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Chapter 0O

Introduction

Let R be a discrete valuation ring and 7 € R a generator of its maximal ideal.

In this introduction, by a polynomial we understand a monic polynomial, unless mentioned
otherwise.

0.1 Gauss and Hensel

The following assertion of Hensel’s Lemma is essentially found e.g. in NEUKIRCH [8, I1.(4.6)].
Let f(X) be a polynomial in R[X] whose discriminant does not vanish and that splits into two
factors ¢1(X), g2(X) € R[X] modulo a certain power of m; i.e. f(X) =z g1(X) - g2(X) for
some s > 1. In addition, the images ¢1(X), g2(X) of ¢1(X), g2(X) under the residue class
map R[X] — £/;[X] are supposed to be coprime in £/ [X]. Then there exist polynomials
91(X), 2(X) € R[X] congruent to g1(X), g2(X) modulo 7° such that f(X) =25 §1(X) - §2(X);
cf. Lemma 27. Below, we will call this well-known version the ”classical version of Hensel’s
Lemma”.

Although the name ”classical version of Hensel’s Lemma” is obvious nowadays, historically the
assertion above can be traced back to GAUSS. It is mentioned first in a manuscript that GAUSS
called Disquisitiones Generales de Congruentiis [3, §374], which was published only after his
death in 1863 by RICHARD DEDEKIND.

GUENTHER FREI conjectures in The Unpublished Section Eight [2, §2.2.4] that KRONECKER
was the first one who quotes Gauss’s Disquisitiones Generales de Congruentiis. In addition,
he conjectures that HERMANN KUHNE knew Kronecker’s Grundzuege where the Disquisitiones
Generales de Congruentiis are mentioned. Furthermore, it would be very possible that HENSEL
who was the editor of the ” Crelle-Journal” at this time knew of Kiihne’s explanations including
the relevant thoughts of GAUSS.

The first time that Hensel’s Lemma appears in the papers of HENSEL is in Neue Grundlagen der
Arithmetik [5, §4, p. 80] in 1904 in the following way. Let again f(X) be a polynomial in R[X]
whose discriminant does not vanish. Let f(X) be congruent to the product of two polynomials
91(X), g2(X) € R[X] modulo 7* with s bigger than the valuation ¢ of the discriminant of f(X). In
addition, let twice the valuation of the resultant t” of g;(X), ¢g2(X) be smaller than the valuation
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of the discriminant of f(X), i.e. 2¢” < t. Then there exist polynomials ¢,(X), g,(X) € R[X]
such that f(X) = g,(X) - g,(X), such that ¢,(X) is congruent to g;(X) modulo 757" and such
that ¢,(X) is congruent to go(X) modulo 757",

Note that already in this version the resultant of the polynomials ¢;(X), g2(X) occurs. This
version is often named Hensel-Rychlik Lemma after the Czech mathematician KAREL RYCHLIK
who published a generalised version in 1919.

The state of the art concerning Hensel’s Lemma and henselian rings can be found in RIBEN-
BOIM [9]. Historical remarks may be found in ROUQUETTE [10, § 2.3]. The state of the art
concerning resultants can be found in [4, Part III, Chapter 12, 13].

0.2 Results

In this diploma thesis we concentrate on the Hensel-Rychlik Lemma. We generalise the assertion
on a polynomial that splits into two factors to an assertion on a polynomial that splits into an
arbitrary number of factors; cf. § 2.2. We work directly with lifts of factorisations into several
factors and avoid having to iterate factorisations into two factors. For this purpose we define
the resultant for several polynomials; cf. § 1.1.

0.2.1 Resultant of several polynomials

Let S be an integral domain. We define the resultant of several polynomials in S[X] analogously
to the definition of the resultant of two polynomials as a determinant of a certain matrix; cf.
VAN DER WAERDEN, [11, §34]. For n polynomials gq)(X),...,gm)(X) € S[X], n > 1, the
resultant Res(gq),...,9m)) is given by the determinant of the matrix A(gn),...,gm)) whose
entries are coefficients of products of the polynomials g1)(X), ..., g (X) that omit respectively
one of them; cf. Definition 1.

Considering the polynomials g1)(X), ..., gm)(X) as having coefficients in a large enough field,
we state in Lemma 3 that the resultant Res(gn), . . ., g(n)) is also given by a product of differences
of zeroes of g(1)(X), ..., gm)(X). Writing the polynomials gn)(X), ..., gu) (X) in linear factors,
ie. gu(X)=: Hie[Ldegg(m(X — Yyi) for k € [1,n], this means that

Res(g), - 9m) = ] 11 (Ywi = ) -

ISk<t<n (i) €[l,deg g)|x[1,deg gp)]

To prove this we consider the zeroes vy for k € [1,n] and i € [1,deggx)| as independent
variables. Then we prove the assertion for these "independent zeroes”. The actual assertion
then follows by specialisation of the ”independent zeroes” to the actual zeroes.

In particular, we have Res(gq1), -+, 9m)) = [[1< < o<n ReS(gr) s g(r)) - Since in our application
below the matrix A(g(1), ..., g()) used in our definition of the resultant is used in a crucial way,
it would not have been possible to just work with the right hand side of this equation.

In § 1.2 we give some calculation rules for the resultant of several polynomials. Moreover, we
show in § 1.3 how the resultant is connected with the discrminant.



0.2.2 Applications to Hensel’s Lemma
0.2.2.1 General case

Knowing the resultant of several polynomials we generalise in Theorem 17 the Hensel-Rychlik
Lemma from the case that f(X) splits into two factors to the case that f(X) splits into an
arbitrary number of factors. So assume R to be complete and let f(X), ga)(X),. .., gm)(X),
n > 1, be polynomials in R[X] of degree > 1 such that f(X) is congruent to the prod-
uct of gy(X),...,9m)(X) modulo 7* with s bigger than twice the valuation of the resul-
tant of ga)(X),...,g9m)(X); fe. f(X) =r [liepn 9u(X) for s > 2¢" + 1 where " de-
notes the valuation of the resultant of gq)(X), ..., gw)(X). Then there exist polynomials
9y(X), ..., g (X) in R[X] congruent, respectively, to gay(X), ..., gw)(X) modulo 7~ such
that f(X) = [Tiepn 90 (X). In addition, the polynomials g,y (X), ..., g, (X) are unique.

To prove Theorem 17 we use Lemma 16 which assures that we can lift the factors
91)(X), ..., 9m)(X) step by step, which also works if the underlying discrete valuation ring
is not complete. Then iterating Lemma 16 and passing to the limit in a complete discrete
valuation ring yields the assertion of Theorem 17.

To prove Lemma 16 we construct polynomials g)(X),...,gm)(X) in R[X] congruent to
9 (X), ..., gm(X) modulo 7% in the following way. ~We suppose that gu)(X) =
9y (X) + 7 ug (X) for certain, not necessarily monic polynomials up(X) € R[X] and
k € [1,n] and we require that f(X) is congruent to the product of these polynomials
91)(X), ..., §m)(X) as asserted in Lemma 16. Then we show that, in fact, there exist poly-
nomials u)(X), ..., uwm)(X) that satisfy this requirement. Therefor we have to solve a ma-
trix equation containing the matrix A(g(),...,gm)). Knowing the determinant of this matrix,
namely the resultant of g)(X),...,gw)(X), we can assure that the equation is solvable with
solution wu(1)(X),...,uw)(X). The main arguments of this proof we have learnt from KocH

[7, 4.4.3, 4.4.4, 4.4.5].

In § 2.4.1 we assume that f(X) =z g)(X) - 92)(X) - 93(X) to compare the result of a single
application of Lemma 16 to three factors with the result of two subsequent applications of
Lemma 16 to two factors. We determine that both methods are essentially equally good; cf.
§24.1.2 and § 2.4.1.3.

0.2.2.2 Particular case f(X) =, XM

In § 2.3 we investigate our generalisation of the Hensel-Rychlik Lemma in the case f(X) =, X*.
So assume R to be complete. Let f(X) be a polynomial in R[X] with degf = M and
f(X) = XM Let ga)(X),...,9m)(X), n > 1, be polynomials in R[X] of degree > 1 or-
dered such that deggn) < --- < degg). We denote again by t” the valuation of the re-
sultant of gy(X),...,9m)(X). Moreover, we denote by ¢ the valuation of the resultant of
9 (X), - gy (X) minus 3o,y ((n — j)deggy) — 1). Now, let f(X) be congruent to
the product of gq)(X),...,gm) (X) modulo 7° with s bigger than t” + ¢"; i.e. suppose that
F(X) =rs [iepn 90 (X) for s > 1" 4+¢" + 1. Then there exist polynomials Iy(X), - gy (X)
in R[X] congruent to g)(X), ..., gm)(X) modulo 7~ such that f(X) = Iienn Iy (X). In



addition, the polynomials gv](l)(X )y ,gv;(n) (X) are unique; cf. Theorem 23.

Like in the general case, we have a Lemma which assures that we can lift the factors
91)(X), ..., 9m)(X) step by step, which also works if the underlying discrete valuation ring
is not complete; cf. Lemma 22.

The proofs of Lemma 22 and Theorem 23 are similar to the respective proofs in the general case.
We refrained from attempting to produce an assertion that covers both the general Lemma 16
and the more particular Lemma 22, for it probably would have obscured Lemma 16.

In § 2.4.2 we assume that f(X) = ga1)(X) - 9)(X) - g@3)(X), deggn) < degge) < deggs),
to compare the result of a single application of Lemma 22 to three factors with the result
of two subsequent applications of Lemma 22 to two factors. Under the present hypothesis
f(X) =, XM we determine that the former method yields a somewhat more precise result than
the latter method; cf. § 2.4.2.2.

0.2.3 Illustration of the theory

To illustrate the theory we give some examples in § 4. For that we have converted the construc-
tion of the polynomials §1y(X), ..., Gm)(X) given in the proof of Lemma 16 into an algorithm; cf.
§ 4.1. We consider some polynomials in the complete discrete valuation ring Z, for a prime num-
ber p, apply the algorithm to these polynomials using the computer algebra system MAGMA [1]
and concentrate on the current precision s and certain observables, namely the deviation, the
defect and the surplus; cf. § 4.1.

As a first example, we consider the polynomial f(X) = X34+ X?—2X+8 in Z[X] C Z,[X], which
goes back to DEDEKIND and is also used as an example in [7, §3.12, Einleitung zu §4, §4.4]. We
start with the initial precision s = 3 and the initial factorisation gn)(X) = X, go)(X) = X + 2,
9i3)(X) = X + 7. Then we iterate the algorithm a few times and document on the one hand
the development of the factors g)(X), g(2)(X), g¢3)(X) during the steps 1 to 6 and on the other
hand the observables mentioned above in steps 1 to 10. We observe that the defect and the
surplus are constant in steps 1 to 10 and that the defect is even maximal during these steps; cf.
Example 31.

