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Introduction

In this paper I revisit a theme unsatisfactorily treated in [KM76]. The methods used

here are more natural and more general. The theorem we prove was suggested to

me by Grothendieck in a letter dated May 19, 1973, and states that the category of

determinants on the derived category of an exact category is equivalent via restriction

to the category of determinants on the exact category itself. [Appendix B]

Here is how the problem comes about [KM76]. Consider the following category.

The objects are bounded complexes of locally free finite quasi-coherent sheaves of

OX-modules on a fixed scheme (site) X. The morphisms Mor(A,B) of two such

complexes is the group of global sections of the sheaf of germs of homotopy classes of

homomorphisms from A to B. If we assign to every complex the invertible sheaf

f(A) = (
i ∈ Z

⊗∧maxA2i)⊗ (
i ∈ Z

⊗∧maxA2i+1)−1,

the problem is to assign to every quasi-isomorphism α ∈ Mor(A,B) an isomorphism

f(α) : f(A) → f(B), in such a way that f becomes a functor and such that f =
∧max

in case of a complex consisting of a single locally free sheaf supported in degree zero.

The existence of such an f follows immediately from the theorem. The theorem is

quite general and depends only on the one hand on certain properties of projective

modules over a commutative ring and short-exact sequences of such, and on the other

hand on certain properties of tensor products of modules of rank one.

The appropriate notions are that of an exact category [Qui73] section 2, and that

of a commutative Picard category. The reader not familiar with the notion of an

exact category is advised to have in mind the category of finitely generated projective

modules over a commutative ring, where exact sequences are what they are. An

admissible monomorphism is an injection whose cokernel is projective, and similarly
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an admissible epimorphism is a surjection with projective kernel. Of course in this

particular case all surjections are admissible.

The axioms and some important results about commutative Picard categories are

given in appendix A. In particular we find the notion of an inverse structure A.16

quite useful. Such a structure always exists and is unique up to unique isomorphism.

In section 1 we define the notion of a determinant and state some fundamental prop-

erties. [Del87].

In section 2 we state and prove the main theorem. Even though we give an explicit

construction of the determinant of a quasi-isomorphism, the verification of its prop-

erties is usually done by induction with respect to length of complexes. The good

complexes for induction are the admissible complexes 2.13. Unfortunately in some

silly exact categories there are acyclic complexes that are not admissible. Fortunately

by [TT90] A.7.16b, for every acyclic complex A, there exists a split exact admissible

complex E supported in the same degrees as A, and such that A ⊕ E is admissible

and acyclic, and this is sufficient for the proof to go through. In the case of projec-

tive modules, every acyclic complex is admissible, in fact split-exact, so most readers

should disregard this technicality.

In section 3 we establish, under certain conditions, the relationships between the

determinant of a complex and that of its cohomology, and between the determinant

of a filtered complex and that of its r-th level associated spectral sequence.

In section 4 we generalize the main theorem to multi-determinants and prove a result

suggested to me by Pierre Deligne.

In section 5 we give a formula for the determinant of a homotopy-equivalence in terms

of a good pair 5.4 of homotopies. It is then possible to compare our construction with

that of Ranicki [Ran85].

I am happy to thank the Research Council of Norway for financial support, the

people of the Department of mathematics at the University of Michigan for a very

good year of algebraic geometry, Pierre Deligne for having read an early version of

the manuscript and for suggesting to me to extend [Del87] 4.14. to complexes, and to

the referee who did a very thorough job and made numerous improvements including

the very natural “ε-free” proof of the crucial proposition 2.25. Thanks also to Kalevi

Suominen for pointing out to me some weaknesses in the proof occurring in [KM76].

Special thanks to Lisa who bears with me when I don’t always listen.
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1 Definitions and first properties

In order to uniformize the definition of a determinant functor on an exact category,

and on the exact category of bounded complexes of an exact category, we will consider

certain special sub-categories of exact categories. [Qui73], [TT90] Appendix A.

Definition 1.1. Let E be an exact category. We call a class of morphisms w a

SQ-class, if it satisfies the following axioms.

SQ 1 Every isomorphism is in w.

SQ 2 If any two of α, β, and βα are in w, so is the third.

SQ 3 If α′, α, and α′′ constitutes a morphism of short-exact sequences, and if any

two of them are in w, so is the third.

Let E be an exact category, w a SQ-class of morphisms, and P a Picard-category.

We will use the following notation, Ew is the sub-category determined by w, {E}w is

the category of short-exact sequences and morphisms in w3. We have three functors

p′, p, p′′ : {E}w → Ew defined by pi(A′ � A � A′′) = Ai for i ∈ {′, ,′′ }, and ditto for

morphisms.

Definition 1.2. A pre-determinant f on Ew with values in P consists of a functor

f1 : Ew → P together with a natural isomorphism f2 : f1 ◦ p→ f1 ◦ p′ ⊗ f1 ◦ p′′.

Remark 1.3. For any 0-object Z of E, the sequence Z � Z � Z is is short exact.

Applying f2 to this sequence gives f1(Z) the structure of a reduced unit, and so by A.8,

f1(Z) is a unit.

Definition 1.4. A pre-determinant f on Ew with values in P is a determinant if the

following conditions are fulfilled.

Compatibility. For any object A, if Σ = ( A A // // 0), the morphisms f2(Σ) and

δRf1(0)(f1(A)) are inverse to each other.

f1(A)

f2(Σ)

))
f1(A)⊗ f1(0)

δR
f1(0)

(f1(A))

ii

Associativity. For any short-exact sequence of short-exact sequences, or exact square,

as in the left diagram, the right diagram is commutative.
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A // // B // //

��

��

C ′
��

��

A // //

����

C // //

����

B′

����

0 // // A′ A′

f1(C)
f2

//

f2
��

f1(A)⊗ f1(B′)

1⊗f2
��

f1(B)⊗ f1(A′)
f2⊗1

// f1(A)⊗ f1(C ′)⊗ f1(A′)

Commutativity. The two short-exact sequences to the left give rise to the commutative

diagram to the right.

Σ1 = A //

 
1

0

!
// A⊕B

“
0 1
”
// // B

Σ2 = B //

 
0

1

!
// A⊕B

“
1 0
”
// // A

f1(A⊕B)

f2(Σ1)
��

f1(A⊕B)

f2(Σ1)
��

f1(A)⊗ f1(B)
ψ
// f1(B)⊗ f1(A)

Proposition 1.5.

a. If α : A→ B is an isomorphism, then

δR ◦ (f2(A
α //B 0 ) = [f1(α)]−1,

and δL ◦ (f2( 0 A
α // B ) = f1(α).

b. If we consider Ew as an AC tensor category with ⊕ as its tensor-functor, and

the isomorphism
 

0 1

1 0

!
: A ⊕ B → B ⊕ A, for its commutation, the functor f1

together with the natural isomorphism f2 : f1(A⊕ B) → f1(A)⊗ f1(B), makes

the pair f1, f2 an AC tensor-functor of AC tensor categories.

c. For any A, we have f1(−1A) = ε(f1(A)) considered as an automorphism of 1.

Proof. The proof of a. and b. follow directly from functoriality, compatibility and

commutativity. Now c. follows from b. and the commutative diagram

A

 
1

1

!
// A⊕ A 

0 1

1 0

!
��

“
1 −1

”
// A

−1

��

A

 
1

1

!
// A⊕ A

“
1 −1

”
// A
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Definition 1.6. By an admissible filtration we shall mean a finite sequence of ad-

missible monomorphisms 0 = A0 � A1 � · · · � An = C.

If 0 = A0 � A1 � · · · � An = C and 0 = A′0 � A′1 � · · · � A′n = C ′ are

admissible filtrations and α : C → C ′ is a morphism, we will say that α respects the

filtrations if the induced maps Ai → C ′ factor through A′i.

The proofs of the next two propositions are outlined in [Del87]. Actually he first

proves corollary 1.10 and then proposition 1.9 by induction. The next proposition

follows from associativity by induction.

Proposition 1.7. Let 0 = A0 � A1 � · · · � An = C be an admissible filtration,

and let Ai−1 � Ai � Ci be short-exact sequences in E. Then by repeated use of f2,

we construct an isomorphism f1(C) →
⊗n

i=1 f1(Ci).

Moreover if 0 = A′0 � A′1 � · · · � A′n = C ′ is an admissible filtration, A′i−1 �

A′i � C ′i are short-exact sequences, and α is a morphism C → C ′ which respects the

filtrations and induces w-morphisms αi : Ci → C ′i for each i, i ≤ 1 ≤ n, then α is a

w-morphism, and the diagram below is commutative.

f1(C)

��

f1(α)
// f1(C

′)

��

i = 1

n⊗
f1(C

i)

Nn
i=1 f1(αi)

//

i = 1

n⊗
f1(C

′i)

Definition 1.8. We call two filtrations 0 = A0 � A1 � · · · � An = F and

0 = B0 � B1 � · · · � Bn = F compatible, if the lattice generated by the i(A)’s

and the i(B)’s in the Gabriel - Quillen embedding i : E → A is admissible [Gab62].

Proposition 1.9. Let 0 = A0 � A1 � · · · � Am = F and 0 = B0 � B1 � · · · �
Bn = F be compatible filtrations, and let Ai−1 � Ai � Ci and Bj−1 � Bj � Dj be

short-exact sequences, and let for each i and j

Bj−1 + (Ai ∩Bj)
Bj−1 + (Ai−1 ∩Bj)

≈ Ei,j ≈ Ai−1 + (Bj ∩Ai)
Ai−1 + (Bj−1 ∩Ai)

be the butterfly isomorphisms. Then the Ei,j’s are the successive quotients of the two

extreme admissible filtrations

0 � · · · � Bj−1 + (Ai−1 ∩Bj) � Bj−1 + (Ai ∩Bj) � · · · � C ,

0 � · · · � Ai−1 + (Bj−1 ∩ Ai) � Ai−1 + (Bj ∩ Ai) � · · · � C ,

and the diagram below is commutative.
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i = 1

m⊗
f1(Ci)

��

f1(F )oo //

j = 1

n⊗
f1(Dj)

��

i = 1

m⊗
j = 1

n⊗
f1(Ei,j) //

j = 1

n⊗
i = 1

m⊗
f1(Ei,j)

Corollary 1.10. For any exact square as shown in the left diagram, the right diagram

is commutative.

A′ // //

��

��

B′ // //

��

��

C ′
��

��

A // //

����

B // //

����

C

����

A′′ // // B′′ // // C ′′

f1(A)⊗ f1(C) // f1(A′)⊗ f1(A′′)⊗ f1(C ′)⊗ f1(C ′′)

1⊗ψ⊗1

��

f1(B)

OO

��

f1(B′)⊗ f1(B′′) // f1(A′)⊗ f1(C ′)⊗ f1(A′′)⊗ f1(C ′′)

Proof. Since exact categories are closed under extensions, the two filtrations A′ �

B′ � B and A′ � A � B are compatible. The extremal filtrations are A′ � B′ �

A + B′ � B and A′ � A � A + B′ � B, with successive quotients A′, C ′, A′′, C ′′

and A′, A′′, C ′, C ′′ respectively.

