Chapitre III

Pour envelopper d’une catégorie ACU.

Dans ce chapitre nous nous occupons de deux problèmes universes, celui du rendu des objets "objet unité" et celui de l’inverse des objets.

§ 1. Le problème du rendu des objets "objet unité".

Pour pouvoir résoudre ce problème, occupons-nous du problème suivant.

1. Le problème de rendre des endomorphismes des identités.

Proposition 1. Soient A une catégorie, S une façade d’endomorphismes de cette catégorie. Il existe une catégorie \(A' \) et un foncteur \(H \) de \(A \) dans \(A' \) ayant les propriétés suivantes :

1° \(H(a) = \text{id} \) pour tout \(a \in S \).

2° pour tout foncteur \(K \) de \(A \) dans une catégorie \(B \), tel que \(K(a) = \text{id} \) pour tout \(a \in S \), il existe un foncteur \(K' \) et un seul de \(A \) dans \(B \) tel que \(K = K'H \).

En d'autres termes, \((A', H)\) est une solution du problème universel.

\[K : A \rightarrow B, \quad K(a) = \text{id} \text{ pour tout } a \in S. \]

Démonstration. Soient \(A, B \) des objets de \(A \) et \(R_{A, B} \) une relation binôme définie dans \(\text{Hom}(A, B) \) de la manière suivante : pour \(a, v \in \text{Hom}(A, B) \), on a \(aR_{A, B} v \) si et seulement s’il existe un entier \(n \geq 0 \), des entiers strictement positifs \(p_0, p_1, \ldots, p_n \), des morphismes

\[u = u_1 = u_2 = \ldots = u_n, \quad v = v_1 = v_2 = \ldots = v_n, \]

et des morphismes

\[(i) \quad (i) \quad (i) \quad \ldots \quad (i) \quad (i) \quad (i). \]
Tels que \(u = u_0 \cdots u_i \cdots u_k \), \(v = v_1 \cdots v_j \cdots v_{n+1} \) et
\[
\begin{align*}
&u_i \in E_i, \\
x_i &\in E_{i-1} \quad i \leq i-1 \\
&v_j \in E_{j+1} \quad j \geq j+1 \\
&v_{n+1} \in E_{n+1}
\end{align*}
\]
appartenant à \(Y \). On voit que \(R_{A,B} \) est une relation d'équivalence dans Hom \((A,B) \), elle est la relation d'équivalence la plus faible identifiant les flèches de \(Y \) avec les identités. Pour
\[
\begin{align*}
u \in \text{Hom}_A (A,B), \quad u, v \in \text{Hom}_{A,C}, \quad R_{A,B} u, v' : A \to C,
\end{align*}
\]
on \(u, v \) aussi \(u, v \) \(R \) \(u, v' \), \(u, v \) \(R \) \(v' \), d'où \(u, v \) \(R \) \(v' \). Notons par \(\bar{u} \) la classe d'équivalence contenant \(u \),
\[
\text{ola étant, posons}
\]
\[
\bar{u} = \bar{v} \quad \text{et} \quad \bar{u} = \bar{v}
\]
\[
\text{Hom}_A (A,B) = \text{Hom}_A (A,B) / R_{A,B}
\]
\(A \) est donc une catégorie qui est une catégorie quotient de \(A \). Le foncteur \(H : A \to A' \) est défini par les applications
\[
\begin{align*}
&u : A \to B \quad \mapsto \bar{u} : A \to B
\end{align*}
\]
Il est clair que \(H(u) = \text{id. pour tout } u \in Y \). Enfin, soient \(B \) une catégorie, \(K : A \to B \) un foncteur tel que \(K(a) = \text{id. pour tout } a \in Y \), le foncteur \(K' : A' \to B \) défini par les applications
\[
\begin{align*}
&u : A \to B \quad \mapsto K u : A \to B
\end{align*}
\]
est le seul foncteur de \(A' \) dans \(B \) tel que \(K = K' \circ H \).

Remarque : Quand la catégorie \(A \) est un groupe et \(E \in Y \) pour tout \(E \in Y \), la relation d'équivalence \(R_{A,B} \) dans Hom \((A,B) \) peut être...
décrit plus simplement : \(u, u' \in \text{Hom}_A (A, B) \), donc \(u, u' \) seul-
ment si il existe \(u = u_1 u_2 \cdots u_p, u' = u'_1 u'_2 \cdots u'_q \) et
\(\psi \in \mathcal{E} \) tel que \(u, u' \). En effet si cette dernière relation existe, il est clair que
l'on a \(u R_{A, B} u' \). Inversement supposons
\[
\begin{align*}
\omega &= \omega_1 \omega_2 \cdots \omega_p, \\
\omega' &= \omega'_1 \omega'_2 \cdots \omega'_q
\end{align*}
\]
avec \(\omega, \omega' \in \mathcal{E} \), alors on peut écrire
\[
\begin{align*}
u &= v_1 v_2 \cdots v_p, \\
u' &= v'_1 v'_2 \cdots v'_q
\end{align*}
\]
et on a
\[
\begin{align*}
\omega &= \omega_1 \omega_2 \cdots \omega_p \\
\omega' &= \omega'_1 \omega'_2 \cdots \omega'_q
\end{align*}
\]
continuant Y, par exemple Y lui-même. L'intersection de toutes ces parties est la plus petite partie multiplicative de Y contenant Y ; on dit qu'elle est engendrée par Y. Il est immédiat que c'est l'ensemble formé de tous les produits tensoriels finis de flichois de Y.

Proposition 2. Soient A une \(\mathcal{O} \)-catégorie AC, (a,c) un caractère AC, Y une partie multiplicative de A, il existe une \(\mathcal{O} \)-catégorie AC A\(^Y\) et un \(\mathcal{O} \)-foncteur AC (H, H) de A dans A\(^Y\) ayant les propriétés suivantes :

1° H(u) = \(\text{id} \) pour tout u \(\in \mathcal{Y} \);

2° pour tout \(\mathcal{O} \)-foncteur AC (K, K) de la \(\mathcal{O} \)-catégorie AC A dans une \(\mathcal{O} \)-catégorie AC B, il existe un \(\mathcal{O} \)-foncteur AC (K', K) et un \(\mathcal{O} \)-foncteur AC (B, B) dans A\(^Y\) tel que (K, K) = (K', K) \circ (H, H).

Démonstration. Considérons la relation d'équivalence \(R_{A,B} \) définie dans la proposition 1. Soient u, \(\nu \) \(\in \text{Hom}_A (B, B) \), u', \(\nu' \) \(\in \text{Hom}_A (B, B) \).

On a assurément (u \(\otimes \text{id} \)) \(\otimes \nu \) = \(\nu' \otimes \text{id} \), \(\otimes \nu' \) = \(\nu \otimes \text{id} \).

D'où dans la catégorie quotient A\(^Y\) (voir Prop. 1) on peut considérer une loi \(\otimes \) dont le produit tensoriel de deux objets de A\(^Y\) est le même que celui de A et dont le produit tensoriel de deux flichois est défini par

\(u \otimes u' = u \otimes \nu' \).

Les contraintes d'associativité et de commutativité pour A\(^Y\) sont \(\otimes \) et \(\otimes \) respectivement. Il est clair que elles sont compatibles. La \(\mathcal{O} \)-catégorie A\(^Y\) est donc une \(\mathcal{O} \)-catégorie AC. Enfin le foncteur H est défini comme dans la proposition 1 et H \(\circ \text{id} \) la composition (H, H) est ainsi en \(\mathcal{O} \)-foncteur.
Soient A une catégorie Ac et $(k, \tilde{k}) : A \rightarrow B$ un A-foncteur Ac tel que $K(u) = \mathbb{id}$ pour tout $u \in Y$. Le A-foncteur $(k', \tilde{k}') : A' \rightarrow B$ avec K' défini comme dans la proposition 1 et $K' = K$ est le seul A-foncteur Ac tel que $(k, \tilde{k}) = (k', \tilde{k}') \circ (H, \tilde{H})$.

Définition 2. Soient A une A-catégorie Ac, (a, c) sa contrainte de A, Y une partie multiplicative de A. On appelle A-catégorie A^Y quotient de A définie par Y et où l'on désigne par A^Y la catégorie A^Y définie par

$$\text{Ob } A^Y = \text{Ob } A$$

$$\text{Hom } A^Y (A, B) = \text{Hom } A (A, B) / R_{A, B},$$

où $R_{A, B}$ est défini par

$$A \otimes B \text{ dans } A^Y = A \otimes B \text{ dans } A,$$

et l'on pose $\overline{\mu \otimes \nu} = \mu \mu' \otimes \nu \nu'$, $\overline{\mu}, \overline{\nu} \in FL A^Y$.

Contrainte Ac : $(\overline{\sigma}, \overline{\epsilon})$

Où appelle le foncteur canonique de A dans A^Y le A-foncteur Ac :

$$A \rightarrow A$$

$$\epsilon : A \rightarrow B \rightarrow \overline{\epsilon} : A \rightarrow B.$$
où B est une \s-catégorie ACU et (K, ξ) un \s-foncteur ACU.

2. La question de rendre des objets "objet unité".

Tout d'abord, introduisons un \s-foncteur

Définition 3. Soit C une \s-catégorie AC, P une \s-catégorie ACU, sa contrainte d'unité étant notée (I_\s^P, ξ_\s^P). On définit par (I_\s^P, ξ_\s^P) le \s-foncteur de C dans P défini par

$$
X \mapsto I_\s^P
$$

$$
\downarrow \\
Y \mapsto \xi_\s^P
$$

$$
I_\s^P (X, Y) = d^4 ; I_\s^P (X) \otimes I_\s^P (Y) = I_\s^P (X \otimes Y)
$$

pour $X, Y \in \text{Ob } C$, $x \in P C$. Il est clair que (I_\s^P, ξ_\s^P) est un \s-foncteur AC en vertu de la compatibilité des contraintes de P. (I_\s^P, ξ_\s^P) est appelé le \s-foncteur I_\s^P constant de C dans P.

Dans tout ce qui suit de la \s-catégorie \s-catégorie munie de contrainte $AC : (a, c)$, \s' est une \s-catégorie munie de contrainte $AC : (a', c')$ et dont la catégorie sous-jacente est un groupoïde, (T, τ) ; $\s' \rightarrow \s$ un \s-foncteur AC. On se propose de chercher

1° Une \s-catégorie P munie des contraintes d'associativité de commutativité, d'unité compatibles ;

2° Un \s-foncteur (D, δ) : $\s \rightarrow P$ compatible avec les contraintes d'associativité, de commutativité dans \s et P.

3° Un \s-isomorphisme fonctoriel

$$
\lambda : (D, \delta) \circ (T, \tau) \sim (I_\s^P, \xi_\s^P)
$$

où (I_\s^P, ξ_\s^P) est le \s-foncteur I_\s^P constant de \s' dans P.

En plus, on veut que le triple $(P, (D, \delta), \lambda)$ soit universel pour les
triple \((Q, (E, E'), \mu) \) vérifiant 4°, 5°, 3° ; i.e. pour un triple \((Q, (E, E'), \mu) \) vérifiant 4°, 5°, 3°, il existe un \(\Theta \)-foncteur \((E', \mu') \) et un seul de \(P \) dans \(Q \) compatible avec les contraintes d'associativité, de commutativité, d'unité dans \(P \) et \(Q \), tel que \((E, E') = (E', \mu') \circ (D, \delta) \) et que le diagramme

\[
\begin{array}{ccc}
E' & \xrightarrow{\lambda} & E' \left(\frac{1}{\lambda} \right) \\
\downarrow & & \downarrow \mu' \\
\Theta' & \xrightarrow{\mu} & \Theta
\end{array}
\]

soit commutatif, \(\hat{E} : 1 \rightarrow E' \left(\frac{1}{\lambda} \right) \) étant l'isomorphisme venant de la compatibilité de \((E, E') \) avec les unités de \(P \) et \(Q \) (chap. 54, n° 2, D.i.e).

Nous considérons le problème d'abord au cas où \(A' = \emptyset \).

Proposition 4. Soit \(A \) une \(\Theta \)-catégorie munie d'une contrainte \(AC : (A, \cdot) \). Il existe une \(\Theta \)-catégorie \(ACU P \) et un \(\Theta \)-foncteur \((P, \delta) : A \rightarrow P \) compatible avec les contraintes d'associativité, de commutativité dans \(A \) et \(P \), ayant la propriété suivante :

Pour tout \(\Theta \)-foncteur \((E, E') \) de \(A \) dans une \(\Theta \)-catégorie \(ACU Q \) compatible avec les contraintes d'associativité, de commutativité de \(A \) dans \(Q \), il existe un \(\Theta \)-foncteur \(ACU (E', E') \) et un seul de \(P \) dans \(Q \) tel que \((E, E') = (E', E') \circ (D, \delta) \) et que \(\hat{E} \circ \frac{1}{\lambda} \rightarrow E' \).

Démonstration. Pour construire la catégorie \(P \), posons

\[
Ob P = Ob A \cup \{ \frac{1}{\lambda} \}
\]

\[
\begin{align*}
\text{Hom}(A, B) & , A, B \in Ob A \\
\phi, A \in Ob A, B = \frac{1}{\lambda} \\
\text{Hom}(A, B) & , A = \frac{1}{\lambda}, B \in Ob A \\
\{ \frac{\text{id}}{\lambda} \} & , A = B = \frac{1}{\lambda}
\end{align*}
\]
La composition des flèches dans \mathcal{P} se définit de façon naturelle à l'aide de la composition des flèches dans \mathcal{A}. Nous avons ainsi une catégorie.

