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Abstract

Let p > 3 be a prime, let n > m > 1. Let m, be the norm of (,» — 1 under C},_1, so
that Z,)[m,]|Z,) is a purely ramified extension of discrete valuation rings of degree
p"~!. The minimal polynomial of 7, over Q(m,,) is an Eisenstein polynomial; we
give lower bounds for its coefficient valuations at m,,. The function field analogue, as

introduced by Carlitz and Hayes, is studied as well.
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0 Introduction

0.1 Problem and methods

Consider a primitive p"th root of unity (,» over Q, where p is a prime and n > 2. One has
Gal(Q(¢n)|Q) >~ Cpn—1 x Cp_q. To isolate the p-part of this extension, let m, be the norm
of ¢n — 1 under C),_y; that is, the product of the Galois conjugates ((,» —1)7, where o runs

over the subgroup C,_;. Then

p

Q(mn)

Q(¢)

We ask for the minimal polynomial fir, q(X) = > ;c(0pn-1] a; X’ € Z[X] of 7, over Q. By
construction, it is an Eisenstein polynomial; that is, v,(a;) > 1 for j € [0,p" " — 1], and
vp(ap) = 1, where v, denotes the valuation at p.

More is true, though. Our basic objective is to give lower bounds bigger than 1 for these
p-values v,(a;), except, of course, for v,(ag). As a byproduct of our method of proof, we
shall also obtain congruences between certain coefficients for varying n.

A consideration of the trace Trq(x,)/q(7,) yields additional information on the second coeffi-
cient of i, q(X). By the congruences just mentioned, this also gives additional information
for certain coefficients of the minimal polynomials pir, q(X) with I > n; these coefficients
no longer appear as traces.

Finally, a comparison with the different ideal Dz r.)z.,, = Z)[ma] 1, o(7n) then yields
some exact coefficient valuations, not just lower bounds.

Actually, we consider the analogous question for the coefficients of the slightly more general
relative minimal polynomial jix, q(r,,)(X), where n > m > 1, which can be treated using
essentially the same arguments. Note that m; = p.

Except for the trace considerations, the whole investigation carries over mutatis mutandis to
the case of cyclotomic function field extensions, as introduced by CARLITZ [1] and HAYES
[5]

As an application, we mention the Wedderburn embedding of the twisted group ring (with
trivial 2-cocycle)

w n—1 n—1
Z(p) [Wn] l Opnfl C» Endz(p)Z(p) [7Tn] ~ Zz()p) P ,
to which we may reduce the problem of calculating Z)[(n] 2 (Cpn-1 X Cp_q) by means of
Nebe decomposition. The image w(m,) is the companion matrix of ., q(X). To describe
the image w(Z)[m,]1Cpn-1) of the whole ring, we may replace this matrix modulo a certain



ideal. To do so, we need to know the valuations of its entries, i.e. of the coefficients of
fr, (X)), or at least a lower bound for them. So far, this could be carried through only
for n = 2 [10].

In this article, however, we restrict our attention to the minimal polynomial itself.

0.2 Results
0.2.1 The number field case

Let p > 3 be a prime, and let Cpn denote a primitive p"th root of unity over Q in such a
way that Can Gpn for all n > 1. Put

Fn - Q(Cp")

E, = Fixe, ,F,,

so [E, : Q] = p". Letting
,pnfl
jE[Lp—l}
we have E, = Q(w,). In particular, E,,.; = E,,(7m1;) for m,i > 1. We fix m and write

P (X) = Y ai ;X0 = Xpi+< > ai,ij> —Tm € Zp)|m][X].

J€lop’] je[lp'—1]
Theorem (5.3, 5.5, 5.8).

We have p' | ja;; for j € [0,p].

{) If j <p'(p—2)/(p— 1), then p'my, | jai ;.

)
)

(ii) We have a;; =pi+1 a;15,8; for j € [0,p"] and § >

(i) If j <p'(p—2)/(p— 1), then a;; =pi+in, Qirppo; for B>1
iii)

The element p'=? exactly divides i i (pi—pP)/(p—1) JOT B € (0,7 —1].

(iv) We have jip, q(X) =p XV +pX@ 0" _p forn > 2.

Assertion (iv) requires the computation of a trace, which can be reformulated in terms of
sums of (p — 1)th roots of unity in Q, (5.6). Essentially, one has to count the number of
subsets of u, ; € Q, of a given cardinality whose sum is of a given valuation at p. We
have not been able to go much beyond this reformulation, and this seems to be a problem
in its own right — see e.g. (5.9).



To prove (i, 1/, ii, ii’), we proceed by induction. Assertions (i, ') also result from the different

Dz, ol Zipy ] = /‘;rmH,Em(WmH)) <pz7rﬁl;1 (» 1)/@71)). Moreover, (ii) yields (iii)

by an argument using the different. (In the function field case below, we will no longer be
able to use the different for the assertion analogous to (i, i'), and we will have to resort to
induction).

Suppose m = 1. Let us call an index j € [1,p' — 1] exact, if either j < p'(p—2)/(p—1) and
Py, exactly divides ja; ;, or j = p'(p—2)/(p—1) and p* exactly divides ja,; ;. If i =1 and
e.g. p € {3,19,29,41}, then all indices j € [1,p — 1] are exact. If i > 2, we propose to ask
whether the number of non-exact indices j asymptotically equals p*~! as p — oo.

