## Homologische Algebra, SoSe 24

## Lösung 5

Hausaufgabe 17 (A26) Seien R und S Ringe.

Sei  $_RM_S \xleftarrow{f} _RM'_S$  eine R-S-lineare Abbildung zwischen R-S-Bimoduln.

Sei  $_RN \xrightarrow{g} _RN'$ eine R-lineare Abbildung zwischen R-Linksmoduln.

Sei  ${}_SX \xleftarrow{h} {}_SX'$  eine S-lineare Abbildung zwischen S-Linksmoduln.

Sei  $\alpha_{X,M,N}$  wie in Lemma 62 gegeben.

Man zeige, daß folgendes Viereck von Z-Moduln und Z-linearen Abbildungen kommutiert.

$$R({_RM_S \underset{S}{\otimes} {_SX}, {_RN}}) \xrightarrow{\alpha_{X,M,N}} S({_SX}, {_R({_RM_S}, {_RN})})$$

$$R(f \underset{S}{\otimes} h, g) \downarrow \qquad \qquad \downarrow S(h, R(f,g))$$

$$R({_RM'S \underset{S}{\otimes} {_SX'}, {_RN'}}) \xrightarrow{\alpha_{X',M',N'}} S({_SX'}, R({_RM'S}, {_RN'}))$$

Lösung. Für  $\varphi \in {}_R(M_S \underset{S}{\otimes} X, N)$  ist  $\varphi \alpha_{X,M,N} \in {}_S(X, {}_R(M,N))$ . Für  $x \in X$  ist  $x(\varphi \alpha_{X,M,N}) \in {}_R(M,N)$ . Für  $m \in M$  ist

$$m(x(\varphi \alpha_{X,M,N})) = (m \otimes x)\varphi;$$

vgl. Lemma 62. Analog ist für  $\varphi' \in {}_R(M_S \underset{\varsigma}{\otimes} X, N), \, m' \in M'$  und  $x' \in X'$ 

$$m'(x'(\varphi'\alpha_{X',M',N'})) = (m' \otimes x')\varphi'$$
.

Für  $\varphi \in {}_R(M_S \underset{S}{\otimes} X, N)$  haben wir  $\varphi \alpha_{X,M,N} \, {}_S(h, \, {}_R(f,g)) \stackrel{!}{=} \varphi(f \underset{S}{\otimes} h, \, g) \alpha_{X',M',N'}$  zu zeigen, d.h.

$$h \cdot (\varphi \alpha_{X,M,N}) \cdot {}_{R}(f,g) \stackrel{!}{=} ((f \underset{S}{\otimes} h) \cdot \varphi \cdot g) \alpha_{X',M',N'} \in {}_{S}(X',{}_{R}(M',N')) .$$

Sei  $x' \in X'$ . Wir haben  $x'(h \cdot (\varphi \alpha_{X,M,N}) \cdot {}_R(f,g)) \stackrel{!}{=} x'(((f \underset{S}{\otimes} h) \cdot \varphi \cdot g) \alpha_{X',M',N'})$  zu zeigen, d.h.

$$f \cdot (x'h(\varphi \alpha_{X,M,N})) \cdot g \stackrel{!}{=} x'(((f \underset{S}{\otimes} h) \cdot \varphi \cdot g)\alpha_{X',M',N'}) \in {}_{R}(M',N').$$

Sei  $m' \in M'$ . Wir haben  $m'f \cdot (x'h(\varphi\alpha_{X,M,N})) \cdot g \stackrel{!}{=} m'(x'(((f \underset{S}{\otimes} h) \cdot \varphi \cdot g)\alpha_{X',M',N'}))$  zu zeigen, d.h.

$$m'(f \cdot (x'h(\varphi \alpha_{X,M,N})) \cdot g) \stackrel{!}{=} m'(x'(((f \underset{S}{\otimes} h) \cdot \varphi \cdot g)\alpha_{X',M',N'})) \in N'.$$

Die linke Seite wird

$$m'(f \cdot (x'h(\varphi \alpha_{X,M,N})) \cdot g) = m'f(x'h(\varphi \alpha_{X,M,N}))g$$
  
=  $(m'f \otimes x'h)\varphi g$ .