In § 4.5 we make a conjecture concerning the surplus.

0.2.4 Versions of Hensel’s Lemma

We already talked about the classical version of Hensel’s Lemma and the Hensel-Rychlik Lemma;
cf. 0.1. In § 3.2 we consider the classical version. We derive it from Lemma 16, applied to the
case n = 2. So the classical version of Hensel’s Lemma follows from the Hensel-Rychlik Lemma.

Another version we derive from Lemma 16 is given in Corollary 24. There the valuation of the
resultant, appearing in Lemma 16, is suitably replaced by the valuation of the discriminant of
the polynomial to be factorised. The advantage is that the factors need not be known to get
that parameter, the disadvantage is a loss of precision; cf. § 3.1.

In § 3.3 we concentrate on a version called Newton-Hensel. Let again f(X) be a polynomial



in R[X]| and let w be an element of R such that f'(w) # 0. Under certain assumptions, in
particular, completeness of R, Theorem 30 asserts that there exists a unique element w in R
such that w is a zero of the polynomial f(X), i.e. f(w) = 0.

Again, we have a Lemma which assures that we can lift the element w in R step by step, which
also works if the underlying discrete valuation ring is not complete; c¢f. Lemma 29.

[terating this Lemma 29 and passing to the limit in a complete discrete valuation ring yields
Theorem 30.

In § 3.3.2 we compare Newton-Hensel with Hensel-Rychlik. That means that we compare
Lemma 16 with Lemma 29. The result we get is that the lifted element yielded by Lemma 16 is
congruent to the lifted element yielded by Lemma 29 modulo a certain power of .

0.3 Notations and conventions

e Given a finite set M, we denote by |M| the number of its elements.
e Let A(f) denote the discriminant of a univariate polynomial f.

e Given a commutative ring R and a, b,r € R, we write a =, b or a = b+ O(r) for
a—berR.

e Given a discrete valuation ring R and a prime element 7 € R. We write v,(0) := oc.

e Given a, b € 7, we write [a,b] := {2z € Z : a < z < b} for the interval in Z with
endpoints a and b.

e Empty entries of a matrix are zero.
e Given n > 0, the unit matrix of size n X n is denoted by E,, .

e In a proof by contradiction, the actual contradiction is marked by the symbol 7.
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Chapter 1

Resultants

Let n € Zzl.

1.1 Definition of the resultant

Let R be a commutative ring.

Definition 1. Suppose given monic polynomials

g = guX) = X guX’

92 = JdoX) = > g@X'
ie[07m(2)]

9m)y = 9m(X) = > g X!
Z’G[O,m(n)]

in R[X], where m, := deg g > 1 for k € [1,n].

Denote
M = > M
Le(1,n]
Mgy = > mgy = M—mgy
Lell,n]~{k}
and
I[I s = > awX
Le[1,n]~{k} i€[0,M 1]
for k € [1,n].

11
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Write
a’(l)o o o .. o .. a(l)M(l) A
m(l) TOwWSs
a(l)o a(l)Mu) 7
a(Q)O .« e .« o« a’(?)M(Q) )
m(2) TOWS
A(g(l),...,g(n)) = ag@po - a@)Mp, |) c RMXM ]
a/(n)o PR o .. PR a‘(n)M(n)
m(n) TOWS
a(n)o e e oo a(n)M(n>
We define
Res(g(l), c. ,g(n)) = det A(g(l), C ,g(n)) € R

to be the resultant of g1y (X), ..., gm)(X).

1.2 A formula for the resultant in terms of zeroes

Keep the notation of §1.1, but suppose R to be an integral domain.
Let K be the field of fractions of R. Let L be a splitting field for [, ., ;90 (X) € K[X].
Write g (X) =0 [I (X —9@y) in L[X] for k € [1,n].

iE[l,m(k>]

Notation 2. Write

m®) = Z m)
]

Le(lk
and
I® = [1,m»)]
for k € [0,n].
Write
[(k) = [m(kil) + 1,m(k)]
for k € [1,n].

Note that m™® = [I®)] for k € [0,n] and m@) = |I )| for k € [1,n]. Note that M = m™.

Lemma 3. Recall that gy (X) =[] (X —ywy) in L[X] for k € [1,n].
iE[l,m(k>]

We have

(I) Res(g(1ys -, 9m) = H H (Ywyi — Ywy) -

ISk<£<n  (i,5) € [Lm)]x[1,mp)]
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This generalises the well-known assertion in the case n = 2; cf. e.g. [11, §35].

Proof. We divide the proof into steps.

These steps are roughly described as follows.

0. “Declaring” the zeroes (;y; of g¢;)(X) to be independent variables 'Ay(l-)j .
1. Vanishing of the resultant if two zeroes “are identified”.

2. In (I), but with the zeroes being “declared” to be independent variables, the right hand side
divides the left hand side. Without this “declaration”, this divisibility assertion would be
meaningless.

3. Step 2 is continued with a comparison of coefficients to prove equality of the left hand side
and the right hand side, still employing “declared independent zeroes”.

The actual equation (I) then follows by specialisation of the “declared independent zeroes”
to the actual zeroes.

Step 0. Let

L = Kh/(l)l R W(I)m(l) Y@L 7(2)m(2) ) o » Ymyrs - V(n)m(n)

be a polynomial ring in M variables. Let F' be its field of fractions.

F

L L /
./

For ¢ € [1,n], let

fl(z) = f](z)(X) = H (X — ’AY(e)z) € L[X]
iE[l,ﬂ’L(g)]
For k € [1,n], denote
H ﬁ(E)(X) = Z CAL(k)in :
Ze[l,n}\{k} ZG[O,M(k)]

Moreover, let
agyi =0  fork € [1,n] and i € Z \ [0, M)

Step 1. Suppose given s, A € [1,n] with £ # . Suppose given p € [1,m] and v € [1,m(y)].

Consider the K-algebra homomorphism

LIX] % LIX]
T = VYo

q
Vi — Ay fori € [Lmgg] N {u}
%(f)i — %(Z)i for £ € [1,n] ~ {x} and i € [1,mp)]
X — X.

Roughly speaking, ¥ only specialises %(n)u to ’Ayo\)y .
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We claim that Res(\If(gA](l)), BN \I’(fl(n))) =0.

Of course, W(g(y) = g for £ € [1,n] \ {x}, but it will turn out to be convenient to apply ¥
everywhere; cf. Step 2.

Let u(X) = [T (X =30 Let v(X):= [T (X =0
iE[l,m(A)]\{V} ie[l,mm)]\{u}
We have u(X)-W(g (X)) = ( [T (X=9w)) - TT (X=9u)) = o(X)-¥(g (X)),
€[1,m ey {1} i€[lmy]
and thus
(1) w(X) - ¥(g(X) - H 9(X)) — v(X)-U(gpy(X) - H 9 (X)) = 0.
Le[l,n]~{r,A} Le1,n]N{r,A\}
We have
U ] 90@) = > Uaw)X' fork e [Ln].
EE[Ln]\{k} ’LE[O,M(]Q]
Denote
u(X) =: S Xt
iE[O,m(A)—l]
v(X) = >oooouXt.
iE[O,m(H)fl]

Consider the coefficient in (IT) that belongs to X* for ¢ € [0, M — 1]. We have

S wWlawed) = Y o Wawey) = 0.

i€[0,m(x)—1] 7€[0,m () —1]
So writing
U:= (0...0 Up - - Uy —1 O...O\—vo...—vm(n),le...O) ,
region A region
we have the following matrix equation with entries in F'.
\If(&(l)o) e e \I’(&(l)M(l)) \
R m(1) rows
U(agyo) - W(aayag,) |
U(a2)0) - U(a@)m,) )
. m(g) rows
U U (l2)0) . \IJ(&(Q)M@)) ) =0
U (a(y) - U(amn,)
. M () TOWS
\ U (o) - U (gmy,)
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Since u(X) and v(X) are monic, thus nonzero, it follows that
Res(U(G1)) s - W(Gey)) = det A(¥(gy)), -, U(gyyy)) = 0.

This proves the claim.

Step 2.

Maintain the elements x, A € [1,n], u € [1,m()] and v € [1,m(y] from Step 1.

By Step 1 we know that det A( Q’(§(1)), ce \Il(ﬁ(n )) = Res(¥(g M) \If(ﬁ(n))) = 0. Thus
lIf(detA(f](l), ce fy(n))) = 0.

Consider the element det A( ﬁ(l) e g(n ) of Lasa polynomlal in V(R , having coefficients in
K[%(l)la SN %(N—l)m(nfl) ) f/;/(lﬁ)l’ IR %( Yu—1s 7( Yudls oo W(N)m(n) ) 7(,@+1) cee V(n)m(n)] By

polynomial division, there exist polynomials p = p(7 ) and ¢ = ¢(7,,) in L such that
detA(ﬁ(l) JERII) @(n)) = (fA}/(n)p, - %/(/\)1/) ’ p(%(n)u) + Q<f/)\/(n)p‘)

and deg Q(fA}/(/{),u) < deg(’/)\/(n)u - ’y()\)u) = 1.
Thus

A

KA A A A A A A
qc [7(1)1 )t Fy(n—l)m(ﬁ_l) » V)1 - V=19 V(w)p+1s -+ V(R)m(ﬁ) s V(et1)10 = Fy(n)m(n)]a

i.e. it is constant in ’Ay(ﬂ)u. In particular, ¥(q) = q.

Apply ¥ to the equation above.

5 Aoy -

Hence ¢ = 0. It follows that
ReS(SAJu), ceey ﬁ(n)) = det A(@(l)? ) fi(n)) = (’AY(H)# - ”AY(A)V) 'P(”Y(H)u) :

Since k, )\ p and v were chosen arbitrarily, we conclude that Res( §(1) e g ) is divisible by
(Vi — Vioy) for 1 <k < € <nand (i,5) € [1,mp)] x [1,m@g)]. So we obtaln that

H H (’AY(k)z' - fAV(é)j) divides ReS(!AJu)a ceeh ?J(n)),
1§k<€§n (Z,])E[l,M(k)}X[l,m([)]
= ReSO(‘a(l) Yoy ﬁ(n))

AN
since L is a unique factorisation domain; cf. [11, §30].

We shall show in Step 3 that Reso(ﬁ(l) e f](n)) = Res(ﬁ(l) Y e f](n)).
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Step 3.

Step 3.1. We observe that Reso(f](l) ey f](n)) is homogeneous of degree

Z M(k)m(g) = d.

