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Abstract

We generalize certain parts of the theory of group rings to the twisted case. Let
G be a finite group acting (possibly trivially) on a field L of characteristic coprime
to the order of the kernel of this operation. Let K C L be the fixed field of this
operation, let S be a discrete valuation ring with field of fractions K, maximal ideal
generated by 7w and integral closure T in L. We compute the colength of T G in a
maximal order in L!G. Moreover, if S/7S is finite, we compute the S/mS-dimension
of the center of T'! G/Jac(T ! G). If this quotient is split semisimple, this yields a
formula for the number of simple 7! G-modules, generalizing Brauer’s formula.
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0 Introduction

0.1 Outline

Let G be a finite group acting on a field L with fixed field K. The twisted group ring
L G carries the multiplication (oy)(72) = o7y 2, where 0,7 € G, y,z € L (1).

We denote by N the kernel of the operation of G on L. If N =G, then K = L and L1 G
is nothing but the untwisted classical group ring KG. If N = 1, then L G has the only
simple module L, and is isomorphic to Endg L.

If the characteristic of L and the order of N are coprime, then L G is semisimple, and
even separable over K. Many of the apparent difficulties we shall encounter vanish if
the characteristic of L and the order of G are coprime. For instance, in this case the
Plancherel formula (1.16) is immediate.

The Wedderburn isomorphism sends an element of L { G to the tuple of its operations
on the simple modules, such an operation being considered as an endomorphism over
the respective L { G-linear endomorphism skew field. The Plancherel formula yields a
Fourier inversion formula for this isomorphism. Schur relations may then be deduced
from composition of the Wedderburn isomorphism with its Fourier inversion. A theory of
characters and a Brauer-Nesbitt theorem ensue.

Let S C K be a discrete valuation ring with field of fractions K, maximal ideal generated
by 7 and residue field S := S/7S of characteristic p > 0. The m-adic valuation of an
element y € K is denoted by v(y). Let T C L be the integral closure of S in L, and
denote T := T/7T. Choosing T ! G-lattices inside the simple L { G-modules, we may
restrict the Wedderburn isomorphism to a full embedding of 1T"? G into a tuple of matrix
rings over certain extensions of S. We calculate the colength of this embedding, that is,
the S-linear length of its cokernel.

Now suppose S to be finite. The question for the number of indecomposable projec-
tive 7! G-modules leads to the question for the number of simple 7' ! G-modules. If
TG /Jac(T 1 G) is a split semisimple S-algebra, then this number coincides with the S-
linear dimension of Z(T ¢ G/Jac(T ¢ G)). This dimension in turn is given by a sum of
certain vectorspace dimensions, indexed by the p'-classes of G. In the untwisted case,
each of these dimensions equals 1. Thus we recover a theorem of BRAUER.

0.2 Motivation

The untwisted group ring SG has the principal module S, endowed with the trivial G-
operation. This module is projective if and only if the order of G is invertible in S.

The twisted group ring 7! G has the principal module T, endowed with the Galois
operation of G. This module is projective if and only if the order of /V is invertible in .S

LThis ring is also known as skew group ring of G with coefficients in L, see e.g. [12, p. 59]. Using the
terminology twisted group ring of [9, §28], we should mention that there are more general twisted group
rings still, involving 2-cocycles of G with coefficients in L*.



and the extension 7'/S is tamely ramified (SPEISER, E. NOETHER, cf. 2.4).

Therefore, wildness of T'/S corresponds to a nontrivial homological behaviour of T" over
T GG, which one is led to study. This seems to be more easily accessible than the related
homological behaviour of T" over SG. For instance, we have Ext,o(T,T) ~ Extg,(S,T),
and in particular cases it is possible to calculate the left hand side in order to obtain the
right hand side. Here, we will restrict our considerations to some general properties of
twisted group rings, however.

0.3 Known Results

Beautiful results on the classical case N = G abound. It might be worthwhile to attempt
to extend certain of them to the twisted case. For example, so far there is no theory on
induction and restriction that allows to independently vary the group and the ring (cf.
[12, ch. 4], [9, §§ 10, 11, 19, 20]) ().

On the other hand, there are several results for the case N = 1. The theorem of
AUSLANDER-GOLDMAN states that T'? G is isomorphic to S|l if and only if T/S
is unramified and all occurring residue field extensions are separable [9, 28.5]. The the-
orem of AUSLANDER-RIM states that 7'¢ G is hereditary if and only if 7'/S is tamely
ramified [9, 28.7].

If we admit wild ramification, or if nontrivial 2-cocycles enter, the situation gets more
involved. Still, we assume N = 1.

e WILSON’s theorem calculates the locally free class group of Op 1 G to be the class
group of a maximal Og-order containing it, provided O /Of is a finite extension
of Dedekind domains giving rise to an extension L/K of global fields with Galois
group G [10, 50.64, 49.33, 49.32].

e WILLIAMSON gives a criterion for m-principal heredity of 1"y G, where f is a 2-
cocycle of G with values in 7™ [28, 3.5]. In contrast to the above-mentioned the-
orems, it may occur that 7'y G is hereditary, and even maximal, whereas 7'/S is
wildly ramified [27, 2.5].

e BENZ and ZASSENHAUS showed that 7'2¢ G is contained in a unique minimal hered-
itary overorder, S assumed to be complete [1].

e CLIFF and WEISS showed how invariants of this hereditary overorder depend on the
inertia and ramification indices of 7'/.S, and the Schur index of Ly G [8].

o If [L: K] =2, CHALATSIS and THEOHARI-APOSTOLIDI classified the indecompos-
able Or, ! G-lattices [6, Th. 2].

e WEBER described the image of the Wedderburn embedding for T' = Z,)[(ym], G =
Cp and S = Z(p) [Cpmfl] [25]

2For this purpose, it might be useful to consider a larger class of rings with group operation than
merely Galois extensions of fields — cf. §1.3.



For N arbitrary, NAKAYAMA and SHODA investigated twisted group rings L ! G over a
field L such that the order of G is invertible in L, relating the representations of L1 G
and KN [15]. Omitting this invertibility condition, BONAMI investigated centers and
radicals in [2].

Moreover, the ring K 1y G has been studied thoroughly, where f is a 2-cocycle with
coefficients in the trivial G-module K*; one reason being its connection to Clifford theory
(cf. [9, 11.19, 11.20]). See also [24, (10.5)].

0.4 Results

Let g := |G|, n:=|N| and h := [L : K|, so nh = g. Let {X; | i € [1,k]} be a complete
set of nonisomorphic simple L G-right modules and let K; := End,X;. Let z; denote
the dimension of X; as a right module over K, let r; denote the degree [K; : K] and let
df denote the degree of K; over its center. We have x;d;/h € Z (1.14). Let V; C X, be a
finitely generated T' ! G-module such that K'V; = X; and such that V; is free as a module
over S; := EndpgVi.

The colength of an embedding of S-modules is defined to be the Jordan-Holder multiplicity
of S in its quotient. If S is finite, then colength = logg (index).

Let S;:={y € K, | Trg, ;x(yS;) € S} and let dg,/s be the colength of S; C S;".
Let Tt :={y € L | Try/x(yT) C S} and let d7/g be the colength of T C T'*.
Theorem (2.15). The colength of the Wedderburn embedding

TG e ]] EndgV;
1€[1,k]

15 given by
1
5 | 9005 +v(m)h) - > ¥ (65,5 + v(widi /h)ry)
1€[1,k]
In particular, this integer is positive or zero.

The essential ingredient for (2.15) is the Plancherel formula (1.16). Using an analogous
central Plancherel formula (1.40), we obtain a central colength formula (2.25).

Schur relations allow to derive a Brauer-Nesbitt theorem. Let ¢ be the maximal elementary
divisor exponent of the Gram matrix of the trace bilinear form on 7" induced by Try k.
Note that v(z;) < v(g) +t — v(d;) (2.21).

Theorem (3.1). Let i € [1,k]. Suppose that K = K; and that v(x;) = v(g) +t. Then the
reduction V; /mV; of the simple A-lattice V; is a simple T G-module.

Moreover, we shall count simple modules.

Theorem (1.29, 3.19).

(i) The K-linear dimension of the center Z(L ! G) equals the number of conjugacy



classes of N. In particular, if L1 G is split semisimple over K, then this number
equals the number of isoclasses of simple L ! G-modules.