Pour chaque \mathcal{P} d'une structure, nous définissons la fonction $\otimes : \mathcal{P} \times \mathcal{P} \rightarrow \mathcal{P}$ de la manière suivante, en nous servant de la loi \otimes dans \mathcal{A}.

\[
\begin{align*}
(A, B) &\mapsto A \otimes B \\
(1_\mathcal{P}, A) &\mapsto A \\
(u, v) &\mapsto u \otimes v \\
(c, d) &\mapsto c \otimes d \\
(1_\mathcal{P}, B) &\mapsto B \\
(\alpha, \beta) &\mapsto \alpha \otimes \beta \\
\end{align*}
\]

On vérifie aussi que \otimes ainsi défini est un foncteur. Il est clair que \otimes a défini de la façon suivante

\[
\begin{align*}
a_{A, B, C} (\text{dans } \mathcal{P}) &\equiv a_{A, B, C} (\text{dans } \mathcal{A}) \\
a_{1_\mathcal{P}, B, C} &\equiv \text{id} \\
a_{A, 1_\mathcal{P}, C} &\equiv \text{id} \\
a_{A, B, 1_\mathcal{P}} &\equiv \text{id} \\
\end{align*}
\]

pour $A, B, C \in \mathcal{Ob} \mathcal{A}$ et

\[
\begin{align*}
a_{1_\mathcal{P}, 1_\mathcal{P}, 1_\mathcal{P}} &\equiv \text{id} \\
\end{align*}
\]

constitue une contrainte d'associativité pour \mathcal{P}. Pour la contrainte de commutativité, posons

\[
\begin{align*}
c_{A, B} (\text{dans } \mathcal{P}) &\equiv c_{A, B} (\text{dans } \mathcal{A}) \\
c_{1_\mathcal{P}, A} &\equiv \text{id} \\
c_{A, 1_\mathcal{P}} &\equiv \text{id} \\
\end{align*}
\]
pour $A, B \in \mathcal{O}B \mathcal{A}$, et

$$c_{_{1_p, 1_p}} = 1_p$$

c est bien un isomorphisme fonctoriel et vérifie $c_{_{B, A}} \circ c_{_{A, B}} = \text{id}$

pour $A, B \in \mathcal{O}B \mathcal{P}$. Finalement pour la contrainte d'unité, posons

$$g_A = 1_A : A \simeq 1_A \otimes A = A,$$

$$d_A = \text{id} : 1_A \simeq A \otimes \text{id} = A$$

pour $A \in \mathcal{O}B \mathcal{A}$. Alors

$$g_{1_p} = 1_{1_p} = \text{id}_{1_p} : 1_p \simeq 1_p \otimes 1_p = 1_p$$

$(1_p, g, d)$ est manifestement contraint de unité pour \mathcal{P}. On vérifie aussi que ces contraintes sont compatibles. \mathcal{P} est donc une \mathcal{O}-catégorie \mathcal{A}.

Posons

$$D(A) = A, \quad D(w) = w, \quad D_{_{A, B}} = \text{id}_{A \otimes B}$$

pour $A, B \in \mathcal{O}B \mathcal{A}$, $w \in \mathcal{P}$. Il est immédiat que (D, \overline{D}) est un \mathcal{O}-foncteur de \mathcal{A} dans \mathcal{P} compatible avec les contraintes d'associativité et de commutativité.

Enfin, soient \mathcal{Q} une \mathcal{O}-catégorie \mathcal{A}, $(E, E') : \mathcal{A} \to \mathcal{Q}$ un

\mathcal{O}-foncteur compatible avec les contraintes d'associativité et de commutativité. Supposons qu'il existe un \mathcal{O}-foncteur $(E, E') : \mathcal{P} \to \mathcal{Q}$ compatible avec les contraintes d'associativité et de commutativité, d'unité dans

\mathcal{P} et \mathcal{Q} de telle que $(E, E') : (E, E') \circ (D, \overline{D})$ et $E' = \text{id}_{1_{\mathcal{Q}}}$. On obtient alors

$$E'(A) = E(A), \quad E'(1_p) = 1_{\mathcal{Q}}, \quad E'(w) = E(w), \quad E'(\text{id}_{1_p}) = \text{id}_{1_{\mathcal{Q}}}$$

(1)

$$E'_{_{A, B}} = E_{_{A, B}}, \quad E'_{_{1_p}} = 1_{\mathcal{Q}}, \quad E'_{_{A}} = \text{id}_{\mathcal{Q}}, \quad E'_{_{1_p}} = 1_{\mathcal{Q}}$$

pour $A, B \in \mathcal{O}B \mathcal{A}$ et $w \in \mathcal{P} \mathcal{A}$. D'où l' unité de (E, E').

Pour construire (E, E'), définissons-le par les formules (1).
On vérifie adjointement que \cdot est un \textit{\&}-foncteur $\mathcal{A} \mathcal{C} \mathcal{U}$ de \mathcal{P} dans \mathcal{Q}, tel que $(E, E') = (E, E') \circ (D, D')$ et $E' \circ \mathbb{1}_\mathcal{Q}$, ce qui démontre l'équation.

Revenons au cas général $(\mathcal{A}, \mathcal{A}')$ les hypothèses sur $\mathcal{A}, \mathcal{A}'$, $(\mathcal{T}, \mathcal{T}') : \mathcal{A} \to \mathcal{A}'$ sont toujours commutatives au début du n°.

Proposition 5.- Soient $A, B \in \mathcal{A}$, $\Phi(A, B)$ l'ensemble des triplets (A', B', u) où $A', B' \in \mathcal{A}'$, $u \in \mathcal{F}\mathcal{A}$, $u : A \otimes \mathcal{T}A' \to B \otimes \mathcal{T}B'$. Soit $\mathcal{R}_{A, B}$ la relation linéaire définie dans $\Phi(A, B)$ de la façon suivante:

$$(A_1', B_1', u_1) \mathcal{R}_{A, B} (A_2', B_2', u_2)$$

Si et seulement s'il existe des isomorphismes

$$u' : A_1' \otimes C_1' \cong A_2' \otimes C_2', \quad v' : B_1' \otimes C_1' \cong B_2' \otimes C_2'$$

dans \mathcal{A}' pour des objets C_1', C_2' de \mathcal{A}', tels que le diagramme

$$\begin{array}{ccc}
A \otimes \mathcal{T}(A_1' \otimes C_1') & \xrightarrow{\mathcal{T} \otimes u'} & A \otimes \mathcal{T}(A_2' \otimes C_2') \\
\downarrow \mathcal{T} \otimes \mathcal{T} & & \downarrow \mathcal{T} \otimes \mathcal{T} \\
A \otimes (\mathcal{T}A_1' \otimes TC_1') & \xrightarrow{\mathcal{T} \otimes \mathcal{T}} & A \otimes (\mathcal{T}A_2' \otimes TC_2') \\
\downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} \\
(A \otimes TA_1') \otimes TC_1' & \xrightarrow{\mathcal{T} \otimes \mathcal{T}} & (A \otimes TA_2') \otimes TC_2' \\
\downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} \\
(B \otimes \mathcal{T}B_1') \otimes TC_1' & \xrightarrow{\mathcal{T} \otimes \mathcal{T}} & (B \otimes \mathcal{T}B_2') \otimes TC_2' \\
\downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} \\
B \otimes (TB_1' \otimes TC_1') & \xrightarrow{\mathcal{T} \otimes \mathcal{T}} & B \otimes (TB_2' \otimes TC_2') \\
\downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} & \downarrow \mathcal{T} \otimes \mathcal{T} \\
\mathbb{1} \otimes \mathcal{T} & \xrightarrow{\mathcal{T} \otimes \mathcal{T}} & \mathbb{1} \otimes \mathcal{T} \\
\end{array}$$

soit commutatif. $\mathcal{R}_{A, B}$ est une relation d'équivalence.

Démonstration - la relation $\mathcal{R}_{A, B}$ est manifestement reflexive et se.
m'hique. Mentionnez qu'elle est transitive. Soient \((A_1', B_1', \mu_1), (A_2', B_2', \mu_2)\) et \((A_3', B_3', \mu_3)\) dans \(\mathcal{F}(A, B)\) tels que \((A_1', B_1', \mu_1) \overset{R_{A, B}}{\longrightarrow} (A_2', B_2', \mu_2)\) et \((A_2', B_2', \mu_2) \overset{R_{A, B}}{\longrightarrow} (A_3', B_3', \mu_3)\). Il existe alors des isomorphismes

\(u': A_1' \otimes c_1' \cong A_2' \otimes c_2',\quad v': B_1' \otimes c_1' \cong B_2' \otimes c_2'\)

\(v'': A_2' \otimes c_2'' \cong A_3' \otimes c_3',\quad w': B_2' \otimes c_2'' \cong B_3' \otimes c_3''\)

pour des objets \(c_1', c_2', c_3', c_3''\) de \(A'\) tels qu'on ait la commutativité du diagramme (2) et du diagramme (3) suivant.

\[
\begin{array}{ccc}
A \otimes T(A_2' \otimes c_2'') & \overset{id \otimes T}{\longrightarrow} & A \otimes T(A_3' \otimes c_3') \\
\downarrow{\phi} & & \downarrow{\phi}
\end{array}
\]

(3)

\[
\begin{array}{ccc}
A \otimes (TA_3' \otimes TC_3') & \overset{id \otimes TC_3'}{\longrightarrow} & A \otimes (TA_3' \otimes TC_3') \\
\downarrow{\phi} & & \downarrow{\phi}
\end{array}
\]

\[
\begin{array}{ccc}
A \otimes (TA_2' \otimes TC_2') & \overset{id \otimes TC_2'}{\longrightarrow} & A \otimes (TA_2' \otimes TC_2') \\
\downarrow{\phi} & & \downarrow{\phi}
\end{array}
\]

\[
\begin{array}{ccc}
B \otimes (TB_3' \otimes TC_3') & \overset{id \otimes TC_3'}{\longrightarrow} & B \otimes (TB_3' \otimes TC_3') \\
\downarrow{\phi} & & \downarrow{\phi}
\end{array}
\]

\[
\begin{array}{ccc}
B \otimes (TB_2' \otimes TC_2') & \overset{id \otimes TC_2'}{\longrightarrow} & B \otimes (TB_2' \otimes TC_2') \\
\downarrow{\phi} & & \downarrow{\phi}
\end{array}
\]

\[
\begin{array}{ccc}
B \otimes (TB_1' \otimes TC_1') & \overset{id \otimes TC_1'}{\longrightarrow} & B \otimes (TB_1' \otimes TC_1') \\
\downarrow{\phi} & & \downarrow{\phi}
\end{array}
\]

Il faut faire attention quand on a à peine de la commutativité des diagrammes (2) et (3) : dans ces diagrammes, toutes les flèches sont inversibles sauf \(u_1 \otimes id_{TC_1'}, u_2 \otimes id_{TC_2'}, u_3 \otimes id_{TC_3'}\).

Véronnons maintenant à la démonstration. Pour cela, considérons les diagrammes (4) et (5) suivants.
dans lesquels la commutativité des régions (I), (II), (III), (IV), (V), (VI), (VII), (VIII) résulte de (chap. I, §4, n°2, Prop. 12); celle de (IX), (X) de la fonctorialité de T; celle de (XI), (XII) de la fonctorialité de a; celle de (XIII) est donnée par l'hypothèse; celle de (XIV), (XV) vient de la fonctorialité de a et T; enfin celle de (XVI) et (XVII) d'ordre de la fonctorialité de C'. On en conclut la commutativité des circuits extérieurs du diagramme (4), et par suite celle des circuits extérieurs de (5) en remarquant que la région (XV) de (5) n'est pas autre que le circuit extérieur de (4). Ces considérations nous permettent d'affirmer qu'il existe des isomorphismes

$$A'_1 \otimes (C''_2 \otimes C'_3) \xrightarrow{\alpha'_1} A'_4 \otimes (C''_2 \otimes C'_3), \quad B'_1 \otimes (C''_2 \otimes C'_3) \xrightarrow{\psi'_1} B'_4 \otimes (C''_2 \otimes C'_3)$$

$$A'_2 \otimes (C''_2 \otimes C'_3) \xrightarrow{\alpha'_2} A'_3 \otimes (C''_2 \otimes C'_3), \quad B'_2 \otimes (C''_2 \otimes C'_3) \xrightarrow{\psi'_2} B'_3 \otimes (C''_2 \otimes C'_3)$$

définis par les diagrammes commutatifs suivants:

$$\begin{array}{ccc}
A'_1 \otimes (C''_2 \otimes C'_3) & \xrightarrow{\id \otimes \alpha'} & A'_4 \otimes (C''_2 \otimes C'_3) \\
\downarrow_{u'_1} & & \downarrow_{u' \otimes \id} \\
A'_2 \otimes (C''_2 \otimes C'_3) & \xrightarrow{\id \otimes \alpha'} & A'_3 \otimes (C''_2 \otimes C'_3) \\
\downarrow_{v'_1} & & \downarrow_{v' \otimes \id} \\
B'_1 \otimes (C''_2 \otimes C'_3) & \xrightarrow{\id \otimes \alpha'} & B'_4 \otimes (C''_2 \otimes C'_3) \\
\downarrow_{u''_1} & & \downarrow_{u'' \otimes \id} \\
B'_2 \otimes (C''_2 \otimes C'_3) & \xrightarrow{\id \otimes \alpha'} & B'_3 \otimes (C''_2 \otimes C'_3)
\end{array}$$

$$\begin{array}{ccc}
A'_1 \otimes (C''_2 \otimes C'_3) & \xrightarrow{\alpha'_1} & (A'_2 \otimes C''_2) \otimes C'_3 \\
\downarrow_{v'_1} & & \downarrow_{v' \otimes \id} \\
A'_2 \otimes (C'_3 \otimes C'_3) & \xrightarrow{\alpha'_2} & (A'_3 \otimes C'_3) \otimes C'_3 \\
\downarrow_{w'_1} & & \downarrow_{w' \otimes \id} \\
B'_1 \otimes (C''_2 \otimes C'_3) & \xrightarrow{\alpha'_1} & (B'_2 \otimes C''_2) \otimes C'_3 \\
\downarrow_{w''_1} & & \downarrow_{w'' \otimes \id} \\
B'_2 \otimes (C'_3 \otimes C'_3) & \xrightarrow{\alpha'_2} & (B'_3 \otimes C'_3) \otimes C'_3
\end{array}$$
Les diagrammes suivants sont commutatifs.

