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Abstract

We construct set-valued right Kan extensions via a relative Yoneda Lemma.

A remark of the referee
As the referee pointed out, (2.1) ‘can essentially be found in much greater generality’ in

[Ke 82] G. M. KELLY, Basic concepts of enriched category theory, LMS Lecture Notes 64,
Cambridge University Press, 1982.

He continued to explain that to this end, one reformulates the formula [Ke 82, 4.6 (ii), p.
113], given in terms of weighted limits, by means of [Ke 82, 3.10, p. 99] and [Ke 82, 2.2,
p. 58].

Therefore, we withdraw this note as a preprint. Since (2.1, 3.1) might be of some use for
the working mathematician, we leave it accessible as a manuscript. When using (2.1), the
reader is asked to cite [Ke 82], when using (3.1), he is asked to cite [K 58].

0 Introduction

0.1 A relative Yoneda Lemma

The category of set-valued presheaves on a category C' shall be denoted by C”*. The

Yoneda embedding, sending x to «—,x), shall be denoted by C 2% ¢, The presheaf
category construction being contravariantly functorial, we obtain the
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Proposition (2.1, the relative Yoneda Lemma). Given a functor C N D, we have

£ Hyp o f oyen.

There is a set theoretical caveat. In particular, this formula is correct only after some
additional comments, see (2.1).

The right hand side is also known as the set-valued right Kan extension functor along
o L. D°. There are several formulas for right Kan extensions in the literature, for
instance using ends [ML 71, X.4], all of them necessarily yielding the same result up
to natural equivalence, by uniqueness of the adjoint. In particular, (2.1) is merely still
another such a formula.

Letting f = 1¢, we recover the (absolute) Yoneda Lemma, thus giving a solution to the
exercise [ML 71, X.7, ex. 2]. Concerning its origin, MAC LANE recalled the following
incident, taking place in around 1954/55 [ML 98].

MAcC LANE, then visiting Paris, was anxious to learn from YONEDA, and
commenced an interview with YONEDA in a café at the Gare du Nord. The
interview was continued on YONEDA’s train until its departure. In its course,
MAcC LANE learned about the lemma and subsequently baptized it.

0.2 A relative co-Yoneda Lemma

Suppose given a functor C *. Z. KAN constructed in [K 58, Th. 14.1] the left adjoint
to the functor from Z to C” that sends z € Z to fk(—),z) € C*. Now given a functor

ot D, we can specialize to Z = D" and to a functor k that sends ¢ € C' to p(—, fc) €

D", thus obtaining a left adjoint to C” Lopn (KAN’s notation is as follows. Identify
Z=7,V =0, M =C". The functor HY(Zy, Z) maps from Zy, Z to MY, i.e. from
(the category of covariant functors from V to Z) x Z to the category of presheaves on V.

Given V —*» Z and an object z € Z, the pair (k, z) is mapped to z—,z) o k.) We shall
rephrase this special case of KAN’s formula as follows, in order to be able to compare the
left and the right adjoint of f.

Let CV := (C°)". The co-Yoneda embedding, sending x to x,—), shall be denoted by
C 2% V. There is a tensor product C" x CV — (Set), sending v x v’ to v ®¢ v'. The

according univalent functor that sends v to v ®¢ — shall be denoted by C" =5 CVV.

Proposition ([K 58], cf. 3.1, the relative co-Yoneda Lemma). Given a functor C N D,
we have

ybv o fWozeH

Again, there is a set-theoretical caveat.
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0.4 Notation

a b ab
(i) We write composition of morphisms on the right, — — = — . However, we write compo-

" ! g gof
sition of functors on the left, — — = —.