0.2.2 The function field case

Let p > 3 be a prime, p > 1 and r = p*. We write Z = F,[Y] and Q = F.(Y). We want
to study a function field analogue over Q of the number field extension Q((,»)|Q. Since
1 is the only p"th root of unity in an algebraic closure Q, we have to proceed differently,
following CARLITZ [1] and HAYES [5]. First of all, the power operation of p" on Q becomes
replaced by a module operation of f” on Q, where f € Z is an irreducible polynomial. The
group of p™th roots of unity

= {£€Q:¢" =1}
becomes replaced by the annihilator submodule
A = {£€Q:¢" =0},

Instead of choosing a primitive p"th root of unity (y», i.e. a Z-linear generator of that
abelian group, we choose a Z-linear generator 6,, of this Z-submodule. A bit more precisely
speaking, the element 6, € Q plays the role of ¥, := (,» — 1 € Q. Now Q(6,)|Q is the
function field analogue of Q(9,)|Q. See also [3, sec. 2].

To state the result, let f(Y) € Z be a monic irreducible polynomial and write ¢ = rdce f .
Let &Y := Y& + £ define the Z-linear Carlitz module structure on an algebraic closure Q,
and choose a Z-linear generator 6, of anng @ in such a way that QfL 4 =0, foralln > 1.

We write F,, = Q(6,), so that Gal(F,|Q) ~ (Z/f")". Letting &, = Fix¢,_,F,, we get

(€, 0 Q] = ¢". Denoting w, = an|gn( n) = ez Qeqn 1 , we obtain &, = Q(w,).
In particular, &,,1; = & (@) for m,i > 1. We fix m and write

Pepintn(X) = Y ai ;X = Xqi+< > am‘Xj> —@m € Z(ploml[X].

Let v,(j) :=max{a € Zxy : ¢“|j }.



Theorem (6.6, 6.7, 6.9).
(i) We have fi=vU) | a;; for j € [0,4"].
() 1) < a'la—2)/(a— 1), then f~Ozm,, |ay,,
(ii) We have a;; =jiv1 a;1545; for j €[0,¢'] and > 1.
(i) If j < q'(q—2)/(q — 1), then a;; =jit1q,, Qiypq; for 3= 1.
)
)

(iii) The element f=P exactly divides Qi gi—(qi—q%)/(q—1) Jor B € [0,i—1].

iv) If f =Y, then . X) =yo X Y XD
ff ’ M s, Em Y m

A comparison of the assertions (iv) in the number field case and in the function field case
indicates possible generalizations — we do not know what happens for jir .. g, (X) for
m > 2 in the number field case; moreover, we do not know what happens for f # Y in the
function field case.

0.3 Notations and conventions

(o) Within a chapter, the lemmata, propositions etc. are numbered consecutively.
(i) For a,b € Z, we denote by [a,b] :={c€Z : a < c< b} the interval in Z.

ii) For m € Z~ {0} and a prime p, we denote by m/[p] := p’»(™ the p-part of m, where v, denotes the
P
valuation of an integer at p.

(iii) If R is a discrete valuation ring with maximal ideal generated by r, we write v, (x) for the valuation
of x € R~ {0} at 7, i.e. z/r"(*) is a unit in R. In addition, v,.(0) := +ooc.

(iv) Given an element z algebraic over a field K, we denote by p, x(X) € K[X] the minimal polynomial
of z over K.

(v) Given a commutative ring A and an element a € A, we sometimes denote the quotient by A/a :=
A/aA — mainly if A plays the role of a base ring. For b,c € A, we write b =, cif b — ¢ € aA.

(vi) For an assertion X, which might be true or not, we let {X} equal 1 if X is true, and equal 0 if X is
false.

’Throughout, let p> 3 bea prime.‘

1 A polynomial lemma
We consider the polynomial ring Z[X,Y].

Lemma 1.1 We have (X +pY)* = p2v2 X5+ kX 1pY for k> 1.
Since (’;) =k/j- (l;j), we obtain for j > 2 that



where the second inequality follows from j > 2 if v,(j) = 0, and from j > p*»0) > 3%0) >
vp(g) +2if vy(j) > 1.

Corollary 1.2 We have (X + pY)* =y X* for k> 1.

Corollary 1.3 For | > 1 and xz,y € Z such that x =, y, we have " =kip) ! Yy for
kE>1.

Corollary 1.4 We have (X +Y )" =041 (XP" + YV for all a, > 0.

The assertion follows by (1.2) since f(X,Y) =, ¢(X,Y) implies that f(X,Y)P" =,an
g(X V)", where f(X,Y), g(X.Y) € Z[X,Y].

2 Consecutive purely ramified extensions

2.1 Setup

Let T|S and S|R be finite and purely ramified extensions of discrete valuation rings, of
residue characteristic char R/rR = p. The maximal ideals of R, S and T are generated by
re R, se Sandt T, and the fields of fractions are denoted by K = frac R, L = fracS
and M = fracT, respectively. Denote m = [M : L] and [ = [L : K|. We may and will
assume s = (—1)™™ Ny (¢) and r = (—1)"Np g (s).

We have S = R|[s] with
porc(X) = X'+ (Y @ X7) —r € RIX],
je[1,i—1]
and T' = R[t] with
m(X) = X" (3 bx) —r € RIX].
jE[l,lm—1]

Cf. [9, 1.§7, prop. 18]. The situation can be summarized in the diagram

Note that r | p, and that for z € M, we have v(2) = m - vs(z) = ml - v,.(2).



2.2 Characteristic 0

In this section, we assume char K = 0. In particular, Z, C R.

Assumption 2.1 Suppose given z,y € T and k € [1,] — 1] such that

(i) p|yand t™ =, s,
(ii) x| ja; for all j € [1,1 — 1], and

(ili) r | ja; for all j € [1,k —1].
Put ¢ := ged(zyst 1, ylst=1) e T.

Lemma 2.2 Given (2.1), we have ¢ | psx(t™) .

