Mathematik für Wirtschaftswissenschaftler

Blatt 2

Vortragsübungen

Aufgabe 4 Zeigen Sie, dass $\lim_{n\to\infty} \frac{2n+1}{n+2} = 2$ ist durch

- (1) direkte Anwendung der Definition.
- (2) Anwendung der Regeln für Grenzwerte.

Aufgabe 5 Zeigen Sie durch direkte Anwendung der Definition mit ε und δ , dass

(1)
$$f: \mathbf{R}^2 \to \mathbf{R}, (x, y) \mapsto f(x, y) := 2x^2 + 3y^2$$
 in $(0, 0)$ stetig ist.

(2)
$$g: \mathbf{R} \to \mathbf{R}, x \mapsto g(x) := \begin{cases} 0, & \text{falls } x = 0, \\ \frac{1}{x}, & \text{falls } x \neq 0, \end{cases}$$
 in 0 unstetig ist.

Aufgabe 6 Sei $(a_n)_n$ eine konvergente Folge reeller Zahlen. Warum gibt es ein $C \in \mathbf{R}_{\geq 0}$ so, dass $|a_n| \leq C$ ist für alle n?

Aufgabe 7 Untersuchen Sie folgende Folgen auf Konvergenz und bestimmen Sie gegebenenfalls deren Grenzwert.

$$(a_n)_n = \left(\frac{3n^2 + 2n - 1}{n + 47}\right)_n \qquad (b_n)_n = \left(\frac{n^2 + 12n + 6}{2n^2 + 3n + 17}\right)_n$$

$$(c_n)_n = \left(\sqrt{b_n}\right)_n \qquad (d_n)_n = \left(\frac{n!}{n^n}\right)_n$$

Aufgabe 8

- (1) Bestimmen Sie $\sum_{n=0}^{\infty} (-1)^{n-1} \left(\sqrt{3}\right)^{2-n}$.
- (2) Sei $\sum_{n\geq k} a_n$ eine konvergente Reihe. Warum ist $\lim_{n\to\infty} a_n = 0$?
- (3) Warum kann die Grenzwertformel für geometrische Reihen im Fall $|q| \ge 1$ nicht angewendet werden? Diskutieren Sie den Fall q = 2.