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1 Why derived categories?

1.1 Derived functors

Around 1960, Grothendieck struggled with increasingly complicated spectral sequence com-

parisons (1). These spectral sequences arose as follows.

Given left exact functors A -F B -G C between abelian categories (2), under normal circum-

stances (3), the derived functor Rn(FG) of the composite FG can be approximated by the

composites of the derived functors (RiF )(RjG), where i + j = n. In other words, we have the

Grothendieck spectral sequence, which has E2 -terms (RiF )(RjG) and converges to Rn(FG).

For instance, roughly put, the first derivative

R1(FG)

consists of

a part of (R1F )(R0G) plus a part of (R0F )(R1G) ;

which can be read as an approximative “product rule for the first derivative” (4).

In practice, this is troublesome since it only yields an approximative relationship between

the derived functors of the composite and the composites of the derived functors ,

and since, moreover, this approximation is laborious.

Finally, if we want to compose three or more functors and relate their various derivatives, we

are stuck.

1.2 Derived functors, renovated

The construction of such a derived functor RiF proceeds in three steps.

(1) Resolve injectively.

(2) Apply the functor F .

(3) Take cohomology Hi.

Grothendieck saw that the troubles were caused by the third step and that dropping the

third step, one should get a smooth formalism, in which the spectral sequence approximation

mentioned above is turned into the simple and precise rule

(∗) R(FG) ' (RF )(RG) .

1An example of an assertion of this kind may be seen in [7, 6.6.2]. According to Illusie, Grothendieck

said : “The second part of EGA III is a mess, so, please, clean this up by introducing derived categories, write
the Künneth formula in the general framework of derived categories.” [11, p. 1108].

2An abelian category has direct sums, kernels, cokernels, and the homomorphism theorem holds.
3The categories A and B are supposed to have enough injectives, and F to map injectives to G-acyclics.
4More precisely, R1(FG) has a two-step filtration, one subfactor of which being a subfactor of (R1F )(R0G),

the other being a subfactor of (R0F )(R1G) .
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The price to pay was the development of this formalism, undertaken by Verdier around 1963

in [23].

Since we have dropped taking cohomology Hi, the renovated derived functor RF now takes values

in complexes (over B). So in order to be able to compose, RF should also take as arguments

complexes (over A).

Moreover, in order to ensure the validity of the composition rule (∗), one has to formally invert

morphisms of complexes that induce isomorphisms in cohomology, called quasi-isomorphisms.

This process yields the derived category

D+(A) ,

having as objects complexes (5) over A, and as morphisms fractions

f/s ,

where the numerator f is a morphism of complexes and where the denominator s is a quasi-

isomorphism of complexes.

So in full, the formula (∗) reads

(∗′)
(
D+(A) -R(FG)

D+(C)
)
'

(
D+(A) -RF

D+(B) -RG
D+(C)

)
.

2 Why triangulated categories?

2.1 Verdier triangulated categories

The category A is abelian.

The derived category D+(A) is not abelian (6).

There exist hardly any short exact sequences in D+(A), only split ones.

As substitute, the image in D+(A) of a short exact sequence of complexes X ′ -r X - X ′′ fits

into a diagram

X ′ - X - X ′′ - X ′+1 ,

called a distinguished triangle, where X ′+1 denotes the complex X ′, shifted one step to the

left (7).

X ′′

��
X ′ // X

ZZ666666

5Bounded to the left.
6Except if A is semisimple.
7And all differentials negated.
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Now any morphism X1/0
- X2/0 in D+(A) fits into such a distinguished triangle

X1/0
- X2/0

- X2/1
- X+1

1/0 , and this completion is unique up to isomorphism (8). We call

X2/1 the cone of the morphism X1/0
- X2/0 (9).

The compatibility of taking cones with composition is expressed by the following Verdier octa-

hedron (10), in which X0+1/i = X+1
i/0 for 1 6 i 6 3.

0

0 // X0+1/3

OO

0 // X3/2
//

OO

X0+1/2

OO

0 // X2/1
//

OO

X3/1
//

OO

X0+1/1

OO

0 // X1/0
//

OO

X2/0
//

OO

X3/0
//

OO

0

OO

Here Xj/i is the cone on Xi/0
- Xj/0 for 1 6 i < j 6 3. Moreover, X3/2 is the cone on

X2/1
- X3/1 .