\[A \otimes (T_A' \otimes T(c'' \otimes c'_3)) \xrightarrow{a} (A \otimes T_A') \otimes T(c'' \otimes c'_3) \xrightarrow{\mu_a \otimes \text{id}} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xleftarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} B \otimes T(B'_3 \otimes (c'' \otimes c'_3)) \]

\[A \otimes (T_A' \otimes T(c'' \otimes c'_3)) \xrightarrow{a} (A \otimes T_A') \otimes T(c'' \otimes c'_3) \xrightarrow{\mu_a \otimes \text{id}} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xleftarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xrightarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes (T_A' \otimes T(c'' \otimes c'_3)) \xrightarrow{a} (A \otimes T_A') \otimes T(c'' \otimes c'_3) \xrightarrow{\mu_a \otimes \text{id}} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xleftarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xrightarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes (T_A' \otimes T(c'' \otimes c'_3)) \xrightarrow{a} (A \otimes T_A') \otimes T(c'' \otimes c'_3) \xrightarrow{\mu_a \otimes \text{id}} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xleftarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xrightarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes (T_A' \otimes T(c'' \otimes c'_3)) \xrightarrow{a} (A \otimes T_A') \otimes T(c'' \otimes c'_3) \xrightarrow{\mu_a \otimes \text{id}} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xleftarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xrightarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes (T_A' \otimes T(c'' \otimes c'_3)) \xrightarrow{a} (A \otimes T_A') \otimes T(c'' \otimes c'_3) \xrightarrow{\mu_a \otimes \text{id}} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xleftarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

\[A \otimes T(A''_3 \otimes (c'' \otimes c'_3)) \xrightarrow{\text{id} \otimes T_A''} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \xrightarrow{\text{id} \otimes T} (B \otimes T_B') \otimes T(c'' \otimes c'_3) \]

D'où \((A'_1, B'_1, m_1) \mathcal{R}_{A,B} (A'_3, B'_3, m_3)\). Nous diagonalisons par \([A', B', m]\) la classe d'équivalence de \((A'_1, B'_1, m_1)\).
Remarques. 1) Soient \([A', B', \mu'] = [A'_1, B'_1, \mu'_1] \in (A_1, B_1) / \mathcal{R}_{A,B}
\]
\(m': A'_1 \cong A'_2, \quad n': B'_1 \cong B'_2\) tel que le diagramme
\[
\begin{array}{c}
A \otimes T A_1' \longrightarrow B \otimes T B_1' \\
\downarrow \quad \downarrow \\
A \otimes T A'_2 \longrightarrow B \otimes T B'_2
\end{array}
\]
soit commutatif. Alors \([A', B', \mu'] \equiv [A'_2, B'_2, \mu'_2] \in (A_2, B_2) / \mathcal{R}_{A,B}\).
En effet, prouvons un objet quelconque \(C'_i\) de \(A'_i\), le diagramme suivant
\[
\begin{align*}
A \otimes T (A_1 \otimes C_1') & \stackrel{\mu_1'}{\longrightarrow} A \otimes (T A'_1 \otimes C_1') \stackrel{\mu_2'}{\longrightarrow} (A \otimes T A'_1) \otimes C_1' \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
A \otimes T (A'_1 \otimes C_1') & \stackrel{\mu_1'}{\longrightarrow} A \otimes (T A'_1 \otimes C_1') \stackrel{\mu_2'}{\longrightarrow} (A \otimes T A'_1) \otimes C_1'
\end{align*}
\]
ayant ses régions commutatives, a qu'on peut vérifier aisément, montrera le commutativité de son circuit extérieur.

2) Soient \([A', B', \mu'] \in (A_1, B_1) / \mathcal{R}_{A,B}; \quad m': B'' \cong B'' \in \text{Fl} A'.\) Alors
\([A', B', \mu'] = [A \otimes B'', B' \otimes B'', \zeta]\), \(\zeta\) étant défini par le diagramme commutatif
\[
\begin{array}{c}
A \otimes T (A_1 \otimes B'') \stackrel{\mu_1'}{\longrightarrow} A \otimes (T A_1 \otimes B'') \cong (A \otimes T A_1) \otimes B'' \\
\downarrow \quad \downarrow \\
B \otimes T (B'' \otimes B'') \stackrel{\mu_2'}{\longrightarrow} B \otimes (T B'' \otimes B'') \cong (B \otimes T B'') \otimes B''
\end{array}
\]
En effet considérons le diagramme ci-dessus où \(C'\) est un objet quelconque de \(A'_1\). Dans ce diagramme, la commutativité des régions (I), (II), (III) résulte de (chap. I, 8.2, Prop. 1) ; celle de (III), (X) de la fonctorialité de \(T\) ; celle de (IV), (XII) de la fonctorialité de \(\mu\); celle de (IV) est evidente, celle de (V) est donnée par le diagramme commutatif définissant \(\zeta\); enfin celle de (XII) vient de la définition de \(m' = ((id \otimes m') \otimes id) \zeta\). D'où la commutativité du circuit extérieur qui donne l'égalité \([A', B', \mu'] = [A_B, B'', \zeta]\).
3) Soient \([A', B', u] \in \Phi(A, B)/\mathbb{R}_{A, B}\), \(u' : A'' \to A\) \in \mathcal{F}(A')

Abso \([A', B', u] = [A'' \otimes A', A'' \otimes B', u']\), \(u'\) étant défini par le diagramme commutatif:

\[
\begin{array}{c}
A \otimes T(A'' \otimes A') \xrightarrow{id \otimes T} A \otimes (T(A' \otimes A')) \xrightarrow{id \otimes C} A \otimes (T(A' \otimes TA')) \\
\downarrow \quad \quad \quad \downarrow u \otimes T\alpha \\
\otimes T(A'' \otimes B') \xrightarrow{id \otimes T} \otimes (T(A'' \otimes TA')) \xrightarrow{id \otimes C} \otimes (T(B'TA') \otimes TA')
\end{array}
\]

En effet il suffit de considérer le diagramme suivant dont toute les régions sont commutatives, ce qui implique le circuit extérieur commutatif et par suite l'identité \([A', B', u] = [A'' \otimes A', A'' \otimes B', u']\). Dans ce diagramme \(C\) est un objet quelconque de \(\mathcal{A}'\) et \(w' = (C \otimes id) \circ (C \otimes u') \circ (C \otimes id)\).
Proposition 6. Soient $A, B, C \in Ob\mathcal{A}$, $[A', B', \omega] \in \Phi_{\mathcal{A}}(A, B)$, $[B'', C', \nu] \in \Phi_{\mathcal{B}}(B, C)$. Alors la classe d'équivalence $[A'' \otimes B'', B' \otimes C'', \omega'] \in \Phi_{\mathcal{A}}(A, C)$ est définie par le diagramme commutatif

\[
\begin{array}{c}
A \otimes T(A' \otimes B'') \xrightarrow{i} A \otimes (T_A \otimes T_B') \xrightarrow{a} (A \otimes T_A) \otimes T_B' \xrightarrow{\omega} (B \otimes T_B') \otimes T_C'' \\
\downarrow b \\
B \otimes (T_B \otimes T_B'') \\
\downarrow \text{id} \\
C \otimes (T_C'' \otimes T_B'') \\
\end{array}
\]

(8)

est indépendante des représentants des classes $[A', B', \omega]$, $[B'', C'', \nu]$.

Démonstration. Soient $[A', B', \omega] = [A'_1 \otimes B'', B'_2 \otimes C'', \Omega]$ Ω étant défini de la même façon que Ω. L'égalité $[A', B', \omega] = [A'_1, B'_2, \omega_1]$ s'exprime par l'existence de morphismes $\alpha': A' \otimes C' \xrightarrow{\omega_1} A'_1 \otimes C'_1$, $\nu': B' \otimes C' \xrightarrow{\omega_1} B'_1 \otimes C'_1$ tels qu'on ait la commutativité du diagramme

\[
\begin{array}{c}
A \otimes T(A' \otimes C') \xrightarrow{\text{id} \otimes T\alpha'} (A \otimes T_A) \otimes T_C' \xrightarrow{\text{id} \otimes T\nu'} B \otimes T(B' \otimes C') \\
\end{array}
\]

où les flèches en pointillé sont les composées des flèches construites à l'aide de α', ν', des identités et de la loi \otimes (voir Diag (8)). Donc, mais pour un \otimes-functor \mathcal{A} (resp. \mathcal{A}_L) de l'une des catégories \mathcal{A} (\mathcal{A}_L),
ACU) ∈ dans une Ω catégorie AC (respectivement ACU) ∈', en vertu de (Chap. I, §4, n° 2, Prop. 12 (resp. Prop. 11)) nous montrerons souvent, pour abréger ; en pointillé, les flèches construites à l'aide de α', α''

(c', c'''), F, F', F''), les identités et de la loi Ω (resp. α', α''', c', c''', g, g''', d', d''', Fa, Fa', Fe, Fe', Fg, Fg', F'd, F'd', F', F'), F', F'', des identités et de la loi Ω), et les composés de ces flèches. Soient u', u'', u', u' les flèches de A' définies par les diagrammes commutatifs suivants.

\[
\begin{array}{c}
A' \otimes (\mathcal{B} \otimes c') \xrightarrow{\sigma \otimes c'} A' \otimes (\mathcal{B} \otimes B'') \xrightarrow{\alpha'} (A' \otimes c') \otimes B'' \\
\downarrow \text{u'} \quad \downarrow \text{u''} \\
A' \otimes (\mathcal{B} \otimes c') \xrightarrow{\sigma \otimes c'} A' \otimes (\mathcal{B} \otimes B'') \xrightarrow{\alpha''} (A' \otimes c') \otimes B'' \\
\downarrow \text{u''} \\
(A' \otimes B'') \otimes c' \xrightarrow{\alpha''} A' \otimes (B'' \otimes c') \\
\downarrow \text{u'} \\
(A' \otimes B'') \otimes c' \xrightarrow{\alpha''} A' \otimes (B'' \otimes c') \\
\end{array}
\]

\[
\begin{array}{c}
b' \otimes (b' \otimes c') \xrightarrow{\sigma \otimes c'} b' \otimes (b' \otimes B'') \xrightarrow{\alpha'} (b' \otimes c') \otimes B'' \\
\downarrow \text{u'} \\
b' \otimes (b' \otimes c') \xrightarrow{\sigma \otimes c'} b' \otimes (b' \otimes B'') \xrightarrow{\alpha''} (b' \otimes c') \otimes B'' \\
\downarrow \text{u''} \\
(b' \otimes c') \otimes c' \xrightarrow{\alpha''} b' \otimes (c' \otimes c') \xrightarrow{\sigma \otimes c'} b' \otimes (c' \otimes c'') \\
\downarrow \text{u''} \\
b' \otimes (c' \otimes c') \xrightarrow{\alpha''} b' \otimes (c' \otimes c') \xrightarrow{\sigma \otimes c'} b' \otimes (c' \otimes c'') \\
\downarrow \text{u''} \\
b' \otimes (c' \otimes c') \xrightarrow{\alpha''} b' \otimes (c' \otimes c') \xrightarrow{\sigma \otimes c'} b' \otimes (c' \otimes c'') \\
\end{array}
\]

