Gruppentheorie, SoSe 25

Lösung 8

Hausaufgabe 29 Sei G endlich und nilpotent. Man zeige.

- (1) Die absteigende Zentralreihe von G ist eine nilpotent auflösende Reihe.
- (2) Die aufsteigende Zentralreihe von G ist, rückwärts numeriert, eine nilpotent auflösende Reihe.

 $L\ddot{o}sung.$

Ad (1). Sei $(G^{[i]})_{i \in [0,n]}$ die absteigende Zentralreihe von G.

Es ist $G^{[i]} \leq G$ für $i \in [0, n]$.

Es ist zu zeigen: Für $i \in [0, n-1]$ ist $G^{[i]}/G^{[i+1]} \stackrel{!}{\leqslant} \mathbf{Z}(G/G^{[i+1]})$.

Sei $x \in G^{[i]}$ und $y \in G$. Wir haben $[xG^{[i+1]}, yG^{[i+1]}] \stackrel{!}{=} 1 \cdot G^{[i+1]}$ zu zeigen, i.e. $[x, y] \stackrel{!}{\in} G^{[i+1]}$.

Aber $[x, y] \in [G^{[i]}, G] = G^{[i+1]}$.

Ad (2). Sei $(G^{]n-i[})_{i\in[0,n]}$ die aufsteigende Zentralreihe von G, rückwärts numeriert.

Es ist $G^{]n-i[} \leqslant G$ für $i \in [0, n]$.

Es ist zu zeigen: Für $i \in [0, n-1]$ ist $G^{]n-i[}/G^{]n-(i+1)[} \stackrel{!}{\leqslant} \mathbf{Z}(G/G^{]n-(i+1)[}).$

Mit anderen Worten, es ist zu zeigen: Für $i \in [0, n-1]$ ist $G^{]i+1[}/G^{]i[} \stackrel{!}{\leqslant} \mathbf{Z}(G/G^{]i[}).$

Aber es ist $G^{]i+1[}/G^{]i[} = \mathbb{Z}(G/G^{]i[})$ nach Konstruktion.

Hausaufgabe 30 Sei $G = D_8 \times C_2$. Sei u + 1 die Anzahl der Gruppen in der absteigenden und in der aufsteigenden Zentralreihe von G.

Man zeige, daß es ein i gibt mit $G^{[i]} < G^{]u-i[}$.

Lösung

Es ist $D_8 = \langle a, b : a^4, b^2, (ba)^2 \rangle$. Es ist $Z(D_8) = \langle a^2 \rangle$. Es ist $D_8/Z(D_8) \simeq C_2 \times C_2$ abelsch.

Wir berechnen die absteigende Zentralreihe.

Es ist

$$G^{[0]} = D_8^{[1]} \times C_2$$
.

Es ist $G^{[1]} = D_8^{[1]} \times 1$. Es ist $[a, b] = a^-b^-ab = a^2$. Also ist $a^2 \in D_8^{[1]}$. Also ist $\langle a^2 \rangle \leqslant D_8^{[1]}$.

Auf der anderen Seite ist $D_8/\langle a^2 \rangle$ abelsch, da $[a,b] \in \langle a^2 \rangle$. Also ist $D_8^{[1]} \leqslant \langle a^2 \rangle$.

Somit ist $D_8^{[1]} \leqslant \langle a^2 \rangle$.

Also ist

$$G^{[1]} \; = \; \langle a^2 \rangle \times 1 \; .$$

Da $G^{[1]}$ abelsch ist, ist

$$G^{[2]} = 1 \times 1$$

Wir berechnen die aufsteigende Zentralreihe.

Es ist

$$G^{]0[} = 1 \times 1$$
.

Es ist $G^{[1]} = Z(G) = Z(D_8) \times Z(C_2)$, also

$$G^{]1[} = \langle a^2 \rangle \times C_2$$
.