(ii) Let Ty := T/Jac(T). Let

Vo = S{y" —y)z, ¥ —y |y, z€Ty, peCalo)) C Tp.
Let CI(G,p') be a set of representatives of p'-classes of G. We have

dimg Z(T2G)/Jac(TG)) = Y dimg(Ty/V,) .

oeCl(G,p')

In particular, if T1G /Jac(T1G) is split semisimple over S, then this number equals
the number of isoclasses of simple TV G-modules, or, which is the same, the number
of isoclasses of indecomposable projective T ! G-modules.

If Ty is a field, and if o is not contained in the kernel N, of the operation of G on Ty, then
Tv/V, = 0. This indicates a similarity of (ii) to (i).
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0.6 Conventions
b b
(i) Composition of maps is written on the right, TG Exception is made for ‘standard’
maps, such as traces, characters, Frobenius ...

(ii) If A is an assertion, which might be true or false, we let {A} =1 if A is true, and {A} =0 if A is
false.

For a,b € Z, we denote by [a,b] := {c € Z | a < ¢ < b} the integral interval.
Given a € Z and a prime p, we denote by a[p] := p*»(*) the p-part of a.

)
)
(v) Given elements z,y of some set X, we let 0, , =1 in case x =y and 0, = 0 in case x # y.
) Unless mentioned otherwise, modules are finitely generated right modules.

)

Let A be a commutative ring. The trace of an element of an A-free A-algebra is the trace of the
A-linear map given by right multiplication with this element.

Given a commutative ring A and z,y,z € A, we write x =, y if v —y € Az.
Given a ring A and m, n > 0, we denote by A™*" the set of m X n-matrices over A.
Given a ring A, we denote by Jac(A) C A its Jacobson radical.

Given an element ¢ of a finite group G, we let o(c) denote its order.



1 Rational

1.1 The Plancherel formula

Definition 1.1 Let C be a commutative ring, acted upon by a group G with fixed ring
B = FixgC, an element 7 € G sending an element y € C to y”. The twisted group ring
C 1 G is defined as follows. As a right C-module, it is free on the underlying set of the
group G. The multiplication is defined by

() (5] = (D)

oelG TeG peCG TG

where y,,z; € C for o,7 € G. Or, less formally, we extend (oy)(r2) = (o7)(y"2)
B-linearly. Note that C'{ G is a B-algebra.

Notation 1.2 Let G be a finite group acting on a field L with fixed field K := FixgL.
Let H be the image of the operation map G — Aut gegs L, i.e. H = Gal(L/K), and let
N denote the kernel of this operation map. The orders are denoted by

h = |H| = [L:K]
= |G
n = |NJ,

so g = hn. Let u € L be such that Try x(u) = 1. Choose a K-basis (y;)ien1,) of L, and let
(Y] )iep,n) be its dual basis with respect to Trp, i.e. Trr/k(yiyy,) = Oim for I,m € [1, ).
Whenever useful, we assume 1, = 1.

Lemma 1.3 (Maschke, cf. [9, 28.7]) The K-algebra L G is semisimple if and only if
n 1s tnvertible in K.
Suppose n to be invertible in K. Given an epimorphism of L G-modules X oxr , We

. . 20
choose an L-linear coretraction X” — X and let
XI/ i» X
2 — n” g (x"o)ig - uo™"

oeG

which is L ! G-linear and satisfies i f = 1x».

Conversely, suppose LG to be semisimple. Since [{G — L : oy +——y is an epimorphism,
it has a coretraction, which is necessarily of the form L — LG : 1+ 2z} __ o for some
z € L. Composition yields n - Try x(2) = 1.

Henceforth, we |assume n to be invertible in K.| Now, alternatively, semisimplicity en-
sues from the following lemma [20, 7.18, 7.20]




Lemma 1.4 The K-algebra L1 G is separable.
We have to show that the (L G)° @ (L G)-linear epimorphism

(L1G)Y @k (ING) — LG
ou ® vp - ouvp

is split, where o0,p € G, u,v € L. Let )., & ®n € L®g L ~ ] L be the element that
satisfies Y., &n = Oy u for X € H. Then

LG — (L1G)° @k (L1G)
1 — nt Z k& @ mikt
keG, i€l

is a coretraction as sought for.

Lemma 1.5 (Dedekind) FEquipped with the operation y - (0z) := y°z, where y,z € L,
o € G, the field L becomes an absolutely simple module over L G, called the principal
module. We have Endp L = K. The module L is the simple module of the block L1 H
of L1 G, unique up to isomorphism.
Consider the map
LU H % EndgL
oy > (z2+—2%).

Both source and target are of dimension h? over K. Injectivity of wy is the content of
Dedekind’s Lemma.

Definition 1.6 Let

(0y,72) = Opr1Trp/k(y72) = %TrK(u(—)oyTz)

define a K-bilinear form on L G, where o, 7 € G, y, z € L, and where {(—){’ denotes
the K-linear endomorphism of LG that sends 7 to {né’, where £, & € L1G. This bilinear
form is symmetric, associative and nondegenerate.

Notation 1.7 Let {X; | i € [1,k]} be a complete set of nonisomorphic simple L G-right
modules and let K; := Endp,gX; be the respective endomorphism skew field. Let x;
denote the dimension of X; as a left module over K;, let r; denote the degree [K; : K]J.
Choose X; = L, whence K; = K. Choose a maximal commutative subfield F; of K; that
is separable over K, and let ¢; := [Z(K;) : K| and d; := [E; : Z(K;)] = [K; : E;] [20,
7.15]. In particular, r; = ¢;d?. So altogether,

C; di di
Denote the operation of LG on X; by

LG = Endg X .



The Wedderburn isomorphism, of K-algebras, reads

§ — (f%’)ie[l,k] .
In particular, gh = Zie[l K r;x?. Note that we may interpret wy, up to isomorphism, as
the surjective ring morphism LG — L H induced by G — H.
Let trx,/z(x,) : Ki — Z(K;) denote the reduced trace [20, 9.6a, 9.3], and let

trKi/K = Trz(Ki)/K OtrKi/Z(Ki) : KZHK .

Remark 1.8 The next aim is to provide the Plancherel formula (1.16), which is needed
in §2. Note that if h was assumed to be invertible in L, then the following consid-
erations would simplify considerably, for then we would be able to write (oy,72) =
éTrK((—)ayTz). In our situation, however, we have to split up everything and to keep
track of the various identifications.

Notation 1.9 (auxiliary) Let F' be a finite galois extension of K that contains L and
that contains FE; for all i € [1,k]. Given ¢ € [1,k], we let ©; be the set of K-linear
embeddings of Z(K;) into F', so in particular |©;| = ¢;. For each ¥ € ©;, we choose a
prolongation J:E;,—F of 9.

By choice of a K;-linear basis, we identify X; = K ilxxi, considered as a row of Endg, X; =

Given p € H,welet e, € F®gL ~ [[,cp F be mapped to (9,,1)x under this isomorphism.

Remark 1.10 Suppose given i € [1,k]. We have an isomorphism of E;-algebras

E; ®r K; “+ EndgK;

e ® w +— e(—)w
(cf. [20, pf. of 7.15, pf. of 7.11]). Therefore, we have an isomorphism of F-algebras

F RK Kz — HﬂGGi EndF(F19®KZ)
f ® w — (f 5(=)w)yg ,

where we denote F' ;®K; := F ®p, K; with respect to E; L F, and where f ;(—)w

denotes the F-linear endomorphism of F' ;®K; that sends f' ® w' to ff' @ w'w (cf. [20,
p. 100]).

Lemma 1.11 Giveni € [1,k], w € K; and ¥ € ©;, we have

ZTrF(lqg(—)w) = trg,x(w) € K.
VEB;



Using an Ej-linear basis of K; as an F-linear basis of F' ;@ x K;, we see, denoting by (—)w
the F;-linear multiplication endomorphism of Kj;, that

~

Trp(ly(—)w) = (Trg,((—)w))d
= (trx,/z(x,)(w))?
by definition of the reduced trace [20, 9.6a, 9.3, pf. of 7.15], cf. (1.10).

