Galoistheorie, WS 08/09

Blatt 8

Aufgabe 26 (3+3+2 Punkte)

Sei L ein endlicher Körper.

- (1) Zeige, daß |L| eine Primpotenz ist. D.h. zeige, daß es eine Primzahl p gibt und ein $\ell \geqslant 1$ so, daß $|L| = p^{\ell}$. (Hinweis: Kann char L = 0 sein? Zeige, daß L ein endlichdimensionaler Vektorraum über seinem Primkörper ist.)
- (2) Sei weiterhin $|L| = p^{\ell}$. Sei $K \subseteq L$ ein Teilkörper. Zeige, daß $|K| = p^{k}$ für einen Teiler k von ℓ . (Hinweis: Gradsatz).
- (3) Bestimme alle Teilkörper von \mathbf{F}_{27} ; vgl. Aufgabe 24.(3).

Aufgabe 27 (3+2+3+3+4 Punkte) (Multiplikative Gruppe eines endlichen Körpers) Sei (G, \cdot) eine multiplikativ geschriebene endliche abelsche Gruppe. Seien $a, b \in G$. Sei K ein endlicher Körper. Schreibe $K^{\times} := K \setminus \{0\}$.

- (1) Ist ggT(o(a), o(b)) = 1, so zeige, daß o(ab) = o(a)o(b).
- (2) Sei d ein Teiler von o(a). Zeige, daß $o(a^{\frac{o(a)}{d}}) = d$.
- (3) Zeige, daß es in G ein Element von Ordnung kgV(o(a), o(b)) gibt. (Hinweis: Schreibe o(a) = $p_1^{s_1} \cdots p_k^{s_k}$ und o(b) = $p_1^{t_1} \cdots p_k^{t_k}$ mit p_i prim. Mit (2) haben wir ein Element $x_i \in G$ von Ordnung $p_i^{\max\{s_i,t_i\}}$ für alle i, nämlich je eine geeignete Potenz von a oder von b. Bestimme o($x_1 \cdots x_k$) mit (1).)
- (4) Sei x ein Element von G maximaler Ordnung. Zeige, daß o(g) ein Teiler von o(x) ist für alle $g \in G$. (Hinweis: Sonst wäre o(x) < kgV(o(x), o(g)). Verwende (3).)
- (5) Zeige, daß es ein $x \in K^{\times}$ mit o(x) = |K| 1 gibt. (Hinweis: Sei $x \in K^{\times}$ von maximaler Ordnung. Es ist o(x) ein Teiler von |K| - 1. Mit (4) folgt, daß alle Elemente von K^{\times} Nullstellen von $X^{o(x)} - 1$ sind. Ein Polynom mit |K| - 1 Nullstellen hat Grad $\geq |K| - 1$.)
- (6) Gib in \mathbf{F}_{16}^{\times} ein Element von Ordnung 15 an, samt seinen Potenzen; vgl. Aufgabe 24.(4).

Aufgabe 28 (2 Punkte)

Sei L|K eine endliche Körpererweiterung. Sei $x \in L$. Zeige, daß x algebraisch über K ist.