Mathematik für Wirtschaftswissenschaftler

Blatt 2

Platzaufgaben

Platzaufgabe 4 Berechnen Sie

$$\lim_{n} \frac{n^2 + 1}{n^3 - 1} .$$

Platzaufgabe 5

- (1) Skizzieren Sie die Graphen von $f: \mathbf{R} \to \mathbf{R}: x \mapsto e^x$ und von $g: \mathbf{R} \to \mathbf{R}: x \mapsto 1+x$ in ein gemeinsames Koordinatensystem.
- (2) Wieso ist $e^x \ge 1 + x$ für $x \ge 0$? Begründen Sie dies mithilfe der Exponentialreihe.

Platzaufgabe 6 Berechnen Sie

$$\sum_{i=0}^{\infty} \left(\frac{1}{3}\right)^i .$$

Platzaufgabe 7 Sei

$$f: \mathbf{R} \to \mathbf{R}, \ x \mapsto f(x) := 2x + 1 \quad \text{und} \quad x_0 = 3.$$

Finden Sie für jedes $\varepsilon>0$ ein $\delta_{\varepsilon}>0$ so, dass für alle $x\in\mathbf{R}$ mit $|x-x_0|<\delta_{\varepsilon}$ auch

$$|f(x) - f(x_0)| < \varepsilon$$

gilt. Ist f stetig in x_0 ?

Mathematik für Wirtschaftswissenschaftler

Blatt 2

Hausaufgaben

Hausaufgabe 5 Sei
$$(a_n)_{n\geqslant 0} := \left(\frac{\sqrt{2n^4 - 2n}}{n^2 + 6} + \frac{1}{n + e^n}\right)_{n\geqslant 0}$$
.

- (1) Berechnen Sie das Folgenglied a_{100} mithilfe des Taschenrechners auf 5 Nachkommastellen genau.
- (2) Wieso ist

$$b_n := \frac{\sqrt{2n^4 - 2n}}{n^2 + 6} \leqslant a_n \leqslant \frac{\sqrt{2n^4 - 2n}}{n^2 + 6} + \frac{1}{n} =: c_n$$

für alle $n \in \mathbb{Z}_{\geqslant 0}$?

- (3) Berechnen Sie $\lim_n b_n$ und $\lim_n c_n$.
- (4) Berechnen Sie $\lim_{n} a_n$ unter Verwendung von (2) und (3).

Hausaufgabe 6

- (1) Berechnen Sie $\sum_{n=1}^{7} (-1)^n \ 2^{-n}$. Berechnen Sie $\sum_{n=1}^{\infty} (-1)^n \ 2^{-n}$.
- (2) Für welche $q \in \mathbf{R}$ existiert $\sum_{i=0}^{\infty} (1-q)^i$? Berechnen Sie diesenfalls den Grenzwert.

Hausaufgabe 7

(1) Sei
$$f_{\infty}: \mathbf{R} \to \mathbf{R}, x \mapsto e^{x}$$
. Sei $f_{k}: \mathbf{R} \to \mathbf{R}, x \mapsto \sum_{n=0}^{k} \frac{x^{n}}{n!}$ für $k \geqslant 0$.

Skizzieren Sie die Graphen von f_2 , f_3 und f_∞ in ein gemeinsames Koordinatensystem.

(2) Überprüfen Sie anhand der Exponentialreihe, dass
$$e^x \ge \frac{(x+1)^2}{2}$$
 gilt für $x \ge 0$.

Hausaufgabe 8 Sei $f: \mathbf{R} \to \mathbf{R}, x \mapsto f(x) := x^2$ und $x_0 := 1$. Sei $0 < \varepsilon < 1$.

- (1) Bestimmen Sie a_{ε} , $b_{\varepsilon} \in \mathbf{R}$ mit $\{x \in \mathbf{R}_{>0} : |f(x) f(x_0)| < \varepsilon\} = (a_{\varepsilon}, b_{\varepsilon}).$
- (2) Bestimmen Sie die Menge aus (1) für $\varepsilon = 0.5$ auf zeichnerischem Weg.
- (3) Bestimmen Sie ein $\delta_{\varepsilon} > 0$ so, dass für alle $x \in \mathbf{R}$ mit $|x x_0| < \delta_{\varepsilon}$ auch $|f(x) f(x_0)| < \varepsilon$ gilt.