Lemma 1.12 Representatives for the isoclasses of simple F Q@ L1 G-modules are given
by F ;0X;, where i € [1,k|, ¥ € ©,. Note that X; is a left E;-module by restriction from
K;. Given fe Fand{ € LG, f®¢ acts on F ;@0X; as

(f @& wiw = [y®(§)wi,
giing the component F' @y L1 G Y% EndpF :@X; of the Wedderburn isomorphism.
A block of (L G)w splits under F' @k — into
F ek Endg, X; = (F®g K;)%*"
(1.10) Hﬂe@i (Endp(F j0K;))™ "
= [lyeo, Endr(F j©X;) .

Now, f ® ¢ corresponds to (f ® @ap)aben e then to ((f 5(—)Pap)apeli,e))v, hence finally
to (f y®p)s-

Lemma 1.13 Given i € [1,k], ¥ € ©; and ¢ € Endg, X;, we have

Z TrF<11§®90) = trKi/KTrKiSO :

JEO;
In fact,
D gco, Tr(ly®p) = Zae[l,mi] > vee; Trr(1 5(—)¢aa)
(1.11)
= Zae[l,zi] trKi/K(;Oa,a
=  trg,xTrg,e .

Lemma 1.14 Suppose given i € [1,k] and 9 € ©;. We have x;d;/h € Z. Moreover, given
z € Z(K;) C Endg, X;, we have

TrF<(eu)wi’19> = x;d;/h .

We decompose F ;0X; = @xeu(F j@X;)ey as F-vectorspaces. Since (F 30X;)ey ~
(F ;®X;)e,-1) for 0 € G via multiplication with o, using e,0 = oe,-1,, the F-linear
dimension of (F ;®X;)e, is given by x;d;/h. Now,

Tre((ep)win) = Yoren Trr((e)winl(m @xe,)
TrF((eu>wi,'L9|(F1§®Xi)€u)



10

Lemma 1.15 Given m > 1 and A, B € F"™*", we have Trp(A(—)B) = Trp(A)Trp(B),
where A(—)B denotes the F-linear endomorphism of F™ ™ that sends C' € F™ ™ to
ACB, and where Trp(A) denotes the trace of A as an element of F™ ™.

Proposition 1.16 (Plancherel formula) Given &, € L1 G, we have

&mn) = Z xigdi -tl"Ki/KTrKi<(§wi>(77wi)> :

1€[1,k]

The right hand side is well defined by (1.14).

By associativity, we may assume 1 = 1. We extend the bilinear form F-linearly to
F @ LG to obtain

€1) = 1l®{1el)
_ n Trp (L@ u)(-)(1®E))
independence of choiee 1 py (0 )1 )
algebra. isomorphism n-l Zz’e[l,k] 219691‘ Trp (((61)%,19)(_)((1 ® f)wi,ﬁ))

(1.15) .
= Y ienn 2ovee, Trr ((e1)wig) - Tre (1@ §wi )
(1.14, 1.12)
= D icin 2veo, (@idi/g)Trr (1 ;0€w;)
(1.13)

= Eie[l,k](xidi/g> trg, kI, (€wi) -

1.2 Conclusions

Corollary 1.17 The quotient x;d;/h € Z is invertible in K for any i € [1, k].

If z;d;/h = 0 in K, then the bilinear form (—,=) on LG would be degenerate by (1.16).
This is not the case, and so the result follows. Cf. (1.14).

Corollary 1.18 (Fourier inversion)
The inverse of the Wedderburn isomorphism is given by

[[ Ende, X 2~ LG

i € [1,k]

1 l’zdl % _—
(%’)z‘e[l,k] S " E oy E h 'trKi/KTfKi((yzU l)wz"%)
g€G,le[1,h] i€ [1,K]
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Given p € G and m € [1, h|, we verify

N0 | S wlio pym)

ceqG le[1,h]

- Za Dp.o Z Y Trr (Y Ym)

ceG | le[1,h)]
=  PYnm -

Suppose given i € [1,k], y € L, 0 € G. With respect to chosen K;-linear bases of X, we
write the endomorphism (oy)w; of X; as a matrix ((oy)wiab)apelt,zl-

Corollary 1.19 (Schur relations)
Suppose given i,i" € [1,k], a,b € [1,2;], a', b € [1,2y]. Then

g . —
ood. : a(i;a,b),(i/;a’,b’) = Z (O-yl>wi;a,b : trKi//K ((yl o 1)wi';b’,a’> .
v l€[1,h], 0€G

By (1.18), we calculate the image of the endomorphism tuple given by the tuple of matrices

<(a(i//;aﬁvb//)v(il;a/vbl))a//7b”6[17xi”]) ) under w™'w to be
i €[1,k]

xi’di’ .
Z (oy1)w; p trKi//K<<le l)wz";b/,a/> ;

le[1,h], c€G je[1,k]

and it remains to compare entries at the position (i;a,b).

Notation 1.20 Given i € [1, k], we let the character x; of X; be defined by

NG X K
§ — xi(€) = tri kT (Owi) = D trieyx(§wiaa) -

a€(l,x;]

Corollary 1.21 (horizontal orthogonality relations)
Suppose given i,i'" € [1,k]. Then

geiOir = Y xilowxe(yio™") .

le[1,h], c€G
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Corollary 1.22 (to 1.18)
The primitive central idempotent ; of L1 G that belongs to X, i € [1,k], is given by

x;d; " _
& = Z oy - Xa(yo ™) .
9 ceG,le[1,h]

In particular, 1 = n_lzy.

veN
To evaluate 1, it suffices to remark that for y € L and 0 € G, the K-linear trace of (yo)w;
is given by {o € N}Try/k(y), as to be calculated as L-linear trace on L ®x L ~ ][], .y L
using the primitive idempotent basis.

Remark 1.23 For the principal module, there is an inversion formula due to E. NOETHER
[18, §1]. Write ¢ € Endg L as yjpo =: 1,h] PlmYm with ¢, € K. Then

me|

w1
EndxL -+ L!H (=~ L1Ge; C L1G)
e Yimenn PLm¥i e Aym -

To see this, we let 1 = (pz)w; with p € G and z € L and apply (1.18) to

UJ_l

(1,0,.,0) > 07 YooY ey uTri (Yo~ pz)wr)
= ”_1Zaea o{o~'pe N} Zze[m] y'Trr k(v =)
pze1

whereas Noether’s formula yields

o1 e n ¥ Caen MNwier)
EIN
= (ZAGH A enm Y yz) Pz,

and it remains to be shown that Zle[l,h] yl*’)‘yl = Ox,1. Since the left hand side is indepen-
dent of the choice of the basis, we may tensor with L ® x — and use the primitive idempotent
basis of L @ L ~ [] uen L, which is self dual. Orthogonality of these idempotents yields
the result, for A\ # 1 permutes them without fixed points.

Question 1.24 Suppose N = 1. Given f € H?(G, L*), there is a central simple K-algebra
Ly G (denoted (L/K, f) in [20, 29.6]). If f is trivial, (1.18) or (1.23) allow to deduce an
orthogonal primitive idempotent decomposition. I do not know such a decomposition in
the general case, nor a workable description of the simple module (as an L-vectorspace with
compatible G-operation, say). Cf. [20, 29.22, 32.19], [26, 2.4].

1.3 A Morita equivalence

Lemma 1.25 Considering L1 G as a left module over LN, we have an isomorphism

L®KLZG = El’ldLN(LZG) ~ (LN)hXh
Y& zo +H— (pry-wp-za)

of algebras over L.



13

Since both source and target are of dimension gh over L, it suffices to prove injectiv-
ity. Suppose given an element > _. 1, Yoi ® Z5;0 that is mapped to zero. From

ZaeG,ieIg YoiP%0:0 = 0 for all p € G’ we conclude that ), yg,izc’i; =0 forall o,p € G.
The isomorphism L ®p L = [,y L now shows that } .., v, ® z,; = 0 for all 0 € G,
as was to be shown.

Corollary 1.26 L ®g LG is Morita equivalent to LN .
Concerning the situation over K, cf. (1.34, 1.36, 1.37).

Corollary 1.27 The field L(Cexp(n)) is a splitting field for LG over K.

By (1.25), we have L(Cexp(n)) @k (LUG) 2 (L(Coxp(nvy) N)"", and L(Cexp(y) 1s a splitting
field for N by [22, 12.3, cor. to th. 24]. Cf. also (1.36).

1.4 The center of L G

Let CI§, € N denote a set of representatives of the G-orbits of N by conjugation. Given
o€ N, welet h, := h/|Cq(c)N/N| = g/|Cq(o)N|. Let (Yoi)icp,n,) be a K-linear basis
of L, := Fixc, )L € L, where o € Cl%.