Definition 1.11. A morphism of determinants q : f → g is a natural isomorphism

q : f1 → g1, such that for every short-exact sequence Σ = A′ � A � A′′, the diagram

below is commutative.

f1(A)

q(A)

��

f2(Σ)
// f1(A′)⊗ f1(A′′)

q(A′)⊗q(A′′)
��

g1(A)
g2(Σ)

// g1(A′)⊗ g1(A′′)

Definition 1.12. For any determinants f , g, h, any morphism α : A → B in Ew,

and for any short-exact sequence Σ = A′ � A � A′′, we define;

(f ⊗ g)1(A) = f1(A)⊗ g1(A),

(f ⊗ g)1(α) = f1(α)⊗ g1(α),

(f ⊗ g)2(Σ) = (1⊗ ψ ⊗ 1) ◦ (f1(Σ)⊗ g1(Σ)),

φ(f, g, h)(A) = φ(f1(A), g1(A), h1(A)),

and ψ(f, g)(A) = ψ(f1(A), g1(A)).
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Proposition 1.13. The determinants on a category Ew with values in a Picard cate-

gory P together with morphisms of determinants, form a category that we denote by

det(Ew, P ). The tensor product together with φ and ψ as defined above, induce on

det(Ew, P ) a structure of a Picard category.

Proof. It follows from the general coherence theorem, that φ(f, g, h) and ψ(f, g) are

morphisms of determinants, that φ and ψ are natural and satisfy both the pentagonal

and the hexagonal axiom.

In the rest of this section E and E ′ will denote exact categories, w and w′ will de-

note SQ-classes of morphisms in E and E ′ respectively, P and P ′ will denote Picard-

categories.

Definition 1.14. We denote by Ex(Ew, E ′w′) the category of covariant exact functors

F : E → E ′ with the property that F (α) ∈ w′ for all α ∈ w. Morphisms are natural

transformations. We will denote by ew′ the class of natural transformations η : F →
G with the property that η(A) ∈ w′ for all objects A of E.

Proposition 1.15. The category Ex(Ew, E ′w′) is an exact category, and ew′ is a SQ-

class of morphisms.

Proof. We leave the proof to the reader.

The next two propositions follow from the general coherence theorem A.2.

Proposition 1.16. Composition induces a determinant, the tautological determinant
∗ : Ex(Ew, E ′w′)ew′ → Hom

⊗
(det(E ′w′ , P ), det(Ew, P )).

Proposition 1.17. Composition induces an AC tensor functor

∗ : Hom
⊗
(P ′, P ) → Hom

⊗
(det(Ew, P

′), det(Ew, P )).

Corollary 1.18. Any inverse structure σ on P pulls back via the tautological functor

∗ : Hom
⊗
(P, P ) → Hom

⊗
(det(Ew,P ), det(Ew,P )) to an inverse structure σ∗. Since there

can be no confusion, we will drop the asterisks in the induced inverse structure. We

then have

(fσ)1(A) = (fσ∗)1(A) = (f1(A))σ,

(fσ)2(Σ) = (fσ∗)2(Σ) = σ2(f1(A
′), f1(A

′′)) ◦ (f2(A))σ,

σ3(f)(A) = σ3 ∗(f)(A) = σ3(f1(A)).
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Remark 1.19. Let i : E → A denote the Gabriel - Quillen embedding of E into the

abelian category A. The functor i is fully faithful, exact and reflects exactness. See

also [TT90] A.7.

We consider the full sub-category E ′ of A of objects A with the property that there

exists an object A′ ∈ E such that A ⊕ A′ ∈ E. The category E ′ might be called

the stabilization of E, and we leave it to the reader to check that E ′ is an exact

category. Moreover E ′ satisfies the axiom A.1.5. of [TT90], which says that any

morphism t for which there exists a morphism s such that ts = 1 is an admissible

epimorphism. It follows follows from [TT90] A.7.16b, that every morphism in E ′,
which is an epimorphism in A is admissible.

If w is a SQ-class of morphisms we say that a morphism α : A → B belongs to the

class w′, if there exists an object E in E such that both A ⊕ E and A′ ⊕ E belongs

to E, and the morphism α ⊕ 1E belongs to w. We leave to the reader to check that

if α belongs to w′, then α ⊕ 1E belongs to w for all such E’s, and the class w′ is a

SQ-class of morphisms. Moreover the restriction functor det(E ′w′ , P ) → det(Ew, P ) is

an equivalence of categories. For this reason we will assume from now on that every

morphism in E which is an epimorphism in A is admissible.

2 The main theorem

In this section E is an exact category, and C(E) is the exact category of bounded

complexes of objects in E . We consider E as the full sub-category of C(E) consisting

of complexes supported only in degree zero. P is a Picard category with a fixed

inverse-structure σ. All determinants considered will have values in P , and so we will

write for short det(Ew) instead of det(Ew, P ).

Definition 2.1. A quasi-isomorphism in C(E) is a morphism whose image in C(A)

induces an isomorphism in cohomology. The morphism-class of quasi-isomorphisms

will be denoted by qis.

Remark 2.2. By the long-exact sequence in cohomology associated to a short-exact

sequence, it follows that qis is a SQ-class of morphisms.

We now state the main theorem. It is a consequence of lemma 2.22 and proposi-

tion 2.25.

Theorem 2.3. (Main theorem) The restriction functor det(C(E)qis) → det(Eiso) is

an equivalence, and an AC-tensor functor.
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Definition 2.4. A complex A is, acyclic if i(A) has vanishing cohomology in A.

Definition 2.5. For any complex A we denote by A[1] = TA the complex defined by

TAi = Ai+1 and dTA = −dA. Note that T is an exact functor.

Definition 2.6. Let α : A → B be a morphism of complexes. The mapping cone of

α is the complex C(α), given by

C(α)i = Bi ⊕ Ai+1

dC(α)i =
 

di αi+1

0 −di+1

!

Proposition 2.7. We have short-exact sequences

B //

 
1

0

!
// C(α)

“
0 1

”
// // A[1],(1)

A //

0B@1

0

α

1CA
// C(−1A ⊕B)

 
−α 0 1

0 1 0

!
// // C(α),(2)

and a commutative diagram

A //

0B@1

0

α

1CA
//

α

$$J
JJJJJJJJJJJJJ

C(−1A)⊕B

“
0 0 1

”
����

B.

(3)

Corollary 2.8. A morphism α is a quasi-isomorphism if and only if its mapping

cone C(α) is acyclic, and in this case both the horizontal and the vertical morphisms

in diagram (3) are quasi-isomorphisms.

Definition 2.9. For any complex A we denote by A ⊗ I the mapping-cone of the

anti-diagonal

−∆ =
 

1

−1

!
: A→ A⊕ A,

and by ∂0 and ∂1 the maps

∂0 =
0B@1

0

0

1CA : A→ A⊗ I and ∂1 =
0B@0

1

0

1CA : A→ A⊗ I.
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Definition 2.10. Two morphisms α0, α1 : A → B, will be called homotopic, and a

map h : TA→ B will be called a homotopy from α0 to α1, if α0 − α1 = dh+ hd.

Proposition 2.11.

a. The map sum =
“
1 1 0

”
: A ⊗ I → A is a quasi-isomorphism, and it is an

equalizer of the homotopic quasi-isomorphisms ∂0 and ∂1.

b. If h : TA → B is a homotopy from α0 to α1 and h̃ = (α0, α1, h), then for

all i ∈ {0, 1}, the diagram below is a commutative diagram of morphisms of

complexes.

A⊗ I

h̃

����

A
77

∂i
77ooooooooo

''

αi
''OOOOOOOOOOO

B

Corollary 2.12. Any functor f from C(E)qis to a category Q all of whose morphisms

are invertible factors through D(E)qis. This means that f(α0) = f(α1) for any two

homotopic quasi-isomorphisms α0 and α1.

Proof. Since sum∂0 = sum∂1, it follows by cancellation that f(∂0) = f(∂1), hence

f(α0) = f(h̃∂0) = f(h̃)f(∂0) = f(h̃)f(∂1) = f(h̃∂1) = f(α1).

Definition 2.13. We will say that a complex A is admissible if the Zi’s and Bi’s

are isomorphic to objects of E. By remark 1.19 every acyclic complex is admissible.

Definition 2.14. For any admissible complex A the complex Z = Z(A) is the complex

given by Zi = ker(diA) and diZ = 0 for all i. Similarly we define the complex B = B(A),

and we have a short-exact sequence Z // // A
d // // B[1].

Definition 2.15. We will say that a morphism in C(E) is admissible if its mapping-

cone is admissible. By remark 1.19 every quasi-isomorphism is admissible.

Definition 2.16. A complex A is called split-exact if there exists an isomorphisms

A→ C(1Z) making the diagram below commutative.
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Z // // A // //

��

Z[1]

Z // // C(1Z) // // Z[1]

Definition 2.17. (The brutal truncation) For every integer k and every complex

A, we denote by σ≥kA the k-th upper brutally truncated sub-complex of A. It is the

complex that remains when the objects in degrees j < k are killed. Similarly we denote

by σ<kA the k-th lower brutally truncated quotient-complex of A. It is the complex

that remains when the objects in degrees j ≥ k are killed. We denote by Σk(A) the

k-th brutal truncation sequence of A, the short-exact sequence σ≥kA � A � σ<kA.

Definition 2.18. (The good truncation) For every integer k and every admissible

complex A, we denote by γ<kA the k-th lower well truncated sub-complex of A. It

is the complex that remains when the objects in degrees j ≥ k are killed, and Ak−1

is replaced by ker(dk−1). Similarly we denote by γ≥kA the k-th upper well truncated

quotient-complex of A. It is the complex we get by augmenting σ≥kA with the map

im(dk−1) → Ak. We denote by Γk(A) the k-th good truncation sequence of A, the

short-exact sequence γ<kA � A � γ≥kA.

Lemma 2.19. The brutal truncation is a functor Σk : C(E) → {C(E)}, and it maps

isomorphisms to isomorphisms. The good truncation is a functor Γk : C(E)adm →
{C(E)adm}, and it maps quasi-isomorphisms to quasi-isomorphisms.

Definition 2.20. A S-determinant on Ew is a sequence (fn, µn)n∈Z , where each fn is

a determinant on Ew , and each µn is an isomorphism of determinants fn⊗fn−1 → 1.

Definition 2.21. A morphism of S-determinants q : (fn, µn) → (f ′n, µ
′
n) is a sequence

of morphisms of determinants qn : fn → f ′n such that µn = µ′n ◦ (qn ⊗ qn−1) for all

n ∈ Z. We denote the category of S-determinants by Sdet(Ew).

Lemma 2.22. The forgetful functor Sdet(Ew) → det(Ew) is an equivalence.

Proof. For any determinant f on Ew, we define Sσ(f) = (fn, µn) by

fn =

fσ for n odd,

f for n even,
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and

µn =

σ ◦ ψ for n odd,

σ for n even.

It follows from 1.17 that Sσ(f) is a S-determinant, and the categories are equivalent

by A.17.

Definition 2.23. For any determinant f on CEqis , we define the S-determinant

T
q
(f) = (fn, µn) on Eiso by fn(A) = f(A[−n]), fn(Σ) = f(Σ[−n]), and µn(A) via

f(A[−n])⊗ f(A[−n+ 1])
f2
−1

// f(C(1A[−n]))
f(0)

// f(0) // 1.

