Gruppentheorie, SoSe 25

Blatt 11

Hausaufgabe 40 Sei $A \xrightarrow{i} G \xrightarrow{r} H$ eine kurz exakte Sequenz von Gruppen mit A abelsch. Dies liefert einen Gruppenmorphismus $\alpha : H \to \operatorname{Aut}(A) : h \mapsto (a \mapsto {}^h a)$.

Sei $\mathfrak{s}: H \to G$ eine Abbildung mit $r \circ \mathfrak{s} = \mathrm{id}_H$.

Sei $i(z(h,h')) := \mathfrak{s}(h) \cdot \mathfrak{s}(h') \cdot \mathfrak{s}(h \cdot h')^-$ für $h, h' \in H$. Dies definiert $z \in \mathbf{Z}^2(H,A)$, letzteres genommen bezüglich α .

Sei auf $\tilde{G} := A \times H$ folgende Multiplikation definiert. Sei

$$(a,h)\cdot(a',h') := (a\cdot {}^ha'\cdot z(h,h'),\,h\cdot h')$$

für $(a,h), (a',h') \in \tilde{G}$. Damit ist $\tilde{G} = (\tilde{G},\cdot)$ eine Gruppe, mit $1_{\tilde{G}} = (z(1,1)^-,1)$.

Man konstruiere einen Gruppenisomorphismus $\tilde{G} \xrightarrow{\sim} G$.

Hausaufgabe 41 Sei $C_3 = \langle x : x^3 \rangle$. Sei $C_9 = \langle y : y^9 \rangle$. Sei $i : C_3 \to C_9 : x \mapsto y^3$. Sei $r : C_9 \to C_3 : y \mapsto x$. Es ist $C_3 \xrightarrow{i} C_9 \xrightarrow{r} C_3$ eine kurz exakte Sequenz von Gruppen. Wir schreiben auch $A := C_3$, $G := C_9$ und $H = C_3$.

- (1) Man finde eine Abbildung $\mathfrak{s}: H \to G$ mit $r \circ \mathfrak{s} = \mathrm{id}_H$.
- (2) Man konstruiere $z \in \mathbb{Z}^2(H, A)$ mit $i(z(h, h')) := \mathfrak{s}(h) \cdot \mathfrak{s}(h') \cdot \mathfrak{s}(h \cdot h')^-$ für $h, h' \in H$. Man gebe $z(x^i, x^j)$ an für $i, j \in [0, 2]$.
- (3) Man konstruiere \tilde{G} wie in Hausaufgabe 40. Man finde ein Element $\tilde{g} \in \tilde{G}$ mit $\tilde{G} = \langle \tilde{g} \rangle$.

Hausaufgabe 42 Wir betrachten die Gruppe $D_8 = \langle a, b : a^4, b^2, (ba)^2 \rangle$. Sei $A := \langle a \rangle \leq D_8$.

- (1) Man bestimme alle Komplemente zu A in D_8 . Sind diese zueinander konjugiert?
- (2) Sei $H := D_8/A$, sei $A \xrightarrow{i} D_8$ der Inklusions- und $D_8 \xrightarrow{r} H$ der Restklassenmorphismus. Wir betrachten die kurz exakte Sequenz $A \xrightarrow{i} D_8 \xrightarrow{r} H$. Man bestimme den zugehörigen Gruppenmorphismus $H \xrightarrow{\alpha} \operatorname{Aut}(A)$.
- (3) Wir bilden $H^1(H, A)$ mittels α aus (2). Was besagt das Resultat aus (1) für $H^1(H, A)$?

Hausaufgabe 43

(1) Seien $G \xrightarrow{r} H$ und $H' \xrightarrow{v} H$ Gruppenmorphismen.

Sei $G' := \{ (g, h') \in G \times H' : r(g) = v(h') \}$ der Pullback von r und v.

Man zeige: $G' \leq G \times H'$. Man konstruiere ein kommutatives Viereck von Gruppen

$$G' \xrightarrow{r'} H'$$

$$\downarrow v$$

$$G \xrightarrow{r} H$$

mit folgender universeller Eigenschaft: Für jede Vervollständigung von r und v zu einem kommutativen Viereck mit einer Gruppe T gibt es genau einen Gruppenmorphismus $T \xrightarrow{t} G'$, für welchen zwei kommutative Dreiecke entstehen.

(2) Sei $N \xrightarrow{i} G \xrightarrow{r} H$ eine kurz exakte Sequenz. Sei $H' \xrightarrow{v} H$ ein Gruppenmorphismus. Sei G' der Pullback von r und v wie in (1). Man konstruiere eine kurz exakte Sequenz $N \xrightarrow{i'} G' \xrightarrow{r'} H'$ mit $u \circ i' = i$.

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/gt25/