We may decompose

fs i (U™) = ps e (t™) — ps i ()
= (" =)+ (e @ = 5) + ( Sy as ™ = )
Now since t" = s + zy for some z € T by (2.1.i), we have

mj (LD el i
t =2 8 )87 Y Sjei-1y S

for any j > 1, so that s/~' | r | p | y gives t"™ =, -1, s/.
In particular, yls!=! | ™ — .
Moreover, zys' | 3y a; (8" — s7) by (2.1iii).

Finally, zys*! | D ekt a;(t™ — s7) by (2.1.i1).
The following proposition will serve as inductive step in (3.2).

Proposition 2.3 Given (2.1), we have t ¢ | bj if j #, 0 and t ¢ | (bj — aj/m) if j =m 0,
where j € [1,lm — 1].

From (2.2) we take

S - {i=m 0 ajym)t = —px(t™) = 0.

jEL,Im—1]
Since the summands have pairwise different valuations at ¢, we obtain
(bj — {j =m 0} CLj/m) tj = 0

for all j € [1,im — 1].



2.3 As an illustration: cyclotomic polynomials

For n > 1, we choose primitive roots of unity (,» over Q in such a manner that C 1 = Cpn.
We abbremate Up = G — 1.

We shall show by induction on n that writing

fy, Q(X) = ®pu(X +1) = > dp ; X7
j€0,pm~1(p—1)]

with d,; € Z, we have p"~! | jd,; for j € [0,p" ' (p — 1)], and even p" | jd,; for
j€0,p" Hp—2)].

This being true for n = 1 since ®,(X +1) = (X + 1)? — 1)/X, we assume it to be true for
n — 1 and shall show it for n, where n > 2. We apply the result of the previous section to
R=Z4),r=-—p, S =20 1], s =Vp_1and T = Z,\[V,,], t = U,. In particular, we have
I =p"%(p—1) and sk (X) = ®pn-1(X+1); wehave m = pand py, 1, (X) = (X+1)P—1—9,,_1;
finally, we have p; g (X) = ®pn (X + 1).

We may choose y = p,,, * = p"~2and k = p"~2(p—2)+1in (2.1). Hence c = pn—lﬁg}lTL—an71+1.
By (2.3), we obtain that p" 192" —2*"""+1=J divides dnj — dn_1/p if j =p 0 and that it di-
vides d,, ; if j #, 0. Since the coeflicients in question are in R, we may draw the following
conclusion.

If j =, 0, then p" | dp, j — dn—1,/p if j < " (p—2),
and p" | dn; — dp1/p i G > 0" (p — 2);
if j #p 0, then p" | dy; if j < p" ' (p — 2),
and p"~! | d,; if j > p" T (p—2).

@

By induction, this establishes the claim.

Using (1.4), assertion (I) also follows from the more precise relation
() (X +1) = Dpur (XP + 1) =0 X272 ((Xp P (X4 1)?"’1)

for n > 2, which we shall show now. In fact, by (1.4) we have (X +1)P" =, (XP +1)?" " as

well as (XP + 1)P" " — (X + 1)P"" =,.1 0, and so

n—2

(X + )” - 1) (Gre ™ =) = (™ =) (P = 1)
Epn (XP +1 ) ( Xp + ]_ p ) _ ((Xp+ 1)p"—1 o 1) <(X+ 1)pn_1 B 1)
= ((Xp +1)P" ' 1) ((X +1) PP (X + 1)p"*1)
= X7 (X7 - (X )
= X (" - () xe T
=pn P (0-2) (XP 4 1)P" — (X_i_l)pnfl ((X+ 1) 1 ) ((Xp+1) P2 1) 7
and the result follows by division by the monic polynomial

((X TR 1) ((X” L1 1) .

Finally, we remark that writing F,(X) := ®pn(X + 1) + XP' 2" TN(X 4+ 1)P", we can
equivalently reformulate (IT) to

(IT") Fo(X) =pn Foo1(XP).



2.4 Characteristic p
In this section, we assume char K = p.

Assumption 2.4 Suppose given z,y € T and k € [1,] — 1] such that

(i) t™ =ys s,
(ii) z | a;9’P for all j € [1,1— 1], and
(iii) ar | ;o7 for all j € [1,k — 1].

Let ¢ := ged(ws”, y'lPls!) € T.

Lemma 2.5 Given (2.4), we have c | ps x(t™) .

We may decompose

fo(E7) = s (™) — s, (S)
= (™ -5+ (Zye[lk 1]% (t™ — %) ) + ( jelki— 1}%(’5 7 _5])> :

Now since t™ =, s, we have t™ = i), s/ for any j > 1.

In particular, 3'Pls! | ™ — st
Moreover, zs' | D el k1] a;(t™ — s7) by (2.4.1ii).

Finally, xs* | > jelki—1] a;(t™ — s7) by (2.4.i1).

Proposition 2.6 Given (2.4), we have t ¢ | bj if j £, 0 and t ¢ | (bj — ajm) if ] =
for j e [l,lm —1].

This follows using (2.5), cf. (2.3).

3 Towers of purely ramified extensions

Suppose given a chain
Ry € Ry € Ry C -~

of finite purely ramified extensions R;,1|R; of discrete valuations rings, with maximal ideal
generated by r; € R;, of residue characteristic char R;/r; R; = p, with field of fractions
K; = fracR;, and of degree [K;i1 : K;| = p* = ¢q for i > 0, where x > 1 is an integer
stipulated to be independent of i. We may and will suppose that Ng, |k, (ri41) = r; for
7 > 0. We write

o) = X+ (5 ) —n € R,
jE[Lqi—l]

For j > 1, we denote v,(j) := max{a € Z>y : j =4 0}. That is, v,(j) is the largest
integer below vp(7)/k. We abbreviate g := (¢ —2)/(q — 1).
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Assumption 3.1 Suppose given f € Ry such that ¢ 'f | v — r_y for all i > 0.
If char Ky = 0, then suppose p | f | . If char Ky = p, then suppose r¢ | f.