(ii) Given a functor C' — D, the opposite functor between the opposite categories is denoted by

co L pe.
f g ey B
(iii) Given functors C 3 D —3 E and natural transformations f — f’ and g — ¢’, we denote
f g

by go f ﬁ—of»g’ o f the natural transformation defined by (8o f)e = B(fc) for ¢ € C and by
gof = g o f' the natural transformation defined by (g o a)c = g(ac) for ¢ € C. More generally,

Boa Bof g'oa goo Bof’
(gof—gof)i=(gof—>g of —gof)=(gof—gof —=g'of).

1 Universes

Since we will iterate the construction ‘forming the presheaf category over a category’ once,
we shall work in the setting of universes, which enables us to do such ‘large’ constructions
when keeping track of the universe needed. Therefore, we start with a preliminary section

to recall this well-known technique from [SGA 4 I, App.] and to fix some notation.

Definition 1.1 (N. BoUuRBAKI, [SGA 4 I, App., 1, Déf. 1])
A universe is a set U that satisfies the conditions (UI-4).

(U1) z € y €U implies x € L.
(U2) z,y € Y implies {x,y} € L.
(U3) x € s implies P(x) € 4.

(U4) Given I € M and a map I — 3, i+—x;, the union U;c; x; is in L.

Here P(x) denotes the power set of x.

Remark 1.2

(i) = € Y implies {x} = {z,z} € L



(ii) x C y € Y implies z € 4. In particular, if y surjects onto some set z, then z is in
bijection to an element of 4l.

(iii) Let (z,y) := {z,{z,y}}. The element x is the unique element of
{a € (z,y) | for all b€ (z,y)\{a} we have a € b},

since {z,y} € x would contradict vVON NEUMANN’s axiom, asserting that any
nonempty set S contains an element that has an empty intersection with S. Now
{z,y} is the unique element of (z,y)\{x}, and y is the unique element of {z, y}\{x}.

(iv) X e fand YV € Y implies X x Y := Uex Uyerv{(z,9)} € U

(v) Given I € U and a map I — U, i +— x;, the disjoint union [[;c; x; := User Xi X {i}
is in .

(vi) Given I € Y and a map [ —» i, i+ x;, the product [[;c; z; C P(ILc; x;) is in L.

Assume given universes U, U and 20 such that

0 #£UeVe.

This may be achieved by means of BOURBAKI's axiom (A.6) in [SGA 4 I, App., 4], which
says that any set is element of some universe. Note that I C U C 2.

For set theoretical purposes the following definition is convenient.

Definition 1.3 (cf. [M 65, 1.2]) A small category C is a tuple (M, K C M x M x
M), M being a set, subject to the conditions (i-iii). We write M =: Mor C, the set of
morphisms of C'. K is the composition law of C.

(i) For every (a,b) € M x M there exists at most one ¢ € M such that (a,b,c) € K.
In this case, we write ¢ = ab and say that ‘(the composite) ab exists’.

Let

ObC:={ae M | forallbd for which ba exists, we have ba = b, and

for all ¢ for which ac exists, we have ac = c.} C MorC

be the set of objects of C. If a € ObC', we also write a =: 1,.

(ii) For every a € M there exists a unique source element s(a) € ObC such that s(a)a
ezists, and a unique target element t(a) € Ob C such that at(a) exists.

(11i) For a,b € M such that the composite ab exists, the composites t(a)b and as(b) exist.

(iv) Given a,b,c € M such that ab and be exist. Then (ab)c and a(bc) exist and equal
each other.



The set of morphisms with start x and target y shall be denoted by x,y).

Suppose given a,b € M. Note that if ab exists, we have s(ab) = s(a) and t(ab) = t(b).
Note that s(s(a)) = s(a), t(t(a)) = t(a). Note that ab exists iff t(a) = s(b).

Definition 1.4 A set X s said to be U-small if there exists a bijection from X to an
element of . The category of U-small sets is denoted by (Sety). Note that by a skeleton
argument, (Sety) is equivalent to the category of sets contained as elements in i, denoted
by (Setf).