Die rechte Seite wird

$$m'(x'(((f \underset{S}{\otimes} h) \cdot \varphi \cdot g)\alpha_{X',M',N'})) = (m' \otimes x')((f \underset{S}{\otimes} h) \cdot \varphi \cdot g)$$
$$= (m' \otimes x')(f \underset{S}{\otimes} h)\varphi g$$
$$= (m'f \otimes x'h)\varphi g.$$

Das ist dasselbe.

Wir haben also eine Isotransformation von  $_R(=\underset{S}{\otimes}-,\equiv)$  nach  $_S(-,_R(=,\equiv))$  konstruiert, also zwischen Funktoren von  $(S\text{-Mod})^\circ \times (R\text{-Mod-}S)^\circ \times R\text{-Mod}$  nach  $\mathbb{Z}\text{-Mod}$ .

Hausaufgabe 18 (A28) Sei R ein Ring. Man zeige folgende Aussagen.

- (1) Sei A eine Menge. Sei für jedes  $\alpha \in A$  ein projektiver R-Linksmodul  $P_{\alpha}$  gegeben. Dann ist  $\coprod_{\alpha \in A} P_{\alpha}$  projektiv.
- (2) Seien R-Linksmoduln X und Y gegeben mit  $X \oplus Y$  projektiv. Dann sind auch X und Y projektiv.
- (3) Ein R-Linksmodul X ist genau dann projektiv, wenn es eine Menge B und einen R-Linksmodul Y gibt mit  $X \oplus Y \simeq \coprod_{\beta \in B} R$ . Insbesondere ist  $R^{\oplus n}$  projektiv für  $n \geqslant 0$ .
- (4) Für jeden R-Linksmodul M gibt es einen projektiven R-Linksmodul P und eine surjektive R-lineare Abbildung  $P \to M$ .

Lösung.

Zu (1). Sei folgendes Diagramm von R-Linksmoduln und R-linearen Abbildungen gegeben.

$$\coprod_{\alpha \in A} P_{\alpha} \\
\downarrow u \\
M \longrightarrow N$$

Dabei sei f surjektiv. Zu finden ist eine R-lineare Abbildung  $\coprod_{\alpha \in A} P_{\alpha} \xrightarrow{v} M$  mit  $v \cdot f \stackrel{!}{=} u$ .

Sei  $\beta \in A$ . Da  $P_{\beta}$  projektiv ist, können wir eine R-lineare Abbildung  $P_{\beta} \xrightarrow{v_{\beta}} M$  wählen, für welche folgendes Diagramm kommutiert.



Dank universeller Eigenschaft des Coprodukts gibt es eine eindeutige R-lineare Abbildung  $\coprod_{\alpha \in A} P_{\alpha} \xrightarrow{v} M$  mit  $\iota_{\beta} \cdot v = v_{\beta}$  für  $\beta \in A$ .

Für  $\beta \in A$  wird

$$\iota_{\beta} \cdot (v \cdot f) = v_{\beta} \cdot f = \iota_{\beta} \cdot u$$
.

Wegen der Eindeutigkeit aus der universellen Eigenschaft des Coprodukts folgt  $v \cdot f = u$ , wie verlangt.

Zu (2). Es genügt zu zeigen, daß X projektiv ist.

Sei folgendes Diagramm von R-Linksmoduln und R-linearen Abbildungen gegeben.

$$\begin{array}{c}
X \\
\downarrow u \\
M \xrightarrow{f} N
\end{array}$$

Dabei sei f surjektiv. Zu finden ist eine R-lineare Abbildung  $X \xrightarrow{v} M$  mit  $v \cdot f \stackrel{!}{=} u$ .

Wir betrachten die R-lineare Abbildung  $X \oplus Y \xrightarrow{\binom{u}{0}} N$ . Da  $X \oplus Y$  projektiv ist, können wir eine R-lineare Abbildung  $X \oplus Y \xrightarrow{\binom{v}{w}} M$  wählen, die folgendes Diagramm kommutativ macht.

$$\begin{array}{ccc}
X \oplus Y \\
\begin{pmatrix} v \\ w \end{pmatrix} & \begin{pmatrix} u \\ 0 \end{pmatrix} \\
M & & N
\end{array}$$

Es ist also  $\binom{u}{0} = \binom{v}{w} \cdot f = \binom{v \cdot f}{w \cdot f}$ . Insbesondere ist  $u = v \cdot f$ , wie verlangt.