Lemma 1.28 ([15, p. 113]) The center Z(L1G) of LY G has the K-linear basis

P, P
> o) |
( ') 6eCIS, i€l ho]

peCa(o)\G

Suppose given | oty € Z(IXG). Forany y € L, wehave y(>_ . 0lo) = (>, cq 0lo)y =
0, whence »__ . 0t, = > oy 0ty. Suppose given p € G. From

Z ot, = (Z ot,)’ = Z atpp,l,
oceN ceN oceN 7

we conclude that t,, = t? for all 0 € N. Letting p € C¢(0), we conclude that ¢, € L, for
all o € CI§.

Corollary 1.29 ([15, Satz 2]) The K-linear dimension of the center Z(L 1 G), i.e.
> iepr dime Z(Ky), equals the number of conjugacy classes of N.

First proof. We let G act on the set of conjugacy classes of IV, the G-orbits being repre-
sented by the N-orbits of the elements of C1§. The stabilizer of the N-orbit of o € CIS
in G is given by Cg(o)N. But the dimension of Z(L ! G) over K is given by

> he= Y 9/lCc(@)N],
oeCI§ ocCI§

which is the sum of the orbit lengths of this operation, indexed by representatives of orbit
representatives.

Second proof. We have dimy Z(L1G) = dimy Z(L ®x L1G) "2 dimy, Z(LN).
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Corollary 1.30 If K = K; for all i € [1,k], the number of irreducible modules of L1 G
15 given by number of conjugacy classes of N.

Corollary 1.31 Given i € [1, k|, we have x;(cy) =0 ifc € N. If o € N, then

ST urtxilme) = > yivlyl o) .

le[1,h] le[1,h]

for p e G.

The primitive central idempotent ¢; described in (1.22) is contained in Z(L!G), so that
the result follows by (1.28).

Assumption 1.32 For allv € N, we have Cg(v) - N =G.
This assumption holds if N =1, if N =G, or if N < Z(G).

Lemma 1.33 (cf. [2, p. 21]) If (1.32) holds, then Z(KN) = Z(L1 G).

Consider a basis element ., 0°Y,; of LG as in (1.28). Since L, = K by (1.32),
we may assume y,; = 1. By (1.32), the G-orbits and the N-orbits on N coincide. Thus

our basis element equals the class sum o )\y 0" € Z(KN).

Corollary 1.34 If (1.32) holds, and if moreover all endomorphism rings of simple mod-
ules of KN and of LG are commutative, then KN and LG are Morita equivalent.

Concerning the situation after scalar extension over K to L, cf. (1.26). Cf. also (1.36,
1.37).

1.5 (Counter)examples

Example 1.35 Suppose given a prime p > 3, and let ;2 be a primitive p?th root of unity
over Q. Let 7,2 € Q((y2) be defined by 2 = [c,_1(¢2 — 1). Let ¢, := .

Consider the operation of C)2 on Q(my2) given by composition of the surjection Cp2 — C,
with the operation of the Galois group over Q. Let o be a generator of Cpz, let z € Q(mp2).
The principal module is given by

Q(?Tp2) szz — EndQQ(ﬂ'pz)
o = (y=y)

Moreover, Q((,2) becomes a module by means of

Q(mp2) 1 Cp> —>  Endq(,)Q(¢2)
o = (y—y7(pe)
z B (y NS yz)?
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where C)2 operates on Q((,2) via composition of the surjection Cp2 — C), with the opera-
tion of the Galois group Cj, of Q((,2) over Q((p), so that ¢ maps (2 to C;;rp. The element
oP is mapped to the multiplication with

Pt (g> P
sz = Cp2 .

Na(,2)/a,) (Gp2) =

In particular, o? is mapped to the identity.

We claim that Q((p2) is a simple module not isomorphic to Q(m,2), more precisely, we
claim its endomorphism ring to be equal to Q(({,). Since such an endomorphism is re-
quired to commute with Q(7,2) and with o?, it is determined by the image y of 1. Then
commutativity with o yields y = y?. As Wedderburn isomorphism, we obtain

Q(m2) 1Cpe —= QPP x Q((,)P*,

since this surjection is actually an isomorphism for dimension reasons. So in this case QC,
and Q(mp2)Cp2 are in fact Morita equivalent, as shown by construction of the progenerator

Q(m,2) ® Q(Cy2) (cf. 1.34).

Example 1.36 Let G =S85, N = C3, L = Q(i), K = Q, where i12) = —j. We note that
(1.32) fails, since C((1,2,3)) = N. According to (1.28), the center of Q(¢) ! S5 has the
basis (1, (1,2,3)4+(1,3,2),4(1,2,3)—i(1, 3,2)). Thus we have an isomorphism of Q-algebras

Q x QW3 = Z(Q(i)Ss)

1 x 0 — i +(1,2,3)+(132))
0 x 1 - %( (a ’3) ( ))
0 x V3 - i(1,2,3) — z(1,3,2)

In particular, Z(L G) is not isomorphic to Z(K N) (cf. 1.33 and 1.34). Moreover, K ({|¢|)
is not a splitting field for the K-algebra L1 G (but cf. 1.27).

Example 1.37 Let G = Qg = (z ] | i*,j4,4% = j%,ij = ji®) be the quaternion group with
8 elements, N = (i2) < Z(G), L = Q(G), K = Q, ¢& = ¢5*, ¢4 = ¢3. We remark that
(1.32) is fulfilled. We have an idempotent

1—14% 14 (gj

€= —5 € Q(Cs)1Qs

and an isomorphism

Hq —— e(Q(¢)tQs)e
I F— e(gie

J — e((s+i)e

where Hg = Q(I,J)/(I> + 1,J? + 1,1J + JI) is a rational quaternion skewfield. Now,
Z(KN)=Z(L1G) by (1.33), but KN and LG are not Morita equivalent (cf. 1.34).

1.6 The central Plancherel formula

We have an isomorphism

2(1G) 2 [ 2k

1€[1,k]

£ — ((Owf)i = ((E)wi)i
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where (§)w; € Endg, X; is actually contained in Z(K;) C Endg, X;. Recall that (g;)w? =
83'71' fore,7 € [1,/{3] (122)

Given >° o.owney)’, Zp,ecc(y,)\G(V’y’)”' € Z(L1G), where v,/ € N, y € L, and
y € L, , we let

N2
(Zpecc;(u)\G(Vy)p’ preoc(w\G(”/y/)p)
o { [N :Cy(W)] - Trp, k(yy™) ifv= ("1 withTeG

0 if v and /=1 are not conjugate in G

define a K-bilinear form on Z(L!G) (cf. 1.28). Note that yy'” € L,. This bilinear form
is symmetric and nondegenerate.

Remark 1.38 We have h-(£,€)7 = (£,¢).
Let v € CI§ and v/ € (CI§)~!, y € L, and 3 € L,» . Then

(ZPECG(V)\G(Vy)p’ Zp'eccw/)\G(”/y/)p/) = oG O Ty (97y”)
= [G:Cc)] 0y Trr i (yy')
= [G:Cx(W)] - By Trp, i (yy)) -

Thus, if A is invertible in K, the following discussion simplifies considerably.

Lemma 1.39 The bilinear form (—,=)? is associative.

Let v € CI§ and v/ € (C1$)~!, y € L, and 3/ € L, . Then

Z

((Zpeccw)\c(yy)p) (Zp/ecc(w)\G(”,y,)p/) ’ 1)
D=1 pecaone YY"
= [N:OyW)] Oy Trp, x(yy) .

Proposition 1.40 (central Plancherel formula) Given £, € Z(L1G), we have

€€ = ) % (xhd) Trzry/x (i (€)wy) -

1€[1,k]

By associativity, we may assume {’ = 1 (1.39). Let £ =: ({)(w?) ™!, where ¢ =: (2;)ici 4 €
[Ticpn Z2(K:) C [Liepy Ende, Xi. Using the auxiliary notation (1.9), and viewing L C
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F ®k L, we obtain
(W) 17

(1.18) id; . Z
2 (Coecrenn o9 [ Ticn 2 tricw T (o wi- 20| 1)
definition x;d; %
= Zie[l,k] Zle[l,h] Y- Td g i Trr, (Y ws - 21)
(1.13, 1.12) wids .
= i e e, (L@ U) - E - Trp((1® yfJwip - (1 j@2:))
independence

of choice x;id;
= Zie[l,k] ZpeH Zﬂe@i Cp- gd ’ TTF((eu)Wz‘,ﬁ (200 1§®1)>
(1.14) zid;  xid;
- Zie[l,k] ZueH Zﬂe@i Cn g " TH 2V

zid; \?
= Zie[l,k] % ( hd ) TrZ(Ki)/K(Zz‘) .