X3/0

&&LLLLLLLLLLLLLLLLLLL

���������������

X3/1
tt

// X3/2
tt

}}

X1/0
//

;;vvvvvvvvvvvvvvvvvvvvv
X2/0

ZZ5555555555555555

��																

X2/1

cc
1111111111111111

XX

A theory of Verdier triangulated categories was developed by Verdier [23], which plays the

same role for D+(A) as the theory of abelian categories plays for A.

Here, a Verdier triangulated category is a triple (D,T,Ξ), consisting of an additive category D,

an automorphism T = (−)+1 of D, called shift, and a set Ξ of distinguished triangles, satisfying

a list of axioms, including the existence of a Verdier octahedron on each pair of composable

morphisms. Then, Ξ is called a Verdier triangulation on (D,T).

8In contrast to what we are used to from kernels and cokernels in abelian categories, this isomorphism is not
uniquely determined in general.

9This notion is motivated by the homotopy category of CW-complexes, which becomes a Verdier triangulated
category after Spanier-Whitehead stabilisation, where this cone is an actual geometrically constructed cone.

10This alternative, non-octahedral form of this diagram was observed in [3, 1.1.14].
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For example, the derived category D+(A) is Verdier triangulated. Also already the homotopy

category K+(A), obtained as the category of complexes (11) modulo split acyclic complexes, is

Verdier triangulated. More generally, the stable category of a Frobenius category (12) is Verdier

triangulated; cf. [9, Th. 2.6].

One of the axioms records a curious phenomenon, without parallel in the context of abelian

categories. For every distinguished triangle

X1/0
- X2/0

- X2/1
- X+1

1/0 ,

we get the rotated distinguished triangle

X−1
2/1

- X1/0
- X2/0

- X2/1 (13) .

In a Verdier triangulated category, the cone of a morphism is at the same time a substitute

for its kernel and its cokernel, but only in a weak form (14). Therefore, a Verdier triangulated

category is weakly abelian, i.e. it is an additive category in which each morphism is and has a

weak kernel and a weak cokernel.

A set Ξ of distinguished triangles that satisfies the list of axioms except possibly for the existence

of a Verdier octahedron on each diagram X1/0
- X2/0

- X3/0 , is called a Puppe triangulation

on (D,T) [21]. Cf. §3.1 below.

2.2 Exact functors between Verdier triangulated categories

A strictly exact functor between Verdier triangulated categories is a shiftcompatible additive

functor that maps distinguished triangles to distinguished triangles; i.e. that preserves cones.

Derived functors, such as the functor D+(A) -RF
D+(B) from §1.2, are strictly exact.

An exact functor between Verdier triangulated categories (D,T,Ξ) and (D′,T′,Ξ′) is a pair (V, a)

consisting of an additive functor V : D - D′ and an isotransformation a : TV - V T′ such

that each distinghuished triangle in D, mapped via V and isomorphically replaced via a, yields

a distinguished triangle of D′.

So V : D - D′ is strictly exact if and only if (V, 1) is exact.

2.3 Stability properties of the Verdier formalism

Adjoints of exact functors are exact [20, App. 2, Prop. 11] [12, 1.6]. Already Grothendieck

and Deligne observed in Algebraic Geometry the appearance of exact functors that are not

11Bounded to the left.
12A Frobenius category is an exact category with a sufficient supply of relatively bijective objects.
13With a sign inserted.
14In the notation above, X2/0

- X2/1 is a weak cokernel of X1/0
- X2/0 , i.e. it satisfies the universal

property of a cokernel, except for uniqueness of the induced morphism. Moreover, X−1
2/1

- X1/0 is a weak
kernel of X1/0

- X2/0 , i.e. satisfies the universal property of a kernel, except for uniqueness of the induced
morphism.
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derived functors, but adjoints to derived functors (15).