Note that fn corresponds to restricting f to complexes supported only in degree n.

Definition 2.24. For any S-determinant (fn, µn) on Eiso we define the two maps

g(fn, µn) = (g1, g2) on CEqis as follows.

a. For a complex A, we define g1(A) =
⊗

(fn)1(A
n), and g1(0) = 1.

b. For a short-exact sequence Σ, we define g2(Σ) via⊗
fn(A

n)
⊗(fn)2(Σn)

//
⊗

(fn(A
′n)⊗ fn(A

′′n)) //
⊗

fn(A
′n)⊗

⊗
fn(A

′′n).

c. For an acyclic complex Q, we define g1(0) : g1(Q) → 1 via g2 of the short-exact

sequence Z(Q) // // Q d // // TZ(Q), and the isomorphism⊗
fn(Z

n)⊗
⊗

fn(Z
n+1) //

⊗
(fn(Z

n)⊗ fn−1(Z
n))

⊗µn(Zn)
// 1.

d. For a quasi-isomorphism which is an admissible epimorphism Q // // A
α // // B,

we define g1(α) via

g1(A)
g2
// g1(Q)⊗ g1(B)

g1(0)⊗1
// 1⊗ g1(B) // g1(B).

d.∗ Ditto for a quasi-isomorphism which is an admissible monomorphism.

e. For an arbitrary quasi-isomorphism A
α // B, we use the factorization of

proposition 2.7 A //
α2 // C(1A)⊕B

α1 // // B, and define g1(α) = g1(α1)g1(α2).

f. For a morphism qn : (fn, µn) → (f ′n, µ
′
n), we define g(q) : g1 → g′1 by

g(q)(A) =
⊗

qn(A
n).
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Proposition 2.25. The maps T
q
and g are functors, and establish an equivalence of

categories det(CEqis) and Sdet(Eiso).

We will prove the proposition through a series of lemmas.

Lemma 2.26. On the full exact sub-category of acyclic complexes, g is well defined,

it is a determinant, and it factors through the rigid sub-category Unit(P ) [Saa82]

2.2.5.1.

Proof. We apply proposition 1.10 to the exact square

Z ′ // //

��

��

Z // //

��

��

Z ′′
��

��

Q′ // //

����

Q // //

����

Q′′

����

TZ ′ // // TZ // // TZ ′′.

The lemma then follows from the fact that the µn’s are morphisms of determinants.

Lemma 2.27. For a composition of admissible epimorphisms A
α // // B

β
// // C,

g1(βα) = g1(β)g1(α).

Proof. We apply proposition 1.10, lemma 2.26 and remark A.8 to the exact square

Q′

��

��

Q′ // //

��

��

0
��

��

Q // //

����

A // //

����

C

Q′′ // // B // // C.

Lemma 2.28. For a composition of admissible monomorphisms A // α // B //
β
// C,

g1(βα) = g1(β)g1(α).

Proof. The dual construction of the previous.

Lemma 2.29. The two possible definitions for g1 on isomorphisms agree, and is given

by g1(α) =
⊗

(fn)1(α
n).
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Proof. This is proposition 1.5 a. applied to the fn’s.

Lemma 2.30. For two factorizations A // α // C
β
// //B and A // α

′′
// C ′′ β′′

// //B

with βα = β′′α′′, we have g1(β)g1(α) = g1(β
′′)g1(α

′′).

Proof. Since the two factorizations can be covered by the fiber product of C and C ′′

over B and fiber products with at least one epimorphism exists in exact categories,

we can reduce the lemma to the case of

C

γ

����

β

$$ $$H
HH

HH
HH

HH
HH

A
::

α

::uuuuuuuuuu

$$

α′′
$$I

IIIIIIIII
B

C ′′ .

β′′

;; ;;vvvvvvvvvv

After applying g, the right triangle commutes by lemma 2.27. To see that the left

triangle is commutative, we apply proposition 1.10, lemma 2.26 and remark A.8 to

the exact square

0 // //

��

��

Q′

��

��

Q′

��

��

A // // C // //

����

Q

����

A // // C ′′ // // Q′′.

Lemma 2.31. For a composition A
α→ B

β→ C, g1(βα) = g1(β)g1(α).

Proof. The lemma follows by lemmas 2.29 and 2.27 applied to the commutative

diagram
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A //

0B@1

0

α

1CA
//

α

((QQQQQQQQQQQQQQQQQQQQQQQQ C(−1A)⊕B

“
0 0 1

”
����

//

0BBBBB@
1 0 0

0 1 0

0 0 1

0 0 0

0 0 β

1CCCCCA
// C(−1A)⊕ C(−1B)⊕ C

0B@0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1CA
����

B //

0B@1

0

β

1CA
//

β

((QQQQQQQQQQQQQQQQQQQQQQQQ C(−1B)⊕ C

“
0 0 1

”
����

C ,

and 1.10 applied to the exact square

C(−1A)
��

��

C(−1A) // //

��

��

0
��

��

C(−1A)⊕B // //

����

C(−1A)⊕ C(−1B)⊕ C // //

����

C(β)

B // // C(−1B)⊕ C // // C(β).

Lemma 2.32. For any morphism qn : (fn, µn) → (f ′n, µ
′
n), g(q) is a morphism of

determinants (g1, g2) → (g′1, g
′
2). In fact g is an AC-tensor functor.

Proof. For any short-exact sequence Σ = A′ � A � A′′ we have, by general coher-

ence and since each qn is natural, a commutative diagram

(∗)

g1(A)
g2(Σ)

//

g(q)(A)
��

g1(A
′)⊗ g1(A

′′)

g(q)(A′)⊗g(q)(A′′)
��

g′1(A)
g′2(Σ)

// g′1(A
′)⊗ g′1(A

′′)

Consider a quasi-isomorphism α : A→ B. We need to prove that the diagram below

is commutative.

(∗∗)

g1(A)
g1(α)

//

g(q)(A)
��

g1(B)

g(q)(B)
��

g′1(A)
g′1(α)

// g′1(B)
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When B is acyclic and A = 0, commutativity follows since each qn is a morphism of de-

terminants. Dually for A is acyclic and B = 0. This together with 2.26 shows commu-

tativity for all quasi-isomorphism of acyclic complexes. The diagram (∗) then shows

that (∗∗) is commutative for quasi-isomorphisms that are admissible epimorphsms or

monomorphisms, by lemma 2.31 g(q) is a morphism of determinants. The fact that

g is an AC-tensor functor follows from general coherence.

Lemma 2.33. The composition T
q◦ g is the identity, and g is faithful.

Proof. Let (f ′n, µ
′
n) = (T

q◦g)(fn, µn). For any object A of E , (fn)
′
1(A) = T ∗−n(g1(A)) =

g1(A[−n]) = (fn)1(A). Similarly we see that (fn)
′
2 = (fn)2. Hence by 1.5 a., (fn)

′
1 =

(fn)1 for all isomorphisms. Finally µ′n = µn because both T
q
and g are AC-tensor

functors.

Let g and g′ be determinants on C(E)qis, and let q and q′ be two morphisms g → g′

such that T
q
(q) = T

q
(q′). This means that q and q′ agree on all complexes of length

1. By the brutal truncation and the condition of definition 1.11 for morphisms of

determinants, it follows by induction with respect to length of complexes that q = q′

on all complexes.

Corollary 2.34. Both T
q
and g are fully faithful.

Lemma 2.35. There is an isomorphism of functors id → g ◦ T q
.

Proof. Let h be a determinant on C(E)qis, let T
q
(h) = (fn, µn) and let (g1, g2) =

g(fn, µn). Again we have h1(A) = g1(A) for all complexes of length 1 and h1(α) =

g1(α) for all isomorphisms of such complexes. We use the brutal filtration · · · �

σ≥kA � σ≥k−1A � · · · � A, to construct q(A) = q(h)(A) : h1(A) → g1(A).

It follows from proposition 1.7 and general coherence that we have commutative

diagrams

h1(A)
h1(α)

//

q(A)
��

h1(B)

q(B)
��

g1(A)
g1(α)

// g1(B)

and

h1(A)
h2(Σ)

//

q(A)
��

h1(A
′)⊗ h1(A

′)

q(A′)⊗q(A′′)
��

g1(A)
g2(Σ)

// g1(A
′)⊗ g1(A

′)

for every isomorphism α : A→ B and every short-exact sequence Σ = A′ � A � A′′.

By definition of the µn’s we get a commutative diagram

h1(Q)
q(Q)

//

h1(0)
��

g1(Q)

g1(0)
��

1 // 1
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for every complex Q isomorphic to a complex of the form C(1A) where A is a complex

of length 1. This in particular includes all acyclic complexes of length 2. Using good

truncations, it follows by induction that the diagram above commutes for all acyclic

complexes Q, and this proves that q = q(h) is a morphism of determinants. That q

is natural follows from corollary 2.34. This proves both the lemma, the proposition

and the main theorem.

Definition 2.36. In the rest of the paper we will denote the composition of the func-

tors Sσ and g by Cσ = g ◦ Sσ : det(Eiso) → det(CEqis).

3 Determinants, homology and spectral sequences

In this section f is a determinant on C(E)qis with values in a Picard category P . We

denote the restriction of f to Eiso by f as well.

Definition 3.1. For any admissible complex A we denote by C(iA) the mapping-

cone of the monomorphism iA : B(A) → Z(A). The morphism c(A) is the unique

isomorphism that makes the diagram below commutative.

f(A)

c(A)

��

// f(Z(A))⊗ f(TB(A))

f(C(iA)) // f(Z(A))⊗ f(TB(A))

For any quasi-isomorphism α : A → B of admissible complexes, we denote by c(α)

the induced morphism C(iA) → C(iB), and we define the assignment g = (g1, g2)

on the sub-category of admissible complexes as follows. For any short-exact sequence

Σ = A′ � A � A′′ of admissible complexes,

g1(A) = f1(C(iA))

g1(α) = f1(c(α))

g2(Σ) = f2(c(A
′)⊗ c(A′′)) ◦ f2(Σ) ◦ c(A)−1

If H(A) is in C(E), we have a quasi-isomorphism C(iA) → H(A) and we define h(A)

to be the composition f(A) → g(A) → f(H(A)).