2 Locally integral

Notation 2.1 Let S C K be a discrete valuation ring with field of fractions K, maximal
ideal generated by 7 and residue field S := S/7S of characteristic p > 0. The w-adic
valuation of an element y € K is denoted by v(y). Let T C L be the integral closure
of S in L. Note that T is a principal ideal domain. Let 7*S := Trp k(7). We have
T = [lic1.q 95, where the g; C T denote the maximal ideals, forming a single Galois
orbit, and where e is the ramification indez of m in T [16, 1.§9]. Recall that 7 is said to
be tamely ramified in T if T/q; is separable over S for some (hence for all) i € [1,d], and
if, in addition, the ramification index e of 7 in T" is not divisible by p. Otherwise, it is
said to be wildly ramified.

2.1 Projectivity

Lemma 2.2 (Maschke locally) For S-free T { G-modules X and Y, we have
7r5n~Ext1T2G(Y, X) =0. In particular, if € is a central idempotent of L1 G, we have
mne € T G.

Let ug € T' be such that Try x(up) = 7°. Consider an extension

0-—X ——E-Ly 0

of T} G-modules. We choose a T-linear coretraction Y o, FEtoFE S Y and let

)

y

y 2(90)10'%0717
oeG

which is 7" G-linear and satisfies i f = 7°n - 1y.

Applying this construction to the epimorphism TG I TG given by left multiplication
with €, the map 7 sends € to an element of the form & = e € T G. Composition with f

yields mne = efe ° cral Eee T G.
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Corollary 2.3 Given i € [1,k], 0 € G and | € [1,h], we have m*%%y*x,(y,0) € T.
Apply (2.2) to (1.22).

Proposition 2.4 (SPEISER, E. NOETHER, see [11, 1.§3, Th. 3])
The following assertions are equivalent.

(1) As a module over TV G, T is projective.
(i) As a module over SG, T is projective.
(iii) The prime p does not divide n, and the trace Trp,x maps T onto S.

(iv) The prime p does not divide n, and 7 is tamely ramified in T

Assertion (i) implies (ii) since T2 G is free over SG. We claim that (ii) implies (i). Given
a split SG-linear epimorphism (SG)® — T, we obtain a split T'! G-linear epimorphism
(T?1G@)¥ —T ®gc T ! G when tensoring with 7! G over SG. But the T ! G-linear
epimorphism (the counit of the tensor adjunction)

T ®s¢ TG — T
Yy ® oz — Y%z
I ® =z ~— z

is T'! G-linearly split as indicated.
We claim equivalence of (i) and (iii). As a module over T G, T is projective if and only
if the T ! G-linear epimorphism
™G & T
1 — 1

is split by some coretraction TG L7 Amongst the T-linear maps from 7" to TG, those
are T G-linear that send 1 to y > ., o for some y € T. But this map is a coretraction
to n if and only if n - Try gy = 1.

We claim equivalence of (iii) and (iv). Reducing modulo 7, the surjectivity of the trace
in question is equivalent to the nonvanishing of the S-linear trace on some factor T/q¢ of
T. This trace in turn equals e times the trace on T/q;, by a filtration argument. Finally,
the trace on T'/q; does not vanish if and only if T'/q; is separable over S.

Remark 2.5

(i) If the equivalent conditions of (2.4) are fulfilled, then T' ~g5 SH [9, 32.1].

(ii) If N = 1, another proof of (2.4), (iii = i) can be obtained by [9, 28.7], and by
noting that '~ (> ., 0)T G C TG is a right ideal.
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2.2 The Wedderburn colength

We give a formula for the colength of the Wedderburn embedding of twisted group rings
(2.15), following basically the method of PLESKEN [19] (that G. NEBE taught me).

Notation 2.6 For each i € [1, k], we choose a finitely generated 7! G-module V; C X;
such that K'V; = X, and such that S; := EndpgV; is a maximal order in K; (cf. 2.7). In
particular, we choose Vi =T C L = X;, so that S; = S. Note that S; is finitely generated
free as a module over S, and that K.5; = K;, since S; = EndsV; N K; C EndgX;. Note
that V; is free as a module over S; [20, 18.7 (i)], of rank ;. We fix S;-linear bases for V;,
i € [1,k], and write S;- (resp. K;-) linear endomorphisms of V; (resp. of X;) as matrices
over S; (resp. over K;), i.e. as elements of S{*® (resp. of K;"**"). In particular, we
identify Endg,V; = S;""".

Remark 2.7 The required choice of V; C X, can be achieved as follows. Let .S; be a
maximal order in K; (1.4), [20, 7.18 (ii), 10.4]. The S-subalgebra = of Endx X; generated
by S; and the image of 7! G therein, is finitely generated as a module over S. Let V; be
a finitely generated =-submodule of X; such that K'V; = X,. Since S; C Endr,¢V; C K;,
maximality of .S; yields S; = Endr,gV;.

Notation 2.8 Given a finitely generated torsion S-module M, we denote by [(M) the
length of M in the sense of Jordan-Holder. Given an inclusion of S-modules N C M such
that M /N is a finitely generated torsion S-module, the colength of N in M is defined to
be the length I[(M/N), i.e. the multiplicity of S in M/N.

We write shorthand
A = L1G
A = TI1G.

The K-bilinear form on A defined in (1.6) restricts to an S-bilinear form on A. For an
S-submodule U C A, we let

Uf = {yeA|(y,U)CS} C A

be its dual S-submodule.

Lemma 2.9 For a finitely generated S-submodule U of A such that KU = A, the module
Ut is also a finitely generated S-submodule of A such that KU* = A. In this case, we
obtain

U= U#,
Therefore U — U* is an antiinvolution of the lattice U’ of finitely generated S-submodules
of A such that KU = A. In particular, given U,V € U/, U C V, we have (V/U) =
(U V).
We choose two S-linear bases (u;)ic(1,9n and (u)ie1,gn of U such that (u;, u}) = ; j2; for
some z; € K*, i,j € [1,gh]. We obtain S-linear bases (zl-_lui)ie[wh] and (zi_lug)ie[ljgh] of
U*. With respect to these bases, we have (z; 'u;, zj_lu;) = 0,2 ", i,7 € [1,gh]. Hence by
the same argument, applied to this situation, we obtain U* = U.
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Notation 2.10 Suppose given i € [1, k]|. Let
St = {y e K; | trg(yS;) C S}.
The colength of S; in S;" is denoted by
ds,ys = U(S;/Si) .

Furthermore, let
Tt = {yeL|Tryk(yT)C S}
orys = U(T*/T)
At {Zayg €eAly, €Tt}

ceG

Cf. [16, T11.2.1].

Remark 2.11 We have
l(A+/A) = 95T/s-

Lemma 2.12 We have
AP = AT

Given Zayg € A, y, € L, we obtain
ceG

(Zayg,p’lz) = TTL/K(?/ZAZ),

oceG

which is in S for all p € G and for all z € T if and only if > __. oy, is in A®, but also if
and only if it is in AT,

Notation 2.13 Let

r = HS;””Z' w! C A
1€[1,k]

F+ - H h (S+)xz><$1 w—l C A
. xid; " o ’
1€[1,k]

where (S;7)%** is the S-submodule of K[***" consisting of matrices entrywise in S;".

Cf. (1.14, 1.17).

Lemma 2.14 We have

Fﬁ — H g (Sj»)xzxxl w*l .
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Hence

ITH/T) = > a? (35, + v(idi/h)rs)
i€[1,k]

I(TF/T%) = wv(n)gh.

We use (1.16) to apply the bilinear form on the right hand side of the Wedderburn
isomorphism to a tuple of matrices with only one nonzero matrix which in turn has only
one nonzero entry, and an arbitrary tuple.