1<k<t<n

Recall that dy)s is the coefficient of X*in  []  g()(X) for s € [0, Mx)] and zero elsewhere
for k € [1,n]; cf. Step 0. We have cellnn{k}

deg&(k)s = Mgy —s for s € [0,My) and k € [1,n)].

Write
AMxM
A(ﬁ(l)’ T £AI(TL)) =t (est)st € L .
We claim that each nonzero Leibniz-summand in the determinant det A(ﬁ(l), ceey f](n)) =
Res(f](l) e f](n) ) is homogeneous of degree d.

So consider one of them. Let 7 € Sjp;. We need to show that e, () is homogeneous and
deg( IT 65,7(5)) equals d.

s€[1,M]
If this Leibniz-summand is nonzero, then e, (4 is homogeneous of degree

degesrs) = deglipy (o) simi-n = My —7(s) +5— m*=D

for s € Iy . Thus

deg [I esrsy = > deg [ esrs

s€(1,M] ke(l,n] SE€EI (k)

= z z deg €s,7(s)

ke[l,n] s€l)

= > > (Mg —7(s) +s—m*D)

ke[l,n] SGI(k)

= X X Mgy —m® D)+ 3 3 (=7(s) +5)
kE[l,n] SG](k) kE[l,n] SGI(k)

= 2 mey(Magy —m* )+ 3 (=7(s) + 5)
ke€([l,n] s€[1,M]

= > meMe —m*Y)
ke[1l,n]

= > mw ). M
ke(l,n] Le[k+1,n]

= D > MMy

ke[1l,n] L€[k+1,n]

= d.

This proves the claim.



So we have

(III) ReS(f](l), e ﬁ(n)> = O . Reso(ﬁ(l), cee @(n))
for some C € K.
Step 3.2. Recall that

ReSO@(U, e 7.@(71)) = [I [ (’/}\/(k)i - %(Z)j) )
1<k<{t<n (’L,j) € [1,m(k)}><[1,m<4)]
Res(Gys -2 Gmy) = det AGays -5 Gim))
cf. Definition 1, and that
ReS(g](l), ey ‘a(n)) == C . ReSO(‘a(l), ey _@(n)) X
cf. (IIT). We want to show that C' = 1.
To this end, we consider a certain monomial I" in Res(§ 1y, - - -, §(n)) and Reso(gyy, - - -
compare its coefficients in these polynomials.
Suppose given ¢ € [1,n — 1]. Given a monomial
a = ¢ H H &Zﬁ()’;)i
kG[l,n] iE[l,m(k>]
in ﬁ, where w); € Z>o and ¢ € K \ {0}, we let
degp () = Z W(eyi
iE[l,m(@}
be the (¢)-degree of .
Now we define the degree Deg of a monomial § € I to be
Deg(8) := (deg(l)(ﬁ)a Sy deg(n—l)(ﬁ)) < (Zzo)x(n_l)

and, for ¢ € [0,n — 1], the degree Deg, of a monomial 3 € L to be
Deg((8) == (degyy(B), ..., degy(8),0,...,0) € (Zis) "V .

We define a lexicographical order on (Zso)*"~V by

17

) .a(n)) and

iy bus)) > (B, K ) e (k> k)
Vo ((kr = k) A (k2 > K)))
Vo (k1 = K1) A (k2 = k3) A (ks > ky))
VoL
V (k=K for i € [Ln—2) A (ko > K,_)) .

Abbreviate
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for k € [1,n]. We want to compare coefficients of the monomial

r= [ o’

ke[1,n]

in ReSO(ﬁ(l), Ce 7@(71)) and ReS(ﬁ(l), Ce 7.@(71))

Note that
(IV) Deg(F) = (m(o) my, m(l)m(z) s ey m(”_Q)m(n_l)) .
—~—
=0
First we consider Reso(§qy,---»0m) = 11 11 (Y — V). Tts Deg-

1<k<t<n (i,j)G[l,m(k)}X[l,m(g)]
minimal monomial, including coefficient, is given by

11 I e

1<k<t<n (’L,j) S [lvm(k)} X[l,m(g)]

for replacing any factor (— %(ﬁ) ;) therein by a factor Q(k)i with k < ¢ strictly raises the degree Deg.
We have

(~hep) = (w0 ] 0 oy
J J
ISk<t<n  (i,4) € [Lmay]x[1,m)] ISk<f<n (i,) € [Lmy]x[1mg)]
2 mgm m
— (_1)1§k<z5n H F(g)<k)
1<k<t<n
22 mumym
_ (__1)\t€e[l,n] ke[L,e—1] M (k)
— ( 1) S €l1,0-1 H H F(Z)

Le(l,n] ke[1,0-1]

> m(ffl)mm ()
— (_1)[6[1,71] H Iﬂ(”rg)

Le(1,n]

> mENm,
— (_1)26[1,71]

Now consider Res(fy(l), . ,ﬁ(n)) = det A(9q),---,9w)); cf. Definition 1. Its diagonal Leibniz-
summand, belonging to id € Sy, , equals

[T agme -
ke([l,n]
Recall that
Z g X7 = H 9 (X) = H H (X =) -
JE[0,M(1)] Lel,n]~{k} Le[l,n]\{k} i€[l,my)]

So a(k)m(k—l) equals the sum of all products of M) — mk=1

= D refkr1,n Mue) factors of the form
(=), where £ € [1,n] \ {k} and i € [1,my)]. Therefore the unique Deg-minimal monomial

. A . . . .
i ayme-1 , including coefficient, is

II I CAed)

Ee[k"_l?n] Ze[lvm(é)]
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for replacing a factor (—%,,) therein by a factor (—4p),) with ¢ € [L,k — 1] and i’ € [1, m )]
strictly raises the degree Deg.

(k)

Thus the unique Deg-minimal monomial in ] &Z; 1 equals

kel,n] ym
A m ke%:n] 25[551 n] O AT (k)
[ [1 [I (=v@e)"® = (=1)k ’ I1 [1 IT Yo
ke[l,n] Lelk+1,n] i€[l,my)] ke[l,n] £elk+1,n] i€[1,my)]
— (_1)%%:,71] ee[k%:Ln]m(Z)m(k) H H P?Z)(k)
k€[l,n] L€[k+1,n]
_ 1 1<k§é<nm([)m(k) Fm(k)
(1 oy
1<k<t<n
— (—1)26%74 ke[%—l]mmmm I I1 Fg)(k)
Le[l,n] ke[l,6-1]
> meymE=Y (e=1)
— (_1)ee[1,n] H F?Z)
Le(1,n]
Z m(Z*Dm(g)
— (_1)26[1,77.]

So we have to show that the monomial I' does not appear in another Leibniz-summand.

Recall that
A A S MxM
A(g(l) y e G ) = (es,t)s,t € L ) .

Suppose given 7 € Sy, . Suppose that its Leibniz-summand [] e;,q) in det A(ﬁ(l), .. ,ﬁ(n))

contains a nonzero monomial I" that has degree €L, M]

~ v
(V) Deg(r) < Deg<r) (:) (m(O) may, m(l)m(2) PERIEIE) m(n_Q)m(nfl)) .
It suffices to show that 7 L id.

Note that then even I' = I will ensue by Deg-minimality of I' as a monomial in the Leibniz-summand
for id.

For k € [0,n — 1], we denote by I'® the subproduct of T that consists of those factors of I that
appear as monomials in e, ¢ for i € I®). Let Y .= 1. So 'Y = 1O = 1,

We prove by induction on k € [0,n — 1] that
1. 7(s) = s for s € I
2. 7(s) > s for s € L1y,
3. Deg(k)(f‘(k_l)) = Deg,(T').

Putting £ = n—1 then yields 7 = id. In fact, assume that 7 # id. Let ¢’ € [1, M] be minimal such
that 7(s") # §'. Then 7(s') > ¢, and 7(s) = s for s € [1,s' — 1]. So there exists s” € [¢' + 1, M]

2.
such that 7(s”) = . But s" < 7(s") =5 <", 4.
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Base clause for k = 0 :
We have 1) = ). We have Deg(o)(f‘(_l)) = (0,...,0) = Degy(T).
We have 7(s) > s for s € I(y), since e;; = 0 for i € Iy and j € [1,7 — 1].
Induction step :
Suppose given k € [0,n — 2]. By induction assumption, we have
1. 7(s) = sfor s € I,
2. 7(s) > s for s € Ipy1),

We have
) W) N o )
Deg(k)<F(k)) < Deg(k)(F) < Deg(k)(F) = Deg(k)(r(ﬁC 1)) < Deg(k)(r(k)):

whence

(VD) Deg iy (I™) = Degy(I') = Degyy () -
We have to show that

1! 7(s) = s for s € J*+D),

2! 7(s) é s for s € I(p19),

3! Deg(yp)(TM) = Deg 11y (I')-
Using (VI), it suffices to show that

1 7(s) = sforse Tkt s

2! 7(s) é s for s € I(j10),

3! deg(k+1)(f(k)> = deg(k+1)(r)'

We consider 3! first.

We claim that
Mm®F)— 3 m“)m(g)

(_1) L€[LK] H ( H F(j))m(i) L f(k) 7

i€[L,k] jE[i+1,n]
i.e. that

, Zk (M—m(e))mw) m m m ! ~(k)
(—1)ei (Pl - Tw)™® - (Tgy -+ Tw)™@ - (Cpgny - D) ™® = TE

We prove by induction on ¢ € [1, k| that for i € I, the monomial of e; ;(; = €ii = &(Z)m(é—l)
that appears as a factor in I' equals (—1)M*m(Z)F(5+1) Ty
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This “inner” induction is needed to prove the claim, which in turn is part of the induction step of
the “outer” induction.

Since |I(y)| = mye for £ € [1, k], this then will prove the claim.
Base clause ¢ =1 :
Since &(l)m(o) is the constant coefficient of the polynomial

I 6w =TT II X =4w)

KE[2,n)] k€[2,n] JE[L,m ()]

it consists of only one summand, namely (—1)M_m(1)F(2) Ty
Induction step :
Suppose given ¢ € [1, k — 1].

Since, by induction assumption, (—1)M*m(A)F(A+1) -+ is the monomial of &(/\)mo‘*l) that

appears as a factor in I' with multiplicity my for A € [1,¢ — 1], we have

= ON' m
ren = A [B 1) ((_1)M 1—‘(>\+1)"'F(n)> v
e[1,4—
> (M=mM)my m m
_ (_1)/\6[1,871] ( H (F()\—i—l) e F(Z)) W) . ( H (F(Z—i—l) - F(n)) (A))
A€[1,6-1] A€[L,0-1]
> (M=m®m, (©) A (D) (-1 m
= (=) (Tt Ty Ty ) ()\ [H . (Cierny -+~ Ty) ™),
e1,6—

whence
~ m(=1) _
deg(x)(F@ ) = deg(x)(r( \) ) = m* ”mu) = deg(x)(r)
for A € [1,¢—1].