Proposition 3.2 Assume (3.1).

(i) We have fi=vU) | a;; fori > 1 and j € [1,¢" — 1].

(") If j < q'g, then f="Wrq | a; ;.

(ii) We have a;; =jin1 a8, fori =1, j€[1,¢" —1] and g > 1.
(il) If j < q'g, then a;j =jivrpy ;15485 for =1

Consider the case char Ko = 0. To prove (i, i'), we perform an induction on 4, the assertion
being true for i = 1 by (3.1). So suppose given ¢ > 2 and the assertion to be true for i — 1.
To apply (2.3), welet R = Ry, r =19, S = Ri_1, s=r;_1, T = R; and t = r;. Furthermore,
welet y =79 f, o= fland k = ¢! — (¢"' — 1)/(¢ — 1), so that (2.1) is satisfied by
(3.1) and by the inductive assumption. We have ¢ = fr**

Consider j € [1,¢° — 1]. If j #, 0, then (2.3) gives
v (aig/f) = ak =17,

whence f* divides a; ;; f* strictly divides a; ; if 7 < ¢'g, since 0 < (¢k—1)—q'g = 1/(¢g—1) <
1.

If j =, 0, then (2.3) gives

on (@i — aim1jyg) /) = gk—1—7,

whence f? divides i j—i-1,j/q} strictly, if j < ¢'g. By induction, fiflqu(j/q) divides a;_1 /4
strictly, if j/q < ¢"'g. But a;_1 /4 =y a;;, and therefore [ divides also a; ;; strictly,
if j < ¢'g. This proves (i, i').

The case § = 1 of (ii, ii’) has been established in the course of the proof of (i, i’). The
general case follows by induction.

Consider the case char Ky = p. To prove (i, i'), we perform an induction on 4, the assertion
being true for ¢ = 1 by (3.1). So suppose given i > 2 and the assertion to be true for
i — 1. To apply (2.6), we let R = Ry, 7 =19, S = Ri_1, s =11, T = R, and t = r;.
Furthermore, we let y =7 ' f, v = r; ' fland k = ¢! — (¢! — 1) /(¢ — 1), so that (2.4) is
satisﬁed by (3.1) and by the inductive assumption. In fact, zy Pl = 7“] Pl fZ ilP) divides
fim17vl) both if j #, 0 and if j =, 0; in the latter case we make use of the inequality
p* Hp—1) = a+1for @ > 1, which needs p > 3. We obtain ¢ = f'r! gk=1,

Using (2.6) instead of (2.3), we may continue as in the former case to prove (i, i’), and, in
the course of this proof, also (ii, ii’).
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4 Galois descent of a divisibility

Let

T %
S

G
C—

CQIC—3> ~q

be a commutative diagram of finite, purely ramified extensions of discrete valuation rings.
Let se€ S, teT,5eSandteT generate the respective maximal ideals. Let L = frac S,
M = fracT, L = fracS and M = fracT denote the respective fields of fractions. We
assume the extensions M|L and L|L to be linearly disjoint and M to be the composite of
M and L. Thus m := [M : L] = [M : L) and [L : L] = [M : M]. We assume L|L to be
galois and identify G := Gal(L|L) = Gal(M|M) via restriction. We may and will assume
that s = Nz, (), and that ¢ = N, (7).

Lemma 4.1 In T, the element 1 —t"/5 divides 1 —t™/s .
Let d =1—1"/3, so that ™ = 5(1 — d). We conclude

= Ny (")
= Npp(3) [Tl —d)

sd

tm

5 Cyclotomic number fields

5.1 Coefficient valuation bounds

For n > 1, we let (,» be a primitive p"th root of unity over Q. We make choices in such
a manner that (). = (pn-1 for n > 2. We denote ¥, = (» — 1 and F,, = Q((pn). Let
E, =Fix¢c, F,, s0 [E,: Q] =p" . Let

The minimal polynomial jig,, g, , (X) = (X +1)? =¥,y — 1 shows that Ng, |z, _, (V,) = V51,
hence also Ng, g, ,(mn) = mp—1. Note that 7 = p and F; = Q.

Let O be the integral closure of Z, in E,. Since Ng q(m,) = m = p, we have
Z /Ly 1# O/ﬂnOl. In particular, the ideal 7,0 in @ is prime. Now 72" O = pO,
since 72" /p = 7" /Np,q(mn) € Zy[U,]* N E, = O*. Thus O is a discrete valuation
ring, purely ramified of degree p"~! over Z,), and so O = Z,[m,] [9, 1.§7, prop. 18]. In
particular, £, = Q(7,).
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Remark 5.1 The subring Z[r,] of Q(m,), however, is not integrally closed in general. For
example, if p =5 and n = 2, then pir, (X) = X° —20X* 4+ 100X3 — 125X2 + 50X — 5 has
discriminant 58 - 76, which does not divide the discriminant of ®52(X), which is 53°.

Lemma 5.2 We have wf =1, Tn-1 form > 2.

First of all, 97 =y, ¥,,1 since (X —1)? — (XP? —1) is divisible by p(X —1) in Z[X]. Letting
T = Zy)[VY,] and (4,5,t,5) = (19n,19n 15 Tny Tn-1), (4.1) shows that 1 — ¥2 /9,1 divides
1 — 72 /1. Therefore, V,p I, w1 | Tpo1 — 7E.

Now suppose given m > 1. To apply (3.2), we let f = q = p, Ry = Z)[Tm+s) and r; = 7y
for © > 0. We keep the notation

i

s (X) = trsca(X) = X7 (D iy X7) = € RolX] = Ziylmal[X]

JELpi—1]

Theorem 5.3
(i
(i

) We have p' | ja;; fori>1 and j € [1,p" — 1].
)

(ii) We have a;j =pi+1 ;5,05 fori =1, j€[1,p' —1] and § >
)

If j <p'(p—2)/(p—1), then p'mp, | jai ;.