Proposition 3.2. Except for the possibility that the admissible complexes is not an

exact category, the pair (g1, g2) is a determinant, and more important, c is a morphism

of determinants.
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Proof. By definition c satisfies the condition of definition 1.11, so we only have

to prove that c is natural. We prove this by induction with respect length. If a

complex A is of length 1 or of length 2 and the differential d is a monomorphism,

then A and C(iA) are naturally isomorphic, so there is nothing to prove. Let A be an

admissible complex. Then by the good filtration we have a short-exact sequence Let

Σ = A′ � A � A′′ of admissible complexes such that either both A′ and A′′ are

strictly shorter than A, or A is of length 2, A′ is of length 2 with the differential a

monomorphism and A′′ of length one. For such a short-exact sequence the sequences

Z(A′) � Z(A) � Z(A′′) and B(A′) � B(A) � B(A′′) are also short-exact. Hence so

is the sequence C(Σ) = C(iA′) � C(iA) � C(iA′′), and it follows from corollary 1.10

that g2(Σ) = f2(C(Σ)). Let α : A → B be a quasi-isomorphism of admissible

complexes, and consider the diagram below where A′ = γ<kA, B′ = γ<kB, A′′ = γ≥kA

and B′′ = γ≥kB.

f(A′)⊗ f(A′′)

f(α′)⊗f(α′′)

��

// g(A′)⊗ g(A′′)

g(α′)⊗g(α′′)

��

f(A)

55kkkkkkkkkkkkk

f(α)

��

// g(A)

g(α)

��

55kkkkkkkkkkkkk

f(B′)⊗ f(B′′) // g(B′)⊗ g(B′′)

f(B)

55kkkkkkkkkkkkk
// g(B)

55kkkkkkkkkkkkk

We just observed that the right square was commutative because g2(Σ) = f2(C(Σ))

in this case. The left square commutes by naturality of f2, the back square com-

mutes by induction, and the top and bottom by definition. Hence the front square is

commutative.

Proposition 3.3. Let α, α′ : A→ B be two quasi-isomorphisms of admissible com-

plexes. If the induced morphisms in cohomology H(α) = H(α′), then f(α) = f(α′).

Moreover if H(A) and H(B) are objects of C(E), then the diagram below is commu-

tative. f(A)

h(A)

��

f(α)
// f(B)

h(B)

��

f(H(A))
f(H(α))

// f(H(B))

Proof. By the previous proposition we may assume that A and B are of the form

C(iA) and C(iB). In this case if H(α) = H(α′), α and α′ are homotopic, and so
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f(α) = f(α′) by proposition 2.12. If H(A) and H(B) are objects of C(E), the result

follows because we have a commutative diagram of quasi-isomorphisms

A

��

α // B

��

H(A)
H(α)

// H(B).

In the following we consider the category FC(E) of finitely decreasingly filtered com-

plexes and morphisms respecting the filtrations. We denote the p-th filtered sub-

complex of a complex A by F p(A). The following is a convenient way of viewing

spectral sequences from the point of view of determinants.

Definition 3.4. For any filtered complex A the r-th derived filtration DFr is

DF n
r (Am) = Ker(F n+mr(Am) → Am+1/F n+(m+1)r(Am+1)),

and its successive quotients are

DF n+1
r (A) � DF n

r (A) � DGn
r (A).

Proposition 3.5. In the abelian category A, we have a canonical quasi-isomorphism

DGr(A) = ⊕DGn
r (A) → Er(A).

Definition 3.6. For any filtered complex A the r-th spectral filtration SFr is

SF n
r (Am) =

DF
(n−m

2
)

r (Am) for n−m even,

DF
(n−m+1

2
)

r−1 (Am) for m− n odd,

and its successive quotients are

SF n+1
r (A) � SF n

r (A) � SGn
r (A).

Proposition 3.7. The induced differentials dn,mr : SGn
r (A

m) → SGn
r (A

m+1) satisfy

dn,mr = 0 when n−m is even and dn,mr is a monomorphism when n−m is odd. In A
we have

Ep,q
r = Hn+2m(SGn

r (A)),
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where the integers p, q, m and n are related by(
p

q

)
=

(
r 2r − 1

1− r 3− 2r

)(
n

m

)
.

By the property of the differentials, it follows that if the r-th spectral filtration is

admissible, then so are the complexes SGn
r (A).

Proposition 3.8. Let α, α′ : A → B be two morphisms of filtered complexes such

that the induced morphisms Er(α) and Er(α
′) are quasi-isomorphisms. Then then

f(α) = f(α′) if either

a. the r-th derived filtration is admissible, Er(A) and Er(B) are objects of C(E),

and f(Er(α)) = f(Er(α
′)),

or

b. the r + 1-th spectral filtration is admissible, and the induced morphisms in co-

homology Er+1(α) = Er+1(α
′).

If the r-th derived filtration is admissible and Er(A) and Er(B) are objects of C(E),

let er(A) denote the composition f(A) →
m

⊗
f(DGm

r (A)) → f(Er(A)). Then if Er(α)

is a quasi-isomorphism, the diagram below is commutative.

f(A)

er(A)

��

f(α)
// f(B)

er(B)

��

f(Er(A))
f(Er(α))

// f(Er(B))

Proof. This is just propositions 1.7 3.3 3.5, and 3.7.

4 Multi-functors and multi-determinants

Let I be a finite set, and let {Ei}i∈I and F be categories. If all the Ei’s are equal, we

consider an automorphism σ of I also an automorphism of
i ∈ I

∏
Ei via σ(A)i = Aσ−1(i).

Definition 4.1. An order invariant functor S from
i ∈ I

∏
Ei to F is a functor S :

O(I) → Funct(
i ∈ I

∏
Ei,F), where O(I) is the category with the total orderings of I as

objects, and one and only one morphism between any two objects.
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Note that any functor on
i ∈ I

∏
Ei is order invariant by simply letting the functor on

O(I) be constant. If ρ : S → T is a morphism of order invariant functors, we have for

any ordering ≺ a morphism ρ(≺) : S(≺) → T (≺), and this induces an isomorphism

Mor(S, T ) ≈ Mor(S(≺), T (≺)). By abuse of language we will write S :
i ∈ I

∏
Ei → F

instead of S : O(I) → Funct(
i ∈ I

∏
Ei,F), when S is order invariant.

Definition 4.2. Suppose all the Ei’s are equal. A symmetric functor S from
i ∈ I

∏
Ei

to F consists of a functor S :
i ∈ I

∏
Ei → F together with natural isomorphisms ψS(σ) :

S → S ◦ σ, for each automorphism σ of I, satisfying ψS(στ)(A) = ψS(σ)(τ(A)) ◦
ψS(τ)(A) for any pair of automorphisms σ and τ . An order invariant functor S is

symmetric if each S(≺) is symmetric, and the diagram below is commutative for every

σ and any pair of orderings ≺1 and ≺2.

S(≺1)

ψS(≺1)(σ)

��

S(≺2,≺1)
// S(≺2)

ψS(≺2)(σ)

��

S(≺1) ◦ σ
S(≺2,≺1) ◦σ

// S(≺2) ◦ σ

Proposition 4.3. If {Ei}i∈I and F are additive categories, then any order invariant

additive multi-functor S :
i ∈ I

∏
Ei → F has an extension to an order invariant additive

multi-functor C(S) on the category of bounded (or bounded below or above) complexes

C(S) :
i ∈ I

∏
C(Ei) → C(F). In fact C is a functor and for every i ∈ I we have a

natural isomorphism ρi : C ◦ Ti → T ◦ C. Moreover C(S) maps quasi-isomorphisms

to quasi-isomorphisms, and if S is symmetric, so is C(S).

Proof. We use the sign conventions of SGA 4 XVII §1.1 We denote by εi ∈ ZI

the function which takes the value 0 except at i, where it takes the value 1. If

A ∈ Ob(
i ∈ I

∏
C(Ei)) is a multi-complex and k ∈ ZI , Ak ∈

i ∈ I

∏
Ei is the object whose

i-th component is given by (Ak)i = Aki
i , and dki (A) : Ak → Ak+εi is the map which

is the identity on (Ak)j for i 6= j and dkAi
on (Ak)i. Similarly we have fk : Ak → Bk

for any morphism f : A → B. With the integral functions κ(≺, k, i) =
∑
j≺i

ki and

1there are corrections in SGA 4 1
4 , but we don’t need them here.
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λ(≺1,≺2, k) =
∑
i≺1j

j≺2i

kikj, the functor C is defined by the equations

CS≺(A)m =
∑
|k|=m

S≺(Ak),

CS≺(f)m =
∑
|k|=m

S≺(fk),

dmCS≺(A) =
∑
|k|=m

dk(CS≺(A)),

dk(CS≺(A)) =
∑
i∈I

(−1)κ(≺,k,i)S≺(dki (A)),

ρi(S)(A) =
∑
k

(−1)κ(≺,k,i)1S(Ak),

and

CS(≺2,≺1)(A
k) =

∑
k

(−1)λ(≺1,≺2,k)S(≺2,≺1)(A).

We leave the verification to the reader.

The next definition is a formal definition of a multi-determinant. Let the Ei be exact

categories, and let wi be SQ-classes of morphisms. Informally a multi-determinant on

the product-category
i ∈ I

∏
Eiwi

with values in a Picard category P is a multi-functor

which is a determinant for every choice of |I| − 1 frozen variables, and such that that

we get a certain commutative diagram for every pair of indices i 6= j. To state the

definition formally we need some notation.

For any subset K ⊆ I the isomorphism

EvK : Funct(
i ∈ I

∏
Ei, P ) → Funct(

i ∈ K

∏
Ei,Funct(

i ∈ I \K

∏
Ei, P ))

is given by

EvK(S)(A′)(A′′) = S(A) where Ai =

A′
i for i ∈ K,

A′′
i for i ∈ I \K.

Let p′, p and p′′ be the projections {Ei} → Ei as in definition 1.2 and let

EK =
i ∈ I

∏
EK,i where EK,i =

Eiwi
for i ∈ K,

{Ei}{wi} for i ∈ I \K.
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For any subsets J ⊂ K and L of I, and s ∈ {′,′′ }K\J we have the two projections

psK,J : EJ → EK and pJ : EL → EL∪I\J given by

(psK,J(A))i =


Ai ∈ Ob({Ei}) for i ∈ I \K,

ps(i)(Ai) ∈ Ob(Ei) for i ∈ K \ J,

Ai ∈ Ob(Ei) for i ∈ J,

(pJ(A))i =


Ai ∈ Ob({Ei}) for i ∈ J \ L,

p(Ai) ∈ Ob(Ei) for i ∈ I \ (L ∪ J),

Ai ∈ Ob(Ei) for i ∈ L.

Definition 4.4. A multi-determinant f on the category EI =
i ∈ I

∏
Eiwi

with values in

P consists of a multi-functor f : EI → P , together with natural isomorphisms

fK,J : f ◦ pJ →
s ∈ {′,′′ }K\J

⊗
f ◦ pK ◦ psK,J

on Funct(EJ , P ) for each pair of subsets J ⊂ K, satisfying the following conditions.

a. For each A ∈ Ob(
i ∈ K

∏
Ei) with |K| = |I| − 1, (f1, f2) = (EvKf(A),EvKfI,K(A))

is a determinant.

b. The isomorphism fK,J(A) depends only on pK(A), and for any subsets J ⊂ K ⊂
L and A ∈ EJ we have a commutative diagram

f ◦ pJ(A)
fK,J (A)

//

fL,J (A)

��

s ∈ {′,′′ }K\J

⊗
f ◦ pK ◦ psK,J(A)

s ∈ {′,′′ }K\J

⊗
fL,K(ps

K,J (A))

��

u ∈ {′,′′ }L\J

⊗
f ◦ pL ◦ puL,J(A)

∼ //

s ∈ {′,′′ }K\J

⊗ (
t ∈ {′,′′ }L\K

⊗
f ◦ pL ◦ ptL,K(psK,J(A))

)
.

Remark 4.5. Since fK,J(A) only depends on pK(A), fK,J is determined by fI,I\(K\J),

and it suffices to have b. satisfied for all J ⊂ K ⊂ L with |J | = |I| − 2.