Suppose given ¢ € Iy . Let ¢ be the monomial of e; ;) = e;; = &(Z)m(é—l) that appears as a

factor in I'. We have to show that ¢ = (—1)M=m Z)F(Hl) Ty

Suppose given A € [1,¢ — 1]. Since Deg(k)(f’) = Deg,(I') by (VI), we in particular have
deg(/\)(f) = deg,)(I'). Since dego\)(f(f_l)) = deg,)(I') by the consideration above, the mono-
mial ¢ is not divisible by y); for j € [1,mx)].

Recall that &(@)m(é—l) is the coefficient of X™“™" of the polynomial

II = 11 II &%)

KE[1,n]~{¢} r€E[l,n]~{€} jell, m(ﬁ)]

Expanding this polynomial, the terms contributing to ¢ may not contain a factor (—’Ay(n) j) with
€ [1,¢ — 1]. Thus the only term that contributes to ¢ is

II II ©-CII II ¢ = X ()M gy Ty

He[lve_l] je[lzm(n)] R€[£+1 TL} ]6[1 m(n)]

whence the result for ¢.
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This concludes the induction needed for our claim and thus proves this claim.
Taking (k + 1)-degrees, this claim yields

deg 1y (TW) = deggyy (CyTis) - Tm)™® - (T - Tim)™@ - (Diggay - - Timy) ")
deg(kJrl) (FEZ(Ji)l_)A,_—&-m(k))
= m(k)m(kﬂ)
e deg(k—l—l)(r) .

So assertion 3! is shown.

We prove 2! in a stronger form, which will be needed for the proof of 1! later on.
Suppose given x € [1,n — k — 1]. Suppose given s € /(;414s)-

Let ¢ be the monomial of e, ;(,) that appears as a factor in r.

Since Deg(k)(f(k’)) W Deg(k)(f‘), we have deg ) () = 0 for £ € [1,k].

. (V),(VD) - . 31 -
Since deg(k—i—l)(r) > deg(k-i-l)(F) = deg(kz—i—l)(r(k)) = deg(k—i—l)(r)a we have deg(k+1)<r) =

deg(k+1)(f(k)). Thus deg ;. 1)(p) = 0.
Altogether, deg ) (¢) = 0 for £ € [1,k + 1].

Note that e () = &(k+1+a}) 7(8)—s+mk+a) is the coefficient of X7(®)=s+m*t) 4

H !AJ(H)(X) = H H (X—’AY(H)J')-

ke[l,n|~N{k+1+z} rE[Ln]\{k+14+a} jE[1,m ()]

Expanding this polynomial, we see that ¢ is a monomial of a coefficient of

(1T II %« II I[I &4 -

F;,E[l,k‘-l—l} jE[l,m(N)] He[k+2vn]\{k+1+$} je[lvm(ﬂ)]
In particular, 7(s) — s +m®**®) > m*+) This is equivalent to
(VII) 7(s) > s —mFte) LD,

For x = 1, assertion 2! is shown.

Now we do 1! by proof of contradiction. Assume that 7(s1) # s; for some s; € I(j41). There
exists so € I(41) such that 7(s) = s for s € [1,50 — 1] and 7(sg) > so; cf. 2.

Let §:=71(sp). Then 7(3) = syo. We have 5 € [sg + 1, M]; cf. 1.

2.
If 5 € [so+1,m*Y] C Iy, then it follows that sp = 7(3) > § > sp+ 1, 4.
If 5 € I(py14q) for some x € [1,n —k — 1], then it follows that

m+) > 0 = 7(3) (\gl) §—mED) D) > (o) 1) gpbe) (D) D) g

So 7(s) = s for s € I41) and 1! is shown.
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This concludes the induction.
So I' = T is shown. This proves that I' appears only in the diagonal Leibniz-summand of
det A(Go1y, - -5 Gm)) = Res(gqys - - -5 Gmy). This then proves that C' =1, i.e. that

ReS(ﬁ(l), P 7-@(71,)) = ReSO(é\](l), e 7‘6(”)) .

Step 3.3. To obtain the statement of the lemma, we apply the K-algebra homomorphism
L % L

fAy(:C),{ > Y@k for xz € [1,n] and k € [1,m(y))

to the preceding equation. So

Res(.g(l) y ot g(n)) - p(R’eS<§(1) y ot .a(n)))
= P(ReSO(ﬁ(n, cee s @(n)))
= Resolg), -+ 5 9m)
= I I1 (Yo — Yw)-
1<k<tl<n (i,j)€[17m<k)]><[l7m“>]
O]
Corollary 4. Recall that gay(X), ..., gm)(X) € R[X] are monic polynomials.
We have
Res(gay, -~ 9m) = || Reslow, 90)
1<k <{t<n
Proof. Recall that g;)(X) = [ (X — ;) in L[X].
JE[L,m)]
By Lemma 3 we have
Res(gay, - 9m) = 11 Il (Ywy: = Vy5)
1§k<£§n (i,j)e[l,m(k)]x[l,m(e)]
= I Res(gw, 9w) -
1<k<t<n
O
Remark 5. Recall that gq1y(X), ..., gm)(X) € R[X] are monic polynomials.
For1 <p<q<n, we have
Mm@t 2 meme)tm)
Res(g(l), s 95 9@)y - - ,g(n)) = (—1) Elp+1,g-1]

: ReS(Q(l»---,g(q),---,g(p)>---,g(n)) .
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Proof. By Lemma 3 we have
Res(g(l), e ,g(p), e ,g(q), e ,g(n))

3
= ]I I1 (Ve — Y0)5)
ISk<<n  (4,7) € [Lmr)] X [1,m(g)]

I1 (Y — Ywy) - [1 I1 (Y — Yw3)

ISk<t<p—1 (i,j) € [Lm)]x[1,my)] pHISE<€<q—1 (i,j) € [L,mu)]x[1,m )]

H H (V(k)i - 7(@);’)' H H ('7(k)i - 'V(K)j)

gHISk<<n (i) € [Lmg)x[Lm)] 1<k <p<l<n (i) € [Lamge]x[Lmpy)

[ I1 (Y — vwi) - 11 [ (Yo — Y03)

ISk<p (4,4) € [Lmg)|x[1,mp,] p<f<q (i,j) € [1,mp]x[1,m )]

[ [I (Vi — Yw03j) - II [ (Ve — Y0)5)

g<t<n (i,9) € [1,m<p)]>< [1,’m,(g)] p+1<k<g<t<n (i,9) € [l,m(k)} X [1,m<g)]

H H (W(k)z‘ - V(q)j)' H H (V(q)i - V(é)j)

pHI<k<q (i,)) € [Lmp]x[1,m(g) g<f<n  (4,5) € [Lmgy]x[1,mp]

= [1 [1 (’Y(k)i - ’Y(e)j) ' I1 [1 (’Y(k)z‘ - ’Y(e)j)

1§k<€§p—1 (i,j)e[l,m(k)]x[l,m(e)} p+1§k<€§q—1 (i,j)e[l,m(k)]x[l,m(e)]

H H (V(k)i - 7(@);’)' H H (7(k)i - 'V(K)j)

qH1<k<t<n (i) € [1,mu))x[1m ] ISk <p<€<n (i) € [Lm)]x[Lm )]

[1 I1 (V)i — Yw)i)

1<k<p (ivj)e [l’m(k)]x[lvm(p)]

2 mpyme
A(—1)eetrrral - I 11 (Vi — Yw)i)

P<LZq (i) € [Lme]x[Lm)]

[ I1 (Vi — Yw0i) - [I [ (Vi — Ywys)

q<£§n (i,j)e[l,m(p)]x[l,m(@] p+1§k<q<€§n (i,j)E[l,m(k)]X[l,m(g)]

(k)M (q)

>
(—1)rerta -1 I1 Vi = Yw3)
pHI<k<q (i) € [L,m(g)]x[1,mw)]

H H (V(q)i - 'Y(Z)j)

g<t<n (3,) € [Lm(g)]x[1,m()]

> mpymy > maymg
= (_1>e€[p+1’q] : (_1)%[1)“’(171] ' Res(g(l), e @)y Y9p)y - 7g(n))
MM T, ; X mg)(mp)+m(q))
= (—1) €lpt1,a-1] -Res(g(l),...,g(q),...,g(p),...,g(n))



Remark 6. Recall that g1)(X), ..., gn-1)(X) € R[X] are monic polynomials.
Let gy (X), fy(n) (X) € R[X] be further monic polynomials.

We have
Res(gays -5 9m-1)> Gm)) - Res(gay s -+ Gn-1) > In))
= Res(ga), -+ > Im-1)» ImIm)) - Res(gay, -+ 5 Gin-1)) -

Proof. Recall that K is the field of fractions of R.
Let L be a splitting field for g (X) - g (X) - [Licpn196)(X) € K[X].

Write Gy (X) = I (X =Fu,) and §oy(X) = [I (X —Fau),) in LIX].

je[lvm(n)] jE[l,ﬁ:’L(n)]

By Lemma 3, we have

Res(g(l) y o0 Gn—1) g(n)) ' Res(g(l) y o0 Gn—1) é(n))
= I1 I1 (Y = v05) - 11 I1 (Y — Fmys)
1§k<£§n—1 (7,,]) c [l,m(k)]x[l,m(g)] ISkSTL—l (l,]) c [1,m(k)]><[1,1’h(n)]
I1 Yy — vw05) - 11 [I (Y = Vw5
I<k<t<n—1 (i) € [1m]x[1,m)] ISk<n=1 (i) € [Lm)] X [1, )]
= Res(g9)s -+ s Gn-1)> Im)Gm)) - Res(gays - 5 Im-1)) -
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]

Example 7. Recall that g1)(X) € R[X] is a monic polynomial. Suppose given w € R. Then

Res(X —w, ga)(X)) = H (w =) = go(w) .

iG[l,m(l)]

1.3 The resultant and the discriminant
Let R be an integral domain. Let m # 0 be a prime element of R.
Let K be the field of fractions of R.

Corollary 8. Let g1y(X), ..., gm)(X) € R[X] be monic polynomials.
Denote my := deg(gmy) for k€ [1,n)].

We have
Algay - -+~ gm) = ( H A(g(k))) - Res(gq1y, - - - ,g(n))2 )
ke[l,n]
Proof. Let L be a splitting field for ] gu)(X) € K[X]. Write g (X) = ]I
in L[X], for k € [1,n]. kelLn] €Lm)]
Note that A(gu)) = IT (Vi —yw);)? for k € [1,n]; f. [11, §33].