En suite considérons le diagramme suivant dont la commutativité des règles (I), (II), résulte de la définition de C et Ω (voir Diagramme (H)) ; celle de (III), (IV), (V), (XXXI), (XXXII) résulte de (Chap. I, §4, n° 2, Prop. 12).
celle de (III), (IV), (V), (VI), (VIII), (XI), (XII), (XVI) résulte de la fonctorialité de a, c, i ; celle de (VII), (IX), (XIX) de la définition de u_1, u_2, v_1, v_2 ; celle de (XIII) de l'hypothèse et de la commutativité du diagramme (2) ; enfin, celle de (XII) est évidente. D’où la commutativité du circuit extérieur qui montre qu’on a bien $[A' \otimes B'', B' \otimes C'', u] = [A', B', B' \otimes C'', u]$. La démonstration de l’égalité $[A' \otimes B'', B' \otimes C''] = [A', B', B' \otimes C'']$, étant analogue, nous la faisons par. On obtient donc

$$[A' \otimes B'', B' \otimes C'', u] = [A', B', B' \otimes C'', u]$$

ce qui démontre la proposition. On pose

$$[A' \otimes B'', B' \otimes C'', u] = [B'', C'', u] \circ [A', B', u]$$

Proposition 7. Soient $[A', B', u] \in \Phi(A, B)/\mathcal{R}_{A, B}$, $[B'', C'', u] \in \Phi(B, C)/\mathcal{R}_{B, C}$, $[C', D', w] \in \Phi(C, D)/\mathcal{R}_{C, D}$. Alors

$$[C', D', w] \circ ([B'', C'', u] \circ [A', B', u]) = ([C', D', w] \circ [B'', C'', u]) \circ [A', B', u]$$

Démonstration. En vertu de la définition de \circ dans la proposition 6, nous avons

$$[C', D', w] \circ ([B'', C'', u] \circ [A', B', u]) = [A' \otimes (B'' \otimes C'), B' \otimes (C'' \otimes D'), \alpha]$$

$$([C, D', w] \circ [B'', C'', v]) \circ [A', B', u] = [(A' \otimes B'') \otimes C', (B \otimes C'') \otimes D', \beta]$$

avec α, β définis par les diagrammes commutatifs suivants:

\[
\begin{array}{c}
A \otimes T(A' \otimes (B'' \otimes C')) \longrightarrow (A \otimes TA') \otimes T(B'' \otimes C') \xrightarrow{\text{id} \otimes \text{id}} (B \otimes TB') \otimes T(B'' \otimes C') \\
\downarrow \alpha \\
((B \otimes TB') \otimes TC') \otimes TB' \\
((v \otimes \text{id}) \otimes \text{id}) \downarrow \\
((C \otimes TC') \otimes TC'' \otimes TB') \\
\downarrow \\
D \otimes T(B' \otimes (C \otimes D')) \longrightarrow ((D \otimes TB') \otimes TC'') \otimes TB' \xleftarrow{\text{id} \otimes \text{id} \otimes \text{id} \otimes \text{id}} ((C \otimes TC') \otimes TC'' \otimes TB')
\end{array}
\]
Proposition 8. Soit \([A', B', u]\) \(\in \Phi(A, B) / R_{A, B}\). Alors

\([A', B', u] o [C', C', \text{id}_{A \otimes TC}] = [C', C', \text{id}_{B \otimes TC}] o [A', B', u] = [A', B', u]\)

pour tout objet \(C'\) de \(A'\).

Démonstration. Il suffit d'appliquer (Chap. I, §4, n°2, Prop. 12) et...
Les remarques 1) et 2).

Remarque 4) — Comme tout semble bien mené, on voit tenté de poser pour la construction de la catégorie P

$$\text{Ob } P = \text{Ob } A$$

$$\text{Hom}_P(A, B) = \hat{\phi}(A, B) / \theta_{A, B}, \quad A, B \in \text{Ob } P$$

La composition des flèches est définie comme dans la proposition 6. À

lec propositions 7 et 8, P est effectivement une catégorie, mais elle ne répond pas au problème posé, l'ensemble des flèches $T(c_{A, A'})$, où $c_{A, A'}$, sont des flèches de symétrie canonique dans la catégorie $A A'$. Les flèches $T(c_{A, A'})$ sont en général différentes des identités $!$. Au cas où

$$T(c_{A, A'}) = \text{id}$$

pour tout $A' \in \text{Ob } A'$, ce qui arrive quand A' est strictement

le doublement (T, \overline{T}) est tel que $T(c_{A, A'}) = \text{id}$ pour tout $A' \in \text{Ob } A'$, on peut numériser P d'une loi \otimes et puis des contraintes d'associativité, de commutation.

Tout, d'une façon naturelle pour que P réponde à la question.

Comme nous avons fait jusqu'ici, nous ne pouvons construire P en prenant $A, A', (T, \overline{T})$ avec les hypothèses données au début de n°. Pour pouvoir continuer, examinons un peu plus le problème posé. Supposons que $(P, (D, D'), \lambda)$ en soit une solution, alors pour toute flèche de symétrie canonique $c_{A, A'} :: A \otimes A' \rightarrow A' \otimes A'$, le diagramme communatif

$$\begin{array}{ccc}
\text{DT}(A' \otimes A') & \xrightarrow{\lambda_{A, A'}} & \text{I}_P(A' \otimes A') \\
\text{DT}(c_{A, A'}) & \downarrow & \text{I}_P(c_{A, A'}) = \text{id} \\
\text{DT}(A' \otimes A') & \xrightarrow{\lambda_{A, A'}} & \text{I}_P(A' \otimes A')
\end{array}$$

nous donne $\text{DT}(c_{A, A'}) = \text{id}$, ce qui montre que (D, D') se factorigue en

$$A \rightarrow A' \rightarrow P,$$

P étant la partie multiplicative de A injectée par l'inclusion dans l'ensemble des homomorphismes de A de la forme $T(c_{A, A'})$ et A' la

\otimes-catégorie AC quotient de A défini par A (n° 4, Déf. 1 et 2). Donc P
on part de A', A'' et du foncteur composé $A' \rightarrow B \rightarrow A''$, la construction de P menant comme nous avons signalé ci-dessus. Donc le but de simplifier les notations, nous pouvons considérer le problème comme posé pour $(T, T') : A' \rightarrow A''$ avec $T(c'_{A', A''}) = 1$ pour tout $A' \in Ob A'$.

Proposition 9. Soient $(A', B', u) \in \phi(A', B')/\Phi_{\mathcal{B}, \mathcal{B}} = \text{Hom}_A(A', B)$, $(B', c', v) \in \phi(B', c')/\Phi_{\mathcal{B}, \mathcal{B}} = \text{Hom}_B(B', c)$ (voir la définition de la catégorie P dans la remarque 4). Alors

$[(B', c', v) \circ (A', B', u)] = [(A', c', vu)]$.

Si u est un isomorphisme dans A', (A', B', u) est un isomorphisme dans P, son inverse étant $[(B', A', u^{-1})]$.

Démonstration. En vertu de la définition de la loi de composition des flèches de P (Prop. 6), nous avons

$[(B', c', v) \circ (A', B', u)] = (A' \otimes B', B' \otimes c', v)\begin{array}{c}
\downarrow u' \\
\downarrow f \\
\end{array}$

avec v défini par le diagramme commutatif (8) où l'on fait $B'' = B'$.

Or $c'_{TB', TB'}^{-1}$ est du vertu du diagramme commutatif

$\begin{array}{ccc}
TB' \otimes TB' & \xrightarrow{T} & T(B'' \otimes B') \\
\downarrow c'_{TB', TB'} & \xrightarrow{T} & \downarrow c'_{B'' \otimes B'} \\
TB' \otimes TB' & \xrightarrow{v' \otimes 1} & T(B \otimes B')
\end{array}$

et de l'hypothèse $T(c'_{B''}) = 1$, pour tout $B'' \in Ob A'$ (Rem. 4). Par conséquent le diagramme commutatif (8) devient le contour extérieur du diagramme suivant

$\begin{array}{ccc}
A \otimes T(A' \otimes B') & \xrightarrow{\omega} & A \otimes T(A' \otimes B') \otimes A \otimes T(A' \otimes B') \otimes TB' \otimes \mathbb{1} \otimes TB' \\
\downarrow \omega & \xrightarrow{(I)} & \downarrow \omega \\
C \otimes T(B' \otimes c') & \xrightarrow{c'_{TB' \otimes TB'}} & C \otimes T(B' \otimes c') \otimes T(c' \otimes TB') \otimes \mathbb{1} \otimes TB'
\end{array}$

dans lequel ω est défini tel que la région (II) soit commutative, ce qui donne la commutativité de la région (I). En vertu de la remarque 2)
on a \([A', C', \omega'] = [A' \otimes B', C' \otimes B', \omega']\); et de la remarque 1),
\([A' \otimes B', C' \otimes B', \omega'] = [A' \otimes B', B' \otimes C', \omega'].\) D'où l'égalité voulue.

Supposons que \(\tau\) soit un isomorphisme dans \(\mathcal{A}\). D'après ce que nous venons de démontrer, nous avons

\[
[B', A', \omega'] \circ [A', B', \omega] = [A', A', \eta_{A' \otimes A'}]
\]

\[
[A', B', \omega] \circ [B', A', \omega'] = [B', B', \eta_{B' \otimes B'}]
\]

ce qui montre, en vertu de la proposition 8, que \([B', A', \omega']\) est l'inverse de \([A', B', \omega]\).

Nous allons maintenant montrer \(P\) d'une \(\otimes\); structure et de constraints d'associativité, de commutativité d'unité.

Proposition 10. Soient \([A', B', \omega] \in \text{Hom}_p (A, B), [E, F, \omega] \in \text{Hom}_p (E, F). Alors la classe d'équivalence

\[
[A' \otimes E', B' \otimes F', \omega]
\]

avec \(\omega\) défini par le diagramme commutatif

\[
\begin{array}{ccc}
(A \otimes A') \otimes ((E \otimes E') \otimes (F \otimes F')) & \overset{\omega \otimes \omega}{\longrightarrow} & (B \otimes B') \otimes (F \otimes F') \\
\downarrow & & \downarrow \\
(A \otimes E) \otimes T(A \otimes E') & \overset{\omega}{\longrightarrow} & (B \otimes F) \otimes T(B \otimes F')
\end{array}
\]

est indépendante des représentants des classes \([A', B', \omega], [E, F, \omega]\).

Démonstration. Soient \([A_i', B_i', \omega_i] = [A', B', \omega], [E_i', F_i', \omega_i] = [E, F, \omega]. Montrons d'abord

\[
[A' \otimes E', B' \otimes F', \omega] = [A'_i \otimes E', B'_i \otimes F', \omega]
\]

\(\Omega\) étant défini par un diagramme commutatif analogue à (1), où l'on a remplacé \(A', B', \omega\) par \(A'_i, B'_i, \omega_i\). L'hypothèse \([A', B', \omega] = [A'_i, B'_i, \omega_i]\) montre donc des objets \(C', C'_i\) de \(A'\) et des isomorphismes \(\eta: A' \otimes C' \rightarrow A'_i \otimes C'_i,\)
 où la commutation des régions (I), (III), (VII), (IX) résulte de (chap. III, § 4, no 2, prop. 12) ; celle de (II), (VIII), (X) de la définition de W et Ω (Déf. 3) ; celle de (XI), (XII), (XIII) de la fonctionnalité de e, e₁, T ; celle de (II) de l'égalité
\[[A, B, v] = [A', B', v'] \] même à celle de (II), (XIII) de la définition de \(u, u' \) par les diagrammes commutatifs suivants

\[
\begin{array}{c}
(A \otimes C') \otimes E' \xrightarrow{u \otimes 1} (A \otimes C') \otimes E' \\
\downarrow \quad \downarrow \quad \downarrow \\
(A \otimes E') \otimes C' \xrightarrow{1 \otimes u'} (A \otimes E') \otimes C' \\
\downarrow \quad \downarrow \quad \downarrow \\
(B \otimes C') \otimes E' \xrightarrow{v' \otimes 1} (B \otimes C') \otimes E' \\
\downarrow \quad \downarrow \quad \downarrow \\
(B \otimes F') \otimes C' \xrightarrow{1 \otimes v'} (B \otimes F') \otimes C'
\end{array}
\]

On en conclut la commutativité du circuit extérieur, ce qui donne l'égalité
\[[A \otimes E', B' \otimes F', W] = [A' \otimes E', B' \otimes F', \Omega] \] . De la même manière on démontre que
\[[A' \otimes E', B' \otimes F', \Omega] = [A' \otimes E', B' \otimes F', \Omega] \] , ce qui achève la démonstration.

Proposition 14. - Les applications suivantes

\[\otimes : OB(P \times P) \rightarrow OB P \]

\[(A, E) \rightarrow A \otimes E \]

\[\otimes : \mathbb{P}(P \times P) \rightarrow \mathbb{P} P \]

\[[(A', B', u), (E', F', v)] \rightarrow [A' \otimes E', B' \otimes F', \Omega] \]

ou \([A', B', u] : A \rightarrow B \), \([E', F', v] : E \rightarrow P\) sont des flèches de \(P \), et \(\otimes \) est défini par le diagramme commutatif (9) ; définissant une fonction

\[\otimes : P \times P \rightarrow P \]

Démonstration. - Tan d'abord remarquons que pour deux flèches
\[f : A \rightarrow B, \ g : B \rightarrow C \text{ de } P \] , on peut toujours les mettre sous la forme

\[A \rightarrow B \rightarrow C \]
\[f = [A', B', \omega], \quad g = [B', C', \omega] \] telle que "l'extrémité" B' de f coïncide avec "l'origine" B' de g (Exempques 2) et 3). ôl' étant, soient

\[A \xrightarrow{[A', B', \omega]} B \xrightarrow{B'C', \omega} C \xrightarrow{[E', F', \omega]} F \xrightarrow{[F', G', \gamma]} G \]

et soient

\[[A' \otimes E', B' \otimes F', \omega] = [A', B', \omega] \otimes [E', F', \omega] \]

\[[B' \otimes F', C' \otimes G', \gamma] = [B', C', \omega] \otimes [F', G', \gamma] \]

Montrez que

\[[A' \otimes E', C' \otimes G', \gamma \omega] = [A', C', \omega \omega] \otimes [E', G', \gamma \omega] \]

Puis éd considérons le diagramme suivant

\[(A \otimes TA') \otimes (E \otimes TE) \xrightarrow{xu \otimes yv} (C \otimes TC') \otimes (G \otimes TG') \]

\[(A \otimes TA') \otimes (E \otimes TE) \xrightarrow{xu \otimes yv} (B \otimes TB') \otimes (F \otimes TF') \xrightarrow{xu \otimes yv} (C \otimes TC') \otimes (G \otimes TG') \]

\[(A \otimes E) \otimes T(A' \otimes E) \xrightarrow{xu \otimes yv} (B' \otimes F) \otimes T(B' \otimes F) \xrightarrow{xu \otimes yv} (C \otimes G) \otimes T(C' \otimes G) \]

où la commutativité de la région (I) est evidente, et celle de (II), (III) vient de la définition de \(\omega \) et \(\gamma \) respectivement. D'où la commutativité du circuit extérieur qui donne l'égalité voulue.