Definition 4.6. A morphism of multi-determinants ρ : f → g is a natural isomor-

phism of multi-functors, with the property that for all subsets J ⊂ K and for all

A ∈ Ob(EJ) the diagram below is commutative.
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f(pJ(A))
fK,J (A)

//

ρ(pJ (A))

��

s ∈ {′,′′ }K\J

⊗
f(pK(psK,J(A)))

s ∈ {′,′′ }K\J

⊗
ρ(pK(ps

K,J (A)))

��

g(pJ(A))
gK,J (A)

//

s ∈ {′,′′ }K\J

⊗
g(pK(psK,J(A)))

We denote by det(
i ∈ I

∏
Ei,wi

, P ) the category of multi-determinants.

Proposition 4.7. The category of multi-determinants is a Picard category, and for

any multi-determinant f in det(EI , P ) and any K ⊂ I, EvK(f) is a multi-determinant

on
i ∈ K

∏
Eiwi

with values in det(
i ∈ I \K

∏
Eiwi

, P )). In fact we have an AC-tensor functor and

an isomorphism of categories

EvK : det(
i ∈ I

∏
Eiwi

, P ) → det(
i ∈ K

∏
Eiwi

, det(
i ∈ I \K

∏
Eiwi

, P )).

Theorem 4.8. The restriction functor det(
i ∈ I

∏
CE i qis, P ) → det(

i ∈ I

∏
Ei iso, P ) is an

equivalence, and an AC-tensor functor.

Proof. We construct an inverse functor Cσ,≺ depending upon an inverse structure

σ on P and a total ordering ≺ on I. We proceed by induction with respect to |I|,
and we denote the restriction of ≺ to any subset of I by ≺ as well. By the main

theorem 2.3, the theorem holds for |I| = 1. Let j be the maximum member of I. By

the induction hypothesis and proposition 4.7 we have a commutative diagram

det(
i

∏
CE i qis, P )

Ev{j}
//

resI

��

det(CE j qis, det(
i 6= j

∏
CE i qis, P ))

resj

��

det(Ej iso, det(
i 6= j

∏
CE i qis, P ))

(resI\{j})∗

��

Cσ

II

det(
i

∏
Ei iso, P )

Ev{j}
// det(Ej iso, det(

i 6= j

∏
Ei iso, P )) ,

(Cσ,≺)∗

II
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where Cσ,≺ is an inverse to resI\{j}. Again by the main theorem 2.3 Cσ is an inverse

to resj, and since composition of AC-tensor functors is again an AC-tensor functor

the theorem follows.

Remark 4.9. For any pair (≺1,≺2) of total orderings, since both Cσ,≺1 and Cσ,≺2

are inverses to the restriction they are canonically isomorphic. Hence we may view

Cσ as a functor of order invariant multi-determinants.

The following is a generalization of [Del87] 4.14. which might be thought of as a

formula for the determinant of the Kronecker-product of two matrices in terms of the

determinants of the matrices.

Let {Ei}i∈I and F be exact categories, v = {vi}i∈I and w SQ-classes of morphisms

in {Ei}i∈I and F respectively, {Pi}i∈I and Q Picard categories, S :
i

∏
Ei → F a

multi-exact functor sending v to w and T :
i

∏
Pi → Q a multi-AC tensor functor,

by which we mean a multi-functor which is an AC-tensor functor for any |I| − 1

frozen variables, satisfying the commutativity of the obvious diagrams for each pair

of indices.

Lemma 4.10. With {Ei}i∈I , F , {vi}i∈I , w, {Pi}i∈I , Q, S and T as above, if f =

{fi}i∈I and g are determinants on Ei vi
and Fw with values in Pi and Q respectively,

then the compositions g ◦ S and T ◦ f are both multi-determinants.

Definition 4.11. With notation as in lemma 4.10, an 〈S, T, v,w〉-determinant, is a

triple (f, g, η) where f = {fi}i∈I and g are determinants on Ei vi
and Fw with values in

Pi and Q respectively, and η : g ◦S → T ◦f is an isomorphism of multi-determinants.

A morphism of 〈S, T, v,w〉-determinants from (f, g, η) to (f ′, g′, η′) is a pair of natural

transformations q : f → f ′, r : g → g′ commuting with η and η′. If S and T are

order invariant, we say that (f, g, η) is order invariant if η is an isomorphism of order

invariant functors. If S and T are symmetric, we say that (f, g, η) is symmetric if η

is an isomorphism of symmetric functors and all of the fi’s are the same determinant.

We denote the category of 〈S, T, v,w〉-determinants by det〈S, T, v,w〉.

Lemma 4.12. With notation as in lemma 4.10, det〈S, T, v,w〉 is a Picard category,

with tensor product defined component wise.

Corollary 4.13. The restriction functor det〈C(S), T, qis, qis〉 → det〈S, T, iso, iso〉 is

an equivalence, and an AC-tensor functor. Moreover (f, g, η) is symmetric if and

only if res(f, g, η) is.
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Example 4.14. [Del87] 4.14. In this example we let I = {1, 2} be an index set, the

standard ordering is <, the permutation σ is the transposition (1, 2), and E1 = E2 = F
is the exact category of locally free sheaves on a scheme V . For any such sheaf A we

let nA be the rank function. The Picard categories P1 = P2 = Q is the category of

ZV -graded invertible sheaves on V . An object in this category is a pair X̄ = 〈X,nX〉,
where X is an invertible sheaf on V , and nX is a continuous integral function on V .

The order invariant and symmetric bi-exact functor S :
i ∈ I

∏
Ei → F is given by

S<(A) = A1 ⊗ A2 and S>(A) = S<(σ(A)) = A2 ⊗ A1

for any object A = (A1, A2) ∈ Ob(
i ∈ I

∏
Ei), and the morphism

S>,<(A) : S<(A) → S>(A)

is given stalk-wise by

S>,<(A)(a1 ⊗ a2) = S>(σ)(A)(a1 ⊗ a2) = a2 ⊗ a1 ,

where a1 and a2 are germs of sections of A1 and A2 respectively.

The classical determinant det : F → P is defined by det(A) = 〈
∧nAA, nA〉, and the

composition det ◦S is an order invariant, symmetric bi-determinant.

The order invariant and symmetric functor T :
i ∈ I

∏
Pi → Q is given by

T<(X̄) = 〈X⊗nX2
1 ⊗X

⊗nX1
2 , nX1 + nX2〉 and T>(X̄) = T<(σ(X̄))

for any object X̄ = (X̄1, X̄2) ∈ Ob(
i ∈ I

∏
Pi), and the morphism

T>,<(X̄) : T<(X̄) → T>(X̄)

is given stalk-wise by

T>,<(X̄)(
j = 1

nX2⊗
x1,j ⊗

i = 1

nX1⊗
x2,i) = (−1)(

nX1
2

)(nX2
2

)
i = 1

nX1⊗
x2,i ⊗

j = 1

nX2⊗
x1,j.

The functor T< is a bi-AC tensor functor via the morphisms

T<, 2(X̄
′
1, X̄

′′
1 , X̄2) : T<(X̄ ′

1 ⊗ X̄ ′′
1 , X̄2) → T<(X̄ ′

1, X̄2)⊗ T<(X̄ ′′
1 , X̄2) and

T<, 1(X̄1, X̄
′
2, X̄

′′
2 ) : T<(X̄1, X̄

′
2 ⊗ X̄ ′′

2 ) → T>(X̄1, X̄
′
2)⊗ T>(X̄1, X̄

′′
2 ),
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given on stalks by

j = 1

nX2⊗
(x′1,j ⊗ x′′2,j)⊗

i = 1

nX′
1
+nX′′

1⊗
x2,i 7→

j = 1

nX2⊗
x′1,j ⊗

i = 1

nX′
1⊗
x2,i ⊗

j = 1

nX2⊗
x′′1,j ⊗

i = nX′
1
+1

nX′
1
+nX′′

1⊗
x2,i and

j = 1

nX′
2
+nX′′

2⊗
x1,j ⊗

i = 1

nX1⊗
(x′2,i ⊗ x′′2,i) 7→ (−1)

nX′
2
nX′′

2
(nX1

2
)

j = 1

nX′
2⊗
x1,j⊗

i = 1

nX1⊗
x′2,i⊗

j = nX′
2
+1

nX′
2
+nX′′

2⊗
x1,j⊗

i = 1

nX1⊗
x′′2,i.

The reader can check that the diagram

T<(X̄ ′
1 ⊗ X̄ ′′

1 , X̄ ′
2)⊗ T<(X̄ ′

1 ⊗ X̄ ′′
1 , X̄ ′′

2 )

''OOOOOOOOOOOOOOOOOO

T<(X̄ ′
1, X̄

′
2)⊗ T<(X̄ ′′

1 , X̄ ′
2)⊗ T<(X̄ ′

1, X̄
′′
2 )⊗ T<(X̄ ′′

1 , X̄ ′′
2 )

1⊗ψ⊗1
��

T<(X̄ ′
1 ⊗ X̄ ′′

1 , X̄ ′
2 ⊗ X̄ ′′

2 )

<<zzzzzzzzzzzzzzzzzzzz

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

D

T<(X̄ ′
1, X̄

′
2)⊗ T<(X̄ ′

1, X̄
′′
2 )⊗ T<(X̄ ′′

1 , X̄ ′
2)⊗ T<(X̄ ′′

1 , X̄ ′′
2 )

T<(X̄ ′
1, X̄

′
2 ⊗ X̄ ′′

2 )⊗ T<(X̄ ′′
1 , X̄ ′

2 ⊗ X̄ ′′
2 )

77oooooooooooooooooo

commutes, and if T>, 1 = T<, 2 and T>, 2 = T<, 1, then T>,< is a morphism of bi-AC

tensor functors. If we denote the functor det :
i ∈ I

∏
Ei →

i ∈ I

∏
Pi given by det(A1, A2) =

(det(A1), det(A2)) by det as well, the composition T ◦ det is also an order invariant,

symmetric bi-determinant. We define η : det ◦S → T ◦ det stalk-wise by

η<(A)(
(i, j) ∈ J(A)

∧
aj1,i ⊗ ai2,j) =

j = 1

n(A2)⊗
i = 1

n(A1)∧
aj1,i ⊗

i = 1

n(A1)⊗
j = 1

n(A2)∧
ai2,j ,

where J(A) is the ordered set {1, . . . , n(A1)} × {1, . . . , n(A2)} with lexicographical

ordering, and η>(A) = η<(σ(A)). The diagram

det ◦S< //

η<

��

det ◦S>

η>

��

T< ◦ det // T> ◦ det

commutes because the pullback by the transposition J(A) → J(σ(A)) of the lexico-

graphical ordering on J(σ(A)) differs from the lexicographical ordering on J(A) by
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a permutation of signature (−1)(
nA1

2
)(nA2

2
). The reader may check that η is a mor-

phism of order invariant, symmetric bi-determinants. Therefore (det, det, η) is an

order invariant, symmetric 〈S, T, iso, iso〉-determinant, and by 4.13 (det, det, η) has

an essentially unique extension to an order invariant, symmetric 〈C(S), T, qis, qis〉-
determinant.

Next we take a quick look at contravariant functors.