Zu (3). Vorbemerkung 1: Es ist R ein projektiver R-Linksmodul.

Sei folgendes Diagramm von R-Linksmoduln und R-linearen Abbildungen gegeben.

$$\begin{array}{c}
R \\
\downarrow u \\
M \longrightarrow N
\end{array}$$

Dabei sei f surjektiv. Zu finden ist eine R-lineare Abbildung  $R \xrightarrow{v} M$  mit  $v \cdot f \stackrel{!}{=} u$ .

Es ist  $ru = r \cdot 1u$ . Wir wählen  $m \in M$  mit mf = 1u, möglich, da f surjektiv ist. Wir setzen  $rv := r \cdot m$  für  $r \in R$ .

Es ist v eine R-lineare Abbildung: Für  $s, s' \in R$  und  $r, r' \in R$  wird  $(s \cdot r + s' \cdot r')v = (s \cdot r + s' \cdot r') \cdot m = s \cdot (r \cdot m) + s' \cdot (r' \cdot m) = s \cdot rv + s' \cdot r'v$ .

Für  $r \in R$  ist  $r(v \cdot f) = rvf = (r \cdot m)f = r \cdot mf = r \cdot 1u = ru$ . Also ist  $v \cdot f = u$ .

Dies zeigt Vorbemerkung 1.

Vorbemerkung 2: Seien R-Linksmoduln P und Q gegeben. Sei  $P \simeq Q$ . Genau dann ist P projektiv, wenn Q projektiv ist.

Es genügt zu zeigen, daß aus der Projektivität von P die Projektivität von Q folgt. Wir wählen einen Isomorphismus  $P \stackrel{a}{\underset{\sim}{\longrightarrow}} Q$ .

Sei folgendes Diagramm von R-Linksmoduln und R-linearen Abbildungen gegeben.



Dabei sei f surjektiv. Zu finden ist eine R-lineare Abbildung  $Q \xrightarrow{v} M$  mit  $v \cdot f \stackrel{!}{=} u$ . Da P projektiv ist, finden wir eine R-lineare Abbildung  $w : P \to M$  mit  $w \cdot f = a \cdot u$ .



Sei  $v := a^{-1} \cdot w : Q \to M$ . Es wird  $v \cdot f = a^{-1} \cdot w \cdot f = a^{-1} \cdot a \cdot u = u$ , wie verlangt.

Dies zeigt Vorbemerkung 2.

Vorbemerkung 3: Sei  $M \xrightarrow{g} X$  eine surjektive R-lineare Abbildung zwischen R-Linksmoduln. Sei X projektiv. Dann ist  $M \simeq X \oplus \mathrm{Kern}(g)$ .

Da X projektiv ist, finden wir eine R-lineare Abbildung  $X \xrightarrow{v} M$  mit  $v \cdot g = \mathrm{id}_X$ .



Wir betrachten die Inklusionsabbildung Kern $(q) \stackrel{i}{\to} M$ .

Nun ist  $(\mathrm{id}_M - g \cdot v) \cdot g = g - g \cdot v \cdot g = g - g \cdot \mathrm{id}_X = 0$ . Dank universeller Eigenschaft des Kerns gibt es genau eine R-lineare Abbildung  $M \xrightarrow{w} \mathrm{Kern}(g)$  mit  $w \cdot i = \mathrm{id}_M - g \cdot v$ .

Es ist  $i \cdot w \cdot i = i \cdot (\operatorname{id}_M - g \cdot v) = i + 0 = 1 \cdot i$ . Wegen i injektiv folgt  $i \cdot w = 1$ .

Es ist  $v \cdot w \cdot i = v \cdot (\mathrm{id}_M - g \cdot v) = v - v \cdot g \cdot v = v - \mathrm{id}_X \cdot v = 0 = 0 \cdot i$ . Wegen i injektiv folgt  $v \cdot w = 0$ .

Wir haben die *R*-linearen Abbildungen  $M \xrightarrow{(g w)} X \oplus \operatorname{Kern}(g)$  und  $M \xleftarrow{\binom{v}{i}} X \oplus \operatorname{Kern}(g)$ .