1§2<]§m<k)

(X - ’Y(k)z),
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So
Algay - - - 9m))
= (I II  (wi—vw)?) - (11 I1 (Vi — Y05)°)
kG[l,TL] 1§z<]§m(k) 1<k<t<n (i,j)e[l,m(k)]x[l,m(é)]
Lem. 3
= ( 1[_[ }A(g(k))) ’ Res(g(l)a cee g(n))2 .
ke[ln

]

Remark 9. Let r € R. Let f(X), f(X) € R[X] monic polynomials such that f(X) =, f(X)
Then

A(f) = A(S).

Proof. Write f(X) = Y. fiX?and f(X) = Y. f,X'. By assumption, we have f; =, f;
i€[0,u) i€[0,u]

for all i € [0, y.
By [11, §33], the discriminant A is an integer polynomial

P(Xo,.... X)) = >z, X0 Xim € Z[Xo, ..., X,

in the coefficients of its argument. So we have

A(f) = P(fo, -, fu)
A(f) = P(for-s )

For each monomial that occurs in P, we get

Vo Vp o — 0
ZVO7,,,71,“ 0 e I —r ZVO,...,V,_L 0 .. Mmoo
——
€Z E€Z

So for the sum of these monomials we have

A(f) = P(f()?--'?.fu) =r P(fO)"'7fM) = A(f)

O]
Remark 10. Let f(X), ga)(X), ..., 9m)(X) € R[X] be monic polynomials with A(f) # 0,
such that
FX) =g ] 9w (X))
ke([l,n]
Then
2 ve(Res(gay s -~ 9m)) < va(A(S)) -

Proof. Since f(X) =za¢n Il 9w)(X), we have A(f) =ra¢y A(C II 9@) 5 cf. Remark 9.
ke[1,n] ke[1,n]
Thus
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So there exists z € R such that

( TI AGw) - Res(gay, -5 gm)* = A(f) +27Af) = A(F)(L + am).

ke[l,n]
Denoting m := v.(Res(ga), - - , 9m))), we get that 72™ divides the left hand side, and thus also
A(f). Hence 2m < v (A(f)) . O

Remark 11. Letr € R.
Let goy(X), ..., g (X), g)(X), ..., Gw)(X) € R[X] be monic polynomials such that

9 (X) =r G (X)

for k € [1,n]. Then
Res(g9a1y, --- 5 9m)) =r Res(gay, -+, Jw)) -

Proof. Note that deg gy = deg g for k € [1,n]. Hence

Agay, - 9m) = AGay, - dw)) ;

cf. Definition 1. Taking determinants, this yields

R‘es<g(1)7 ) g(n)) =r RGS(g(l) IR g(n)) :
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Chapter 2

Hensel

2.1 Linear Algebra

Let R be a discrete valuation ring.

Let m € R be a generator of the maximal ideal of R.

Suppose given k > 1. Suppose given A € R*** such that det(A) # 0.

Let w1, ..., m be the elementary divisors of A, ordered such that 0 <e; < ey <--- <e¢p.
Write e :=e; + - - + e, = v(det(A)).

Remark 12. Suppose given d; € Z>o for i € [1,k] such that dy > dy > -+ > dj, and such that
for every i € [1,k], the element 7% divides each entry in column number i of A.

Then ey < e :=e— (dg+ -+ dg).

Proof. We claim that
!
dip 4+ +dji1 < er+---+e; forjelkl.

Suppose given £ € [1, k].
Recall that an ¢ x ¢ - minor of A is the determinant of a ¢ x ¢ - submatrix of A.

Recall that for i € [1, k] the element 7% divides each entry in column number i of A and

di < dp—y <---<d .

So the determinant of each ¢ x ¢ - submatrix of A is divisible by g+ +de—t+1,

Recall that 7€, ... 7% are the elementary divisors of A. So [[ 7% is the greatest common
i€[1,]
divisor of the ¢ x ¢ - minors of A; cf. [6, Th. 3.9].

Since rd++di—c+1 divides all £ x £ - minors of A and [] 7% is their greatest common divisor,
1€[1,4)
it follows that 7% Fd-t+1 divides [ 7.
1€[1,4]

29
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Hence
dy+ - +dyep1 < e+ +eg

This proves the claim.

Recall that
e=e+---+eg.

So
e, = e—(e1+--+ep)

e— (dy+ -+ dp—(k-1)11)
= e—(dp+ - +dy)

= ¢

Lemma 13.

(1) Suppose given y € 7 Rk, Then there exists © € R*™* such that 1A = y.
(2) Suppose given y € m*R™¥. Then there exists v € RY* such that xA = y.

(3) Suppose given d; € Z>q fori € [1,k| such that dy > dy > -+ > dy, and such that for every
i € [1,k], the element % divides each entry in column number i of A.

Write € = v,(det(A)) — (de + - -- + di). We have ¢ > 0.

Suppose given y € ¢ R™*. Then there exists x € RV* such that xA = y.

Proof. Ad (1).

Recall that 7€ ..., 7% are the elementary divisors of A. So there exist S,T € GLg(R) such
that

SAT = = D.

ek

Recall that y € ¢ RY*. So yT' € wek RM*.

Let
yT' = (7%z, ..., 7%2,) forz; € Ryie[l,k].
Denote
F o= (m* %z, ..., 7% %) € RV
So

iD = yT.
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Denote z := &S € RY*¥,

Then
xA = xS7'DT!

rDT—!
= yTT!

Ad (2). Recall that e := ey + -+ +ex. So e > eg.
So
y c WERIXk C 7_‘_ekRIXk )
The assertion follows with (1).
Ad (3). By Remark 12 we have ¢ > e, > 0.
So
y E 7T6,R1><k g ﬂ_eleXk’ .

The assertion follows with (1). O

Lemma 14.

(1) Suppose given u > e, and x € R™* such that xA € R¥™*r*. Then v € RV>kru=er,
(2) Suppose given u > e and x € RY™* such that tA € RV>* 1. Then x € R¥Fgue,

(3) Suppose given d; € Z>o fori € [1,k| such that dy > dy > -+ > d}, and such that for every
i € [1,k], the element % divides each entry in column number i of A.

Write € = v,(det(A)) — (de + - - -+ di). We have € > 0.

Suppose given u > €' and x € R™¥ such that tA € RV¥*x". Then x € R">Fgu—¢.

Proof. Ad (1).

Recall that 7€, ..., 7% are the elementary divisors of A. So there exist S,T € GLg(R) such
that

et

SAT = = D.

Recall that xA € RY>Fru,

So we have
A = zS7'DT!' € RVFgpn,

It follows that
xS7'D € RYkEpuT = RVkgv
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Denote

So
I'S_lD = (’/TelZl, ey ’/Tekzk) € Rleﬂ'u .
Recall that e; < ey <--- <ee.

So for i € [1, k] it follows that
z; € Rn" % C Rp" ™%,

Hence
rS™' = (21, ..., %) € RVFpuTer
So
r € Rlxkﬂ_u—eks — Rlxkﬂ_u—ek )
Ad (2).

Recall that e :=e; + -+ 4+ €. So we have u > e > ¢,.
By (1) it follows that z € RP*gu=er,
Since e > e, , we have
v € RVhguer ¢ pixkpu—e
Ad (3).
Remark 12 yields ¢/ > e, > 0. So we have u > ¢’ > ¢,.
By (1) it follows that z € RMFgu=er,

Since €’ > e;,, we have
_ o
x € RYkgu-er C RIXkgu—e

2.2 Lifting factorisations

Let R be a discrete valuation ring.

Let m € R be a generator of the maximal ideal of R.

Remark 15 (cf. [5, p. 79]). Let f(X) € R[X]| be a monic polynomial such that A(f) # 0.
Letn > 1. Let gy(X), ..., gm)(X) € R[X] be monic polynomials of degree > 1.
Denote

t = v.(A(f)), t" == va(Res(g9), - -, 9m))) -

Suppose that
f(X) =pt+1 H g(k)(X).
]

keln
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Then
2t" .

~
Y

Proof. Since f(X) =pt1 [[ gw(X) and t + 1 = v (7A(f)), we obtain

ke(l,n]

2" = 2v.(R <’
t" = 2v(Res(gay, ---» 9m))) <

v=(A(f)) = t.
O

Lemma 16 (cf. [5, p. 81]). Recall that R is a discrete valuation ring with mazimal ideal TR.
Let f(X) € R[X] be a monic polynomial. Write M := deg f.

Letn > 1. Let ga)(X), ..., gm)(X) € R[X] be monic polynomials of degree > 1.
Suppose that Res(gy, -, gm)) # 0. Denote t" := v.(Res(gay, --- » 9m)))-
Let s > 2t" + 1. Suppose that
_ﬂ.s H g(k
ke(l,n)

(Note that we may replace the condition s > 2t" + 1 by the condition s > t := v (A(f)) if
A(f) #0; ¢f. Remark 15.)

(1) There exist monic polynomials §ay(X), ..., gm)(X) € R[X] such that

Gy (X) =ecwr gwy(X)  for ke [1,n]

and

FX) = ] dw(X

ke(l,n]
We call such a tuple (G (X))r of polynomials an admissible lift of (g (X))r with respect
to s.

We have
Vﬂ-(R,eS(g(l), cee g(n))) = t//

for any admissible lift (Guy(X))r of (g (X)) with respect to s.

(2) Suppose given r € [0,s — 2t"].

Suppose given monic polynomials Gay(X), ..., gm)(X), iz(l)(X), o hey(X) € RIX]
such that
J(X) =peewr guy(X)  fork e [l,n],

B(k)(X) =t/ g(k)(X) for k € [1,n]

Hg = 2(s—t")—r Hh

ke(l,n) ke(ln]

and
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Then

g(k)(X) = 253t/ —r h(m(X)
for k € [1,n].

In particular, considering the case r = 0, two admissible lifts with respect to s as in (1)
are mutually congruent modulo 73" R[X].

In the following proof, we shall use the notation of Definition 1.

The arguments we have learnt from KocH, [7, Satz 4.4.3, Hilfssatz 4.4.4, Hilfssatz 4.4.5].

Proof. Ad (1). Ezistence of admissible lift.

We make the ansatz
G (X) = guy(X) + Ws’t"u(k)(X) for k € [1,n]

with U(k)(X) S R[X] and deg Uk) < deg 9k) = M(k) for k € [1,72].