Theorem 2.15 The colength of the Wedderburn embedding
G <[] EndgV;
1€[1,k]
15 given by

1€[1,k]
Concerning notation, cf. (1.2, 1.7, 2.1, 2.6, 2.8, 2.13).
Using (2.12), the diagram

<—D>

MHC v Af= A*

r+
of S-submodules of A shows that
I(A#/T*) — I(AT/A) + 1(T/A) 4+ I(DT/T) = (T /T%) = 0.

The result follows by (2.9, 2.11, 2.14).

Question 2.16 Given ¢ € [1, k], it would be desirable to know the colength of the embed-
ding of the quasiblock 7! Ge; into Endg,V; via w;.

Corollary 2.17 If G acts faithfully on L, the colength of the Wedderburn embedding

TG 5 EndgT is given by
1
—g0r/5 .
9 gor/s
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Corollary 2.18 (cf. [14, 1.1.5]) If G acts trivially on L, the colength of the Wedderburn
embedding SG % H Endg,V; s given by

1€[1,k]

U gute) = 3 #2(B5ss + vlaidi)rs)

1€[1,k]

2.3 Some estimates

Notation 2.19 Suppose the basis (1;)icp,n chosen in (1.2) to be an S-linear basis of 7T'.
Let
Stt = {z€8S|zyf €T foralli,je[l,h]}.

So t is the maximal elementary divisor exponent of the Gram matrix of the trace bilinear
form on T" induced by Try k. In particular, s <t

Lemma 2.20 The cokernel of the Wedderburn embedding

G <[] EndgV;
1€[1,k]

is annihilated by nx'.

This follows by Fourier inversion (1.18) and by (1.14).

Lemma 2.21 Given i € [1,k], we have v(z;) +v(d;) < v(g) +t. Cf. (1.17).
The multiple

¢
77

g' g =7 E oy - xi(yo™) € TG
c€G,le[1,h]

of the central primitive idempotent ¢; is mapped under w; to (7*g)/(x;d;) times the identity
on V; (1.22).

2.4 The central colength

Notation 2.22 Given v € N, we let T, := Fix¢,)T = T N L,. Note that T, is the
integral closure of S'in L,. Let T,f := {y € L, | Try, /x(yT,) C S} let 07, /s .= U(T,7/T,).
Let Z(S)" :=={2z € Z(K;) | Trzx,)/x(2Z(5;)) C S}, let 875,78 == UZ(S:)T/Z(S))).

Lemma 2.23 With respect to the bilinear form (—,=)? on Z(A) (§1.6), we obtain

ZA)F = {CeZ(4) ]| (¢, Z(A)? € S}

— Z Z o'ya Yy € [N : C’]\/(O‘)]fngr

ocCI§ peCG()\G
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In particular, the S-linear colength of Z(A) in Z(A)* is given by

> o5+ ([N : Cy(v))hy, -

G
veCly

Suppose given ¢ = >_ ccig 2 pec(o)\c(0Vs)” € Z(A), where y, € L, (1.28), and suppose
given Y- o ona(v12)” € Z(A), where v € CI§ and z € T,. We obtain

Z

>y O'ya CY . W) = N O] Trp, () -

ocCI§ peCa(o)\ p'€Cc(V)\G

Lemma 2.24 With respect to the bilinear form (—,=)? on Z(A) (cf. §1.6), we obtain

Z(IL)F = {¢eZ(A)] (. 2ZI)” C S}
= {((z)ienm)@?) 7" [z € $mZ(S)7}

This follows by (1.40).

Proposition 2.25 The colength of the central Wedderburn embedding

2(maG) < T[T 28

1€[1,k]
s given by
x2d>
- > orys (N Cv)Dh | = | D 5Z(si>/s+v<l—hl> ¢
veCI§ i€[1,K] J

This follows by (2.23, 2.24) by the argument of (2.15).

Corollary 2.26 (cf. [7, 4. 1]) [f G acts tmmally on L, the colength of the central Wed-

derburn embedding Z(T L» H Z(S;) s given by
1€[1,k]
1 2d2
5 Z v([G: Cg(a)]) | — Z 07(s. /g+v( p )

oeClg i€[1,k]
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3 Modular

3.1 Brauer-Nesbitt

Corollary 3.1 (to 1.19) Leti € [1,k]. Suppose that K = K; and that v(z;) = v(g) +1
(cf. 2.19, 2.21). Then the reduction V;/7V; is a simple T ! G-module.

Assume V;/7V; to have a nontrivial submodule. Choose an S-linear basis of V; such that
v ((oy)wi;z;1) > 0 for all o € G, [ € [1,h]. Then

1.19 .
q:% =) Z (oy)wi, 21 - (Yo 1)wi;1,xi .
le[1,h], oG

Now the left hand side has valuation —t, whereas the right hand side has valuation > —t.
This contradicts our assumption, and therefore V;/7V; is simple.

Remark 3.2 The S-algebra T G is semisimple if and only if e = 1, T/qy is separable
over S and p does not divide n. We have e =1 if and only if t = 0.

For the necessity of these three conditions, we consider the split epimorphisms T —Tp,
which implies that e = 1, and T2 G — T', which then implies that T' /q1 is separable over
S and that p does not divide n (cf. 2.4).

First of all, if e = 1 and T'/q; is separable over S:, then Trz,5(T) = S (cf. 2.4). Sufficiency
now follows as in (2.2), using an element %y € T such that Trp,g(t0) = 1.

We have t = 0 if and only if 7" = T, i.e. if and only if the discriminant of T'/S' is invertible
in S. By [16, I11.2.12], this holds if and only if e = 1.

Remark 3.3 Let i € [1,k]. If TG is semisimple and if K = K;, then the reduction
Vi/7V; is a simple TV G-module.

By (3.1), we have to show that v(z;) = v(h) +v(n)+t. Now ¢ = 0 and v(n) = 0 by (3.2),
v(x;) = v(h) by (1.14) and v(z;) < v(h) by (2.21).

Question 3.4 Suppose Ty ! G to be semisimple. For instance, this is the case if T G is
semisimple (3.2). Then Jac(T ! G) = Jac(T)(T 1 G), being a nilpotent ideal with semisim-
ple quotient. Are the isoclasses of simple T ! G-modules represented by V;/Jac(T)V; for
1€ [1,k] 7 Cf. [9, §28, ex. 5].

3.2 Counting simple modules
The arguments in this section are an adaption of BRAUER’s proof of the classical case

[3, 3B]. For sake of self-containedness, and without claiming originality, we repeat some

lemmas from [13].

Notation 3.5 Recall from (2.1) that we write S = S/xS.
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Assume S to be finite, and let S =: p® =: ¢.

On the other hand, in this section we may admit n - 1x = 0.

Denote T := T/#T and §; := q;/7T. Note that T ~ [Ticna Ty =~ >~ [Licp.g T/95-

Let A .= TG, s0 A D A—~A. Let [A,A] be the S-subspace of A generated by the
elements ab — ba, for a,b € A. Let

[AAP = {€€ A& €[A,A] for some m >0} .

m m

+n
Note that Cym acts on {&, n}P"]. Let {&, 735" /Cpm denote a set of representatives for
the orbits. If £ # n then
(é + 77)pm = Zfe{g,n}[lypm] Hje[l,pm} f(.])
=[AA] Zfe{gm}[l,pm]/cpm | fCpm| Hje[me] f()

Lemma 3.6 Given £,n € A and m > 0, we have (£ +n)P" =nxa &

Lemma 3.7 We have [A,A]” C [A,A].
By (3.6), it suffices to show that (577 né)P € [A,A] for £, € A. In fact,

(&n —ng)P [AA] (&P — (ms)”
E(ME)P~n) — ((m&)P~'n)€

Lemma 3.8 The set [N, A]P™" is an S-linear subspace of A.

m

Suppose given &, € [A,A]P"". Let m > 0 be such that & n?" € [A,A] (3.7). Given

a, 3 € S, we obtain
m ) m m m
(o€ + Bn)” aa o’ &+ 07

Lemma 3.9 There exists M > 0 such that for any m > M

—m

[‘/_\7‘/_\]1)_1 = {f el | fpm S [AaA]} = [[\,/—X]p

.8) and choose M > 0 such that
7). By the argument of (3.8),
AP S [AA]L

We choose finitely many S-linear generators of [A, AJP™" (3
(—=)?"" maps them into [A, A], thus likewise for (—)" (3
extended to arbitrary linear combinations, we obtain ([A,

Corollary 3.10 Let 1 > 0 be such that ap > M and such that ap > v,(o(0)) for all
o € G. We have an injective S-linear map

AMAPT = AJAATT S AJIAA]

The S-linearity follows by (3.6) and by the choice of the exponent to be a power of ¢.
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Lemma 3.11 We have

dimg Z(A/Jac(A)) = dimg(A/[A,A]P) .