A small category C' is said to be U-small if Mor C' is U-small. A category C is said to
be essentially U-small if it is equivalent to a U-small category, or, equivalently, if it has a
U-small skeleton.

Remark 1.5 The category (Sety) is U-small since  [] (set0)(,y) Is an element of V.
(z,y)etx il
Hence the category (Sety) is essentially L-small.

Given categories C' and D, we denote the category of functors mapping from C' to D by
LC, DI.

Lemma 1.6 IfC and D are 4-small, then LC, D1 is -small. If C and D are essentially
-small, then LC, D1 is essentially U-small.

Using induced equivalences, it suffices to prove the first assertion. But then
Ob[C, D1 C P(MorC x Mor D)

is U-small. Moreover, given f,g € [LC, D1, the set

wepif,9) € ] olfz, gz)

zcObC

is Y-small. Hence Mor [LC, D1 is i-small.

Lemma 1.7 Given an essentially -small category C, the category
CM = [[C°, (Sety)

of (Sety)-valued presheaves over C' is essentially U-small. Sometimes we write C" = C"™
if the universe is unambiguous. Likewise, the category

CY4 =[O, (Setg)]

of (Sety)-valued copresheaves over C' is essentially B-small. Sometimes we write CV =

CVe.
This follows from (1.5, 1.6).



Definition 1.8 Given an essentially 1-small category C', we have the Yoneda embedding

c L O
r — C(_v l’)
and the co-Yoneda embedding

/
c Yo, OV

For a functor C N D, we denote

C /N ﬁ D/ \u

(wo fo w0 o) (u-leud),

f A
Given functors C —% D and a natural transformation f i»g, we denote by f" &g/\ the
g

natural transformation that is given at v € D™ by the morphism uo f° fo—aouog" in Oy,

that evaluated at ¢ € C° in turn yields ufc~— uge.

Analogously for CV¢ L pve and v gV,

2 The right Kan extension

Proposition 2.1 (the relative Yoneda Lemma) Given essentially $-small categories

C and D, and a functor C Lo D. Then the right adjoint C™ —2» DM of C1u L pras
given by

f/\/\
C N DMuNg

A

Yon DAQ]

C/\u ¥ D/\u

Keeping the name of the functor after restricting the image to D™, we write shorthand

J* Aypo [ oyen.

The unit of this adjunction

1prn —~po [/




at uw € D™, i.e.
Eu

u—= cn(f"oyp(=),uo f),
applied to d € D, 1is given by

eud

ud — ol p(f(=),d),;uo [
r — (v)eud,
where the natural transformation (x)eud sends at ¢ € C

(z)eud

o(fe,d) — ufc
a — (a) [((x)sud)c} = (x)(ua®).

The counit of this adjunction

fhop—1cn

atv e Ch, e
o o n
CA(f/\’ °Yp©o fO(_)7 U) -,
applied to c € C, is given by

nuc

e plfo(=), fe),v)  — we
& — (nue=(1y)éc

Since the set

C/\( D(f(_)vd)’v) - H (Setu)( D(fc7 d)avc)

ceObC

is tl-small, @ exists as the factorization of y o f*" o ycs over the inclusion D C D,

Various compatibilities need to be verified to ensure the well-definedness of € and 1 (*).

1 Given u € D%, we need to see that u = @ o f*(u) is a natural transformation. Suppose given

d' —+ d in D. We have to show that for any = € ud
() (€ud) ((gﬂ o fA)uao) = () (ua") <5ud’>

is an equality of natural transformations from p(f°(~),d’) to uo f°. At ¢ € C, the element fc——= d’ is
mapped by the left hand side to (z)(u(a’a)?), and by the right hand side to (z(ua®))(ua’®).

£
We need to see that 1pr, — o f" is a natural transformation. Suppose given u —Z 4 in DM, We
have to show that for any d € D and any x € ud

(x) (sd) (5u’d) = (z) (sud) ((gp o fA(s))d>

is an equality of natural transformations from p(f°(—),d) to u’ o f. At c € C, the element fc e dis
mapped by the left hand side to (z)(sd)(u’a®), and by the right hand side to (x)(ua®)(s(fc)).