The Karoubi hull of an additive category is the universal additive category whose idempotents

split [13, III.II]. We may form Karoubi hulls within the context of Verdier triangulated categories

and exact functors, as shown by Balmer and Schlichting [1].

The localisation of a category at a subset of its morphisms is the universal category such that

morphisms of this subset become invertible. For instance, the derived category D+(A) is the

localisation of the homotopy category K+(A) at the subset of quasiisomorphisms, i.e. at the

subset of morphisms with acyclic cone. We may form the localisation of a Verdier triangulated

category at the subset of morphisms with cone in a given thick subcategory (16) within the realm

of Verdier triangulated categories and exact functors [23][22, Prop. 1.3].

3 Heller triangulated categories

3.1 Heller’s original theorem

Let D be a weakly abelian category; cf. §2.1. The Freyd category D̂ is the universal abelian

category containing D [6]. Reducing modulo the full additive subcategory of projective objects,

we obtain the stable category D̂, which is Verdier triangulated (17).

Now suppose D to carry a shift functor T. Then D̂ carries two shift functors, a first one induced

by T, a second one given by the Verdier triangulated structure on D̂.

Heller discovered a bijection between the set of Puppe triangulations Ξ on (D,T) and the

set of isomorphisms from the first shift functor to the third power of the second shift functor

satisfying an extra condition (18) [10, Th. 16.4].

So such an isomorphism between these shift functors can be made responsable for a Puppe

triangulation, as the extra datum needed to upgrade a weakly abelian category with shift (D,T)

to a Puppe triangulated category (D,T,Ξ).

So we could just as well include this isomorphism instead of Ξ in our data.

3.2 Extending Heller’s theorem

Let D be a weakly abelian category. Let T be an automorphism of D.

In order to extend Heller’s result from Puppe triangulations to Verdier triangulations and

beyond, all we need is a suitable replacement for D̂.

15The functor Rf !, constructed for certain morphisms f of schemes, is only abusively written with a “R”; cf.
[8, Exp. XVIII, Th. 3.1.4].

16A thick subcategory is a full subcategory closed under shift, forming cones and taking summands.
17The reason being that D is a big enough full subcategory in D̂ consisting of bijective objects, so that D̂ is a

Frobenius abelian category. Cf. [9, §2.1].
18Such an isomorphism can be pre- and postcomposed with the Verdier shift on D̂ ; the condition is that the

result of precomposition is the negative of the result of postcomposition.
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A weak square in D is a commutative quadrangle that is at the same time a weak pullback and

a weak pushout (19). A weak square is marked as

//

//

OO

+

.

OO

Alternatively, a commutative quadrangle is a weak square if and only if its diagonal sequence is

exact in the middle when viewed in D̂.

Let D+(∆̄#
2 ) be the category of diagrams in D of the form

0 // · · ·

0 // X0+1/2

OO

//

+

· · ·

0 // X2/1
//

OO

+

X0+1/1

OO

//

+

· · ·

0 // X1/0
//

OO

+

X2/0
//

OO
+

0

OO

0 // X0/2−1 //

OO

+

X1/2−1 //

OO
+

0

OO

...

OO

+

...

OO
+

...

OO

,

where we do not require any relation between X0+1/2 and X+1
2/0 etc. Viewed in the abelian

category D̂, this is just the category of acyclic complexes consisting of objects in D.

Let D+(∆̄#
3 ) be the category of diagrams in D of the form

0 // · · ·

0 // X0+1/3

OO

//

+

· · ·

0 // X3/2
//

OO

+

X0+1/2

OO

//

+

· · ·

0 // X2/1
//

OO

+

X3/1
//

OO
+

X0+1/1

OO

//

+

· · ·

0 // X1/0
//

OO

+

X2/0
//

OO
+

X3/0
//

OO
+

0

OO

0 // X0/3−1 //

OO

+

X1/3−1 //

OO
+

X2/3−1 //

OO
+

0

OO

...

OO

+

...

OO
+

...

OO
+

...

OO

,

19The respective universal property is supposed to hold, except for the uniqueness of the induced morphism.
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where we do not require any relation between X0+1/3 and X+1
3/0 etc.

Etc.