Enfin soit

\[A \xrightarrow{[A', A', id_{A'}]} A \]

la flèche d'identité de l'objet \(A \) (Prop. 8). La flèche

\[[A', A', id_{A'}] \otimes [A', A', id_{A'}] = [A' \otimes A', A' \otimes A', id_{A' \otimes A'}] \]

est bien la flèche d'identité de l'objet \(A \otimes A \), ce qui achève la démonstration.

Bien sûr, \(\omega \) est donc une \(\otimes \) catégorie.
Proposition 12. \[\left[A', A', a_{A'B'C} \otimes \text{id}_{T A'} \right] : A \otimes (B \otimes C) \to (A \otimes B) \otimes C \]
est une contrainte d'associativité pour la catégorie \(P \), \(A' \) étant un objet quelconque de \(A' \).

Démonstration. Tout d'abord remarquons que pour \(A, B, C \) donnés, la flèche \(\left[A', A', a_{A'B'C} \otimes \text{id}_{T A'} \right] \) est bien définie en vertu des égalités
\[\left[A', A', a_{A'B'C} \otimes \text{id}_{T A'} \right] = \left[A' \otimes B', A' \otimes B', a_{A'B'C} \otimes \text{id}_{T(A' \otimes B')} \right] \]
\[= \left[B', B', a_{A'B'C} \otimes \text{id}_{T B'} \right] \quad \text{(Rem. 2 et 3)} \]
pour tout objet \(B' \) de \(A' \). D'où on peut écrire
\[\left[A', A', a_{A'B'C} \otimes \text{id}_{T A'} \right] = \left[A' \otimes (B' \otimes C'), A' \otimes (B' \otimes C'), a_{A'B'C} \otimes \text{id}_{T (A' \otimes (B' \otimes C'))} \right] \]
et en vertu de la remarque 9,
\[\left[A' \otimes (B' \otimes C'), A' \otimes (B' \otimes C'), a_{A'B'C} \otimes \text{id}_{T (A' \otimes (B' \otimes C'))} \right] = \left[(A' \otimes (B' \otimes C')) \otimes (A' \otimes (B' \otimes C')) a_{A'B'C} \otimes \text{id}_{T A'} \right] \]
pour \(B', C' \in OB \).

Cela étant, montrons que \(\left[A', A', a_{A'B'C} \otimes \text{id}_{T A'} \right] \) est fonctoriel en \(A, B, C \). Il nous suffit de montrer que c'est fonctoriel en un des trois arguments, par exemple \(A \). La démonstration pour les deux autres étant analogues. Soit \(\left[A', A', a_{A'B'C} \right] : \beta \rightarrow A' \), nous allons montrer que le diagramme suivant est commutatif
\[A \otimes (B \otimes C) \xrightarrow{A \otimes (B' \otimes C')} (A \otimes B) \otimes C \]
\[\left[A', A', a_{A'B'C} \right] \otimes (\text{id} \otimes \text{id}) \]
\[\xrightarrow{(A' \otimes B) \otimes C} \]
D'abord nous avons
\[\text{id}_B = \left[B', B', \text{id}_{B \otimes T B'} \right], \quad \text{id}_C = \left[C', C', \text{id}_{C \otimes T C} \right] \]
Sous
\[\left[A', A', \ast \right] \otimes (\left[B', B', \ast \right] \otimes \left[C', C', \ast \right]) = \left[A' \otimes (B' \otimes C'), A' \otimes (B' \otimes C'), a_{A'B'C} \right] \]
\[(A', A', a') \otimes [B', B', e'] \otimes [C', C', i'] = (1_{A'} \otimes b') \otimes C' (A' \otimes B') \otimes C, u_2)\]

où \(u_1\) et \(u_2\) sont définis par les diagrammes commutatifs suivants :

\[\begin{array}{c}
(A \otimes (B \otimes C)) \otimes T(A' \otimes (B' \otimes C)) \\
\downarrow \\
\downarrow \\
(A \otimes (B \otimes C)) \otimes T((A' \otimes (B' \otimes C)) \otimes (C \otimes T'))
\end{array}\]

\[\begin{array}{c}
(A \otimes B) \otimes C \otimes T((A \otimes B) \otimes C') \\
\downarrow \\
\downarrow \\
((A \otimes B) \otimes C) \otimes T((A \otimes B) \otimes C') \otimes (C \otimes T')
\end{array}\]

en vertu de la définition du produit tensoriel des flèches de \(F\), dans la proposition 10. Donc la démonstration de la commutativité du diagramme tient à celle de l'égalité :

\[\begin{array}{c}
(A' \otimes (B' \otimes C'), (A' \otimes B') \otimes C', u_2(a \otimes T'a') = (A' \otimes (B' \otimes C'), (A' \otimes B') \otimes C', (a \otimes T') u_2).
\end{array}\]

On le diagramme suivant :

\[\begin{array}{c}
\begin{array}{c}
(A \otimes T'a') \otimes ((B \otimes T'a') \otimes (C \otimes T')) \\
\downarrow \\
\downar
enfin la région (ii) en vint de la fonctorialité de a. On en conclut
la commutativité du circuit extérieur, et par suite l’égalité
$\mu_1 = (a \circ \text{id}_{\scriptscriptstyle \mathbf{A}}) \circ \mu_1$.

Pour montrer que l’axiome du pentagone est satisfait, considérons
les flèches
\[
[A', A', a_{A', B, C}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{A}}] : A \circ (B \circ C) \rightarrow (A \circ B) \circ C
\]
sous la forme
\[
[A' \circ (B' \circ C'), (A' \circ B') \circ C', a_{A', B, C}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{A}}]
\]
notamment que, ou a
\[
[W', W', \circ \circ \text{id}_{\scriptscriptstyle \mathbf{W}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{W}}] \circ [X' \circ (Y' \circ Z'), (X' \circ Y') \circ Z', a_{X', Y', Z'}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{X}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{Y}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{Z}}] =
\]
\[
[W' \circ (X' \circ (Y' \circ Z')), (W' \circ (X' \circ Y')) \circ Z', (\text{id} \circ a_{X', Y', Z'}) \circ T(\text{id} \circ a_{X', Y', Z'})]
\]
et
\[
[W' \circ (X' \circ Y'), (W' \circ X') \circ Y', a_{W, X, Y}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{W}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{X}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{Y}}] \circ [Z', Z', \circ \circ \text{id}_{\scriptscriptstyle \mathbf{Z}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{Z}}] =
\]
\[
[(W' \circ (X' \circ Y')) \circ Z', ((W' \circ X') \circ Y') \circ Z', (a_{W, X, Y}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{W}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{X}} \circ \circ \text{id}_{\scriptscriptstyle \mathbf{Y}})]
\]

de remarques faites, l’axiome du pentagone est réalisés dans \mathcal{P} en vertu du fait qu’il est réalisé dans \mathbf{A} et \mathbf{A}'. D’où la proposition.

Proposition 12. $[A', A', C_{A', B}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{A}}] : A \circ B \rightarrow B \circ A$ est une con-
trainte de commutativité pour la \triangle catégorie \mathcal{P}, A' étant un objet quel-
conque de \mathbf{A}'.

Démonstration. En vertu des remarques 2) et 3) on a
\[
[A', A', C_{A', B, C}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{A}}] = [A \circ B' \circ B', C_{A', B, C}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{A}}] \circ T(A \circ B')
\]

pour tout $B' \in \mathbf{A}'$, ce qui montre que la flèche $[A', A', C_{A', B, C}, \circ \circ \text{id}_{\scriptscriptstyle \mathbf{A}}]$ est bien définie pour A, B donnés. Ensuite la fonctorialité et l’auto-compatibilité
(Chap. I, §3, n°2, Dif. 6, Rel. (6)) de \([A', A', c_{A', B} \otimes \text{id}_{TA'}] e obtenue en remplaçant qu'on a

\[
[A', A', c_{A', A', B} \otimes \text{id}_{TA'}] = [A' \otimes B', B' \otimes A', c_{A', B} \otimes Tc_{A', B'}]
\]

\(B'\) étant un objet quelconque de \(A'\).

Proposition 14. Soit \(A' \in \text{Ob} \ A'\). Alors le triple

\[
(t_A = TA', \delta' = [A' \otimes A', A', t_A], t_A = [A' \otimes A', A', t_A])
\]

\(t_A\) est un objet quelconque de \(A'\), \(A'\) varie dans \(\text{Ob} \ A'\), et les isomorphismes \(t_A, \delta_{A, A'}\) sont définis par les diagrammes commutatifs:

\[
\begin{array}{ccc}
A \otimes TA' \otimes A' & \overset{\text{id} \otimes T}{\longrightarrow} & A \otimes (TA' \otimes TA') \\
\downarrow t_A & & \downarrow t_A \\
(TA' \otimes A') \otimes TA' & \overset{\text{id} \otimes T}{\longrightarrow} & (A \otimes TA') \otimes TA'
\end{array}
\]

constitue une contrainte d'unité pour la \(\otimes\) catégorie \(P\).

Démonstration. D'abord démontrons que les isomorphismes ne dépendant pas de \(A'\) sont en objet quelconque de \(A'\). Les diagrammes suivants

\[
\begin{array}{ccc}
A \otimes T((A' \otimes A') \otimes B) & \overset{\text{id} \otimes T}{\longrightarrow} & (A \otimes T((A' \otimes A')) \otimes TB \\
\downarrow A \otimes T((A' \otimes B) \otimes A) & & \downarrow A \otimes T((A' \otimes A') \otimes TA') \\
A \otimes T(T(A' \otimes A') \otimes B) & \overset{\text{id} \otimes T}{\longrightarrow} & (A \otimes T((A' \otimes A') \otimes TB') \otimes TB' \otimes (A \otimes T(A' \otimes A')) \otimes T(A' \otimes B')
\end{array}
\]

\[
\begin{array}{ccc}
A \otimes T(T(A' \otimes A') \otimes B) & \overset{\text{id} \otimes T}{\longrightarrow} & (A \otimes T((A' \otimes A') \otimes TB) \otimes TB' \otimes (A \otimes T(A' \otimes A')) \otimes T(A' \otimes B')
\end{array}
\]

sont commutatifs en remplaçant que \(t_A, \delta_{A, A'}\) sont des isomorphismes de flèches commutatives, à l'aide de \(a, c, T\), de \(e\) unité et de la loi \(\otimes\), et en appliquant (Chap. I, §2, n°2, Prop. 12), ce qui montre que
$[A' \otimes A', A', \varphi_A] = [A'_0 \otimes B', B', \varphi_A]$

e
$[A'_0 \otimes A', A', \varphi_A] = [A'_0 \otimes B', B', \varphi_A]$

e
$\epsilon : [A'_0 \otimes A', A', \varphi_A], [A'_0 \otimes A', A', \varphi_A] \text{ ne dépendent pas de } A'$. Consequemment, sont en plus fonctoriels en A' en vertu de (Chap. I, §4, n°2, Prop. 30) et de la fonctorialité de ϵ, φ_A. Enfin pour $A = \mathbb{P}$, on a

$\epsilon : [A', A', \varphi_A] \text{ en vertu de } T(\epsilon, \varphi_A) = \epsilon$ pour tout $A' \in Ob. A'$ (Rin. 41),

ce qui donne $g_{\mathbb{P}} = d_{\mathbb{P}}$.

Proposition 45. La \otimes catégorie \otimes munie des contraintes d'associativité $[A', A', a \otimes id_{TA'}]$, de commutativité $[A', A', c, A, B \otimes id_{TA'}]$ et d'unité $[1, A, A', \varphi_A]$, est une \otimes catégories ACU.

Démonstration. En vertu de (Chap. I, §3, n°6, Prop. 42), il suffit de démontrer que $[A', A', a \otimes id]$ est compatible respectivement avec

$[A', A', c \otimes id]$ et $(1, g, d)$.