We have to show that (f" oe)(no f*) = 1pr. Suppose given u € D", ¢ € C and
x € (f u)e =u(fc). We obtain
(@)((f* o e)uc) ((no fuc) = (x)(cu(fe))(n(uo f)c)
= (1) K(m) eu(fe) ) }
) (ulf,)
= .
We have to show that (¢ o ¢)(p on) = 1,. Suppose given v € C™ and d € D. Note

that pv = ca(f"? oy (—),v) and therefore pvd = ca( p(f°(—),d),v). The application
((5 o gp)vd) ((gp o n)vd) writes

A ol fo(=), d), vf 22 e (=), d), (20 0y o (=), )) —= on( Dl f7(=), d),v)
An element £ € puvd, i.e. p(f°(—),d) N v, is thus mapped to the composite

o §)e(pv)d o o o v
Df7(=),d) “EEE (0 0y f(=),v) T,
Now suppose given ¢ € C' and fc—a> d. We have

ol fe,d) ((©)=(pv)d)e CA(D(fO(_)7fC)>U) " e
@ ——— (Opv)a’)
= () (o f(=),a),0)
= olf(=),a)¢ — (140 lfe, a)(€e)
= (a)(o),

whence §<(6 o gp)vd) (((p o n)vd) =¢.

Remark 2.2 (the absolute Yoneda Lemma) In case f = 1¢, we obtain 1 4 yjoycn,
which by uniqueness of the right adjoint yields the comparison isomorphism

C/\<C(—,C),U) L:ji ve

§ — (10)507

. no . . b
Given v € C# we need to see that f"op(v) — v is a natural transformation. Suppose given ¢/ — ¢

in C. We have to show that for any £ € (f" o ¢(v))c = ca( p(f°(—), fc),v) we have

(2) (mve) (v6°) = (@) (£ 0 () (e ).

The left hand side yields (1y.)(£c)(vb®), the right hand side yields (fb)éc’.

n . . . t .
We need to see that f” o — 1oy is a natural transformation. Suppose given v — v’ in C %, We

have to show that for any ¢ € C and any € € (f" o p(v))c = cn( p(f°(—), fc),v) we have

(&) (ve) (te) = © (" o et)e) (m'e).
The left hand side yields (17.)(£c)(tc). The right hand side yields (17.)((£t)c).



at v € C™ and ¢ € C, with inverse given by cvc.

Corollary 2.3 If f is full, then the counit n of the adjunction f* = yp o f* oyen is a
monomorphism. If f is full and faithful, then n is an isomorphism.

3 The left Kan extension

For sake of comparison to (2.1), we rephrase the pertinent case of KAN’s formula in our

setting.

Let C be a U-small category. Let v € C™, let w € CV4. We define the set v ®c w as the
quotient of the disjoint union

VXoW = HUCXUJG
ceC

modulo the equivalence relation generated by the following relation ~¢. The equivalence
class of (p,q) € ve X we, ¢ € C, shall be denoted by p ® q.

Given (p,q) € ve x we, (p',q') € vd x wd, we say that (p,q) ~¢ (p',¢’) if there exists a
morphism ¢ — ¢ such that
(p)va® = p

Qua =

Thus the quotient map v X w —“+ v ®c w has the following universal property. Given a

map v X¢ w '+ X such that for any morphism e, any p' € vd and any ¢ € we we
have

((P")va®, V" = (¢, (Qwa)V/,

there exists a unique map v ®¢ w — X such that v/ = vi/'.