(i) Ifj <p'(p=2)/(p = 1), then aij Zpiix,, irpps;-
Assumption (3.1) is fulfilled by virtue of (5.2), whence the assertions follow by (3.2).

Example 5.4 For p =5, m =1 and i = 2, we have
Py, (X) = X2 —4.52X% 1182-52X% — 8- 55X?2 492823 - 52X 2!

— 6175454 - 5X20 + 12194014 - 52X 19 — 18252879 - 53X 18
+ 4197451 - 55X 17 — 466901494 - 53X 16 4- 8064511079 - 52X 15
— 4323587013 - 53X 14 4 1791452496 - 52 X 13 — 113846228 - 56X 12
+ 685227294 - 5° X 11 — 15357724251 - 53 X 10 + 2002848591 - 54 X?
— 4603857997 - 53 X8 4 287207871 - 5 X7 — 291561379 - 53 X6
+ 185467152 - 52 X° — 2832523 - 53 X4 4121494 - 53 X3 — 514 - 51 X2
+4-5'X —5.

Now wv5(ag,22) = 6 # 5 = v5(aa,5.22), so the valuations of the coeflicients considered in (5.3.i)

differ in general. This, however, does not contradict the assertion as 22 =54 a4, 5.22 from loc.
cit.

5.2 A different proof of (5.3.1,i’) and some exact valuations

Let m > 1 and i > 0. We denote R; = Zy)|[Tmyil, 77 = 7wy, Ki = fracR;,
R; = Z)[Vm+i| and 7; = VUpq. Denoting by ® the respective different [9, II1.§3], we
have Dz = (p') and D . = (77) [9, TI1.§3, prop. 13], whence

i pt—1—(p'—1)/(p—1
(*) ®R¢|R0 = (:u:”i,Ko(ri)) = ©§i|é0©I:ZO|R0©Rl|R = <p Tz'p ® )/ )> )
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cf. [9, T11.§3, cor. 2]. Therefore, pirfiflf(pifl)/(pq) divides ja,; ;77" for j € [1,p’ — 1], and
(5.3.1,1") follow.

Moreover, since only for j = p' — (p* —1)/(p — 1) the valuations at r; of pirfi_l_(pi_l)/(p_l)
and ja; ;77" are congruent modulo p', we conclude by (%) that they are equal, i.e. that p’

exactly divides a; pi_(pi—1)/(p—1)-
Corollary 5.5 The element p'=" exactly divides i i (pi—pP) ) (p—1) JOr B € (0,1 —1].
This follows by (5.3.i1) from what we have just said.

Eg in (54), 51 exactly divides a2 955 = G220, and 52 exactly divides A295-5-1 = A2 19.

5.3 Some traces

Let p, ; denote the group of (p — 1)st roots of unity in Q,. We choose a primitive (p —1)st
root of unity (,1 € p, ; and may thus view Q(¢,-1) € Q, as a subfield. Note that
Q(Cp-1) : Q] = ¢(p—1), where ¢ denotes Euler’s function. The restriction of the valuation
v, at p on Q, to Q((p), is a prolongation of the valuation v, on Q to Q((,—1) (there are
©(p — 1) such prolongations).

Proposition 5.6 Forn > 1, we have

n—1

TrEn|Q(7Tn) - ann — P B Sn—1

where

Sp = —— Z (_1)#H{UP(Z§GH£)>H} for n>0.

p_ngprl

We have so = 0, and s, € Z for n > 0. The sequence (s,), becomes stationary at some
minimally chosen No(p). We have

No(p) < N(p) = Hrélix,l {UP(Z&H f) Eger =+ 0} +1.

An upper estimate for N(p), hence for Ny(p), is given in (5.13).
Proof of (5.6). For j € [1,p — 1] the p-adic limits

£(j) = lim 5"

n—oo

exist since 7" =, 57" by (1.3). They are distinct since £(j) =, j, and, thus, form the
group p, ; = {£(j) | j € [1,p — 1]}. Using the formula

Trp,q(Gr) = p*{vp(m) = n} —p""Hu(m) = n — 1}
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and the fact that 57" =, £(j), we obtain

,pnfl
TanIQ(Wn) = Tan|Q<Hj€[1,p—1] (1 - CIJJn ))

-1

— Z (_1>#JTanQ<C§Ejer”n )

J g [l)p_l]

- Y P ([l Se ) 2 0)
JC[1,p—1]
- pnfl{vp(zjetf §() =n— 1})

= (p—1)(p"sn —p" sp1) ,

whence

TrEn|Q(7rn) = Sy — P sny .

Now sg = 0 € Z by the binomial formula. Therefore, by induction, we conclude from
p"s, — p"'s,_1 € Z that p"s, € Z. Since (p — 1)s, € Z, too, we obtain s, € Z.

As soon as n > N(p), the conditions v, (3 ccpr §) = 1 and v,(3 ey §) = tooon H C .y
become equivalent, and we obtain

Sp= —— 3 (S € =0}

—1
p Hgl‘l’p—l

which is independent of n. Thus Ny(p) < N(p).

Lemma 5.7 We have sy = 1. In particular, Trp,q(m) =, —p.

Since Trg, |q(m) = Trqiq(p) = p, and since sy = 0, we have s; = 1 by (5.6). The congruence
for Trp,q(m2) follows again by (5.6).

Corollary 5.8 We have
fm (X)) =p X! _,_pX(;Dfl)p”’2 —p

forn > 2.

By dint of (5.7), this ensues from (5.3.1,ii).