We write Xo for the image of a subset X C A modulo Jac(A). In particular, Ay =
A/Jac(A). We claim that

ANl = (B AL = (A7)

0

where ([A,A])?™ = {& € Ao | fgm

€ [A,A], for somem >0}. Since each el-
ement of Jac(A) is nilpotent, we have Jac(A) C [A,A]”", and so this claim implies
dimg(A/[A, AJP) = dimg(Ao/[A, A,).

Concerning the second equality, we need to show C. Suppose given ¢ € A such that

& € [A, A],, i.e. such that €™ = ¢+ 7, where ¢ € [A, A] and 7 € Jac(A). Choose m’ > 0

/
m

with 7 = 0. Then ) )
S G
(3.6) m’ m’
= [[\,]\] cP + rP
= Cpm/
(3.7)

Concerning the first equality, we need to show 2. We may consider the blocks of Ao
separately and assume that Ay = Sixl for some finite field extension S/S. By assumption,
S is commutative. The S-linear trace S™! — S factors over SV /[S™x! S| ~. G Now
the first equality follows by Trs(&l) = Trg(&o)?, as to be seen using the Jordan normal
form.

Finally, dimg(Ao/[A, A],) = dimg Z(Ao).

Notation 3.12 Let Ty := T/Jac(T) = T/Jac(T) ~ [Ticpa Toq =~ [Ticpq T/ De-
viating from former notation, we let CI(G) be a system of representatives of conjugacy
classes of G, and let CI(G,p') := {0 € ClG) | o(o) #, 0} C CI(G) be the subset of
p-representatives.

Given o € CI(G), we define the subspace

Vo = Sy —y)z v —yly,z€T, peCalo) C Tp.

Lemma 3.13 There is an S-linear map

AAA = P Ty
keCI(G)
Upy - (aa,nyp_l )Ii y

where y € T, o € CI(G) and p € G.
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We need to show the independence of the choice of p. But if 7 € Cg(o), then
1

y”fl —yf eV,

We need to show that given 7,7 € G, y,§ € T, the element Ty7§ — 77y is mapped to
zero. Writing 77 = o with o € CI(G) and p € G, we get

(ty7y — TyTY)e = (0PY G — oY y)p
—1 —1 ~a—1 7_—1 —1
- Uny T yp - yp ) P )H
1

(@
= (Oonly™ =y )G )
e V.

Q

Lemma 3.14 There is a commutative diagram of S-linear maps

ML e @ T,
KECL(G.p')

A/[AA] P /v,

keCL(Q)

thus defining .

Given 7 € G and y € T, we have (7y)?" = 79"y’ for some y’ € T. Now 79" is a p’-element
by choice of p (3.10).

Lemma 3.15 There is an S-linear map

P /v S KA
KECI(G,p')
(yn)n B Zﬁecl(a,p/) KYsk -

Given y € Jac(T) and o € CI(G,p'), we have to show that the image of (J5xy), vanishes.
We have (7)) = (TTicjpr)-y ¥°) = 0. whence oy € [A, A

Now, given p € Cg(0), y, z € Ty, we have to show that the images of (9,..(2” — 2)), and
of (0,4(y” — y)z), vanish. Note that

oy’ 7z = pyopt = oy

Putting p = 1, we see 0y”z =[5 5 oyz. Putting y =1, we see 0z =5 3] 02”.

Lemma 3.16 Let f > 1. Given o € Gal(Fy/F,) ~ Cy of order o(a) prime to p, the

map
N g

qu qf

al
Yy Hle[o,q#—l]y

18 surjective.
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sql 1
Let o = F*, where F(y) = y?. Thus Ny u(y) = y &1

il

, and so we have to show that

qs:ll is prime to ¢/ — 1. Since o(a) is assumed to be prime to p, we have f[p] = s[p].

Writing f' = f/f[p], s = s/s[p] and r = ¢/P! = ¢°P! we have to show that

, st
gcd(rf—l,—r, ):1.
rs —1

We remark that given u, v, w € Z~o with w | v and ged(w, v/w) = 1, we have ged(u, v/w) =
ged(u, v)/ ged(u, w). Moreover, we remark that given u,v € Zq, we have

ged(r* — 1,7 — 1) = (r—1)-ged (2=, =)
Euclid’s;lgorithm (7" B 1) . ,rgcd’;zi';) 1

_ T,gcd(u,v) —1.

Now, since ged(r® — 1, re _1) = ged(r® —1,¢*) = 1, the claim follows from

gcd(rf — 1,797 — 1) = peedlflset) g
recd(fs) _ 1

= ged(rf =1, —1).

Lemma 3.17 The map v s surjective.

Suppose given 7 € G and y € T. We claim that 7y € A/[A, AP is contained in the image
of 1. By additivity, we may assume that y corresponds to (0;,;y); under T' =~ Hieu,d] T/qs
for some j € [1,d]. Let e; be the primitive idempotent corresponding to (9;,):, so y = ye;.

. _ ., o NP
Case €7 # e;. Then €] = ej for some j' # j since T preserves primitive idempotents.

Therefore, 7y = Tye; =RA GTY = Tye; =0.

Case e} = e;. From y = ye;, we infer yTZ = yTleJT-l = yTZej for | € Z.

We write 7 = 737, = TuTs with o(7,) a power of p and o(7y) prime to p. It suffices to
show that there exists a § € T such that 7y = =@aAp TSV With the ansatz that y should
l

1 Ts

correspond to (9;,7); under T -~ [TicpaT/ai, we obtain (1s9)" = 7 []e 0gu—1 7

~l
where Hle[o gu—1) Y7 corresponds to

0j.i H T

1€[0,q*—1] ic[1,d]

for some automorphism o of 7'/q5 that fixes S, of order o(«) prime to p. Now (ry)”" =
Tq“y' where y' corresponds to (9;,y');. By (3.16), applied to T'/q; ~ F,r, the map

T/ q] T q; is surjective, and so we may find y € T as in the ansatz such that (7y)?" —
(7s9)?" is nilpotent; choose p/ > 0 such that the exponent ¢* annihilates it. Now since
AJ[A AP — AJ[AA], E— €77 s likewise injective (cf. 3.9, 3.10), we may conclude
from

ptu ptn! (3.6) w ~\ gt W
()" = (w)" =as ()" = (wH)T)T =0

that 7y = =1Ap TsY.
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Lemma 3.18 The endomorphism 1y is bijective.

Suppose given an element (J,xy) in €D,ccicy) Ty/Vy. Tt is mapped to oy under ¢, and
then to (oy)?" via t. Now let 67 = 09", where 5 € CI(G,p'), p € G. Then (oy)?" is mapped

NP —
via ¢ to the tuple that has entry (Hie[(),qﬂfl} y° ) € To/V;s at &, and 0 elsewhere. The
corresponding subtuple in €D, i) Ty/V, is the image of (9,.,.y) under 1.

Since o 07" induces a permutation of CI(G,p') and since
TO/V& —_— Tg/V&p == T(]/ngu
y ¢
is bijective, it remains to be shown that
To/vo- —_— To/vo.qﬂ
y = ILicpg—1 i

is bijective. Since o is a p’-element of G, the subspace V4 contains the ideal generated by
the elements of the form 2z — 2z, where z € Ty. Thus HiG[O, 1] Y7 =V y?. MOI"GOV?I‘,
note that C(0") = C(0), and so Ve = V. Since z+— 2" is an automorphism on Tp,
the endomorphism it induces on Ty /V, is an automorphism, too.

Theorem 3.19 We have

dimg Z(A/Jac(A)) = dimg Z(A/Jac(A)) = Z dimg(Ty/V,) =: z(A) .
oeCI(G.p')

Concerning notation, cf. (3.5, 3.12).
Consider the following diagram of S-linear maps (cf. 3.13, 3.14, 3.15).