In particular, given morphisms v et and w — w' , we obtain a map m ®¢n that maps
an element represented by (p, q) € ve X we, ¢ € C, as follows.

mcn
v Qo w — v Qe w

p ® g — (pmec @ (gnc

Thus the tensor product defines a functor C x Vs —=2¢= . (Sety). We denote the
univalent tensor product functor by

O\ e, CVuVy
vo— U Qc —.
Proposition 3.1 (the relative co-Yoneda Lemma, KAN [K 58, Th. 14.1]) Given -

small categories C' and D, and a functor c-LD. The left adjoint C™ . DM of
o L pra g given by
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For short,

v o oz A £

The unit of this adjunction

10/\—€>on¢

at v e Ch, i.e.
v—-v®c [ oypo f(-),
applied to c € C, is given by

Evc

ve — v®c olfe, f(=))

r — @l .

The counit of this adjunction

Yo fr—Le1pn

at uw € D", i.e.
wo f*®c ¥ oyp(—) —~u,
applied to d € D, is given by

nud

uo f° ®c pld, f(=)) — wud
P ® q —  (p)ug’,

where p @ q is represented by (p,q) € ufc x p(d, fe) for some ¢ € C.

Various compatibilities have to be verified to ensure the well-definedness of ¢ and 7 (?).

EV
2 Given v € C”, we need to see that v — f o 4(v) is a natural transformation. Suppose given

b
¢ — ¢. We have to show that for any = € vc

(z) (wc) ((fv o w(v))bo> = (x) (vbo> (EUC').

The left hand side yields « ® fb. The right hand side yields z(vb®) ® 1.

€ t
We need to see that 1cn — f” 0% is a natural transformation. Suppose given v — v/ in C”*. For

any ¢ € C' and any x € vc we have

(x) (tc) (sv’c) = () (evc) (tc ® p(fe, f(—))) = (z)tc ® 1¢e.

Given u € D" and d € D, we need to see that nud is a well-defined map. Suppose given c,c¢’ € C,
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We have to show that (co f*)(f"on) = 1¢1. Suppose given v € D", ¢ € C'and x € (f"u)c.
We obtain

() (e(uo f2)e) (nu(fe))
(x @ 1z) (nu(fe))

= (z)ulf,.

(at)((e o fA)uc) ((fA o n)uc) =

= X.

We have to show that (¢ oe)(no ) = 1,. Suppose given v € C", d € D, c € C, s € ve,
t € pld, fe), so that s®t € Yvd = v ®c pld, f(—)). We obtain

(s@t)((oed)((novvd) = (s@t)(cv® pld, f(-)))(nw &c f¥ o yp)d)
= ((s® 1) ®1t)(nv@c f¥ o yp)d)

(s®17e)(v@c plt, f(-)))

= (s®t).

Remark 3.2 (the absolute co-Yoneda Lemma) In case f = 1¢, we obtain yj,' oz -
len, which by uniqueness of the left adjoint yields the comparison isomorphism

v ®c e, =) = we
s ® t —  (s)vt°

at v € C™ and c € C, with inverse given by cvc.

Corollary 3.3 If f is full, then the unit € of the adjunction yp' o f¥V o zc 4 f" is an
epimorphism. If f is full and faithful, then € is an isomorphism.

c—b>c’ in C and p’ € ufc, g € p(d, fe). Since
(usor)ug” = (o )ula(11))°,

the universal property applies.

Given u € D, we need to see that 1o f"(u) ™ wis a natural transformation. Suppose given d’ e
For all c € C, p € ufc and q € p(d, fc) we obtain

(b ® q)(ud) (ua®) = (p© @) (Vo £ (w)a ) (nud') = (p)uaq)”

We need to see that ¢ o f/ . 1p~ is a natural transformation. Suppose given u’ —+win D", We
have to show that for all d € D, c € C, p € ufc and q € p(d, fc), we have

(© q)(nud) (sd) = (o a) (W o £(5)d) (/).

The left hand side yields (p)(ug®)(sd). The right hand side yields (p)(s(fc))(w'¢°).
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