For n > 0, we let

D+(∆̄#
n )

be the reduction of D+(∆̄#
n ) modulo the full additive subcategory of diagrams all of whose

morphisms split. This category carries two shift functors, the outer shift [−]+1 and the inner

shift [−+1], characterised by, respectively,

([X]+1)β/α = Xα+1/β

([X+1])β/α = (Xβ/α)+1

for X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ). In other words, the outer shift pulls the whole diagram

down left, the inner shift applies T pointwise.

Then

D+(∆̄#
2 ) ' D̂ ,

where

the outer shift corresponds to the third power of the Verdier shift ,

the inner shift corresponds to the functor induced by T .

So we can transport an isomorphism as in Heller’s theorem from §3.1 to an isomorphism

[−]+1 -ϑ2

∼ [−+1]

from the outer to the inner shift functor on D+(∆̄#
2 ).

Using D+(∆̄#
2 ) as a replacement for D̂ will enable us, in §3.3 below, to extend from D+(∆̄#

2 ) to

D+(∆̄#
n ) for n > 0, so as to include octahedra and bigger diagrams [3, 1.1.14], and to drop the

extra condition on the isomorphism mentioned in §3.1.

3.3 Heller triangulated categories

Let D be a weakly abelian category. Let T be an automorphism of D.

Let a Heller triangulation on (D,T) be a tuple ϑ = (ϑn)n>0 of isomorphisms ϑn : [−]+1 - [−+1]

from the outer shift [−]+1 to the inner shift [−+1] on D+(∆̄#
n ) satisfying compatibilities with

quasicyclic operations (20) and with folding (21).

20Deleting and doubling rows and columns in a periodic manner yield functors D+(∆̄#
n ) -p

#

D+(∆̄#
m). We

require that Xϑnp
# = Xp#ϑm for X ∈ ObD+(∆̄#

n ) = ObD+(∆̄#
n ).

21Suppose given n > 0 and X ∈ ObD+(∆̄#
2n+1) = ObD+(∆̄#

2n+1). We can canonically (22) construct an

object Xf
n
∈ ObD+(∆̄#

n+1) = ObD+(∆̄#
n+1) that has (Xf

n
)i/0 = Xn+i/i−1 for 1 6 i 6 n+ 1 ; the diagram Xf

n

involves direct sums of objects occurring in X. The operation f
n

can be turned into a functor from D+(∆̄#
2n+1)

to D+(∆̄#
n+1). We require that Xϑ2n+1fn = Xf

n
ϑn+1 . Cf. [3, 1.1.13].

22Up to sign.
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A Heller triangulated category then is a triple (D,T, ϑ) consisting of a weakly abelian category

D, an automorphism T of D and a Heller triangulation ϑ on (D,T) [15, Def. 1.5.(ii.1)]. Often,

we write just D := (D,T, ϑ).

For example, the derived category D+(A) is Heller triangulated. Also the homotopy category

K+(A) is Heller triangulated. More generally, the stable category of a Frobenius category is

Heller triangulated. Cf. [15, Cor. 4.7][18, Prop. 36] (23).

3.4 n-triangles

Suppose given a Heller triangulated category (D,T, ϑ). Suppose given n > 0.

The base of a diagram X ∈ ObD+(∆̄#
n ) is its subdiagram

(X1/0
// X2/0

// · · · // Xn−1/0
// Xn/0) ∈ ObD(∆̇n)

on the linearly ordered set ∆̇n := {1, 2, . . . , n}.

A diagram X ∈ ObD+(∆̄#
n ) is called an n-triangle if Xϑn = 1. A morphism X -f Y between

n-triangles X and Y is called periodic if [f ]+1 = [f+1].

The restriction functor to the base, mapping from the category of n-triangles and periodic

morphisms to D(∆̇n), is full [15, Lem. 3.2]. If all idempotents split in D, then it is also

surjective on objects [15, Lem. 3.1] (24).

Such triangles are stable under quasicyclic operations and under folding [15, Lem. 3.4.(1, 2)].

3.5 Retrieving the Verdier context in the Heller context

Suppose given a Heller triangulated category (D,T, ϑ) in which all idempotents split.