B T/ - AAAT e P TV

KECI(G.p/) KeCI(C.p')

Since v is surjective (3.17) and vy is bijective (3.18), 1 is an S-linear isomorphism. Thus
Y dimg(To/Vi) = dimg(A/[A,AP7) "2 dimg Z(A/Jac(A)) .
keCI(G,p/)

Corollary 3.20 The number of isoclasses of simple A-modules is less than or equal to

z(A).

Corollary 3.21 Suppose A/Jac(A) to be split semisimple over S, i.e. suppose all simple
A-modules to be absolutely simple. Then the number of isoclasses of simple A-modules is
given by z(A).
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We may reformulate (3.21) to an assertion on 7 G.

Corollary 3.22 Suppose all simple TV G-modules to be absolutely simple. Then the
number of isoclasses of indecomposable projective TV G-modules is given by z(T 1 G).

Remark 3.23 (particular cases) We drop the finiteness assumption on S.

(i) The TVG-module Ty is simple, with endomorphism ring Endg,.Ty ~ Fixcy, g0/ d1-
If T/q, is separable over S, then Ty is absolutely simple, i.e. EndpcTy = S. Cf.
(3.26).

(ii) If G is a p-group, then Ty is the only simple A-module, up to isomorphism. In
particular, if S is finite, (3.19) yields dimg Ty/V; = dimg FixgT.

(iii) If S is finite, and if G acts trivially on Ty, then z(A) = |CI(G,p')| - dimg Ty (5.19).

(iv) Suppose d = 1. Write Ny Jor the kernel of the operation of G on To. If o € G is
not contained in Ny, then Ty/V, = 0. Cf. (1.29).

(v) Suppose G to be a p'-group. Then Tyl G is semisimple. In particular, if in addition
T/S is unramified, then A = T G is semisimple.

(vi) The isoclasses of simple modules of A = TG correspond bijectively to the isoclasses
of simple modules of Ty ! G via composition of the operation wzth T!G—T)G.
Moreover, we have an isomorphism (T 1 G)/Jac(T 1 G) =~ (Ty 1 G)/Jac(Ty 1 G).

(vii) If e =1 and if T/q, is separable over S, then Vi has codimension 1 in Tj.

(viii) The S-linear dimension of a T 1 G-module is divisible by dimg Ty = h/e.

Ad (i). Firstly, EndggTo ~ FixgTo. Now the projection of FixgTy to T/q; is injective
and surjects onto Fixcy,(q)T/q1. If the extension T'/q; over S is separable, we obtain a
surjection of Cy(q;) onto Gal((T'/q1)/S) [16, 1.9.4].

Ad (ii). Any A-module M contains a fixed point different from 0. In fact, passing to a
cyclic module, we may assume it to be finite, of cardinality divisible by p. Since p divides
the length of a nontrivial G-orbit, the claim follows. Cf. [22, prop. 26].

Let m € M be a nonzero fixed point. Then m - T is a submodule of M. Hence, if M is
simple, M is isomorphic to a quotient of 7. But the only simple quotient of T" is Tj.

Ad (iv). By assumption, there exists a y € Ty such that y” —y # 0. The subspace V, of
T, contains the ideal generated by y? — y. Since now Ty is a field, this implies V,, = Tj.

Ad ()f) Given an epimorphism of A-modules, we may choose a Ty-linear coretraction,
for Ty is semisimple. The sum over the G-conjugates divided by |G| yields a A-linear
coretraction.

Ad (vi). The kernel of T? G — Ty G is a nilpotent ideal, thus contained in Jac(T 1 G).
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Ad (vii). By tameness of T'/S, (2.4) and [9, 32.1] show that Ty|gy ~ SH. Under such an
isomorphism, V; corresponds to the augmentation ideal.

Ad (viii). We are reduced to consider a simple T?G-module X. Let e; correspond to (9;,);

under To =~ [[;c(y 4 /9. We may decompose X as a To-module into X = Djcinag Xej-
Since G acts transitively on {e; | j € [1,d]}, we have for each j € [1,d] an element
o € G that induces Xe; =~ Xe; by multiplication. Since Xe; is a module over T'/qy,
d-dimgT/q; = dimg, Ty divides dimg X.

3.3 Examples

When we count simple modules, we shall tacitly count them up to isomorphism. We use
MAPLE, MAGMA and the MEAT AXE version of M. RINGE [21].

Example 3.24 We continue (1.36).

p=2. Let S =Z) and T = Zy)[i]. Since Ty ~ F,, the simple T'¢ G-modules are given by
the two simple F>S3-modules (3.23 iii).

p=3. Let § = Z) and T = Zz)[i]. Now T = Ty = Fs[i] ~ Fy. We obtain Vi = Fs(i) and
Vi1,2) = Fs[i]. Therefore z(Z3)[i] 1 S3) = 1, and thus Tp is the unique (absolutely)
simple 7! G-module (3.23 i).

Example 3.25 Let K = Q. Let v be a root of the irreducible polynomial
p(X)=X%-3X° +7X*-9X3 +7X*-3X +1 € Q[X],

and let L = Q(v). Then Z[y] is the ring of algebraic integers in the Galois extension L/K.
We have Gal(L/K) ~ Ss. Thus there is an operation of S4 on L, where
7(172) = 1- ¥
A1234) = 1/

p=2. Let S =Z) and T = Z3)[]. We have u(X) =2 (X® + X 4+ 1)(X® 4+ X? + 1), hence
T =Ty ~ Fy x Fs. Let Fx = 22 for 2 € Fg. The operation of Sy on Ty is given by

Fg X Fg — Fg X Fg

(1,2)
r X y — y X T

(1,2,3,4) 2
r X y " Fy x Fux.

Let a € Fy with o® +a+1=0. Then V; = Fo(1 x 1, x 0,02 x 0,0 x o, 0 x a?) (cf.
3.23 vii), and V(y 23) = To. Altogether, (Tt G) = 1. Therefore, Ty = T is the only
(absolutely) simple 7' G-module (3.19, 3.23 i).

p=3. Let S =Z) and T' = Z3)[y]. We have u(X) =5 (X>+1)(X*+ X —1)(X* - X —1),
hence T = Ty ~ Fy x Fy x Fy. Let Fx = 23 for z € Fy. The operation of Sy on T is
given by

Fg X Fg X Fg — Fg X Fg X Fg
1,2
T X Yy X z (Hl y x z x Fz
(1,2,3,4)
r X y X z " Fr x 2z x y.
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Choose ¢+ € Fg with 12 +1=0. Then V; = F3{1 x =1 x0,0x 1 x =1, x0x 0,0 x ¢ X
0,0 x 0 x ¢) (cf. 3.23 vii). Moreover, V(1 2y34) = F3(t x 0 x 0,0 x 1 x —1,0 x ¢ X —1).
Finally, V(1,9) = V(1,2,34) = To. Altogether, z(T' 1 G) = 4. It turns out that there are
three simple 7 G-modules, two of dimension 6 and endomorphism ring F3, and one of
dimension 12 and endomorphism ring Fy. In particular, the center of TV G /Jac(T1G)
is isomorphic to F3 x F3 X Fy. It is of dimension 4 over Fs, as predicted by (3.19).

p =31 Let S =Z) and T = Z31)[7y]. We have u(X) =31 (X —2)*(X 415)*(X +1)?, hence

T ~ F31 [6} X F31[5] z( Fgl[E], where 52 =0. In particular, TO ~ F31 X F31 X F31. The
operation of Sy on Tj is given by

F31 x F31 x F3u — F3 x Fz1 x Fy

(1,2)

r X y X z — zZ X Yy X z
(1,2,3,4)

r X y X z — Yy X x X z.

We obtain V; = F31(1 x =1 x0,1x0x 1), Vig2) = F31 x 0 x F31, Vi19)34) =
F31<1 X 0 x —1>, ‘/7(1’2’3) = TO and ‘/11’2’_&4) = F31 X F31 x 0. Altogether, Z(TZG) =3.
In fact, there are 5 absolutely simple T G-modules, four of dimension 3 and one of
dimension 6.

Example 3.26 Let G = H = Cy = (c), let L = Q(X), let X¢ = — X, so that K = Q(X?).
Let p := 2Z[X?] C Z[X?], let S = Z[X?],, hence T' = Z[X],. We obtain S = F»(X?) and
T =Ty = F»(X). In particular, ¢ acts trivially on Ty, so End g, To = Fo(X). Therefore, T
is simple, but not absolutely simple over the S-algebra 7! G.
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