Definition 4.15. Let E and F be exact categories. For any contravariant functor

S : E → E we define the extended contravariant functor CS : CE → CE by the

formulas SGA 4 XVII, 1.1.5.1.

[CS(A)]k = A−k,

[CS(α)]k = α−k,

[dCS(A)]
k = (−1)k+1S(d

−(k+1)
A ).

Lemma 4.16. If S is exact, so is CS, and if T denotes the translation-functor, and

C(α) denotes the mapping-cone of the morphism α, there are canonical isomorphisms

of functors

T−1 ◦ CS ≈ CS ◦ T,
TC(CS(α)) ≈ CS(C(α)).

Corollary 4.17. The restriction functor on the Picard category of contravariant

〈CS, T, iso, iso〉-determinants is an equivalence, and an AC-tensor functor.

Example 4.18. [Del87] 4.14. Let E = F and P = Q be as in example 4.14, and let

the functors S : E → F and T : P → Q be given by

S(A) = A
∨
, S(α) = α

∨
,

T 〈X,m〉 = 〈X∨
,m〉, T (α) = α

∨
.

Then S is a contravariant exact functor, T is a contravariant AC-tensor functor, and

we have a natural isomorphism of contravariant determinants

η : det ◦S → T ◦ det,

so (det, det, η) is an 〈S, T, iso, iso〉-determinant, and by corollary 4.17 the canonical

isomorphism for finite locally free sheaves
∧nA(A

∨
) → (

∧nAA)
∨

extends uniquely to

complexes.
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5 The homotopy formula

In this section the terms E , C(E), P and σ are as in section2, and f = (f1, f2) is a

determinant on Eiso with values in P .

Definition 5.1. For complexes A, B and a map α : A → B, we have the following

objects and maps in E.

A+ =
i

⊕
A2i

A− =
i

⊕
A2i+1

α+ =
i

⊕
α2i : A+ → B+ and

α− =
i

⊕
α2i+1 : A− → B−

Lemma 5.2. Any zero-homotopic complex is split-exact. See definition 2.16.

Proof. Let h be a homotopy for the complex A, and let h′ = h− dh3d. We leave it

to the reader to verify that 1 = dh′ + h′d and h′2 = 0. Hence we may assume that

h2 = 0. The maps pi = di−1hi and qi = hi+1di are projections and the isomorphisms

Ai → Zi ⊕ Zi+1 are given by the two maps pi and diqi.

Proposition 5.3. Let A be a homotopically trivial complex, and let h be a homotopy

for A. Then the map d− + h− : A− → A+ is an isomorphism, f(d− + h−) : f(A−) →
f(A+) does not depend on the choice of h, and f(d+ + h+) = (f(d− + h−))−1.

Proof. By lemma 5.2 A is split exact. The composition (d+ + h+)(d− + h−) =

1+h+h− is an isomorphism since h+h− is nilpotent. Also 1+h+h− respects the natural

filtration and induces the identity on each quotient A2n+1, hence by proposition 1.7

f(d+ +h+)f(d−+h−) = 1f(A−). If h′ is another homotopy for A, h′−h is a morphism

TA→ A. We leave to the reader to check that any morphism of split-exact complexes

is homotopic to zero, so there is a map s : T 2A→ A such that h′− h = ds− sd. The

two maps d−+h′− and (1−s+)(d−+h−)(1+s−) induce the same map grA− → grA+,

and since f(1 − s+) = 1f(A+) and f(1 + s−) = 1f(A−) the proposition follows from

proposition 1.7.

Definition 5.4. Consider a pair (α, β) of morphisms of complexes α : A → B,

β : B → A. A pair (h, k) of maps h : TA→ A, k : TB → B will be called an (α, β)-

good pair of homotopies, if first they are homotopies, i.e. dh + hd = 1 − βα and

dk + kd = 1− αβ, and second, there exists a map l : T 2A→ B such that kα− αh+
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dl− ld = 0. Symmetrically we say that (k, h) is (β, α)-good if hβ−βk+dm−md = 0

for some m : T 2B → A. We say that (h, k) is a good pair if (h, k) is (α, β)-good and

(k, h) is (β, α)-good.

Remark 5.5. Note that the above relations simply say that the maps(
k l

β −h

)
: TC(α) → C(α) and

(
h m

α −k

)
: TC(β) → C(β)

are homotopies for C(α) and C(β) respectively.

Proposition 5.6. Let α : A → B, β : B → A be a pair of morphisms of complexes,

and let h : TA → A, k : TB → B be a pair of homotopies for the pair α, β. If we

define h1 = h+ β(kα− αh) and k1 = α(hβ − βk), then both pairs h1, k and h, k1 are

good.

Proof. The goodness of h1, k is readily checked by setting l = kαh − k2α and m =

hβk − h2β − βk2.

Proposition 5.7. Let α : A → B be a morphism, let β : B → A be a homotopy

inverse, and let h : TA → A, k : TB → B be an (α, β)-good pair of homotopies.

Then the map(
α+ d− + k−

d+ + h+ −β−

)
: A+ ⊕B− → B+ ⊕ A−

is an isomorphism, the map

f

(
α+ d− + k−

d+ + h+ −β−

)
: f(A+ ⊕B−) → f(B+ ⊕ A−)

does not depend upon the choice of β, h and k, and

f

(
β+ d− + h−

d+ + k+ −α−

)
=

(
f

(
α+ d− + k−

d+ + h+ −β−

))−1

.

Proof. Let l : T 2A → B be as in definition 5.4. In order to simplify the computa-

tions we use the commutative diagram below where the vertical arrows are shuffling

morphisms.
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A+ ⊕B−

��

 
α+ + l+ d− + k−

−(d+ + h+) β−

!
// B+ ⊕ A−

��

 
β+ −(d− + h−)

d+ + k+ α− + l−

!
// A+ ⊕B−

��

C(α)−

 
d α

0 −d

!−
+

 
k l

β −h

!−
// C(α)+

 
d α

0 −d

!+

+

 
k l

β −h

!+

// C(α)−

Consider the three compositions below.

((
d α

0 −d

)
+

(
k l

β −h

))+((
d α

0 −d

)
+

(
k l

β −h

))−

=

(
1 0
0 1

)−

+

(
k2 + lβ kl − lh

βk − hβ βl + h2

)−

((
d α

0 −d

)
+

(
k l

β −h

))+((
d α

0 −d

)
+

(
k 0
β −h

))−

=

(
1 0
0 1

)−

+

(
k2 + lβ −dl − lh

βk − hβ h2

)−

((
d α

0 −d

)
+

(
k 0
β −h

))+((
d α

0 −d

)
+

(
k l

β −h

))−

=

(
1 0
0 1

)−

+

(
k2 kl + ld

βk − hβ βl + h2

)−

All these matrices respect the fine admissible filtration on C(α)− given by C(α)− =

· · · ⊕ B2i−1 ⊕ A2i ⊕ B2i+1 ⊕ · · · and induce the identity on each successive quotient.

It follows from this and from proposition 1.5 c) that

(
f

(
α+ d− + k−

d+ + h+ −β−

))−1

= ε(f(A−))

(
f

(
α+ d− + k−

−(d+ + h+) β−

))−1

= ε(f(A−))

(
f

(
α+ + l+ d− + k−

−(d+ + h+) β−

))−1

= ε(f(A−))f

(
β+ −(d− + h−)
d+ + k+ α− + l−

)

= f

(
β+ d− + h−

d+ + k+ −(α− + l−)

)

= f

(
β+ d− + h−

d+ + k+ −α−

)
.

The proposition follows from propositions 5.3 and 5.6.
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Definition 5.8. Let α : A → B be a homotpy equivalence. We denote by f̃(α) the

morphism which makes the diagrams below commutative. (Here β is any homotopy

inverse, and h and k is any (α, β)-good pair of homotopies.)

f(A+ ⊕B−)

f

 
α+ d− + k−

d+ + h+ −β−

!
��

// f(A+)⊗ f(B−)

f̃(α)

��

f(B+ ⊕ A−) // f(B+)⊗ f(A−)

Theorem 5.9. (The homotopy formula) Let Cσ(f) be the σ-extension of the deter-

minant f to C(E)qis. Then for any homotopy-equivalence α : A → B, the diagram

below is commutative.

f(A+)⊗ f(B−)⊗ fσ(A−)⊗ fσ(B−)

f̃(α)⊗1⊗1

��

σ({2,4})
// f(A+)⊗ fσ(A−) // Cσ(f)(A)

Cσ(f)(α)

��

f(B+)⊗ f(A−)⊗ fσ(A−)⊗ fσ(B−)
σ({2,3})

// f(B+)⊗ fσ(B−) // Cσ(f)(B)

Proof. We start with the case B = 0. In this case A is split-exact, and assuming

h2 = 0 we have a commutative diagram.

A+

 
d−h+

d+

!
��

d++h+
// A−

 
d+h−

d−

!
��

Z+ ⊕ Z−

 
0 1

1 0

!
// Z− ⊕ Z+

This and the properties of the inverse structure σ A.16 shows that we have a com-

mutative diagram

f(A+)⊗fσ(A−)

��

f(d++h+)⊗1
// f(A−)⊗fσ(A−)

��

// 1

��

f(Z+)⊗f(Z−)⊗fσ(Z−)⊗fσ(Z+)

��

ψ⊗1⊗1
// f(Z−)⊗f(Z+)⊗fσ(Z−)⊗fσ(Z+)

��

// 1

��

Cσ(f)(Z)⊗Cσ(f)(TZ) // Cσ(f)(Z)⊗Cσ(f)(TZ) // 1 ,
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and this proves the theorem in the case B = 0. The case A = 0 follows by taking

inverses.

For the special complex C(1A) we have that 0R : C(1A) → 0 is a homotopy equivalence

with homotopy
 

0 0

1 0

!
, and from the theorem in the case B = 0 we get a commutative

diagram

Cσ(f)(A)⊗ Cσ(f)(TA)

��

// Cσ(f)(C(1A))

Cσ(f)(0R)

��

f(A+)⊗ fσ(A−)⊗ f(A−)⊗ fσ(A+)
σ({1,4},{2,3})

// 1.

We also have commutative diagrams

Cσ(f)(A)⊗ Cσ(f)(TA)

Cσ(f)(α)⊗1

��

// Cσ(f)(C(1A))

��

Cσ(f)(B)⊗ Cσ(f)(TA) // Cσ(f)(C(α)),

and

f(C(α)−)

f̃(0L)

��

// f(A+)⊗ f(B−)

ε(f(A−))f̃(α)

��

f(C(α)+) // f(B+)⊗ f(A−).

These diagrams together with the theorem in the case A = 0 shows that the right ver-

tical composition from top to bottom in the diagram below is the map Cσ(f)(0L), and

that the theorem follows if the whole diagram is commutative. The top and bottom

squares commute by definition, and the middle square commutes by theorem A.22.