Example 5.9 The last n for which we list s,, equals N(p), except if there is a question mark
in the next column. The table was calculated using Pascal (p < 53) and Magma (p > 59). In
the last column, we list the upper bound for N(p) calculated below (5.13).

upper bound
Sp || m=0]1 2 3 4 5 6 7 for N(p)
p= 0|1
0|1 1
0|1 1
11 0|1 3 3
13 0|1 3 3
17 0|1 8 16 5
19 0|1 10 12 4
23 0|1 33 89 93 7
29 0|1 377 571 567 8
31 0|1 315 271 259 6
37 0|1 107 940 1296 9
41 0|1 6621 51693 18286 20186 20250 12
43 0|1 1707 4767 6921 6665 9
47 0|1 2250 | 272242 173355 181481 182361 16
53 0|1 71201 | 363798 | 1520045 | 1350049 | 1292229 | 1289925 18
59 0|1 1276 ? 21
61 0|1 2516 ? 12
67 0|1 407186 ? 15
71 0|1 5816605 ? 18
73 0|1 8370710 ? 18
79 0|1 169135 ? 18
83 0|1 632598 ? 30
89 0|1 26445104 ? 30
97 0|1 282789 ? 24
101 011 25062002 ? 31
103 011 56744199 ? 25
107 011 1181268305 ? 40
109 011 91281629 ? 28
113 011 117774911422 ? 37
127 011 6905447 ? 28
131 011 2988330952791 ? 37
137 011 1409600547 ? 50
139 011 3519937121 ? 34
149 011 25026940499 ? 56
151 011 164670499159 ? 31
157 011 51594129045351 ? 38
163 011 288966887341 ? 42
167 011 1205890070471 ? 64
173 011 17802886165762 ? 66
179 011 1311887715966 ? 69
181 011 128390222739 ? 38
191 0 | 1 | 233425263577158 ? 57
193 0 | 1 | 306518196952028 ? 51
197 0 | 1 | 347929949728221 ? 66
199 0|1 9314622093145 ? 48
211 0|1 12532938009082 ? 39

So for example if p = 31, then Trq(.,)q(73) = 271" 312 — 315 - 312, whereas Trq(rQ(m7) =
959 - 317 — 259 - 316. Moreover, No(31) = N(31) = 4 < 6.
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Remark 5.10 Vanishing (resp. vanishing modulo a prime) of sums of roots of unity has been
studied extensively. See e.g. [2], [6], where also further references may be found.

Remark 5.11 Neither do we know whether s,, > 0 nor whether Tr En‘Q(Tl’n) > 0 always hold.
Moreover, we do not know a prime p for which Ny(p) < N(p).

Remark 5.12 We calculated some further traces appearing in (5.3), using Maple and Magma.
For p =3, n € [2,10], we have Trg, |5, _, (7,) =3 - 2.

For p =5, n € [2,6], we have Trg, |g,_, () =5 - 4.

For p =7, n € [2,5], we have Trg, g, ,(m,) =7-6.

For p = 11, we have Trg,|g, (12) = 11 - 32, whereas

TrEalEz (WS)

— 22'(15+C2+2C?’_C5+<6_2C8_<9+2C14_C16+C18_C20_2C24
+2C25 _ 2(26 _ C27 _ C31 + 2(36 _ <38 + <41 _ <42 _ 2(43 + 2<47 _ 3(:49
_C53 + C54 + 2<58 _ CGO _ <64 4 <67 4 2(69 _ <71 _ 2(72 _ <75 _ 2<78
+3<80 _ 4-82 _ 4-86 + 2(91 _ 4-93 _ 2(95 _ 34-97 + 2{102 + <103 _ 4-104 _ <108)

= 22-2014455354550939310427 1 - (34333871352527722810654
+13602724052675413182425027 — 3185784114816444531143704272
+1357337084098559760596586367% — 83763613130017142371566453 74
+204448065993444081042992527° — 22963646312114426321689327°
+11774374108386621881229377 — 27972584654252060850937°
+278680386424411361087° — 79170513243924842710) |

where ( := (112 and 7 := 7.

5.4 An upper bound for N(p)

We view Q((,-1) as a subfield of Q,,, and now, in addition, as a subfield of C. Since complex
conjugation commutes with the operation of Gal(Q((,-1)|Q), we have |[Nq¢,_)q(z)| =
|2[#®=1) for x € Q(¢p_1).

We abbreviate X(H) = > .., § for H C p, ;. Since [S(H)| < p — 1, we have
INae, nie(E(H))| < (p— 1)?P~Y. Hence, if S(H) # 0, then

u(X(H)) < vp(Na, nia(3(H))) < ¢lp—1),

and therefore N(p) < ¢(p —1). We shall ameliorate this bound by a logarithmic term.

Proposition 5.13 We have

log ™
N(p) < ~1)(1- 1
(p) < ¢(p )( 1ng> +

forp>=5.
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It suffices to show that |X(H)| < p/7 for H C p, ;. We will actually show that

1
max [S(H)| = o,
SHp—1 Slnﬁ

from which this inequality follows using sinz > z — 23/6 and p > 5.

Choose H C p, ; such that [X(H)| is maximal. Since p — 1 is even, the (p — 1)st roots of
unity fall into pairs (n, —1). The summands of ¥(H) contain exactly one element of each
such pair, since |X(H) + n? + |Z(H) — n|? = 2|X(H)|? + 2 shows that at least one of the
inequalities |X(H) +n| < |2(H)| and |X(H) —n| < |X(H)) fails.

By maximality, replacing a summand 1 by —n in ¥X(H) does not increase the value of
|X(H)|, whence
SH) = [Z(H) - 29> = [S(H)]* — 4Re(n - X(H)) +4,

and thus

Re(n-%(H)) =21 > 0.
Therefore, the (p — 1)/2 summands of ¥(H) lie in one half-plane, whence the value of

=(H)].