La compatibilité de $[A', A', a \otimes id]$ avec $[A', A', c \otimes id]$ s'obtient en remarquant comme dans les propositions 42 et 43 qu'on peut écrire

$[A', A', a \otimes id] = ([X \otimes (Y \otimes Z'), (X \otimes Y) \otimes Z'], c, A, B \otimes id_{TA'})$

$[A', A', c \otimes id] = ([X \otimes (Y \otimes Z'), (X \otimes Y) \otimes Z'], c, A, B \otimes id_{TA'})$

$[X \otimes Z', Z' \otimes X, c \otimes id_{TA'}] = [Y, Y', \varphi_A, \epsilon, \varphi_A] = [X \otimes Z', Z' \otimes Y, c, Y, Z' \otimes id_{TA'}]$

$[X, X', \varphi_A, \epsilon, \varphi_A] = [Y \otimes Z', Z' \otimes Y, c, Y, Z' \otimes id_{TA'}]$

et que l'axiome de l'hexagone est satisfait dans A' et A'_0. Enfin la compatibilité de $[A', A', a \otimes id]$ avec $(1, g, d)$ résulte de (Chap. I, §4, n°2, Prop. 41).
Proposition 12 - Soit
\[D : G A \rightarrow G P \]
\[A \rightarrow A \]
\[D : F A \rightarrow F P \]
\[\alpha : A \rightarrow B \rightarrow [A', A', \alpha \circ \text{id}_{TA'}] \]
A étant un objet quelconque de A',
\[D = \text{id}_{A/B} \]
puisque A, B ε G A. Alors (D, B) est un Θ-foncteur de A dans P compatible avec les contraintes d'associativité, de commutativité dans A et P.

Démonstration - Comme on a remarqué dans les propositions 12 et 13, la flèche \([A', A', \alpha \circ \text{id}_{TA'}]\) est indépendante de l'objet A', en vue de la proposition 8 et 9, nous avons
\[[A', A', \alpha \circ \text{id}_{TA'}] = \text{id}_A \text{ (dans } P) \]
\[[A', A', \nu \circ \text{id}_{TA'}] = [A', A', \nu \circ \text{id}_{TA'}] \circ [A', A', \alpha \circ \text{id}_{TA'}] \]
ce qui montre que D est un foncteur de A dans P. En outre, pour \(\alpha : A \rightarrow A'\) et \(\nu : B \rightarrow B'\), l'égalité
\[[A', A', \alpha \circ \text{id}_{TA'}] \circ [B', B', \nu \circ \text{id}_{TB'}] = [A' \circ B', A' \circ B', (\alpha \nu) \circ \text{id}_{T(A\circ B)}] \]
venant de la fonctorialité de A, C, nous montrons que D est un isomorphisme fonctoriel. Enfin, la compatibilité de (D, B) avec les contraintes d'associativité, de commutativité dans A et P se vériﬁe aussi bien en partant de la déﬁnition du Θ-foncteur (D, B) et des contraintes d'associativité, de commutativité dans P.

Proposition 13 - Il existe un Θ-isomorphisme fonctoriel
\[\lambda : (D, B) \rightarrow (\lambda, \lambda) \rightarrow (\lambda, \lambda) \]
 où (\(\lambda, \lambda\)) ε G est le Θ-foncteur identique, d'objet A' dans P (Dif.3).

Démonstration - Soit A' un objet de A', considérons la flèche
\[\lambda : A' \rightarrow A' \]
(10) \[DTA' \cong TA' \xrightarrow{\lambda_{A'}} [\Lambda_{A'}, \epsilon_{TA', TA''}] \xrightarrow{\lambda_{A'}^{-1}} I \xrightarrow{\pi} A' \cong TA'_0 \]

\(\lambda_{A'} \) est bien un isomorphisme dans \(E \), puisque \(\epsilon_{TA', TA''} \) est un isomorphisme dans \(E \) (Prop. 3). Montrons que \(\lambda \) est fonctoriel en \(A' \). Considérons le diagramme suivant où \(\mu' : A' \rightarrow A'' \) est une flèche de \(A' \) et

\[DTA' \cong TA' \xrightarrow{[\Lambda_{A'}, \epsilon_{TA', TA''}]} I \xrightarrow{\pi} A' \cong TA'_0 \]

et

\[DTA'' \cong TA'' \xrightarrow{[\Lambda_{A''}, \epsilon_{TA'', TA'_0}]} I \xrightarrow{\pi} A'' \cong TA''_0 \]

d'où la commutativité se déduit aisément à \(\epsilon' \)-estable.

\[[\Lambda_{A'}, \epsilon_{TA', TA''}] \circ [\Lambda_{A''}, \epsilon_{TA'', TA'}] = [\Lambda_{A'}, \epsilon_{TA', TA''} \circ (\mu' \otimes \text{id}_{TA''})] \]

On la commutativité du diagramme

\[\begin{array}{ccc}
TA' \otimes TA' & \xrightarrow{\epsilon_{TA', TA''}} & TA' \otimes TA'' \\
\text{id} \otimes \text{id} \downarrow & & \downarrow \text{id} \otimes \text{id} \\
TB' \otimes TA'' & \xrightarrow{(\text{id} \otimes \text{id}) \circ \epsilon_{TA', TA''}} & TA' \otimes TA''
\end{array} \]

nous donne

\[[\Lambda_{A'}, \epsilon_{TA', TA''}] \circ [\Lambda_{A''}, \epsilon_{TA'', TA'}] = [\Lambda_{A'}, \epsilon_{TA', TA''} \circ (\text{id} \otimes \mu' \otimes \text{id}_{TA''})] \]

En vertu de la remarque 1), et celle du diagramme

\[\begin{array}{ccc}
TA' \otimes TA' & \xrightarrow{\epsilon_{TA', TA''}} & TA' \otimes TA'' \\
\text{id} \otimes \text{id} \downarrow & & \downarrow \text{id} \otimes \text{id} \\
TA' \otimes TA'' & \xrightarrow{\text{id} \otimes \mu' \otimes \text{id}_{TA''}} & TA' \otimes TA''
\end{array} \]

venant de la fonctorialité de \(\epsilon' \), nous avons

\[[\Lambda_{A'}, \epsilon_{TA', TA''}] \circ [\Lambda_{A''}, \epsilon_{TA'', TA'}] = [\Lambda_{A'}, \epsilon_{TA', TA''} \circ (\text{id} \otimes \mu' \otimes \text{id}_{TA''})] = [\Lambda_{A'}, \epsilon_{TA', TA''} \circ (\text{id} \otimes \text{id}) \circ \epsilon_{TA', TA''}] \]

D'où l'égalité voulue, ce qui montre que \(\lambda \) est un morphisme fonctoriel.

Il nous reste à prouver que \(\lambda \) est un morphisme, c'est le diagramme
\[
\begin{align*}
\text{DTA'} \otimes \text{DTB'} & \xrightarrow{\phi} \text{DT}(A' \otimes B') \\
\lambda_{A'} \otimes \lambda_{B'} & \text{ } \\
\Phi_{A', B'} & \xrightarrow{\text{DT}} \lambda_{A' \otimes B'} \\
I_{A'} \otimes I_{B'} & \xrightarrow{\text{Id}} I_{A' \otimes B'} \\
\end{align*}
\]

est commutatif pour \(A', B' \in \mathcal{C}, \mathcal{C}')$. La définition de \(\text{DT}_{A', B'}\) (Chap. I, §4, n°1, Déf. 2) nous donne

\[\text{DT}_{A', B'} = \{C', C', \Phi_{T_{A'} T_{B'}}, \Phi_{T_{A'} T_{B'}}, \Phi_{T_{A'} T_{B'}}\} , C' \in \mathcal{C}, C' \in \mathcal{C}'\]

que nous écrivons ci-dessous:

\[\text{DT}_{A', B'} = \left[A' \otimes (A' \otimes A'), A' \otimes (A' \otimes A'), \Phi_{T_{A'} T_{B'}}, \Phi_{T_{A'} T_{B'}}, \Phi_{T_{A'} T_{B'}} \right] \]

En plus en appliquant les remarques 2) et 3) où on prend successivement les isomorphismes \(\text{Id}_{A'} \rightarrow A'_0 \rightarrow A'_0 \otimes A'_0, \text{Id}_{A' \otimes B'} \rightarrow A' \otimes B', A' \otimes B' \rightarrow A' \otimes B'\), nous obtenons

\[\lambda_{A'} \otimes \lambda_{B'} = \left[A'_0, A'_0, \text{Id}_{T_{A'} T_{A'_0}}, \text{Id}_{T_{B'} T_{A'_0}}, A'_0 \right] \otimes \left[A'_0, B', \text{Id}_{T_{B'} T_{A'_0}}, \text{Id}_{T_{B'} T_{A'_0}}, A'_0 \right] = A'_0 \otimes A'_0, A'_0 \otimes A'_0, \Phi_{T_{A'} T_{B'}}\]

\[= \left[A'_0 \otimes (A'_0 \otimes A'_0), A'_0 \otimes (A'_0 \otimes B'), \text{Id}_{T_{A'} T_{A'_0}}, \text{Id}_{T_{B'} T_{A'_0}} \right] , \text{cône défini par (3)}\]

\[\lambda_{A' \otimes B'} = \left[A'_0, A' \otimes B', \text{Id}_{T_{A' \otimes B'}}, \text{Id}_{T_{A' \otimes B'}} \right] = \left[A'_0 \otimes (A'_0 \otimes A'_0), (A' \otimes B') \otimes (A'_0 \otimes A'_0), \text{Id}_{T_{A' \otimes B'}}, \text{Id}_{T_{A' \otimes B'}} \right] \]

Cela étant, la commutativité du diagramme considéré résulte de la remarque 4) et de (Chap. I, §4, n°2, Prop. 12).

\textit{Proposition 12.} - Soient \(\mathcal{C}\) une \(\Theta\)-catégorie \(\mathcal{ACU}\), \((E, E')\) un \(\Theta\)-fonctionnel \(\mathcal{C}\) dans \(\mathcal{C}\) et compatible avec les contraintes d'associativité, de commutativité, d'unité et \(\Theta\) tel que \(\mathcal{C}\) contienne \(\mathcal{C}'\) et \(\mathcal{C}\) tel qu'il existe un \(\Theta\)-isomorphisme \(\Phi_{E, E'}\)

\[\mu : (E, E') \circ (T, T') \stackrel{\cong}{\rightarrow} (I_{E'}, I_{E'})\]

Alors, il existe un \(\Theta\)-fonctionnel \(\mathcal{ACU}\) et un sous \(\mathcal{E}(E, E')\) de \(\mathcal{P}\) dans \(\mathcal{C}\).
Soit un diagramme commutatif pour tout $A' \in \text{Ob } A'$, $\lambda'_{A'} : E'_1 \rightarrow E'(A')$ étant l'isomorphisme venant de la compatibilité de (E', \tilde{E}') avec les unités de P et Θ.

Démostration. 1° Unicité de (E', \tilde{E}'). Supposons que (E', \tilde{E}') existe.

Alors l'égalité $(E, \tilde{E}) = (E', \tilde{E}') \circ (D, \tilde{D})$ nous donne

$$E'D = E' \Rightarrow E'D = \tilde{E}'$$

qui en vertu de la définition de (D, \tilde{D}) (Prop. 16)

(1) $E'(A) = E(A) \Rightarrow E'_A = E_A$

pour $A, B \in \text{Ob } P = \text{Ob } A$. Faisons $A' = A_0'$, dans la formule (10) donnant $\lambda'_{A'}$, nous obtenons $\lambda'_{A_0'} = \text{id}$ puisque $T(A_0', A_0') = \text{id}$, ce qui nous donne

(2) $\tilde{E}' = \mu^{-1}_{A_0'}$

à partir du diagramme commutatif

$$\begin{array}{ccc}
E'(DTA') & \xrightarrow{E'(\lambda'_{A'})} & E'(A') \\
\downarrow & & \downarrow \tilde{E}' \\
E'TA' & \xrightarrow{\mu^{-1}_{A_0'}} & E'' \end{array}$$

Puisque (E', \tilde{E}') est compatible avec les unités $(1_P, \gamma, \eta), (1_\Theta, g, \delta)$ de P et Θ respectivement, on a le diagramme commutatif

$$\begin{array}{ccc}
E'A' & \xrightarrow{E'D_A'} & E'(A' \Theta 1_\Theta) \\
\downarrow \tilde{E}' & & \uparrow \tilde{E}' \\
E'A' \Theta 1_\Theta & \xrightarrow{\text{id} \Theta \tilde{E}'} & E'A \Theta E'_{1_\Theta} \end{array}$$
que domine l'invité de $E'd_A$ un vaste de (11) et (12). L'invité de $E'\lambda_A'$
vient du diagramme commutatif

$$
E'\left(\text{DTA}'\right) \xrightarrow{E'(\lambda_A')} E'(\text{i}_{E'}) \xrightarrow{E'} \Omega'
$$

$$
\xrightarrow{\eta_T A'} \text{E}'A \xrightarrow{i_A'} \Omega'
$$

et de la formule (11). Donc l'invité de $\text{id}_A \otimes E'\lambda_A'$ et par conséquent
l'invité de $E'\left(\text{id}_A \otimes \lambda_A'\right)$ en vaste de (11) et du diagramme commutatif

$$
E'\left(A \otimes \text{TA}'\right) \xrightarrow{E'(\text{id}_A \otimes \lambda_A')} E'\left(A \otimes \text{TA}'_0\right)
$$

$$
\xrightarrow{E'} \Omega'
$$

$$
E'A \otimes E'TA' \xrightarrow{\text{id}_A \otimes E'\lambda_A'} E'A \otimes E'TA'_0
$$