Cσ(f)(A)⊗Cσ(f)(TA) // 1

f(A+)⊗f(B−)⊗fσ(A−)⊗fσ(B−)⊗f(A−)⊗fσ(A+)

f̃(α)⊗1⊗1⊗1⊗1

��

σ({2,4})

OO

σ({3,5})
// f(A+)⊗f(B−)⊗fσ(B−)⊗fσ(A+)

OO

ε(f(A−))f̃(α)⊗1⊗1

��

f(B+)⊗f(A−)⊗fσ(A−)⊗fσ(B−)⊗f(A−)⊗fσ(A+)

σ({2,3})

��

σ({2,3})
// f(B+)⊗f(A−)⊗fσ(B−)⊗fσ(A+)

��

Cσ(f)(B)⊗Cσ(f)(TA) // Cσ(f)(C(α))
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A Picard categories

We recall the definition of an associative and commutative, or for short, AC tensor-

category P . [Lan63], [Kel64], [Saa82].

Definition A.1. An AC tensor-category P = (P,⊗, φ, ψ) consists of a category P ,

a bi-functor ⊗ : P × P → P , and two natural isomorphisms

φ(X, Y, Z) : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z),

ψ(X, Y ) : X ⊗ Y → Y ⊗X.

satisfying the two axioms below.

The pentagonal axiom. The diagram below is commutative.

((X ⊗ Y )⊗ Z)⊗W
φ⊗1

xxqqqqqqqqq φ

&&MMMMMMMMM

(X ⊗ (Y ⊗ Z))⊗W

φ

��
%%
%%
%%
%%

(X ⊗ Y )⊗ (Z ⊗W )

φ

����
��
��
��

X ⊗ ((Y ⊗ Z)⊗W )
1⊗φ
// X ⊗ (Y ⊗ (Z ⊗W ))

The hexagonal axiom. The diagram below is commutative.

(X ⊗ Y )⊗ Z

φ
xxrrrrrrrrrrrr

ψ⊗1

&&LLLLLLLLLLLL

X ⊗ (Y ⊗ Z)

ψ

��

(Y ⊗X)⊗ Z

φ

��

(Y ⊗ Z)⊗X

φ

&&LLLLLLLLLLLL
Y ⊗ (X ⊗ Z)

1⊗ψ
xxrrrrrrrrrrrr

Y ⊗ (Z ⊗X)

Remark A.2. The general coherence theorem is proved in [Lan63]. It says that all

diagrams involving just the φ’s and the ψ’s commute. This means that if I and J

are disjoint finite sets and {Xi}i∈I∪J is an indexed set of objects of P , it makes sense

to talk about the “object”
⊗

i∈I Xi, and the unique isomorphism induced by φ and ψ⊗
i∈I Xi⊗

⊗
i∈J Xi →

⊗
i∈I∪J Xi. For this reason we will often drop parenthesis and

names of these canonical morphisms in diagrams.
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Definition A.3. An AC tensor functor h = (h1, h2) : (P ′,⊗′ , φ′, ψ′) → (P,⊗, φ, ψ)

consists of a functor h1 : P → P ′, together with a natural isomorphism h2(X, Y ) :

h1(X⊗
′
Y ) → h1(X)⊗ h1(Y ), making the two diagrams below commutative.

h1((X⊗′Y )⊗′Z)
h2(X⊗′Y,Z)

//

h1(φ′)

��

h1(X⊗′Y )⊗ h1(Z)
h2(X,Y )⊗1

// (h1(X)⊗ h1(Y ))⊗ h1(Z)

φ

��

h1(X⊗′(Y⊗′Z))
h2(X,Y⊗′Z)

// h1(X)⊗ h1(Y⊗
′
Z)

1⊗h2(Y,Z)
// h1(X)⊗ (h1(Y )⊗ h1(Z))

h1(X⊗′Y )
h2(X,Y )

//

h1(ψ′)

��

h1(X)⊗ h1(Y )

ψ

��

h1(Y⊗
′
X)

h2(Y,X)
// h1(X)⊗ (h1(Y )

Definition A.4. If f = (f1, f2) and g = (g1, g2) are AC tensor functors from an

AC tensor category P ′ to an AC tensor category P , an AC natural transformation

η : f1 → g1 is an AC natural transformation if the diagram below is commutative.

f1(X⊗′Y )
f2(X,Y )

//

η(X⊗′Y )

��

f1(X)⊗ f1(Y )

η(X)⊗η(Y )

��

g1(Y⊗
′
X)

g2(Y,X)
// g1(X)⊗ (g1(Y )

Definition A.5. If f = (f1, f2) and g = (g1, g2) are AC tensor functors from an AC

tensor category P ′ to an AC tensor category P , we define the tensor product f ⊗ g as

follows,

(f ⊗ g)1(X) = f1(X)⊗ g1(X),

(f ⊗ g)2(X, Y ) = (1⊗ ψ′ ⊗ 1) ◦ (f2(X, Y )⊗ g2(X, Y )).

Proposition A.6. The AC tensor functors from an AC tensor category P ′ to an AC

tensor category P , and the AC natural transformations form a category that we denote

by Hom
⊗
(P ′, P ). The tensor product together with φ and ψ induce on Hom

⊗
(P ′, P ) a

structure of an AC tensor category.

Proof. It follows from the general coherence theorem, that φ and ψ induce natural

transformations that satisfy both the pentagonal and the hexagonal axiom.
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Definition A.7. A unit (U, δL, δR) in a commutative tensor category (P,⊗, φ, ψ)

consists of an object U together with two natural isomorphisms

δL(X) :U ⊗X → X

δR(X) :X ⊗ U → X

satisfying the axioms below.

The unit axioms. The three diagrams below are commutative.

X ⊗ U

ψ(X,U)

��

δR(X)

""E
EE

EE
EE

X

U ⊗X
δL(X)

<<yyyyyyy

(X ⊗ Y )⊗ U

φ(X,Y,U)

��

δR(X⊗Y )

%%KKKKKKKK

X ⊗ Y

X ⊗ (Y ⊗ U)
1⊗δR(Y )

99ssssssss

(X ⊗ U)⊗ Y

φ(X,U,Y )

��

δR(X)⊗1

%%KKKKKKKK

X ⊗ Y

X ⊗ (U ⊗ Y )
1⊗δL(Y )

99ssssssss

Remark A.8. It is shown in [Saa82] 2.4.1 that the left diagram is redundant, and

that ψ(U,U) = 1U⊗U . For any two units U and U ′ there is a unique isomorphism

γ(U ′, U) : U → U ′ such that for any X, δ′R(X) ◦ 1 ⊗ γ(U ′, U) = δR(X). An object

U together with an isomorphism δ : U ⊗ U → U is called a reduced unit. In [Saa82]

2.2.5.1 it is shown that for any reduced unit (U, δ) there is a unique unit (U, δL, δR)

such that δ(U) = δL(U) = δR(U). Furthermore if J ⊆ I are finite sets and {Xi}i∈I is

an indexed set of objects of P such that (Xj, Xj ⊗Xj → Xj) is a unit for each j ∈ J ,

then we have a unique “cancellation isomorphism”
⊗

i∈I Xi →
⊗

i∈I\J Xi.

For any unit U , End(U) acts via δ on any object of P . In particular End(U) acts on

U endowing End(U) with two operations. The naturality of δ and the functoriality of

⊗ shows that the two operations are identical, that End(U) is a commutative monoid,

and that Aut(U) is an abelian group.

Corollary A.9. If P and P ′ are AC tensor categories and P has units, then any

assignment X 7→ u1(X), X 7→ δ(X) : u1(X) ⊗ u1(X) → u1(X) of a unit in P to

every object X of P ′ defines a unique unit (u, δ : u⊗ u→ u) in Hom
⊗
(P ′, P ).

Definition A.10. A right inverse to an object X in a tensor-category P consists of

an object Y and an isomorphism ρ : X ⊗ Y → U with U a unit. We say that an

object X of a tensor-category P is invertible if a right inverse exists. For any right

inverse ρ : X ⊗ Y → U , we have an associated left inverse ρ ◦ ψ(Y,X) : Y ⊗X → U
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Remark A.11. For an invertible object X we get via Y and ρ isomorphisms of

monoids End(X) ≈ End(X ⊗ Y ) ≈ End(U), and these isomorphisms do not depend

on the choice of Y and ρ.

From now on we shall only consider tensor categories that have units, and we pick a

particular unit (1, δL, δR).

Definition A.12. For any invertible object X, the automorphism ψ : X⊗X → X⊗X
induces an automorphism of order two of Aut(1) we call ε(X).

Proposition A.13. The assignment X 7→ ε(X) is a function [InvP ] → Aut(1)

from isomorphism-classes of invertible objects of P to the automorphism-group of the

identity-object. Furthermore ε(1) = 1 and ε(X ⊗ Y ) = ε(X)ε(Y ).

Proposition A.14. If ρ : X ⊗ Y → 1 is an isomorphism, the composition

Y
(δR(Y ))−1

// Y ⊗ 1
(1⊗ρ)−1

// Y ⊗X⊗ Y
ψ⊗1

// X ⊗ Y ⊗ Y
ρ⊗1

// 1⊗ Y
δL(Y )

// Y

is ε(Y )1Y .

Proof. The proof can be seen from the diagram below.

Y ⊗X ⊗ Y
ψ⊗1

//X ⊗ Y ⊗ Y

Y ⊗ (X ⊗ Y )
ψ
//

1⊗ρ
��

(X ⊗ Y )⊗ Y
1⊗ψ

//

ρ⊗1

��

X ⊗ Y ⊗ Y

ρ⊗1

��

Y ⊗ 1
ψ

//

��

1⊗ Y
1⊗ε(Y )1

//

��

1⊗ Y

��

Y Y
ε(Y )1

// Y

Definition A.15. A Picard category is an AC tensor-category with units, and with

the property that every object is invertible and every morphism is an isomorphism.

Definition A.16. An inverse structure σ = (σ1, σ2, σ3, ) on a Picard category P

consists of an AC tensor-functor (σ1, σ2) : P → P , and an AC natural isomorphism

σ3 : id⊗ σ1 → 1.

Remark A.17. Note that an inverse structure is simply an inverse to the identity

functor in Hom
⊗
(P, P ). Any two inverse structures are canonically isomorphic, and an

inverse structure is uniquely determined by a choice of an inverse σ3 : X⊗σ1(X) → 1

for every object X of P .
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The rest of this section will be devoted to a theorem which is an elaboration of A.14.

We fix a Picard category P , and an inverse structure σ on P . We will make use of

the notation Xσ = σ1(X) and σ(X) : X ⊗Xσ → 1.

Definition A.18. We will call a pair of objects {X, Y } of P an inverse couple if

X = Y σ or Y = Xσ.

Definition A.19. Let {Xi}i∈I be a finite indexed set of objects of P , and let S =

{{s1, s
′
1}, {s2, s

′
2}, . . . , {sk, s′k}} be a set of pairwise disjoint pairs of indexes of I,

such that each pair {Xsi
, Xs′i} is an inverse couple. By the naturality of all the maps

generated by φ, ψ and δ, S determines a unique isomorphism

i ∈ I

⊗
Xi

//

i ∈ I \ ∪S

⊗
Xi ,

which we call the contraction defined by S, and we denote it by σ(S).