Let Ξ be the set of 2-triangles in D. Then the triple (D,T,Ξ) is a Verdier triangulated cate-

gory [15, Prop. 3.6] (25).

Each 3-triangle is a Verdier octahedron; cf. §2.1. However, not every Verdier octahedron is a

3-triangle [17, Lem. 6] (26).

{distinguished triangles} = {2-triangles}
{Verdier octahedra} ⊇ {3-triangles}

3.6 Exact functors between Heller triangulated categories

Suppose given Heller triangulated categories (D,T, ϑ) and (D′,T′, ϑ′).
23Cf. also [17, Prop. 22.(1).]
24More generally, this holds if D is a closed Heller triangulated category [18, Lem. 20]. Cf. also [15, Rem. 3.3].
25More generally, this holds if D is a closed Heller triangulated category [18, Rem. 18].
26Not even when requiring that it contains the triangles described in [3, 1.1.13]; cf. [17, Rem. 7].
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A strictly exact functor from D to D′ is a shiftcompatible additive functor V : D - D′ that

respects weak squares, and that satisfies

XϑnV
+(∆̄#

n ) = XV +(∆̄#
n )ϑ′n

for all n > 0 and all X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ), where V +(∆̄#
n ) acts by pointwise applica-

tion of V .

An exact functor from D to D′ is a pair (V, a) consisting of an additive functor V : D - D′
respecting weak squares, and an isotransformation a : TV - V T′ such that

XϑnV
+(∆̄#

n ) ·Xa+(∆̄#
n ) = XV +(∆̄#

n )ϑ′n

for all n > 0 and all X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ).

So V : D - D′ is strictly exact if and only if (V, 1) is exact.

3.7 Stability properties of the Heller formalism

Adjoints of exact functors are exact [18, Prop. 28].

We may form the Karoubi hull within the context of Heller triangulated categories and exact

functors [18, Prop. 12].

We may form the localisation at the subset of morphisms with cone in a given thick subcategory

within the context of Heller triangulated categories and exact functors [18, Prop. 38].

The derived functor D+(A) -RF
D+(B) from §1.2 is exact, using that A is supposed to have

enough injectives (27).

It is also possible to characterise exactness of a functor, in a manner similar to §2.2, by preser-

vation of n-triangles [18, Prop. 25]. The reason behind that possibility is that closed (28)

Heller triangulated categories can, alternatively, be defined via sets of n-triangles for n > 0 with

suitable preservation properties with respect to quasicyclic operations and folding, as Thomas

informed me.

3.8 Advantages of ϑ

Having n-triangles at our disposal allows constructions that have not been possible within the

Verdier context. For instance, given two 3-triangles, a morphism between the bases can be

prolonged to a morphism between the 3-triangles. This is no longer true, in general, once we

replace “3-triangles” by “Verdier octahedra” [17, Lem. 6].

But why should we work primarily with ϑ, and only secondarily with n-triangles? A possible

answer is that usage of ϑ allows low-effort proofs of the stability properties of the Heller formalism

explained in §3.7; cf. [18, §2.2, §6, §5.2].

27Somewhat provisionally still, we may use [18, Prop. 28, Prop. 36], [17, Cor. 21], [15, Cor. 4.9] to arrive
there. It would be preferable to use the derived functor construction via ind-categories along the lines of [8, Exp.
XVII, §1.2].

28A Heller triangulated category is called closed if it is closed under taking cones in its Karoubi hull.
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Of course, the price to pay is to get accustomed to the administration of the n-triangles being

done by a tuple of isomorphisms ϑ.

3.9 An amusing observation

Suppose given Heller triangulated category (D,T, ϑ) in which all idempotents split (29).

A commutative quadrangle

X ′
f ′ // Y ′

X
f

//

x

OO

Y

y

OO

in D is called a dweak square (30) if its diagonal sequence

X
(f x ) // Y ⊕X ′

„
y
−f ′

«
// Y ′

appears as part of a 2-triangle. So a dweak square is in particular a weak square; cf. §3.2.

Alternatively, a commutative quadrangle is a dweak square if and only if it appears in some

n-triangle for some n > 0.