Enfin sort $[A', B', \omega'] : A \rightarrow B$ une flèche de P. Considérons le diagramme

$$
\begin{array}{ccc}
A & \xrightarrow{\text{id}_A} & A \otimes A' \xrightarrow{\text{id}_A \otimes \lambda_A'} A \otimes \text{TA}' \\
A, A' & \xrightarrow{f_A, f_A'} & A \otimes A' \\
B & \xrightarrow{\text{id}_B} & B \otimes B' \xrightarrow{\text{id}_B \otimes \lambda_B'} B \otimes \text{TB}'
\end{array}
$$

et suivons successivement, en nous servant de la remarque 3) et en prenant les isomorphismes $\text{id} : A' \rightarrow A'$, $\text{id} : A'_o \rightarrow A'_o$.

$$
\text{id} \otimes \lambda_A' = \left[A', A', \text{id} \otimes \lambda_A' \right] \otimes \left[A'_o, A'_o, \text{id} \otimes \lambda_A' \right] = \left[A' \otimes A', A' \otimes A'_o, \omega \right]
$$

$$
\text{Du} = \left[A' \otimes A'_o, A' \otimes A'_o, \mu' \otimes \text{id} \right]
$$

$$
\text{id} \otimes \lambda_A' = \left[A', A', \text{id} \otimes \lambda_A' \right] \otimes \left[A'_o, B', \text{id} \otimes \lambda_A' \right] = \left[A' \otimes A'_o, A' \otimes B', \omega' \right]
$$

ω et ω' étant définis par le diagramme commutatif (9). Il n'en suit que...
qu'à composer les flèches et nous servir de (Chap. I, §4, n°2, lemme 42) et de la fonctorialité de \(T \) et des contraintes d'associativité de commutations pour avoir la commutativité du diagramme considéré. Appliquons à ce diagramme le foncteur \(E' \) nous obtenons le diagramme commutatif

\[
\begin{array}{ccc}
E' A & \xrightarrow{E' d_A} & E'(A \otimes T A) \\
\downarrow & & \downarrow \\
E' B & \xrightarrow{E' d_B} & E'(B \otimes T B)
\end{array}
\]

ce qui donne effectivevment l'unicité de \(E'(\langle A', B', u \rangle) \) en vertu de l'unicité de \(E' d_A \), \(E' d_B \), \(E'(id_A \otimes A') \), \(E'(id_A \otimes A') \) qu'on vient de démontrer ci-dessus. D'où l'unicité du foncteur \((E', E') \).

2° Existence de \((E', E') \). Soient \(A, B \in \mathcal{O} \mathcal{P} \) et \(\langle A', B', u \rangle : A \rightarrow B \) une flèche de \(\mathcal{P} \). Définissons \(E' A \), \(E' A \), \(E' B \) par les formules (1) et (3) et le diagramme commutatif

\[
\begin{array}{ccc}
E' A & \xrightarrow{E' d_A} & E(A \otimes T A) \\
\downarrow & & \downarrow \\
E' B & \xrightarrow{E' d_B} & E(B \otimes T B)
\end{array}
\]

Prouvons que \(E'(\langle A', B', u \rangle) \) est indépendant de représentants de la classe \(\langle A', B', u \rangle \). D'abord nous allons montrer que \(E'(\langle A', B', u \rangle) \circ E' \circ C \circ C' \) où \(C' \) est un objet quelconque de \(A' \), \(C' \) défini dans la remarque 2) avec l'isomorphisme \(\text{id} : C' \rightarrow C' \), pour cela considérons le diagramme suivant
de (V), (XII), (XIII) de la fonctorialité de E ; celle de (V), (XIV) de la compatibilité de (E, E) avec la contrainte d'associentivité ; celle de (XV) de la définition de E (Rem. 41) ; celle de (XVI), (XVII), (XIX) s'obtient en composant les flèches ; celle de (XII) est donnée par le diagramme commutatif (3) ; d'où la commutativité du circuit circuit extérieur qui donne $E'\left[A', B', u \right] = E'\left[A' \otimes C', B' \otimes C', \mathbb{Z} \right]$. Ensuite soient $(A', B', u), (A'_1, B'_1, u_1)$ tels que $\left[u : A' \rightarrow A'_1, v : B' \rightarrow B'_1 \right]$ et que le diagramme

$$
\begin{array}{ccc}
A \otimes \Phi A' & \overset{u}{\longrightarrow} & B \otimes \Phi B' \\
\downarrow \Phi \otimes T_{A'} & & \downarrow \Phi \otimes T_{B'} \\
A \otimes \Phi A' & \overset{u}{\longrightarrow} & B \otimes \Phi B'
\end{array}
$$

soit commutatif. D'autre part le résultat (4) montre que $\left[A', B', u \right] = \left[A'_1, B'_1, u_1 \right]$. Prenons que $E'\left[A', B', u \right] = E'\left[A'_1, B'_1, u_1 \right]$. Puis est évidente la commutativité des régions (I), (V) est évidente ; celle de (IV), (XII) résulte de la fonctorialité de p ; celle de (III), (VII) de la fonctorialité de E ; celle de (XVI) est donnée par le diagramme commutatif (3) ; enfin celle de (XIII) vient de l'hypothèse sur $(A', B', u), (A'_1, B'_1, u_1)$; d'où la commutativité du circuit extérieur qui donne l'égalité $E'\left[A', B', u \right] = E'\left[A'_1, B'_1, u_1 \right]$.

Enfin soient $(A', B', u), (A'_1, B'_1, u_1)$ tels que $\left[u : A' \otimes C' \rightarrow A'_1 \otimes C', v : B' \otimes C' \rightarrow B'_1 \otimes C' \right]$ de \mathbb{Z}'. Prenons commutatif le diagramme ;
\[A \otimes T(A' \otimes C') \xrightarrow{\sim} B \otimes T(B' \otimes C') \]

\[\otimes \otimes T' \]

\[A \otimes T(A' \otimes C') \xrightarrow{\sim} B \otimes T(B' \otimes C') \]

D'après ce que nous venons de démontrer nous avons

\[E'[A', B', u] = E'[A' \otimes C', B' \otimes C', u'] = E'[A', B', u] \]

ce qui montre que \(E'[A', B', u] \) ne dépend pas effectivement des représentants de la classe \([A', B', u]\). Le diagramme commutatif (13) nous montre qu'en plus

\[E'([B', C', u] \circ [A', B', u]) = E'([B', C', u] \circ E'[A', B', u]) \]

\[E'[A', A', id] = id_{A' \otimes A'} \]

ce qui fait que \(E' \) est bien un foncteur.

Il reste à prouver que \(E'_{A', B'} \) est fonctoriel en \(A', B' \) pour que \((E', E') \) soit un \(\otimes \) foncteur. Pour cela, nous démontrons d'abord la commutativité du diagramme

\[\begin{array}{ccc}
E \otimes E_A & \xrightarrow{\sim} & E(A \otimes A) \\
\downarrow & & \downarrow \\
E(B \otimes E_A) & \xrightarrow{\sim} & E(B \otimes A) \\
\end{array} \]

\[(14) \]

\[\begin{array}{ccc}
E'[A', B', u] \otimes id & \xrightarrow{\sim} & E'([A', B', u] \circ [A', A', id]_{A' \otimes A'}) \\
\downarrow & & \downarrow \\
E'(B' \otimes E_A) & \xrightarrow{\sim} & E'(B' \otimes A) \\
\end{array} \]

\[(15) \]

\[\begin{array}{ccc}
E[B', B', id] & \xrightarrow{\sim} & E'([B', B', id] \circ [A', B', u]) \\
\downarrow & & \downarrow \\
E'(E A) & \xrightarrow{\sim} & E'(B) \\
\end{array} \]

ce qui donnera la commutativité du diagramme

\[\begin{array}{ccc}
E \otimes E_A & \xrightarrow{\sim} & E(A \otimes A) \\
\downarrow & & \downarrow \\
E'(A' \otimes B', u) & \xrightarrow{\sim} & E'(A' \otimes B', u) \\
\end{array} \]

\[(16) \]
Posons

\[E'(\langle A', B', w \rangle \otimes \langle A, A', \text{id}_{A, \otimes T_A} \rangle) = E'[A \otimes A', B \otimes A', w] \]

\(w \) étant défini par le diagramme commutatif (I), et soit \(\alpha \) la flèche dans \(A \) définie par le diagramme commutatif (Rem. 2).

\[\begin{align*}
 A \otimes T(A' \otimes A'_1) & \longrightarrow (A \otimes T_A') \otimes T_A' \\
 \downarrow \alpha & \downarrow \alpha \otimes \text{id} \\
 B \otimes T(B' \otimes A'_1) & \longrightarrow (B \otimes T_B') \otimes T_A'
\end{align*} \]

Considérons le diagramme suivant.
La commutativité des régions (II), (IV), (VI), (VIII) résulte de (Chap. I, § 4,
no. 1, par. 12) ; celle de (III), (VII), (IX) de la fonctionnalité de E et du contrainte
d'associativité, de commutativité ; celle de (V) et du circuit extérieur est
démont par la définition de $E'(A, B', \alpha)$ (Diag. (13)) ; celle de (IX) par la
definition de \mathbb{W} (Diag. (11)) ; enfin celle de (XI) par la définition de \mathbb{W}. D'où
la commutativité de la région (I) qui n'est pas autre que le diagramme (14).
en remarquant que \(\eta' \left(A, A', B, B' \right) = E' \left(A, B, A', B' \right) \). De la même façon on démontre que le diagramme (15) est commutatif, ce qui montre que \(E'_{A,B} \) est fonctoriel en \(A, B \). Le couple \((E', \eta')\) ainsi défini est bien un \(\Theta \)-foncteur. Donc le cas où \(n \left(A', B', c' \right) = 0 \Rightarrow \eta \left(A', A', c \right) = \eta \left(c \right) \) le diagramme commutatif (15) est le contournage extérieur du diagramme suivant

\[
\begin{array}{cccccc}
E_A & \xrightarrow{\eta_A} & EA \otimes_{\Theta} \eta'_{A} & \xleftarrow{i \otimes \eta_{A'}} & EA \otimes_{\Theta} E' & \xrightarrow{\eta} & E \left(A \otimes_{\Theta} T_\Theta \right) \\
E_D & \xrightarrow{\eta_D} & E_D \otimes_{\Theta} \eta'_{D} & \xleftarrow{i \otimes \eta'_{D}} & E_D \otimes_{\Theta} E' & \xrightarrow{\eta} & E \left(D \otimes_{\Theta} T_\Theta \right) \\
E_B & \xrightarrow{\eta_B} & E_B \otimes_{\Theta} \eta'_{B} & \xleftarrow{i \otimes \eta'_{B}} & E_B \otimes_{\Theta} E' & \xrightarrow{\eta} & E \left(B \otimes_{\Theta} T_\Theta \right)
\end{array}
\]

dont les régions (II) et (III) sont manifestement commutatives. D'où la commutativité de la région (I) qui donne, en vertu de la naturalité de \(\eta \), que \(E' (D, 0) = E' (D, 0) \). On en conclut avec la définition de \((D, 0)\) (Prop. 16) et de \((E', \eta')\) (Fon. 11) que \((E, \eta) = (E', \eta') \circ (D, 0)\).

1°. Compatibilité de \((E', \eta')\) avec les contraintes. Pour les contraintes d'associativité et de commutativité, il suffit de remarquer que

\[
\begin{align*}
E' \left(A', A', c, A, B, c \otimes \text{id}_{T_\Theta} \right) &= E' \left(A, B, c \right) = E \left(A, B, c \right) \\
E' \left(A', A', c \otimes \text{id}_{T_\Theta} \right) &= E' \left(c, A, B \right) = E \left(c, A, B \right) \\
E'_{A, B} &= E_{A, B}
\end{align*}
\]

pour avoir aussitôt les compatibilités. Quant à la contrainte d'unité de \(\text{Pr} \), nous avons pour l'image par \(E' \) de son objet unité \(I_\Theta \):

\[
E' \left(I_\Theta \right) = E' \left(T_\Theta I_\Theta \right) = E \left(T_\Theta I_\Theta \right)
\]

D'où \(E' \left(I_\Theta \right) \) est régulier et par suite \((E', \eta')\) est compatible avec les unités en vertu de (Chap. I, 56, n° 2, Prop. 8).

1°. Enfin il nous reste à démontrer la commutativité du diagranme.
ÉTA'
\[\lambda_A' = [A'_0, A'_1, c_{TA', TA'_0}] \]
\[\hat{E}' = \mu_{A'_0} \]

La démonstration revient donc à démontrer l'égalité
\[E' \lambda_{A'} = E'[A'_0, A'_1, c_{TA', TA'_0}] = \mu_{A'_0} \mu_A \]

Considérons le diagramme
\[\begin{array}{ccc}
\text{étA} & \text{étA' } & \text{étA' } \\
\downarrow & \downarrow & \downarrow \\
\text{étA} & \text{étA' } & \text{étA' } \\
\downarrow & \downarrow & \downarrow \\
\text{étA} & \text{étA' } & \text{étA' } \\
\downarrow & \downarrow & \downarrow \\
\text{étA} & \text{étA' } & \text{étA' } \\
\end{array} \]

où la commutativité de la région (II) est évidente ; celle de (III) résulte de la fonctorialité de la contrainte de commutativité, c de Q ; celle de (IV) de la compatibilité de (E, E) avec les contraintes de commutativité dans \(A', \) et \(Q, \) enfin celle du circuit extérieur de la définition de \(E'[A'_0, A'_1, c] = \]
\[E' \lambda_{A'} \quad \text{(Diag. (1)).} \]

D'où la commutativité de (I) qui donne, en vertu de la naturelité de \(c, \)
\[E' \lambda_{A'} = \mu_{A'_0} \mu_{A} \]

La proposition est ainsi démontrée. Le triple \((B, (0, 0), \lambda)\) est donc une solution du problème universel posé.