Thus we require that

!

f(X) =peen I gw(X)

ke[l,n]

= IT (90 (X) + 7 (X))
kell,n]

=peo I g+ 3 uw(X) - TT gw(X).
ke(l,n] ke(l,n) Le(1,n|~{k}

Let b(X) := 7" *(f(X) - ] gy (X)). Since f(X) =r [[ 9gu)(X), we get b(X) =_ 0.

ke[L,n) ke(l,n]

So our requirement reads

b(X) %WHH Z Uy (X) - H 90 (X) -

ke[1,n] tel1,n)~{k}

Therefore it suffices to find polynomials u)(X) € R[X] for k € [1,n] as above that satisfy the
equation

bX) = > upX) - [ 90X).

ke(l,n] Le[1,n]~{k}

Writing
(X) ;}ﬂ
g(g) (X) = Z &(k)iXi

te[1n]~{k} i>0

U(k)<X) = ZU(k)iXi

i>0
for k € [1,n], where 5, ag;, uwy € R for i > 0, a comparison of coefficients shows that it
suffices to find

U .= (U(I)O cos Uy mgy—1 W(2)0 - UW@)mgy—1 -+ Un)o - - U(n)m(n)_l) e RH>M
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such that
a(l)o IR CEEEEY o .. a/(l)M(l) )
m(1) Trows
a(1)0 A)May |/
a(2)0 PR PR .. a/(Z)M(Q) )
m(2) TOwWs
!
U. Qo e e agu, | L (B ... Bur)
a(n)o IR LY .. a/('n,)M(n)
M(n) Trows
A(n)o A(n)M,)
Recall that det A(gay, ..., gm)) = Res(gay, - .-, gm)); cf. Definition 1. In particular, we have
t" = vr(det A(gay, --- 5 9m)))-

Note that (B ... Ba_1) € 70 R™M since b(X) =_» 0. So U exists as required by Lemma 13.(2).

Valuation of resultant. Since ) (X) =, gu)(X) for k € [1,n], Remark 11 implies that

Res(g(l), cee g(n)> Eﬂ_s_t// Res(g(l), ey g(n)) .
Since s —t" > t" + 1 =v,(Res(g9a), .-, gm))) + 1, this implies
ve(Res(gay,s ---» Gm))) = va(Res(9ay, ---, gm))) = t".
Ad (2).
Writing
oy (X) =t gy (X) + 75wy (X)
hay (X) =t g09(X) + 7 0y (X)

for k € [1,n], where u(X), vay(X) € R[X], we obtain deguy(X) < deggu(X) = mau),
since g (X) and gu)(X) are monic polynomials of the same degree; likewise, we obtain
deg U(k)(X) < M) -

|

We have to show that wp)(X) = 2w v)(X) for k € [1,n].
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We have
IT gw(X)+77" 30 ugy(X)- I gw(X)
ke(l,n] ke(l,n) Le(1,n|~{k}
= L1 (g(X) + 7 ugy (X))
k€([l,n]
= [T gu)(X)
ke[1,n]
=r2(s—t")—r H h(k)(X)
k€([l,n]
= [T (9)(X) + 70y (X))
ke(1l,n]
=peon I g+ 3 vw(X)- TT gw(X).
ke(l,n] ke(l,n] Le(1,n]~{k}

The difference yields
kez[l:,n]<U(k) (X) — v (X)) .Zeu,ln_][\{k} gy (X) =pe-e—r 0.
Writing
Wy (X) = uey(X) — vy (X)
for k € [1,n], this reads
(*) Y wwX) - ] 9wX) = 0.
ke[L,n] ee[1,n)~{k}
Writing
wiy (X) =1 Y wipy X!

>0

for k € [1,n], and

W .= (w(1)0 co Wympy -1 W2)0 - W2)mgy—1 -+ Wn)o --- w(n)m(n)_l) e RH>M ,

! p :
we have to show that W € 7*=2" " RI*M_ From (x), we obtain
w. A(g(1) ) ey g(n)) e m VT RIXM

Note that s — " —r > t" = v (det A(gu), ..., gm))). So we can infer by Lemma 14.(2) that
= 71_57275”77"RD<M.

O]
Theorem 17. Recall that R is a discrete valuation ring with maximal ideal TR.
Suppose R to be complete.
Let f(X) € R[X] be a monic polynomial.
Letn > 1. Let gy(X), ..., gm)(X) € R[X] be monic polynomials of degree > 1.
Suppose that Res(gqay, ..., gm)) # 0. Denote t" := v (Res(gay, --- , 9m)))-

Let s > 2t" + 1. Suppose that
]

keln
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Then there exist unique monic polynomials gvz(l)(X), e gV](n) (X) € R[X] such that

!vJ(k)(X) = gw(X) forkel[ln]

II (X

kel,n]

and

(Note that we may replace the condition s > 2t" + 1 by the condition s > t := v (A(f)) if
A(f) # 0; ¢f. Remark 15.)

Proof. Existence. Since R is complete, by Remark 74 it suffices to show that there exist monic
polynomials §)(X), ..., gm)(X) € R[X] such that

_ﬂ.s+1 H g
kell,n]
G (X) = guy(X)  for k€ [1,n]

and
Vﬂ(ReS(g(l), R f](n))) =t".
This follows from Lemma 16.(1) since 2(s —t") > s+ 1.

Uniqueness. Suppose given monic polynomials é(l)(X) e ﬁ(n) (X) € R[X] such that

!vJ(k)(X) = gw(X) forkelln]

and
H é(k) (X
ke[l,n]
and monic polynomials fVL(l)(X) e fvz(n) (X) € R[X] such that
h(k)(X) = st/ g(k)(X) for k € [1,71]
and

T ha(x

ke[l,n]

We have to show that g (X) = lvz y(X) for k€ [1,n].
Note that vx(Res(f1y, -« > J)) = " = va(Res(hy s - s hny)) by Lemma 16.(1),

Let s; := s. Both (fvz(k) (X)) and (g (X))x are admissible lifts of (g,(X))x with respect to s
in the sense of Lemma 16.(1), since

(X) =pe [licpin 90 (X)

(X) = - é(k)(X) for k € [1,n]
f(X) == Tiegnn hoy(X)

(X)) = é(k)(X) for k € [1,n]

f(X) = n2(s1-t") er[l,n] é(k)(X) :
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So Lemma 16.(2) yields
hiey (X)) =pae-en-v Gy (X) for k € [1,n].

The idea is to use this congruence to replace the second congruence in the array above, and to
iterate this procedure.

Let sy := 2(s; — t"). Note that sy = s; + (57 — 2t”") > s;. Both (fVL(k)(X))k and (gvj(k)(X))k are
admissible lifts of (é(k) (X))r with respect to sy in the sense of Lemma 16.(1), since

F(X) =ge er[l,n] é(k) (X)
hiy(X) = Gu(X) for k€ [1,n]
F(X) = iepm fvb(k) (X)
é(k) (X) = - é(k) (X) for ke [l,n]
FX) = repn 90n(X) -

So Lemma 16.(2) yields

hie (X)) =paa-m-v Gy (X) for k € [1,n].

Let s3:=2(s2 — t”). Note that s3 = s9 + (s2 — 2t") > s9 + (51 — 2t") > so. Continue as above.

This yields a strictly increasing sequence (s¢)y>1 of integers such that

Vv

hiy(X) = e gay(X) for k € [1,n] and ¢ > 1.
Hence y
hi(X) = gy (X) for k € [1,n].
[

Remark 18. The case n = 2 of Theorem 17, i.e. the case of a factorisation of f(X) into two
factors gn)(X) and g(2)(X) modulo 7°, is due to HENSEL; cf. [5, p. 80, 81].

Translated to our notation, he starts right away with s > t. He writes in the statement on
[5, p. 80, 1. 8] that g;)(X) and g (X) are “Néherungswerte” of g)(X) and g()(X). In the
proof, on [5, p. 81, 1. 7], he makes this precise and shows that actually é(l)(X) = gy (X)
and 5(2) (X) = g2)(X).

2.3 Lifting factorisations in the case f(X) =, XV

Let R be a discrete valuation ring. Let m € R be a generator of the maximal ideal of R.

Remark 19. Suppose given a monic polynomial f(X) € R[X]. Write M := deg(f). Suppose
that f(X) =, XM.

Let n > 1. Let guy(X), ..., gm)(X) € R[X] be monic polynomials of degree > 1. Write
my = deg(gw)) for k € [1,n].
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Suppose that

Then guy(X) = X™® for k € [1,n].

Proof. Recall that R is a discrete valuation ring and 7 € R is a generator of the maximal ideal
of R. So B/ is a field and £2/;[X] is a unique factorisation domain.

So we have
XM = XX XX .

J/

TV
M times

Note that
XM= f(X) = ]] 9w(X).

ke[1l,n]
Since we can decompose XM in R/ [X] only into powers of X we have

g(k)(X) =r )(a’C

for ay € Z>, and k € [1,n].

Since for k € [1,7n] the polynomials g (X) are monic it follows that

ap = degguy =: mq for ke [1,n].

So
9)(X) == X"® for k € [1,n].

O

Lemma 20. Let £ > 1. Let hq)(X), ..., hp(X) € R[X] be monic polynomials of degree > 1.

Write x ) := deg(hw)) for k € [1,{]. Write x := 3y 1y g X(x) - Suppose the ordering to be chosen
such that x1)y < x@2) < - < X() -

Suppose that hgy(X) = XX® for k € [1,4].
Write [ Tepn g oo (X) =2 icp.4 b X" with b; € R fori € [0, x].
Then
ve(b;) > ¢ —max{j €0,/ : X+ XG) S i}

fori €0, x].

Proof. Write h;)(X) =: ZiE[O,X<k)] hayi X" for k € [1,€], where hgy; € R for i € [0, x(x)]. We have

by = Z H hwyigey -

ik €0x k)] kE[LY
for k € [1,4],
b1yt =4
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So it suffices to show that

!
ve( ]I hwiey) = €= max{j €0, « xy+ -+ x <}
ke,

for all occurring summands. Since vx(hk)iy,) > 1if ig) € [0, x@x) — 1], it remains to show that
for such a summand, we have

!
{keld :iw=xwml} < max{je€[0,4: xq+ +xy <1}
Assume that

{kelld :iw=xwl} > max{j €[04 : xq)+-+xp =i},

whereas i) + -+ + i) = i. Write H := {k € [1,0] : ig) = xw) } C [1,4].
Then ¢ > |H| > max{j € [0,4] : xa)+ -+ xy) <@}, whence x1y + -+ + xqup > 7. So

o= da)yt -t
(ZkeH i(k)) + (Zke[l,é}\H i(k))

2 ZkeH i(k)
= ken X(h)
> ke X (using xa) < x@) <o < x)
> 1 .
O]
Lemma 21. Let n > 1. Let g1)(X), ..., gm)(X) € R[X] be monic polynomials of degree > 1.

We shall use the notation of Definition 1. In particular, we write m) = deg(gwy) for k € [1,n].
Assume that Res(gay, -- ., gwm)) = det A(gay, -- -, gw)) is nonzero.