Es ist 
$$(g w) \cdot {v \choose i} = g \cdot v + w \cdot i = \mathrm{id}_M = 1.$$

Es ist 
$$\binom{v}{i} \cdot (g w) = \binom{v \cdot g}{i \cdot g} \cdot \binom{v \cdot w}{i \cdot w} = \binom{1}{0} \cdot \binom{0}{1}$$
.

Also sind diese beiden R-linearen Abbildungen sich invertierende Isomorphismen.

Insbesondere ist  $M \simeq X \oplus \text{Kern}(g)$ , wie behauptet. Dies zeigt Vorbemerkung 3.

Sei X ein R-Linksmodul.

Falls wir eine Menge B und einen R-Linksmodul Y haben mit  $X \oplus Y \simeq \coprod_{\beta \in B} R$ , dann können wir mit der Vorbemerkung 1 und (1) folgern, daß  $\coprod_{\beta \in B} R$  projektiv ist. Mit Vorbemerkung 2 folgt, daß  $X \oplus Y$  projektiv ist. Mit (2) folgt, daß X projektiv ist.

Sei nun umgekehrt X projektiv. Für  $x \in X$  haben wir die R-lineare Abbildung  $g_x : R \to X : r \mapsto rg_x := r \cdot x$ . Denn für  $s, s' \in R$  und  $r, r' \in R$  wird  $(s \cdot r + s' \cdot r')g_x = (s \cdot r + s' \cdot r') \cdot x = s \cdot (r \cdot x) + s' \cdot (r' \cdot x) = s \cdot rg_x + s' \cdot r'g_x$ . Mit der universellen Eigenschaft des Coprodukts erhalten wir die R-lineare Abbildung  $\coprod_{x \in X} R \xrightarrow{g} X$  mit  $\iota_x \cdot g = g_x$  für  $x \in X$ . Diese ist surjektiv, da für ein gegebenes  $x_0 \in X$  dieses geschrieben werden kann als  $(1\iota_{x_0})g = 1(\iota_{x_0} \cdot g) = 1g_{x_0} = x_0$ . Dank Vorbemerkung 3 folgt nun aus X projektiv, daß  $\coprod_{x \in X} R \cong X \oplus \mathrm{Kern}(g)$ .

Zu (4). Für  $m \in M$  haben wir die R-lineare Abbildung  $g_m : R \to M : r \mapsto rg_m := r \cdot m$ . Dank (3) ist  $P := \coprod_{m \in M} R$  projektiv. Mit der universellen Eigenschaft des Coprodukts erhalten wir die R-lineare Abbildung

$$P = \coprod_{m \in M} R \xrightarrow{g} M$$

mit  $\iota_m \cdot g = g_m$  für  $m \in M$ . Diese ist surjektiv, da für  $m_0 \in M$  sich  $(1\iota_{m_0})g = m_0$  ergibt.

Hausaufgabe 19 (A29) Sei R ein Ring. Man zeige folgende Aussagen.

- (1) Sei A eine Menge. Sei für jedes  $\alpha \in A$  ein injektiver R-Linksmodul  $I_{\alpha}$  gegeben. Dann ist  $\prod_{\alpha \in A} I_{\alpha}$  injektiv.
- (2) Sind X und Y zwei R-Linksmoduln so, daß  $X \oplus Y$  injektiv ist, dann sind auch X und Y injektiv.
- (3) Aus dem Beweis von Satz 68 wissen wir: Ist  $\mathbb{Z}J$  ein injektiver  $\mathbb{Z}$ -Modul, dann ist  $\mathbb{Z}(\mathbb{Z}R_R, \mathbb{Z}J)$  ein injektiver R-Linksmodul.

Man verwende dies, um zu zeigen: Sei  $n \ge 1$ . Es ist  $\mathbb{Z}/n$  ein injektiver  $\mathbb{Z}/n$ -Modul.

Lösung.

Zu (1). Sei folgendes Diagramm von R-Linksmoduln und R-linearen Abbildungen gegeben.

$$\prod_{\alpha \in A} I_{\alpha}$$

$$\downarrow^{u}$$

$$M \longleftarrow N$$

Dabei sei f injektiv. Zu finden ist eine R-lineare Abbildung  $M \xrightarrow{v} \prod_{\alpha \in A} I_{\alpha}$  mit  $f \cdot v \stackrel{!}{=} u$ .