Remarque 5) Dans la remarque 4) nous avons supposé \(T(c') = \)
\[\text{id} \] pour tout \(A' \in \text{ob} A \) pour simplifier les notations dans la construction du triple \((P', (0, 0), \lambda)\). En réalité, c'est le \(@ \) foncteur \(AC \) composé
\[(a, \xi, \zeta) = (H, H) \circ (T, \xi) : A' \to A' \]
\[\text{et} : A' \to \text{ob} A' \]
qui possède la propriété \(T(c', c) = \text{id} \), \(A \) étant la \(\Theta \)-catégorie \(AC \) quotient de \(A \) défini par la partie multiplicative \(Y \) engendrée par l'ensemble d'endomorphismes de la forme \(T(c', c') \) et \((H, H) \) le \(\Theta \)-foncteur canonique de \(A \) dans \(A^Y \) (n°4, Déf.2) ; ce qui nous conduit à la définition suivante.

Définition 4. Soient \(A \) une \(\Theta \)-catégorie munie d'une contrainte \(AC : (a', c') \) et \(A' \) une \(\Theta \)-catégorie munie d'une contrainte \(AC' : (a', c') \) ;

\[\Delta \rightarrow \Delta \] un \(\Theta \)-foncteur \(AC \), \(Y \) la partie multiplicative engendrée par l'ensemble des endomorphismes de \(\Delta \) de la forme \(T(c', c') \), \(\Delta^Y \) la \(\Theta \)-catégorie \(AC \) quotient de \(\Delta \) défini par \(Y \), et \((H, H) \) le \(\Theta \)-foncteur canonique de \(\Delta \) dans \(\Delta^Y \). On appelle \(\Theta \)-catégorie \(ACU \) de la \(\Theta \)-catégorie \(AC \) définie par \((\Delta', (T, \Omega)) \) la \(\Theta \)-catégorie \(ACU \) suivante :

1° \(\text{Ob} \, P = \text{Ob} \, A \)

2° \(\text{Hom}_P(A, B) = \frac{\phi(A, B)}{\mathbb{R}_{A, B}} \quad A, B \in \text{Ob} \, P \)

\(\phi(A, B) \) étant l'ensemble des triples \((A', B', w) \) \(A', B' \in \text{Ob} \, \Delta, w \in \mathbb{R}_{A', B'} \)

au : \(A' \circ TA' \rightarrow B \circ TB' \) ; \(\mathbb{R}_{A, B} \) la relation binôme définie dans \(\phi(A, B) \)

de la façon suivante

\[(A', B', w) \mathbb{R}_{A, B} (A'_2, B'_2, w_2) \]

si et seulement s'il existe des objets \(C'_1, C'_2 \) de \(\Delta' \) et des isomorphismes

\[u' : A'_1 \circ C'_1 \simeq A'_2 \circ C'_2 \], \[v' : B'_1 \circ C'_1 \simeq B'_2 \circ C'_2 \]

de \(\Delta' \) tels que soit commutable dans \(\Delta^Y \) le diagramme suivant

(n'est ce diagramme est dans \(A \) et il est transformé par le foncteur \(H \)

en un diagramme commutatif dans \(\Delta^Y \)).
\[A \otimes (A' \otimes C') \rightarrow (A \otimes TA') \otimes TC' \otimes id \rightarrow (B \otimes TB') \otimes TC' \rightarrow B \otimes (B' \otimes C') \]
\[A \otimes (A' \otimes C') \rightarrow (A \otimes TA') \otimes TC' \otimes id \rightarrow (B \otimes TB') \otimes TC' \rightarrow B \otimes (B' \otimes C') \]

3° Composition des flèches dans \(P \). Soient \([A', B', u'] : A \rightarrow B\),
\([B'', C'', v''] : B \rightarrow C\).

\([B'', C'', v''] \circ [A', B', u'] = [A' \circ B'', B' \circ C'', w]\]

\(w \) étant défini par le diagramme commutatif (8)

4° Structure sur \(P \)
\[A \otimes B \ (dans \ P) = A \otimes B \ (dans \ A) \]
\[[A', B', u'] \otimes [E', F', w'] = [A' \circ E', B' \circ F', W] \]

\(W \) étant défini par le diagramme commutatif (9)

5° Contrainte \(A \circ C = U \) dans \(P \)

\([A', A', \circ id] \) \([A', A', \circ id], (TA', [A' \circ A', A', t_A], [A' \circ A', A', p_A]) \)

\(t_A \) et \(p_A \) étant définis dans la proposition 14.

On appelle \(\circ \)-foncteur canonique de \(A \) dans \(P \) le \(\circ \)-foncteur
\(AC (0, 0) : \)
\[D(A) = A, D(\alpha) = [A', A', \circ id _TA'], \quad D_{A,B} = \alpha \]

pour \(A, B \in \text{Ob} \ A \), \(\alpha : A \rightarrow B \).

On appelle \(\circ \)-isomorphisme (foncteur) canonique le \(\circ \)-isomorphisme (foncteur)
\[\lambda : (D, 0) \circ (T, T) \rightarrow (I, \circ I) \]

 défini dans la proposition 14.

On voit aussi que si \(A \) est un groupeïde et si pour tout \(A \in \text{Ob} \ A \),
il existe \(B \in \text{Ob} B \), \(A' \in \text{Ob} A' \) tels que \(A \otimes B = TA' \), alors \(P \) est une Pré-
catégorie (chap. II, 8.2, n°1).
les hypothèses et les notations restant les mêmes que dans la définition 4, on peut nous nu-mer pour objets les \(\Phi^{-}\text{funtors} ACU \) de \(\Phi \) (Déf.4) dans une \(\Phi^{-}\) catégorie ACU

\(\Phi^{-}\) pour morphismes les \(\Phi^{-}\) morphismes unisés (Chap. I, § 4, n° 7, Déf.7) ;

par \(\text{Hom}_{\Phi^{-}\text{ACU}} (\Delta, Q) \) l'ensemble des \(\Phi^{-}\text{funtors} \Delta \) dans \(Q \) ; et par

\(\Xi \) le catégories définis de la manière suivante :

\[\Xi = \{(E, \bar{E}, \mu) \in \text{Hom}_{\Phi^{-}\text{ACU}} (\Delta, Q), \mu : \Phi^{-}\text{isomorphisme} : (E, \bar{E}) \circ (\Delta, Q) \}. \]

\(\text{Hom}_{\Phi^{-}\text{ACU}} ((E, \bar{E}, \mu), (F, \bar{F}, \nu)) \) l'ensemble des \(\Phi^{-}\) morphismes du \(\Phi^{-}\text{functor} (E, \bar{E}) \) dans le \(\Phi^{-}\text{functor} (F, \bar{F}) \) tels qui sont commutatif le diagramme

(14)

\[\begin{array}{ccc}
\begin{array}{c}
E.
\end{array}
& \xrightarrow{\mu} & I_Q \\
\begin{array}{c}
\xi
\end{array}
& \downarrow {\color{gray} \Psi} & \begin{array}{c}
\xi
\end{array}
\
\begin{array}{c}
F.
\end{array}
& \xrightarrow{\nu} & I_Q
\end{array} \]

\((I_Q, \bar{I}_Q) \) est le \(\Phi^{-}\text{functor} I \) constant de \(\Delta \) dans \(Q \) (Déf.3). Ainsi nous avons la proposition suivante

Proposition 13. Les catégories \(\text{Hom}_{\Phi^{-}\text{ACU}} (\Phi, Q) \) et \(\Xi \) sont isomorphes.

Démonstration. Posons

\[S : \text{Hom}_{\Phi^{-}\text{ACU}} (\Phi, Q) \rightarrow \Xi \]

\[(E, \bar{E}) \mapsto (E, \bar{E}) \circ (\Delta, Q), \mu = \bar{E} \circ \Phi^{-}\text{isomorphisme} : E^{-} \lambda \]

\[\xi \downarrow \]

\[F, \bar{F} \mapsto (F, \bar{F}) \circ (\Delta, Q), \nu = \bar{F} \circ \Phi^{-}\text{isomorphisme} : F^{-} \lambda \]

En effet de (Chap. I, § 4, n° 2, Prop. 1 et 2) \((E, \bar{E}) = (E, \bar{E}) \circ (\Delta, Q) \circ (F, \bar{F}) = (F, \bar{F}) \circ (\Delta, Q) \) appartiennent bien à \(\text{Hom}_{\Phi^{-}\text{ACU}} (\Phi, Q) \). De plus \(\xi = \xi \) et un \(\Phi^{-}\) morphisme (Chap. I, § 4, n° 4). Ensuite considérons le diagramme.
où les régions (I), (II) sont commutatives par la définition du p, r; (III) par la nature de e'; (IV) en vertu du fait que e' est unifié; d'où la commutativité du circuit extérieur qui montre que e' est effectivement un flèche de E. Enfin on vérifie aussitôt que $S(e') = S_{(b)} S'(e)$ et $S(d) = d'$, par conséquent S est bien un foncteur.

Montons maintenant que S est un isomorphisme. En vertu de la proposition 48, S est une bijection entre $\text{Ob}(\text{Hom}_0 \otimes ACU)^{(P, Q)}$ et $\text{Ob} E$. On verra aussi que S est une injection en vertu de $x = x'$ pour tout objet X de Δ. Donc S est un flèche de E, i.e. un \otimes-morphisme de (E, E') dans (F, F') tel qu'on ait la commutativité du diagramme (16) et donc (E', E'), $(F', F') \in \text{Hom}_0 \otimes ACU (P, Q)$ tels que:

$$(E, E') = (E', E') \circ (D, D'), (F, F') = (F', F') \circ (D, D') \text{ (Prop. 48).}$$

En vertu de la proposition 48 (Form. (14)), $E' A = E A$, $F' A = F A$, pour tout $A \in \text{Ob} P = \text{Ob} \Delta$.

Posons $e' = e$, $A \in \text{Ob} P$, et montons que e' est un \otimes-morphisme unifié de (E', E') dans (F', F'). D'autre part considérons le diagramme ci-dessous où les régions (I), (II), (III) sont commutatives par la définition de $e' [A', B', a]$, $F' [A', B', a]$ (Déf. (13)); (II), (IV) par la fonctorialité de d; (I), (VII) en vertu du fait que e' est un flèche de E. (VI), (V) et le circuit,
On vérifie aisément que \mathcal{C} est un Θ-morphisme puisque \mathcal{C} en est un et qu'importe

$$E' A = E A, \quad F' A = F A,$$
$$E A' = E, \quad F A' = F,$$
$$A, B, \quad A', B'. \quad A, B' = F A'$$

pour $A, B \in \text{Ob } \mathcal{P}$ (Fois. (14)). Enfin que le définition de \mathcal{C}, nous avons

$$z' \circ z' = z' \circ z' = \mathcal{C}^* \circ \mathcal{P}_0 = \mathcal{C}^* \circ \mathcal{P}_0 = A^* \circ A^*,$$

la dernière égalité étant le résultat de la commutativité du diagramme (16). On en conclut que \mathcal{C} est unifié en appliquant (Chap. I, §1, n° 3, Prop. 4).

§ 3. Le problème d'inversion des objets

4. Construction de la Θ-catégorie de fractions d'une Θ-catégorie \mathcal{C}.

Dans tout n, \mathcal{C} est une Θ-catégorie munie d'une contravente $\mathcal{ACU} : (a, c, (I, J, K, d))$, \mathcal{C}' une Θ-catégorie munie d'une contravente $\mathcal{ACU} : (a', c', (I', J', K', d'))$ et dont la catégorie sous-jacente est un groupe de (F, F), $\mathcal{C} \rightarrow \mathcal{C}'$ est un Θ-fonction \mathcal{ACU}, qui se propose de chercher une Θ-catégorie $\mathcal{ACU} \mathcal{P}$ et un Θ-fonction \mathcal{ACU} $(\mathcal{E}, \mathcal{E}': \mathcal{C} \rightarrow \mathcal{P})$ ayant les propriétés suivantes :

1° $\mathcal{F} \mathcal{E}'$ est inverse dans \mathcal{P} pour tout $x \in \text{Ob } \mathcal{C}'$.

2° Pour tout Θ-fonction \mathcal{ACU} $(\mathcal{E}, \mathcal{E}')$ de \mathcal{C} dans une Θ-catégorie \mathcal{ACU}, il existe un Θ-fonction \mathcal{ACU} $(\mathcal{E}, \mathcal{E}')$ unique (à Θ-isomorphisme près) de \mathcal{P} dans \mathcal{Q} tel que $(\mathcal{E}, \mathcal{E}') \sim (\mathcal{E}', \mathcal{E}) \circ (\mathcal{E}, \mathcal{E}')$.

Puis la construction de la solution du problème, nous avons be...