Da $G/G^{[1]} \simeq D_8/\langle a^2 \rangle$ abelsch ist, ist $G^{[2]}/G^{[1]} = Z(G/G^{[1]}) = G/G^{[1]}$ und also

$$G^{]2[} = D_8^{[1]} \times C_2$$

Es bestätigt sich, daß die aufsteigende und die absteigende Zentralreihe gleichviele Einträge haben, nämlich u+1=3 Stück.

Ferner ist für i = 1, wie gewünscht,

$$G^{[1]} = \langle a^2 \rangle \times 1 < \langle a^2 \rangle \times C_2 = G^{]1[} = G^{]u-1[}$$
.

Hausaufgabe 31 (A 37) Eine Gruppe H heiße charakteristisch-einfach, wenn H > 1 ist und wenn H außer 1 und H keine weiteren charakteristischen Untergruppen hat.

In einer Gruppe H heißt ein Normalteiler $K \leq H$ minimal, wenn er ein minimales Element von $\{L \leq H : L > 1\}$ ist.

- (1) Sei G eine Gruppe. Sei $N \leq G$ minimal. Man zeige, daß N charakteristisch-einfach ist.
- (2) Sei N eine charakteristisch-einfache endliche Gruppe. Sei S ein minimaler Normalteiler von N. Zeige, daß S einfach ist und es ein $k \ge 1$ mit $N \simeq S^{\times k}$ gibt. (Hinweis: $S \le N$ minimal; $k \ge 1$ maximal mit Automorphismen $(\alpha_i)_{i \in [1,k]}$ so, daß $S^{\times k} \to N$, $(s_i)_i \mapsto \alpha_1(s_1) \cdot \ldots \cdot \alpha_k(s_k)$ injektiver Gruppenmorphismus, wobei $\alpha_1 = \mathrm{id}_N$; Bild charakteristisch in N, also Isomorphismus; S einfach, da aus normal in S auch normal in $S^{\times k}$ und also normal in N folgt.)

Lösung.

Ad (1). Es ist
$$N > 1$$
, da $N \in \{ L \leq G : L > 1 \}$.

Annahme, es ist N nicht charakteristisch-einfach. Dann gibt es $1 < M \blacktriangleleft N$. Aus $M \blacktriangleleft N \triangleleft G$ folgt $M \triangleleft G$; cf. Bemerkung 80.(2). Also ist $M \in \{L \triangleleft G : L > 1\}$ und M < N, im Widerspruch zur Minimalität von N. Ad (2). Sei S ein minimaler Normalteiler von N.

Sei $k \ge 1$ maximal so, daß es $(\alpha_i)_{i \in [1,k]} \in \operatorname{Aut}(N)^{\times k}$ gibt mit

$$f: S^{\times k} \rightarrow N$$

 $(s_i)_{i \in [1,k]} \mapsto \alpha_1(s_1) \cdot \alpha_2(s_2) \cdot \ldots \cdot \alpha_k(s_k)$

injektiver Gruppenmorphismus, wobei $\alpha_1 = \mathrm{id}_N$.

Ein solches maximales k läßt sich finden wegen der Existenz des einelementigen Tupels (id_N).

Wähle zu diesem maximalen k ein solches Tupel $(\alpha_i)_{i \in [1,k]} \in \operatorname{Aut}(N)^{\times k}$. Schreibe

$$U := f(S^{\times k}) = \alpha_1(S) \cdot \alpha_2(S) \cdot \ldots \cdot \alpha_k(S) .$$

Da $S \leq N$, ist auch $\alpha_i(S) \leq N$ für $i \in [1, k]$ und also $U \leq N$; cf. Hausaufgabe 7.(3).

Wir behaupten, es ist $U \stackrel{!}{\leqslant} N$. Sei $\beta \in \operatorname{Aut}(N)$. Zu zeigen ist $\beta(U) \stackrel{!}{=} U$. Es genügt, $\beta(U) \stackrel{!}{\leqslant} U$ zu zeigen, i.e. $\beta(\alpha_i(S)) \stackrel{!}{\leqslant} U$ für $i \in [1, k]$.