Any corner //
OO

can be completed to a dweak square. This completion is unique up to non-unique

isomorphism. Accordingly in the dual situation.

Suppose given n > 1. Consider the set Chainn of isoclasses of diagrams of the form

X1
- X2

- · · · - Xn−1
- Xn in D, i.e. the set of isoclasses in D(∆̇n). We obtain two

bijections

σ, τ : Chainn -∼ Chainn

as follows.

Let τ map the isoclass of X1
- X2

- · · · - Xn−1
- Xn to the isoclass of

X+1
1

- X+1
2

- · · · - X+1
n−1

- X+1
n .

Let σ be defined as follows. Suppose given X1
- X2

- · · · - Xn−1
- Xn . Prolong

this diagram by Xn
- 0. Complete to dweak squares along X1

- 0, yielding a new

row 0 - X ′2 - · · · - X ′n−1
- X ′n - W1 . Complete to dweak squares along X ′2 - 0,

yielding a new row 0 - X ′′3 - · · · - X ′′n−1
- X ′′n - W2 . Etc. Then let σ map the isoclass

of X1
- X2

- · · · - Xn−1
- Xn to the isoclass of W1

- W2
- · · · - Wn−1

- Wn .

Elementary properties of n-triangles force σ = τ .

If we only require D to be Verdier triangulated, both σ and τ are still definable, but it is unclear

to me whether they coincide (31).

29More generally, the following holds if D is a closed Heller triangulated category.
30An abbreviation for “distinguished weak square”. Also known as homotopy cartesian square, as homotopy

bicartesian square, or as Mayer-Vietoris square.
31Suppose that [3, 1.1.13] holds in our Verdier triangulated category. Then σ and τ coincide if n ∈ {1, 2, 3}.
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4 Remarks on spectral sequences

4.1 Four indices

Suppose given an abelian category A. Suppose given a filtered complex M with values in A, i.e.

a chain of monomorphisms

M(−∞) -r · · · -r M(i) -r M(i+ 1) -r · · · -r M(+∞),

indexed by {−∞} t Z t {+∞}, that satisfies certain technical conditions (32).

We shall use the linearly ordered set

Z̄∞ := { i+k : i ∈ {−∞} t Z t {+∞}, k ∈ Z } ,

where formally i+k is defined as the pair (i, k), and where i+k 6 j+` if k < ` or (k = ` and i 6 j).

Taking M as a base, we can form a diagram that is, morally, an ∞-triangle. It consists of

shifted subfactor complexes M(β/α) for β−1 6 α 6 β 6 α+1 in Z̄∞ and is called spectral object

Sp(M) of M (33). For γ/α 6 δ/β, i.e. γ 6 δ and α 6 β, the induced morphism

M(γ/α) - M(δ/β)

appears in this diagram Sp(M).

Let ME(δ/β//γ/α) ∈ ObA be defined as the image of H0 of this morphism, i.e.

M(γ/α)H0 - ME(δ/β//γ/α) -r M(δ/β)H0 (34) .

These objects ME(δ/β//γ/α) assemble to a big diagram with values in A, the spectral sequence

ME

of M (35).

Suppose given ε−1 6 α 6 β 6 γ 6 δ 6 ε 6 α+1 in Z̄∞ . We obtain the short exact sequence

ME(ε/β//γ/α) -r ME(ε/β//δ/α) - ME(ε/γ//δ/α) ,

which can be made responsible for all exact sequences in general spectral sequences known to

me. Cf. [15, Lem. 3.9], generalising a particular case of [24, §II.4.2.6].

Dropping certain “initial terms” (36) from the spectral sequence ME, we obtain the proper

spectral sequence

M Ė

of M .
32Viz. M(−∞) = 0, M(i) - M(i+ 1) being pointwise split and the whole filtration being pointwise almost

everywhere constant. Cf. [16, §3.1].
33This term has been coined by Verdier; cf. [24, §II.4].
34This definition slightly generalises the definition given in [5, App.]. The original definition in [24, §II.4.2.3]

was closer to classical terminology, as found in [4, §XV.1].
35The classical spectral sequence terms are amongst the terms ME(δ/β//γ/α) ; cf. [16, §3.5].
36E1 -terms and similar ones; cf. [16, §3.6].
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4.2 Comparisons

4.2.1 Grothendieck spectral sequences

Maintain the situation of §1.1. So A -F B -G C.