Suppose that gy (X) == X™® for k € [1,n].
Suppose the ordering of the polynomials to be chosen such that mgy < mgy < -+ <myy) .
Write

/

e = VW(RGS(Q(U, e g(n))) — Z ((n — J)mg) — 1) )

JjE€[l,n—1]
We have €' > 0.
(1) Suppose given y € ¢ R>M | Then there exists x € R™*M such that rA(9ay, -5 9m)) = Y-
(2) Suppose given u > €' and x € R™M such that xA(gqy, ... . gwm)) € R Mav.

Then x € RVMgu—e’
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Proof. Recall that  [[ g5 (X) =1 > a@uX' for k € [1,n].
jE[l,n}\{k} ZE[O,M(k)]

Suppose given i € [1, M]. Write
di = (n—1)—max{je0,n—1] : muy+---+my <i—1}.
Note that d¢ > d,, for 1 < § <n < M. By Lemma 20, we have
V7r<a(k)i71) > d;

for k € [1,n], since the sequence of degrees of the polynomials g¢;)(X), with g (X) omitted,
is entrywise bounded below by the sequence of degrees of the polynomials g;)(X), i.e. by the
sequence of the m;).
It follows that

Valage ) = de > d,

for k € [1,n] and ¢ € [1,i]. Hence 7% divides column number i of A(gqay, ..., gwm)); cf.
Definition 1.

We have

dy+ - +dy
= Yicpa (n=1) —max{j € [0,n 1] : mu)+---+my <i—1})

= (M-1Dn—-1)=Yicpmmax{j €[0,n—1] : may+---+my <i—1}
(M —=1)(n—1)- Zie[l,M—l] max{j € [0,n —1] : ma)+---+m <i}

= (M=1)n—=1)=> icnny J [ Imo+-+mg, ma+ -+ mg +mgeny — 17|
(M —=1)(n—-1) - Zje[l,n—l] JM+1)

= (M=1D(n—=1) =2 cnn —mg

(M=1)(n—1)+M=3 i Jmy
= 14+nM—n-— Zje[lm] gmj)

L4+ 3 e (= g)mgy — 1)
= Zje[LnA] ((n — j)m) — ) ’

whence

Vﬂ'(detA(g(l)a 7g(n)))_(d2++d]\/[) = 6/,

So assertion (1) follows by Lemma 13.(3), assertion (2) follows by Lemma 14.(3); moreover, we
have ¢’ > 0. O

Now we shall adapt Lemma 16 to our particular situation f(X) =, X, improving the assertions
at some points. We refrain from attempting to produce an assertion that covers both Lemma 16
and Lemma 22, for it probably would have obscured Lemma 16.

Similar comments apply to Theorem 17 and Theorem 23.
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Lemma 22. Recall that R is a discrete valuation ring with maximal ideal TR.
Let f(X) € R[X] be a monic polynomial. Write M := deg f. Suppose that f(X) =, XM.

Let n > 1. Suppose giwen monic polynomials gay(X), ..., gm)(X) € R[X] having
degree > 1. Write m, := deg(gw)) for k € [1,n]. Suppose the ordering to be chosen such that
may S me) S S m(n) :

Suppose that Res(gqy, -- -, gm)) # 0. Denote

" = va(Res(g0), -+ 9m)))

t" = ¢ = vo(Res(gy, -+ 9m)) = Ljepny (0= 5)mg) — 1)
cf. Lemma 21.
Let s > t" +t" + 1. Suppose that

—71'S H g(k

ke(l,n]

(Note that we may replace the condition s > t" +t" + 1 by the condition s > t := v.(A(f)) if
A(f) #0; ¢f. Remark 15.)

(1) There exist monic polynomials §ay(X), ..., §m)(X) € R[X] such that
g(k) (X) =gt g ( ) fO’l" k€ [1771]

and

f(X) = 2(s—t"") H g(k

ke(l,n]
We call such a tuple (Guy(X))i of polynomials an admissible lift of (g (X))r with respect
to s.
We have
ve(Res(gay s - Gmy)) = 1"
for any admissible lift (Guy(X))r of (g (X))r with respect to s.

(2) Suppose given r € [0,s — 2t"].
Suppose given monic polynomials Gay(X), ..., gm)(X), iz(l)(X), o hey(X) € RIX]
such that
Iy (X) = gu(X)  for ke [l,n],
hay(X) =pecem guy(X)  for k € [1,n]

and
H Gy (X) =pae—em H By (X
ke(l,n] ke(l,n]
Then
Gy (X) =oe s r ;L(k) (X)
for k € [1,n].

In particular, considering the case r = 0, two admissible lifts with respect to s as in (1)
are mutually congruent modulo 73" R[X].
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In the following proof, we shall use the notation of Definition 1.

Proof. By Remark 19, we have g (X) =, X™® for k € [1,n].
Ad (1). Ezistence of admissible lift.

We make the ansatz
I (X) = guy(X) + 77 ugy(X)  for k € [1,n]

with ugy(X) € R[X] and degugy < deg gxy = ma, for k € [1,n].

Thus we require that

FX) Zom  T1 dw(X)

ke(l,n]

= [T (909(X) + 7 ugy (X))
ke[l,n]

=6 I g+ 3 uw(X) - IT gw(X).
ke(l,n] k€([l,n] Le(l,n)]~{k}

Let b(X) == 7" =*(f(X) = TI gu)(X)). Since f(X) = [ gm)(X), we get b(X) = 0.

ke[1,n] ke[1,n]

So our requirement reads

HX) = Y u(X) - [ gw(X).

ke(l,n] Le(1,n|~{k}

Therefore it suffices to find polynomials u)(X) € R[X] for k € [1,n] as above that satisfy the
equation

b(X) = S upX) - I 9wX).

ke[1l,n] Le[1,n]~{k}

Writing
bX) = X BX
i>0

g(g)(X) = Z@(k)iXi

Le[1,n]~{k} 120
U(k)<X) = ZU(k)iXi
i>0
for k € [1,n], where B3;, a@, uw: € R for i > 0, a comparison of coefficients shows that it
suffices to find

U .= (U(I)O cos Uy mgy—1 W(2)0 - UW@)mgy—1 -+ Un)o - - U(n)m(n)_l) e RH>M
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such that
ago e e e amg,
m(1y Tows
a(1)o A1) M1y ),
ao ottt A@My, )
m(g) Tows
. amo o A, | L (Bo ... Br_1)-
Ao o G,
M) TOWS
‘ Ao -+ A, .
= A9y, -+ 9w)

Note that (B ... Ba—1) € ™ R™M gince b(X) =_» 0. So U exists as required by Lemma 21.(1).

Valuation of resultant. Since gy (X) = . g (X) for k € [1,n], Remark 11 implies that

Res(gy, -5 Gm)) =ne-er Res(gay, -5 gm)) -
Since s —t"” > t" +1 = v,(Res(ga), --- , gm))) + 1, this implies
va(Res(gay, -5 Gmy)) = va(Res(gay, -5 gm)) = 1"
Ad (2).
Writing
Im(X) = gy (X) + 7 gy (X)
han(X) =1 gy (X) + 75 vy (X)

for k € [1,n], where u)(X), vay(X) € R[X], we obtain degu)(X) < deggu(X) = mau),
since Gy(X) and gu)(X) are monic polynomials of the same degree; likewise, we obtain
deg U(k)(X) < M) -

|

We have to show that wupy(X) = . 2w, v (X) for k € [1,n].
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We have
[T gX)+77" 3 up(X)- I g90X)
ke(1l,n] ke[l,n] Le[1,n]~{k}
S IT (90 (X) + 7 gy (X))
ke€[l,n]
= [T 9w)(X)
ke[1l,n]
Eﬂ.2(sft/”)fr H h(k)(X)
k€([l,n]
= IT (906)(X) + 7" vy (X))
ke(1l,n]
= 2(-t) [T gwX)+77" 3 vw(X)- TI  gwX).
ke€[l,n] ke(l,n) Le(1,n)~{k}

The difference yields

> (um(X) —ow(X) - II  gw(X) =g 0.

ke[l,n] te[l,n]~{k}
Writing
UJ(k) (X) = U(k) (X) — U(k) (X)
for k € [1,n], this reads

(*) doowwX) - [ 90(X) = 0.

ke(l,n] Le(l,n]~{k}
Writing
w(k)(X) = ZQU(k)iXi

i>0

for k € [1,n], and

W .= (w(l)o s WAympy—1 W2)0 -+ W2)ympy—1 -+ Wn)o - - - w(n)m<n)_1) c RVM ,

! "
we have to show that W € w27 —"R™>M_ From (x), we obtain
W-Algay, - gw) € mTTRVM

Note that s — " —r > " = ¢/. So we can infer by Lemma 21.(2) that W € (== =t" RIxM —
7.{.s—2t”’—7ﬂR1><M' 0
Theorem 23. Recall that R is a discrete valuation ring with maximal ideal TR.

Suppose R to be complete.

Let f(X) € R[X] be a monic polynomial. Write M := deg(f). Suppose that f(X) =, XM.

Let n > 1.  Suppose given monic polynomials gny(X), ..., gm)(X) € R[X] having
degree > 1. Write myy := deg(gw)) for k € [1,n]. Suppose the ordering to be chosen such that
ma) Sme) S S M)
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Suppose that Res(gay, ..., gm)) # 0. Denote
" = Vﬂ( Res(ga1y, - » g(n)))
t" = va(Res(gys - s 9m)) = 2 jepny (0= 3)mgy — 1) .

Let s >t" +t" +1.

Suppose that
f(X) =xs H 90 (X) -
]

keln
Then there exist unique monic polynomials g,y (X), ..., gu(X) € R[X] such that
é(k)(X) = gy (X)) fork € [1,n]

and

FX) = 11 9w

ke[l,n]

(Note that we may replace the condition s > t" +t" + 1 by the condition s > t := v (A(f)) if
A(f) #0; ¢f. Remark 15.)

Proof. Existence. Since R is complete, by Remark 74 it suffices to show that there exist monic
polynomials §)(X), ..., §m)(X) € R[X] such that

FX) = [T 300(X)
ke[1,n]
Gy (X) = gy (X)  for k € [1,n]
and
vo(Res(gay, -+, Gm))) = t".
This follows from Lemma 22.(1) since 2(s — t"”") > s + 1.

Uniqueness. Suppose given monic polynomials é(l)(X) e ﬁ(n)(X) € R[X] such that

é(k)(X) = gu(X) for ke [l,n]

and
ke[l,n]
and monic polynomials fVL(l)(X) e fvz(n) (X) € R[X] such that
h(k)(X) =S g(k)(X) for k € [1,n]
and

0 = I hw(X).

ke(l,n]

We have to show that §(k)(X) = lvz(k)(X) for k € [1,n].
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Note that v.(Res(g), -- - gm)) =" = VW(Res(va(l) e ivz(n))) by Lemma 22.(1).