Annahme, nicht. Wähle $j \in [1, k]$ mit $V := \beta(\alpha_j(S)) \not \leq U$. Da S ein minimaler Normalteiler von N ist, ist auch $V = \beta(\alpha_j(S))$ ein minimaler Normalteiler von N. Da $V \not \leq U$, ist $V \cap U < V$. Da $V \not \leq N$ und $U \not \leq N$, ist $V \cap U \not \leq N$. Wegen der Minimalität des Normalteilers V von N folgt hieraus $V \cap U = 1$. Für $v \in V$ und $u \in U$ ist $[v, u] = v^- u^- v u = v^- \cdot u^- v \in V$ und $[v, u] = v^- u^- v u = v^- \cdot u^- v \in V$ also $[V, U] \not \leq V \cap U$.

Sei $\alpha_{k+1} := \beta \circ \alpha_j \in \operatorname{Aut}(N)$. Es ist das Kompositum der Grupppenmorphismen

welches $(s_i)_{i \in [1,k+1]}$ auf

$$f((s_i)_{i \in [1,k]}) \cdot \alpha_{k+1}(s_{k+1}) = \alpha_1(s_1) \cdot \alpha_2(s_2) \cdot \ldots \cdot \alpha_k(s_k) \cdot \alpha_{k+1}(s_{k+1})$$

schickt, injektiv wegen $U \cap V = 1$; cf. Hausaufgabe 2.(3).

Dieser Widerspruch zur Maximalität von k zeigt die Behauptung.

Da aber N charakteristisch-einfach ist und $1 < S \le U \blacktriangleleft N$ gilt, folgt $f(S^{\times k}) = U = N$. Daher ist $f: S^{\times k} \to N$ ein Gruppenisomorphismus.

Wir behaupten die Einfachheit von S. Sei $1 < T \le S$ gegeben. Wir haben $T \stackrel{!}{=} S$ zu zeigen.

Wir erinnern an $S \leq N$ und an $\alpha_1 = \mathrm{id}_N$. Schreibe $W := \alpha_2(S) \cdot \ldots \cdot \alpha_k(S) \leq N$.

Es ist $N = S \cdot (\alpha_2(S) \cdot \ldots \cdot \alpha_k(S)) = SW$.

Sei $s \in S$ und $w \in W$. Es ist

$$[s, w] = f([f^{-}(s), f^{-}(w)]) = 1,$$

da $f^-(s)=(s,1,\ldots,1)\in S^{\times k}$ und da $f^-(w)\in S^{\times k}$ den ersten Eintrag gleich 1 hat. Also ist [S,W]=1, insbesondere also [T,W]=1.

Wir zeigen $T \leq N$. Sei $x \in N$. Schreibe x = sw mit $s \in S$ und $w \in W$. Sei $t \in T$. Es wird $x^*t = x^*t = x$

Da $1 < T \le S$, da $T \le N$ und da S ein minimaler Normalteiler von N ist, folgt T = S. Dies zeigt die Behauptung.

Hausaufgabe 32 Sei

$$N \xrightarrow{i} G \xrightarrow{r} H$$

eine kurz exakte Sequenz von Gruppen, d.h. sei i ein injektiver Gruppenmorphismus, sei r ein surjektiver Gruppenmorphismus und sei i(N) = Kern(r).

Man zeige oder widerlege.

- (1) Es gibt eine Abbildung $H \xrightarrow{\sigma} G$ mit $r \circ \sigma = \mathrm{id}_H$.
- (2) Es gibt einen Gruppenmorphismus $H \xrightarrow{s} G$ mit $r \circ s = \mathrm{id}_H$.
- (3) Wenn es einen Gruppenmorphismus $H \xrightarrow{s} G$ gibt mit $r \circ s = \mathrm{id}_H$, dann gibt es einen Gruppenmorphismus $G \xrightarrow{t} N$ mit $t \circ i = \mathrm{id}_N$.
- (4) Es gibt eine kurz exakte Sequenz

$$N \xrightarrow{i'} G' \xrightarrow{r'} H$$

für welche es Gruppenmorphismen $H \xrightarrow{s'} G' \xrightarrow{t'} N$ gibt, welche eine kurz exakte Sequenz bilden und für welche $t' \circ i' = \mathrm{id}_N$ und $r' \circ s' = \mathrm{id}_H$ gelten.