Sei  $\beta \in A$ . Da  $I_{\beta}$  injektiv ist, können wir eine R-lineare Abbildung  $M \xrightarrow{v_{\beta}} I_{\beta}$  wählen, für welche folgendes Diagramm kommutiert.

$$\begin{array}{c}
I_{\beta} \\
\downarrow v_{\beta} \\
M & \stackrel{f}{\longleftarrow} N
\end{array}$$

Dank universeller Eigenschaft des Produkts gibt es eine eindeutige R-lineare Abbildung  $M \xrightarrow{v} \prod_{\alpha \in A} I_{\alpha}$  mit  $v \cdot \pi_{\beta} = v_{\beta}$  für  $\beta \in A$ .

Für  $\beta \in A$  wird

$$(f \cdot v) \cdot \pi_{\beta} = f \cdot v_{\beta} = u \cdot \pi_{\beta}$$
.

Wegen der Eindeutigkeit aus der universellen Eigenschaft des Produkts folgt  $f \cdot v = u$ , wie verlangt.

Zu (2). Es genügt zu zeigen, daß X injektiv ist.

Sei folgendes Diagramm von R-Linksmoduln und R-linearen Abbildungen gegeben.

$$\begin{matrix} X \\ \uparrow u \\ M \not \stackrel{f}{\longleftarrow} N \end{matrix}$$

Dabei sei f injektiv. Zu finden ist eine R-lineare Abbildung  $M \xrightarrow{v} X$  mit  $f \cdot v \stackrel{!}{=} u$ . Wir betrachten die R-lineare Abbildung  $N \xrightarrow{(u \ 0)} X \oplus Y$ .

Da  $X \oplus Y$  injektiv ist, können wir eine R-lineare Abbildung  $M \xrightarrow{(v \ w)} X \oplus Y$  wählen, die folgendes Diagramm kommutativ macht.

Es ist also  $(u \, 0) = f \cdot (v \, w) = (f \cdot v \, f \cdot w)$ . Insbesondere ist  $u = f \cdot v$ , wie verlangt.

Zu (3). Wir wissen: Es ist  $\mathbb{Q}/\mathbb{Z}$  ein injektiver  $\mathbb{Z}$ -Modul.

Wir wissen dann auch: Es ist  $\mathbb{Z}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z})$  ein injektiver  $\mathbb{Z}/n$ -Modul.

Es genügt zeigen: Es ist  $\mathbb{Z}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z}) \stackrel{!}{\simeq} \mathbb{Z}/n$  als  $\mathbb{Z}/n$ -Modul, d.h. als abelsche Gruppe.

Eine  $\mathbb{Z}$ -lineare Abbildung von  $\mathbb{Z}$  nach  $\mathbb{Q}/\mathbb{Z}$  ist durch Angabe eines Elements  $x \in \mathbb{Q}/\mathbb{Z}$  bestimmt, indem wir  $z \in \mathbb{Z}$  nach  $z \cdot x \in \mathbb{Q}/\mathbb{Z}$  abbilden. Wir schreiben diese Abbildung

$$g_x : \mathbb{Z} \to \mathbb{Q}/\mathbb{Z} : z \mapsto zg_x := z \cdot x$$
.

Dank universeller Eigenschaft des Faktormoduls ist eine  $\mathbb{Z}$ -lineare Abbildung von  $\mathbb{Z}/n = \mathbb{Z}/n\mathbb{Z}$  nach  $\mathbb{Q}/\mathbb{Z}$  also durch Angabe eines Elements  $x \in \mathbb{Q}/\mathbb{Z}$  bestimmt, für welches  $w \cdot x = 0$  ist für  $w \in n\mathbb{Z}$ . Mit anderen Worten, dafür sollte  $n \cdot x = 0$  sein.

Wir schreiben diese Abbildung

$$\bar{g}_x : \mathbb{Z}/n \to \mathbb{Q}/\mathbb{Z} : (z+n\mathbb{Z}) \mapsto (z+n\mathbb{Z})\bar{g}_x := z \cdot x$$
.

