernelInterpol.interpolate(), demos.VKOGA.IterationPlots(), testing.Speed.KernelExpCustomBaseEval(), DEIMEstimatorAnalyzer>pushbutton5_Callback(), DEIMEstimatorAnalyzer>rePlot(), normalizeL2(), ParamSweep(), error.DefaultEstimator.postProcess(), approx.BaseApprox.test_ApproxProjections(), testing.DEIM.test_DEIMNoSpatialDependence(), sampling.RandomSampler.test_DomainSampling(), data.FileMatrix.test_Times_MTimes(), Utils.test_Tube(), approx.TPWLApprox.test_TWPLApprox(), and models.muscle.System.test_UnassembledEvaluation().
Returns the \(\vG\)-induced norm for each column vector in \(\vX\).
x | A matrix \(\vX\) containing column vectors \(\vx_i\) |
G | A positive definite matrix \(\vG\) |
n | The G-norm \(\noG{\vx} = \sqrt{\vx^T\vG\vx}\) for each column vector \(\vx\) in \(\vX\) |
Definition at line 87 of file Norm.m.
Referenced by error.DEIMEstimator.getAlpha(), error.initial.AffineParametric.getE0(), error.DefaultEstimator.postProcess(), and error.initial.Constant.prepareForReducedModel().
Returns the discrete \(L^\infty\) norm for each column vector in x.
x | A matrix \(\vX\) containing column vectors \(\vx_i\) |
n | The \(L^\infty\) norm \(\norm{\vx}{\infty} = \max\limits_{i=1}^d|x_i|\) for each column vector \(\vx\in\R^d\) in \(\vX\) |
Definition at line 73 of file Norm.m.
Referenced by ModelAnalyzer.compareRedFull(), ModelAnalyzer.getATDError(), ModelAnalyzer.getRedErrForParamSamples(), ModelAnalyzer.getTrajApproxError(), and models.motorunit.experiments.InitialConditions().
|
static |
Definition at line 53 of file Norm.m.
Referenced by fem.BaseFEM.init().