Gruppentheorie, SoSe 25

Blatt 7

Hausaufgabe 25 (A32)

Sei G eine endliche Gruppe. Sei $H \leq G$. Sei $N \leq G$. Man zeige.

- (1) Sind N und G/N auflösbar, dann auch G.
- (2) Ist G auflösbar, dann auch H und G/N.
- (3) Sind H und N auflösbar, dann auch HN.
- (4) Ist $N \leq Z(G)$ und ist G/N überauflösbar, dann auch G.

Hausaufgabe 26

Sei G eine endliche Gruppe. Man zeige oder widerlege.

- (1) Ist G abelsch, dann ist Aut(G) abelsch.
- (2) Ist G auflösbar, dann ist Aut(G) auflösbar.
- (3) Ist G zyklisch, dann ist Aut(G) abelsch.
- (4) Ist G zyklisch, dann ist Aut(G) zyklisch.

Hausaufgabe 27 (A32) Sei G eine endliche Gruppe. Sei $H \leq G$. Sei $N \leq G$. Man zeige.

- (1) Ist G überauflösbar, dann auch H und G/N.
- (2) Ist $N \leq Z(G)$ und ist G/N nilpotent, dann auch G.
- (3) Ist G nilpotent, dann auch H und G/N.
- (4) Ist G überauflösbar und ist $H \leq G^{(1)}$, dann ist H nilpotent.

Hausaufgabe 28 (A35) Seien G und H endliche Gruppen.

Sei $(U_i)_{i\in[0,s]}$ eine Subnormalreihe von G. Sei $(V_i)_{i\in[0,t]}$ eine Subnormalreihe von H. Sei o.E. $s\leqslant t$. Setze noch $U_i:=1$ für $i\in[s+1,t]$. Man zeige.

- (1) Sind $(U_i)_{i \in [0,s]}$ und $(V_i)_{i \in [0,t]}$ auflösend, dann auch $(U_i \times V_i)_{i \in [0,t]}$.
- (2) Sind $(U_i)_{i \in [0,s]}$ und $(V_i)_{i \in [0,t]}$ nilpotent auflösend, dann auch $(U_i \times V_i)_{i \in [0,t]}$.
- (3) Sind G und H nilpotent, so auch $G \times H$.

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/gt25/