Lösung.

Ad (1). Die Aussage ist richtig.

Hierzu wählen wir für jedes Element $h \in H$ aus dem Urbild $r^{-1}(\{h\})$, welches wegen r surjektiv nichtleer ist, ein Element $\sigma(h)$.

Die für die resultierende Abbildung $\sigma: H \to G$ nötige simultane Wahl ist möglich dank Auswahlaxiom.

Aus $\sigma(h) \in r^{-1}(\{h\})$ folgt $r(\sigma(h)) = h$ für $h \in H$. Also ist $r \circ \sigma = \mathrm{id}_H$.

Ad (2). Die Aussage ist falsch.

Sei
$$C_2 = \langle a : a^2 \rangle$$
. Sei $C_4 = \langle b : b^4 \rangle$. Sei $i : C_2 \to C_4 : a \mapsto b^2$. Sei $r : C_4 \to C_2 : b \mapsto a$.

Es ist

$$C_2 \xrightarrow{i} C_4 \xrightarrow{r} C_2$$

eine kurz exakte Sequenz von Gruppen.

Es gibt von C_2 nach C_4 nur die Gruppenmorphismen ! und i.

Es ist $r \circ ! = ! \neq id_H$ und $r \circ i = ! \neq id_H$.

Also existert in der Tat kein Gruppenmorphismus $H \xrightarrow{s} G$ mit $r \circ s = \mathrm{id}_H$.

Ad (3). Die Aussage ist falsch.

Sei $r = \text{sgn} : S_3 \to U(\mathbb{Z}) = \{-1, +1\}.$

Sei $i: A_3 \to S_3$ der Inklusionsmorphismus.

$$A_3 \xrightarrow{i} S_3 \xrightarrow{r} U(\mathbb{Z})$$

eine kurz exakte Sequenz von Gruppen.

Wir haben den Gruppenmorphismus $s: \mathrm{U}(\mathbb{Z}) \to \mathrm{S}_3: -1 \mapsto (1,2)$. Es ist r(s(-1)) = r((1,2)) = -1. Also ist $r \circ s = \mathrm{id}_{\mathrm{U}(\mathbb{Z})}$.

Annahme, es gibt einen Gruppenmorphismus $S_3 \xrightarrow{t} A_3$ mit $t \circ i = id_{A_3}$. Da $t \circ i$ surjektiv ist, ist auch t surjektiv. Es folgt: $3 = |A_3| = |S_3/\operatorname{Kern}(t)| = 6/|\operatorname{Kern}(t)|$. Also ist $|\operatorname{Kern}(t)| = 2$ und $\operatorname{Kern}(t) \leqslant S_3$. Einen solchen Normalteiler gibt es aber in S_3 nicht. Widerspruch. Also liegt ein Gegenbeispiel vor.

Ad (4). Die Aussage ist richtig.

Sei
$$G' := N \times H$$
.

Sei
$$i': N \to N \times H : n \mapsto (n,1)$$
.

Sei
$$r': N \times H \to H: (n,h) \mapsto h$$
.

Sei
$$s': H \to N \times H : h \mapsto (1, h)$$
.

Sei
$$t': N \times H \to N: (n,h) \mapsto n$$
.

Dann sind

$$N \xrightarrow{i'} N \times H \xrightarrow{r'} H$$

und

$$H \xrightarrow{s'} N \times H \xrightarrow{t'} H$$

kurz exakte Sequenzen von Gruppen.

Es ist
$$t'(i'(n)) = t'((n,1)) = n$$
 für $n \in N$. Folglich ist $t' \circ i' = \mathrm{id}_N$.

Es ist
$$r'(s'(h)) = r'((1,h)) = h$$
 für $h \in H$. Folglich ist $r' \circ s' = \mathrm{id}_H$.

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/gt25/