Suppose given X ∈ ObA. Resolve X injectively. This yields a complex with values in A.

Apply F pointwise. This yields a complex with values in B. Resolve this complex injectively, via

the method of Cartan-Eilenberg [4, §XVII.1]. This yields a double complex with values in B.

Apply G pointwise. This yields a double complex with values in C.

The total complex of this resulting double complex is obtained by forming direct sums over its

diagonals. Replacing an increasing number of rows in this double complex by zero rows, and then

taking the total complex, we obtain a descending chain of subcomplexes filtering our original

total complex.

This filtered complex gives rise to the Grothendieck spectral sequence XEGr
F,G via the method

of §4.1. This yields a functor EGr
F,G on A, mapping to the category of spectral sequences with

values in C.

So we had to “resolve X twice”, with an intermediate application of F , and a final application

of G, to carry out this construction.

4.2.2 First comparison

Suppose given abelian categories A, A′, B, C (37). Suppose given objects X ∈ ObA and

X ′ ∈ ObA′. Let A×A′ -F B be a biadditive functor such that (X,−)F and (−, X ′)F are left

exact. Let B -G C be a left exact functor. Suppose further conditions to hold; see [16, §5.1].

X X′

A×A′
?F

B
?G

C

We have Grothendieck spectral sequence functors,

EGr
(X,−)F,G for A′ -(X,−)F B -G C ,

EGr
(−,X′)F,G for A -(−,X′)F B -G C .

We evaluate the former at X ′ and the latter at X. Then the proper Grothendieck spectral

sequences are isomorphic, i.e.

X ′ ĖGr
(X,−)F,G ' X ĖGr

(−,X′)F,G ;

cf. [16, Th. 31]. So instead of “resolving X ′ twice”, we may just as well “resolve X twice”.

37Of which A, A′ and B are supposed to have enough injectives.
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4.2.3 Second comparison

Suppose given abelian categories A, B, B′, C (38). Suppose given objects X ∈ ObA and

Y ∈ ObB. Let A -F B′ be a left exact functor. Let B × B′ -G C be a biadditive functor such

that (Y,−)G is left exact.

Let B ∈ Ob C[0(B) be a resolution of Y such that (Bk,−)G is exact for all k > 0. Let

A ∈ Ob C[0(A) be an injective resolution of X. Suppose further conditions to hold; see [16, §6.1].

X

A
?FY

B × B′
?G

C

We have the Grothendieck spectral sequence functor

EGr
F, (Y,−)G for A -F B′ -(Y,−)G C ,

which we evaluate at X.

On the other hand, we can consider the double complex (B,AF )G, where the indices of B count

rows and the indices of A count columns. As described in §4.2.1, we can associate a spectral

sequence to a double complex, in this case named EI

(
(B,AF )G

)
.

Then the proper spectral sequences are isomorphic,

XĖGr
F,(Y,−)G ' ĖI

(
(B,AF )G

)
.

So instead of “resolving X twice”, we may just as well “resolve X once and Y once”.

4.2.4 Applications

The comparisons in §4.2.2 and §4.2.3 may be used to reprove the following two theorems of Beyl.

The first theorem allows acyclic objects to be alternatively used to calculate Grothendieck spec-

tral sequences [2, Th. 3.4]; cf. [16, Th. 40].

The second theorem allows the Hochschild-Serre-Hopf spectral sequence to be calculated with

injective or, equivalently, with projective resolutions; the former fitting in the context of

Grothendieck spectral sequences, the second being apt for manipulating concrete representing

cocycles of cohomology classes; cf. [2, Th. 3.5], [16, Th. 52, 53].

Further applications can be found in [16, §8] (39).

38Of which A and B′ are supposed to have enough injectives.
39If we were to reduce complexity in the assertions of §4.2, then, in the spirit of §1.2, we should directly work

with suitably defined derived categories of double complexes; I do not know how to do that. We would probably
get an additional shift functor.
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