6 Cyclotomic function fields, after Carlitz and Hayes

6.1 Notation and basic facts

We shall give a brief review while fixing notation.

Let p > 1 and r := p?. Write Z := F[Y] and Q := F,(Y), where Y is an independent
variable. We fix an algebraic closure Q of Q. The Carlitz module structure on Q is defined
by the F,-algebra homomorphism given on the generator Y as

ZzZ  — EndQQ

Vo (¢ = vere).
We write the module product of ¢ € Q with e € Z as £°. For each e € Z, there exists
a unique polynomial P,(X) € Z[X] that satisfies P.(§) = &° for all £ € Q. In fact,

P(X)=X, Py(X) =YX+ X" and Pyi+1 =Y Pyi(X)+ Pyi(X") for ¢ > 1. For a general
e € Z, the polynomial P.(Y) is given by the according linear combination of these.

Note that F.(0) = 0, and that F,(X) = e, whence P,.(X) is separable, i.e. it decomposes as
a product of distinct linear factors in Q[X]. Let
A = amn,Q = {£€Q : ¢ =0} C Q

be the annihilator submodule. Separability of P.(X) shows that #X, = deg P,(X) = ri°.
Given a Q-linear automorphism o of Q, we have (£°)7 = P.(§) = P.(¢7) = (£7)°. In
particular, A, is stable under o. Therefore, Q(A.) is a Galois extension of Q.
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Since #anng\, = #X; = 798¢ for € | e, we have A, ~ Z/e as Z-modules. It is not possible,
however, to distinguish a particular isomorphism.

We shall restrict ourselves to prime powers now. We fix a monic irreducible polynomial
[ =f(Y) € Z and write ¢ := r/. For n > 1, we let 6, be a Z-linear generator of Asn.
We make our choices in such a manner that 67 1 =0, for n > 1. Note that Z[Apm] = Z[6,)]
since the elements of A are polynomial expressions in 8,.

Suppose given two roots &, € € Q of
U (X) = Pn(X)/Pa(X) € Z[X],

ie £ €€ Afn N Apn-1. Since § is a Z-linear generator of Agn, there is an e € Z such that

£ = ¢ Since £°/¢ = P.(X)/X|x—¢ € Z[0,), € is a multiple of £ in Z[f,]. Reversing the
argument, we see that £ is in fact a unit multiple of & in Z[6,].

Lemma 6.1 The polynomial Vi (X) is irreducible.
B (X)/X

_anfl(X>/X X=0
distinct monic irreducible factors F;(X) € Z[X]. One of the constant terms, say F;(0),
is thus a unit multiple of f in Z, while the other constant terms are units. Thus, being
conjugate under the Galois action, all roots of F;(X) in Q[f,] are non-units in Z[6,], and

the remaining roots of Wy (X') are units. But all roots of W= (X) are unit multiples of each
other. We conclude that W (X) = Fj(X) is irreducible.

We have W (0) = = f. We decompose Wyn(X) = [[;cpp Fi(X) in its

By (6.1), Uy (X) is the minimal polynomial of #,, over Q. In particular, [Q(6,) : Q] =
q¢" (¢ —1), and so

210,)007 9" = Z[0,)Now.0(0n) = Z[0a)f -

n

In particular, Zy) [0, ] is a discrete valuation ring with maximal ideal generated by 6,,, purely
ramified of index ¢"~!(¢—1) over Zy), cf. [9, 1.§7, prop. 18]. There is a group isomorphism

(/[ = Gal(Q(6,)|Q)

e = (0,—06°),

well defined since 65 is a root of W (X), too; injective since 6, generates A over Z; and
surjective by cardinality.

Note that the Galois operation on Q(#,,) corresponding to e € (Z/f")* coincides with the
module operation of e on the element 6,,, but not everywhere. For instance, if f # Y, then
the Galois operation corresponding to Y sends 1 to 1, whereas the module operation of Y
sends 1 to Y + 1.

The discriminant of Zf,] over Z is given by Agzp z = Nog,) (¥ (0n))
= Now,)ie (e (0n)/ Pt (00)) = Nogje (F"/61) = f7 a1
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Lemma 6.2 The ring Z[0,] is the integral closure of Z in Q(6,).

Let e € Z be a monic irreducible polynomial different from f. Write Oy := Z()[6,] and let
O be the integral closure of Oy in Q(6,). Let

OF = {£€9(0n) : Trop,e(€0o) C 21}
= {f € Q(@n) TI"Q 0n)| (50) C Z )}

Then Oy C O C OF C Oar. But O, = OS“, since the Z-linear determinant of this
embedding is given by the discriminant Az, )z, which is a unit in Oy.

We resume.

Proposition 6.3 ([1],[5], cf. [3, p. 115]) The extension Q(0,)|Q is galois of degree
[Q(0,) : Q] = (¢ — 1)g™*, with Galois group isomorphic to (Z/f")*. The integral clo-
sure of Z in Q(0,,) is given by Z[0,]. We have Z|[0, ]Q[Q(G”):Q} = Z[0,)f. In particular, 6,
is a prime element of Z[0,], and the extension Z)[0,]| 25 of discrete valuation rings is
purely ramified.

6.2 Coeflicient valuation bounds

Denote F,, = Q(0,,). Let &, = Fix¢, ,Fn, so [€, : Q] = ¢" . Let

@n = Npye (0n) = [ 05"
ec(Z/f)*

The minimal polynomial p, 7, ,(X) = Pr(X) — 6,1 together with X | P;(X) shows that
Nz, 17,1 (0n) = 0n1, whence Ng, ¢, , (@) = @n—1. Note that @1 =[] .z, 07 = ¥y (0) =
I

The extension Z(y)[w,] is a discrete valuation ring with maximal ideal generated by w,,
purely ramified of index ¢"~! over Zy). In particular, £, = Q(w,,).