Es ist

$$\left\{\,x\in\mathbb{Q}/\mathbb{Z}\,:\,n\cdot x=0\,\right\}\;=\;\left\{\,\tfrac{k}{n}+\mathbb{Z}\,:\,k\in\mathbb{Z}\,\right\}\,.$$

Also ist

$$_{\mathbb{Z}}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z}) = \{ \bar{g}_{\frac{k}{n} + \mathbb{Z}} : k \in \mathbb{Z} \} = _{\mathbb{Z}} \langle \bar{g}_{\frac{1}{n} + \mathbb{Z}} \rangle .$$

Darin hat  $\bar{g}_{\frac{1}{n}+\mathbb{Z}}$  die Ordnung n. Folglich haben wir den folgenden Isomorphismus abelscher Gruppen.

$$\begin{array}{ccc} \mathbb{Z}/n & \xrightarrow{\sim} & \mathbb{Z}(\mathbb{Z}/n, \mathbb{Q}/\mathbb{Z}) \\ k + n\mathbb{Z} & \mapsto & \bar{g}_{\frac{k}{n} + \mathbb{Z}} \end{array}.$$

**Hausaufgabe 20** Sei  $\mathcal{C}$  eine Kategorie. Sei darin  $X \xrightarrow{f} Y \xrightarrow{g} Z$  gegeben. Man zeige:

- (1) Ist  $f \cdot g$  ein Monomorphismus, dann ist f ein Monomorphismus.
- (2) Ist f ein Monomorphismus und eine Retraktion, dann ist f ein Isomorphismus.
- (3) Sind f und g Epimorphismen, dann auch  $f \cdot g$ .
- (4) Es ist f genau dann ein Monomorphismus in  $\mathcal{C}$  wenn f ein Epimorphismus in  $\mathcal{C}^{\circ}$  ist.

 $L\ddot{o}sung.$ 

Zu (1). Seien  $T \xrightarrow{u} X \xrightarrow{f} Y$  mit  $u \cdot f = v \cdot f$  gegeben. Wir haben  $u \stackrel{!}{=} v$  zu zeigen. Es wird  $u \cdot f \cdot g \stackrel{v}{=} v \cdot f \cdot g$ . Da  $f \cdot g$  monomorph ist, folgt in der Tat u = v.

Zu (2). Sei f ein Monomorphismus und eine Retraktion. Wegen letzterem können wir ein  $X \stackrel{g}{\leftarrow} Y$  wählem mit  $g \cdot f = \mathrm{id}_Y$ . Es folgt

$$f \cdot g \cdot f = f \cdot id_Y = f = id_X \cdot f$$
.

Da f monomorph ist, folgt  $f \cdot g = id_X$ .

Folglich sind f und g sich invertierende Isomorphismen.

Zu (3). Seien  $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{u} T$  mit  $f \cdot g \cdot u = f \cdot g \cdot v$  gegeben. Wir haben  $u \stackrel{!}{=} v$  zu zeigen.

Da f epimorph ist, folgt  $g \cdot u = g \cdot v$ .

Da g epimorph ist, folgt in der Tat u = v.

Zu (4).

Sei f ein Monomorphismus in C. Zu zeigen ist: Es ist f ein Epimorphismus in  $C^{\circ}$ .

In  $C^{\circ}$  sei  $Y \xrightarrow{f} X \xrightarrow{u} T$  gegeben mit  $f \cdot {}^{\circ} u = f \cdot {}^{\circ} v$ . Wir haben  $u \stackrel{!}{=} v$  zu zeigen. Es ist  $u \cdot f = f \cdot {}^{\circ} u^{v} = f \cdot {}^{\circ} v = v \cdot f$ . Da f ein Monomorphismus in C ist, folgt in der Tat u = v.

Sei nun f ein Epimorphismus in  $\mathcal{C}^{\circ}$ . Zu zeigen ist: Es ist f ein Monomorphismus in  $\mathcal{C}$ .

In  $\mathcal{C}$  sei  $T \xrightarrow{u} X \xrightarrow{f} Y$  gegeben mit  $u \cdot f = v \cdot f$ . Wir haben  $u \stackrel{!}{=} v$  zu zeigen. Es ist  $f \cdot \circ u \stackrel{v}{=} u \cdot f = v \cdot f = f \cdot \circ v$ . Da f ein Epimorphismus in  $\mathcal{C}^{\circ}$  ist, folgt in der Tat u = v.

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/halg24/