Consider again a finite indexed set of objects of P , {Xi}i∈I , and let S = {{s1, s
′
1}, {s2,

s′2}, . . . , {sk, s′k}} and T = {{t1, t′1}, {t2, t′2}, . . . , {tk, t′k}} be two disjoint sets of

pairwise disjoint pairs of indexes of I, such that for each i, the pairs {Xsi
, Xs′i} =

{Xti , Xt′i} is an inverse couple. From these conditions we can conclude that the

graph with vertexes S ∪ T and edges the set {{x, y} |x ∩ y 6= ∅} is bipartite and the

connected components C ⊆ P(S ∪ T ) are either cycles or chains. We let C0 be the

set of cycles, C1 the odd chains and C2 = CS
2 ∪ CT

2 be the even chains. The set of

even chains either starts and end in S, or they start and end in T . To each chain or

cycle c ∈ C, there corresponds a unique inverse couple {X(c), Xσ(e)}.

Definition A.20. Let {Xi}i∈I , S and T be as above. We say that a one to one

mapping β : CT
2 → CS

2 is a perfect matching if for each chain e ∈ CT
2 the inverse

couple corresponding to e is the same as the inverse couple corresponding to β(e). For

any perfect matching β, we define the mapping β̃ : I \
⋃
S → I \

⋃
T as follows. If

i ∈ I \ (
⋃
S ∪

⋃
T ) we let β̃(i) = i. If i ∈ x ∈ o ∈ C1 we let β̃(i) be the unique index

j ∈
⋃
o \
⋃
T . If i ∈ x ∈ e ∈ CT

2 we let β̃(i) be the unique index j ∈
⋃
β(e) \

⋃
T

for which Xi = Xj. Since β̃ is one to one, and Xi = Xβ̃(i), we get an isomorphism

which we give the same name.

i ∈ I \ ∪S

⊗
Xi

β̃
//

i ∈ I \ ∪T

⊗
Xi
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Since for any object X, ε(X) = ε(Xσ), The map ε is well defined on S ∪ T .

Definition A.21. We define ε on the connected components of S ∪ T as follows.

ε(c) =

{
ε(x) for any x ∈ c if c ∈ Ci and ]c ≡ i (mod 4),

1 otherwise.

}

Finally we define ε(S, T ) =
c ∈ C

∏
ε(c).

Theorem A.22. With notation as in definitions A.20 and A.21, for any perfect

matching β the diagram below commutes.

i ∈ I

⊗
Xi

σ(S)

~~||
||

||
||

||
||

σ(T )

  
BB

BB
BB

BB
BB

BB

i ∈ I \
S
S

⊗
Xi

ε(S,T )β̃
//

i ∈ I \
S
T

⊗
Xi

Proof. By naturality we can reduce the general case to three special ones. The

first case is that where C = C0 = {c}, and ]c = 2k. We can further assume that

I = {1, 2, . . . , 2k}, Xi = X for 1 ≤ i ≤ k, Xi = Xσ for k + 1 ≤ i ≤ 2k, S =

{{1, k}, {2, k + 1}, . . . , {k, 2k}} and T = {{2, k}, {3, k + 1}, . . . , {k, 2k − 1}, {1, 2k}}.
Let τ be the permutation defined by τ(i) = i + 1 for 1 ≤ i ≤ k − 1 and τ(k) = 1.

Then τ determines an isomorphism ψ(τ) of the tensor product, and the diagram

below commutes.

i ∈ I

⊗
Xi

ψ(τ)
//

σ(S)

��

σ(T )

""E
EEEEEEEEEEEEEEE
i ∈ I

⊗
Xi

σ(S)

��

1
ε(c)

// 1

The other cases are the case of a single odd chain and the case of two even chains,

and we leave the proof of these cases to the reader.
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B

Buffalo May 19, 1973

Dear Finn Knudsen,

Mumford sent me your notes on the determinant of perfect complexes, asking me to

write you some comments, if I have any. Indeed I do have several - except for the

obvious one that it is nice to have written up with details at least one full construction

of that damn functor! I did not enter into the technicalities of your construction,

which perhaps will allow to get a better comprehension of the main result itself. The

main trouble with your presentation seems to me that the bare statement of the main

result looks rather mysterious and not “natural” at all, despite your claim on page 3b!

The mysterious character is of course included in the alambicated sign of definition

1.1. Here two types of criticism come to mind:

1) The sign looks complicated - are there not simpler sign conventions for getting

a nice theory of det∗ and its variance? It seems to me that Deligne wrote down a

system that really did look natural at every stage - however he never wrote down the

explicit construction, as far as I know, and the chap who had undertaken to do so,

gave up in disgust after a year or two of letting the question lie around and rot!

2) Even granted that your conventions are as simple or simpler than other ones,

the very fact that they are so alambicated and technical calls for an elucidation,

somewhat of the type you give on page 3b with those εi’s. That is one would like

to define first what any theory of det∗ should be (with conventions of sign as yet

unspecified), stating say something like a uniqueness theorem for every given system of

signs chosen for canonical isomorphisms, and moreover characterizing those systems

of sign conventions which allow for an existence theorem - which will include the

existence of at least one such system of signs. If one has good insight into all of them,

it will be a matter of taste and convenience for the individual mathematician (or the

situation he has to deal with in any instance) to make his own choice!

A second point is the introduction of such evidently superfluous assumptions like

working on Noetherian (!) schemes, whereas the construction is clearly so general as

to work, say, over any ringed space and even ringed topos - and of course it will be

needed in this generality, for instance on analytic spaces, or on schemes with groups

of automorphisms acting, etc. Its just a question of some slight extra care in the

writing up. It is clear in any case that the question reduces to defining det∗ for

strictly perfect complexes (i.e. which are free of finite type in every degree), and for

homotopy classes of homotopy equivalences between such complexes, as well as for
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short exact sequences of such complexes. (NB! One may wish to deal, more generally,

in the Illusie spirit, with strictly perfect complexes filtered - by a filtration which is

finite but possibly not of level two - by sub-complexes with strictly perfect quotients.)

Now this allows to restate the whole thing in a more general setting, which could make

the theory more transparent, namely:

An additive category C (say free (or projective) modules of finite type over a commu-

tative ring A) is given, as well as a category P which is a groupoid, endowed with an

operation ⊗ together with associativity, unity and commutativity data, satisfying the

usual compatibilities (see for instance Saavedra’s thesis in Springer’s lecture notes)

and with all objects “invertible”. In the example for C, we take for P invertible Z-

graded modules over A, with tensor product, the commutative law L ⊗ L′ ' L′ ⊗ L

involving the Koszul sign (−1)dd
′
where d and d′ are the degrees of L and L′ respec-

tively. We are interested in functors (or a given functor) f : (C, isom) → P , together

with a functorial isomorphism f(M +N) ' f(M)⊗ f(N), compatible with the asso-

ciativity and commutativity data (cf. Saavedra for this notion of a ⊗); for instance,

in the example chosen, we take f(M) = det∗(M), the determinant module where ∗
stands for the degree which we put on the determinant module (our convention will be

to put the degree equal to the rank of M , which will imply that our functor is indeed

compatible with the commutativity data). It can be shown (this was done by a North

Vietnamese mathematician, Sinh Hoang Xuan) that given C (indeed any associative

and commutative ⊗-category would do), there exists a universal way of sending C to P
as above - in the case considered, this category can be called the category of “stable”

projective modules over A, and its main invariants (isomorphism classes of objects,

and automorphisms of the unit object) are just the invariants K0(A) and K1(A) of

myself and Dieudonné-Bass; but this existence of a universal situation is irrelevant for

the technical problem to come. Now consider the category K = Kb(C), of bounded

complexes of C, up to homotopy. It is a triangulated category 2, and as such we can

2Be careful that one has to take the term “triangulated category” in a slightly more precise
sense than in Verdier’s notes, the “category of triangles” being something more precise than a mere
category of distinguished diagrams in K. We have a functor from the former to the latter, but it is not
even a faithful one. (Illusie’s treatment in terms of filtered complexes, in his Springer lecture notes,
is a good reference) It is with respect to the category of “true” triangles only that the isomorphism
g(M) ' g(M ′)⊗ g(M ′′) will be functorial. For instance, if we have an automorphism of a triangle,
inducing u, u′, u′′ upon M, M ′ and M ′′, then functoriality is expressed by the relation det u =
det u′ det u′′ (which implies, replacing u by id+ tu, t an indeterminate, that Tru = Tru′ +Tru′′) but
this relation may become false if we are not careful to take automorphisms of true triangles, instead
of taking mere automorphisms of diagrams.
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define the notion of a ⊗-functor from K into P ; it’s first of all a ⊗-functor for the

additive structure of K (the internal composition of K being ⊕), but with moreover

an extra structure consisting giving isomorphisms g(M) ' g(M ′)⊗ g(M ′′) whenever

we have an exact triangle M ′ → M → M ′′ → M ′. This should of course satisfy

various conditions, such as functoriality with respect to the triangle 1, case of split

exact triangle (M = M ′ ⊕M ′′), case of the triangle obtained by completing a quasi-

isomorphism M ′ →M , and possibly also a condition of compatibility in the case of an

exact triangle of triangles. (I guess Deligne wrote down the reasonable axioms some

day; it may be more convenient to work with the filtered K-categories of Illusie, using

of course finite filtrations that split in the present context). Of course if we have such

a g : K → P, taking its “restriction” to C we get an f : C → P . The beautiful state-

ment to prove would then be that conversely, every given f extends, uniquely up to

isomorphism, to a g, in other terms, that the restriction functor from the category of

g’s to the category of f ’s is an equivalence. The whole care, for such a statement, will

of course be to give the right set of “sign conventions” for defining admissible g’s (that

is compatibilities between the two or three structures on the set of g(M)’s- which in

fact all can be reduced to giving the isomorphisms attached to exact triangles). In

this general context, the group of signs ±1 is replaced by the subgroup of elements of

order 2 of the group K1(P) = Aut(1P) (which is always a commutative group). The

“sign map” n → (−1)n from the group of degrees to the group of signs is replaced

here by a canonical map K0(P)(= group of isomorphism classe of P) → K1(P), as-

sociating to every L in P the symmetry automorphism of L ⊗ L (viewed as coming

from an automorphism of the unit object by tensoring with L ⊗ L). What puzzles

me a little is that apparently, you have not been able to define g in terms intrinsic to

the triangulated category K = Kb(C) - the signs you introduce in 1.1 do depend on

the actual complexes, not only on their homotopy classes. I guess the whole trouble

comes from the order in which we write any given tensor product in P , in describing

det∗(M
q
) we had to choose such an order rather arbitrarily, and it is passing from one

such to another that involves “signs”.

If C is an abelian category, there should be a variant of the previous theory, putting

in relations on the ⊗-functors f : C → P together with the extra structure of iso-

morphisms f(M) ' f(M ′) ⊗ f(M ′′) for all short exact sequences 0 → M ′ → M →
M ′′ → 0 satisfying a few axioms, and ⊗-functors g : Db(C) → P. There should also

be higher dimensional analogous, involving P ’s that are n-categories instead of mere

1-categories, and hence involving (implicitly at least) the higher K-invariants Ki(C)

(i ≥ 0). But of course, first of all the case of the relation between C and Kb(C) in the
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simplest case should be elucidated!

I am finishing this letter at the forum where I have no typewriter. I hope you can

read the handwriting!

Best wishes A. Grothendieck
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[Del87] P. Deligne. Le déterminant de la cohomologie. Contemporary Mathematics,

1987.
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