Example 6.4 Let r =3 and f(Y) =Y?+ 1, s0 ¢ = 9. A Magma calculation shows that

wy = 60 — 058 +Y2030 + (—YO—Y3-Y)022 4 (Y04 Y44 Y241)920
(-YH-Y5-V34Y)03 + (—YO-Y*-Y?)030 + (Y +Y5+Y3+Y)03*

(—y8— Y6_|_Y4 Y2-1)032 4 (—Y54Y3-Y)030 4 (Y8 _y12_yl0y6_y4y?2)g2
(=YL y Byl y9_y74y54Y)g22
(Y20_yl_yl24yloy8_y6_y44y241)03°

(Y15 _y1B_yl_yo yT y5_y3)gl8 4 (Y164 yldy12_yl0_ys_y2)gle
(=Y Yy 4y By 4y T4yS—Y34+Y)63*

(—YM Y124 yl0_y8_y6_yid y241)9l2 4 (—y B4yl _y74y3)gl0
(YH—y12_yl04y64yh)es + (—YH —YT+Y54+Y3+Y)05 + (YE+YO+Y2+1)05 .

With regard to §6.4, we remark that wy # + 9371.
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Lemma 6.5 We have w{ =ga-1p Wno1 forn > 2.

We claim that 01 =g, ¢ 0,,_1. In fact, the non-leading coefficients of the Eisenstein polyno-
mial W;(X') are divisible by f, so that the congruence follows by 6,,_1 — 0% = P;(6,,) — 0% =
0,(V;(0,) — 0971). Letting T = Z(5)[6,] and (£, 35,t,s) = (en,en |, @y, Wn_1), (4.1) shows
that 1 — 02/0,_; divides 1 — w?/w,_;. Therefore, 0, f0, @, 1 | w,_1 — @l.

Now suppose given m > 1. To apply (3.2), we let R; = Z(5)[@y4] and r; = @y, for i > 0.
We continue to denote

Nwm+i,£m<X> - MTi,KO(X) - qu—i_ (ZJG[ i—1] aszj> — Wm
€ RolX] = ZiplomllX],

(#)

and v,(j) = max{a € Zxy : j =4, 0 }.

Theorem 6.6
(i)
(i) If j < ¢'(q—2)/(q — 1), then f D, | a;;.
(i)

) L

(it’

We have fi=v1) | a;; fori>1 and j € [1,¢" — 1].

We have a; j =piv1 4455 fori>1,j€[1,¢" —1] and 3 >
fj<q'(q—2)/(qg—1), then a;; =piv1q,, Q5485 for =1

Assumption (3.1) is fulfilled by virtue of (6.5), whence the assertions follow by (3.2).

6.3 Some exact valuations

Let m > 1 and ¢ > 0. We denote R, = Z(p[wnti), 7 = @i, Ki = fracR;,
R; = Z(p)[0msi] and 7 = O,,p5. We obtain Dy 5 = (f) and Dy = (F177) [9, 11183,
prop. 13], whence

i ¢—1—(¢*~1)/(q—1
(**) ©Ri|RO = (M;i,Ko(ri» = (f 7“;1 (@1 )> .
Therefore, firfiflf(qifl)/(qfl) divides jai,jrffl for j € [1,¢"— 1], which is an empty assertion
if j =, 0. Thus (6.6.1,1') do not follow entirely.

However, since only for j = ¢’ — (¢ — 1)/(g — 1) the valuations at r; of f"rgi_l_(qi_l)/(q_l)
and ja; ;] ! are congruent modulo ¢, we conclude by (xx) that they are equal, i.e. that f?
exactly divides Qi qi—(gi—1)/(qg—1)-

Corollary 6.7 The element fi=" exactly divides Ui qi—(qi—qB)/(q—1)-
This follows by (6.6.i1) from what we have just said.



6.4 A simple case

Suppose that f(Y) =Y and m > 1. Note that

— e — — q-1
Wm+1 = H O = H i1 = =001

*
eEFq equ*

Lemma 6.8 We have

/’me+l7gm(X) = _wm+ Z Yq_JXJ N

Jj€[l.q]
Using the minimal polynomial sy, ., 7, (X) = Py(X) =0, = X?4+YX —0,,, we get

—UWm _I_ Zje[l,q] injwiﬂ—l
= 07 (YO —0n D /(Y 05 — Y
(Yegn_lenwl + egn_legw—i—l - egj—i—l - qugn+1)/(9m+1 (Y + egn_—&-ll))
= 0.

Corollary 6.9 Let m,i > 1. We have

Pooprs, &m (X) =y X7 4y xee _ g
This follows from (6.8) using (6.6.ii).
Remark 6.10 The assertion of (6.8) also holds if p = 2.

Conjecture 6.11 Let m,i > 1. We use the notation of (#) above, now in the case f(Y) =Y.
For j € [1,4"], we write ¢' — j = Zke[o,z;l] drg® with dj, € [0,q — 1]. Consider the following
conditions.

(i) There exists k € [0,7 — 2] such that dp4+1 < di.

(ii) There exists k € [0,7 — 2] such that vy,(digt+1) > vp(di)-

If (i) or (ii) holds, then a;; = 0. If neither (i) nor (ii) holds, then

Ve (aig) = ¢ Y i

kel0,i—1]

Remark 6.12 We shall compare (6.7) with (6.11). If j = ¢' — (¢ — ¢°)/(¢ — 1) for some
B €[0,i—1], then ¢ —j = ¢! +---+¢°. Hence Zke[o,ifl] d, =1 — (3, and so according to
(6.11), vy, (a; ;) should equal ¢™~1(i — 3), which is in fact confirmed by (6.7).
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