Let s1 := s. Both (lvz(k) (X)) and (g (X))r are admissible lifts of (4, (X))x with respect to s
in the sense of Lemma 22.(1), since

f(X) =ra erp,n} é(k) (X)
hiy(X) =oor Gg(X) for k € [1,n]
FX) Zpar-em e oo (X)
I(X) =p-er gu(X)  for k € [1,n]
FX) =pec-0m) er[l,n] FvJ(k) (X) .

So Lemma 22.(2) yields
Ry (X)) = a0y —am é(k)(X) for k € [1,n].

Let sy := 2(sy — t"). Note that sy = s; + (s; — 2t"”) > s;. Both (lvz(k)(X))k and (g (X))x are
admissible lifts of (é(k)(X))k with respect to sy in the sense of Lemma 22.(1), since

=2 [lkersm 900 (X)
ETI.SQ—t/N é(k)(X) fOI' k € [1771]

(X)
(X)
F(X) =00 er[l,n} }VL(k)(X)
(X) = -0 é(k)(X) for k € [1,n]
(X)

=r2s2=t"") sze[l,n} é(k) (X) -
So Lemma 22.(2) yields

fvb(k) (X) = 2@g-vrmy—um é(k)(X) for k € [1,n].
Let s3 := 2(sg —t"). Note that s3 = 59+ (59 — 2t") > 59+ (51 — 2t"") > so. Continue as above.
This yields a strictly increasing sequence (s;),>1 of integers such that
%L(k)(X) = ot é(k) (X) for k € [1,n] and ¢ > 1.

Hence ,
hiy(X) = é(k)(X) for k € [1,n].

2.4 Hensel with three factors vs. iteration of Hensel with
two factors

2.4.1 General case

2.4.1.1 Situation

Given a factorisation of a polynomial into three factors modulo a power of 7, we want to improve
on its precision in two ways, on the one hand by a direct application of Lemma 16.(1) for three
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factors, on the other hand by an iterated application of Lemma 16.(1) for two factors.
Let R be a discrete valuation ring.

Let m € R be a generator of the maximal ideal of R.

Let f(X) € R[X] be a monic polynomial.

Let g1)(X), 9¢2)(X), 9¢3(X) € R[X] be monic polynomials of degree > 1.

Suppose that Res(gq), 9(2), 9¢3)) # 0. Denote

t” = Vﬂ.(ReS(g(l) 3 9(2) ) 9(3))) ’

We denote
ty = vz(Res(9¢2), 93))) »
Ho= va(Res(ga) . ge9m)) -

We have

Q
~

Res(9a), 9¢2)) - Res(9ay» 93)) - Res(92) 5 93))
Res(9a1)» 92)9(3)) - Res(ge2), 9(3)) -

Res(9a), 92)» 9(3))

=5}
=)

It follows that
" = v

3

—~
=
@

s(901)5 92) 5 93)))

v (Res(9a1y, 9293)) - Res(9e2) , 9(3)))
= Vw(ReS(Q(l) ) 9(2)9(3))) + vr(Res(g(2) 5 93)))
= 1+ 15 -

Let s > 2¢" + 1.

Suppose that
F(X) =r 9 (X) - 92)(X) - 93)(X) -

2.4.1.2 Existence

Now we can apply Lemma 16.(1) to this factorisation into three factors modulo 7°, to obtain
monic polynomials Gy (X), G (X), G@)(X) € R[X] such that

Gy (X) =, e gy (X) for k€ [1,3]

i
v FX) =g §y(X) - Gy (X) - i) (X))

We can also apply Lemma 16.(1) to the factorisation of f(X) into the two factors g(1)(X) and
92)(X) - g(3(X) modulo 7°. Doing so, we shall obtain an improved factorisation of f(X) into,
say, ﬁ(l)(X) and 71(2) (X), where h()(X) is congruent to gy (X) and where 71(2) (X) is congruent
to g(2)(X) - g(3(X), modulo a certain power of 7. Then we can apply Lemma 16.(1) to this
factorisation of }Nl(z) (X) into the two factors g(2)(X) and g(3)(X) modulo said power of .
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We want to compare the results of both methods, i.e. of the above single application of
Lemma 16.(1) for three factors on the one hand, of two subsequent applications of Lemma 16.(1)
for two factors on the other hand.

So we have
(%) F(X) =rs 90y (X) - (929(X) - 93 (X)) -

To apply Lemma 16.(1) to the factorisation (x) into two factors modulo 7* we have to assure
that

!

1. Res(g(l), 9(2)9(3)) # 0,
!
2. s > 2t7 + 1.

1. We have seen above that Res(gn), g(2)9(3)) divides Res(gqy, 9(2) 5 93))-
Since Res(gq1y, 92, 93)) # 0 it follows that Res(ga), 9¢2)93)) # 0.

2. Since
" =t t)

it follows that
>

So we have
s >2t"+1 > 2t/ +1.

By 1. and 2. we are allowed to apply Lemma 16.(1) to (%x). This yields monic polynomials
h(1)<X), h(g)(X) € R[X] such that

FX) =gy h(X)-he(X).
Now we want to apply Lemma 16.(1) to

hy)(X) = oo g92)(X) - g)(X) -

™

So we have to assure that
!
3. Res(g@) s g(g)) 7& 0,
!
4. s —t] > 2t5+ 1.

3. We have seen above that Res(g(2), g(3)) divides Res(gq), 9(2), 93))-
Since Res(gq1), 9(2); 93)) # 0 it follows that Res(g(2), g¢3)) # 0.
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4. Recall that
=t

So
s > 2t"+1 = 2] +2t5+1 > t]+2t5+1.
Hence
s—1t] > 25 +1.
By 3. and 4. we are allowed to apply Lemma 16. (1) to 71(2) (X) = -1y 92)(X) - g(3(X). This
yields monic polynomials g (X)), g(g) (X) € R[X] such that

(2)<X) = (s—t)—tlf g(g)(X)
(3)(X) I 9(3)(X)

Qn Qn

and
h@)(X) = 2-ep-ip G2)(X) - Gz)(X) -

Altogether, the two subsequent applications of Lemma 16.(1) for two factors yield

ha(X) = gy(X)
(i) I)(X) =g 92(X)
5(3) (X) = sty 93 (X)
and
(i) FX) = aem hay(X) - hey(X)

= 25— s iL(D(X) 5(2)(X .

N—
Qn
=
w
)
>
N—

Comparing the result (i) of Lemma 16.(1) for three factors with the result (ii; ,iis) of two sub-
sequent applications of Lemma 16.(1) for two factors, both methods essentially yield a precision
of s — t” for the factors and a precision of 2(s — t”) for the product decomposition.

2.4.1.3 Uniqueness

Suppose given monic polynomials g)(X), §i2)(X), gi)(X) € R[X] and monic polynomials
Gy (X), Go)(X), G (X) € R[X] such that that

9 (X)) =qeem 96k (X) for ke [1,3]
F(X) =pe-en 90)(X) - 92 (X) - Gi3)(X)

Goo(X) =w gu(X) fork € [L3]
F(X) =ra-m G(l)(X) : G(2)( ) - G(3) (X))

g(lc)(X) = 2s-at/ G(k) (X)
for k € [1,3].
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We can also apply Lemma 16.(2) twice to respective factorisations into two polynomials.

Suppose given monic polynomials ﬁ(l)(X ), ﬁ(g)(X ) € R[X]| and monic polynomials
H(l)(X), H(g)(X) S R[X] such that

hay(X) = gy(X)

hoy(X) = . go)(X) - ge(X)
FX) = sy hay(X) - hy(X)

Ho(X) =0 gn(X)

Ho)(X) = v go(X) g (X)
FX) =20y Hay(X) - He(X) .

Lemma 16.(2) yields

hay(X) = 2osp Hay(X)

h)(X) = sy Hep(X) .

Suppose given monic polynomials 5(2)(X), f](g)(X ) € R[X] and monic polynomials

G)(X), G (X) € R[X] such that

92 (X) = - 9@(X)

9)(X) = -y 93)(X)

hiy(X) = ey G2(X) - G3)(X)
(:;(2) (X) = -y 92(X)

6(3) (X) = (-t -ty g~(3)(X) i
Ho)(X) = 2y G(X) - Gg(X)

We have

92(X) - 93 (X) = sy h@)(X) = aucar Hop(X) = sy Goy(X) -

Case t < 2t5 .

We get

5(2) (X) '§(3)(X) = 2(s=t)=tf)

Lemma 16.(2) yields

Altogether, we have

(2) (X) EﬂQ(s—t’l’)—Bt’O’
(3) (X) = 2(s—t)-3tf
X) EW25—3t’1’

X) = 2s-2tf —3tff
X) = 2s—2t/ -3t}

G (X) .
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So if tj = t” or if t{ = ¢”, then the non-iterated method and the iterated method are equally
precise, otherwise the iterated method is more precise.

Case t| > 2t .
We get .

92(X) - §3)(X) = asaw Gpp(X) - G5(X)
Lemma 16.(2), with r := t] — 2t/ , yields

5(2)(X) = 2(s—t{)-3tf—r C:;(Q)(X)
§(3)(X) Eﬂ_2(s—t’1’)—3t8—r G(g)(X)-

Altogether, we have

hiay(X)
92(X)
93(X) =aesp-gy G(X).

Tr2373t/1/ H(l) (X)

7rzs—3t’1’—z” G(g) (X)

0

So if t{ = t”, then the non-iterated method and the iterated method are equally precise, otherwise
the iterated method is more precise.

2.4.2 The case f(X) =, XM
2.4.2.1 Situation

Suppose given a polynomial that is congruent to a power of X modulo 7. Given a factorisation
of this polynomial into three factors modulo a power of 7, we want to improve on its precision
in two ways, on the one hand by a direct application of Lemma 22.(1) for three factors, on the
other hand by an iterated application of Lemma 22.(1) for two factors.

Let R be a discrete valuation ring.
Let m € R be a generator of the maximal ideal of R.
Let f(X) € R[X] be a monic polynomial. Write M := deg(f). Suppose that f(X) =, XM,

Let gy (X), 92)(X), 93 (X) € R[X] be monic polynomials of degree my) := deg(gu)) > 1 for
k € [1,3]. We have g (X) =, X™® for k € [1,3]; cf. Remark 19.

Suppose that m ) < m) < ms) .

Suppose that Res(g(1y, 9¢2) 9¢3)) # 0.

Denote
" = Vﬂ(ReS(g(l) y 9(2) 9(3)))
" = vz(Res(90), 92+ 93))) — 2mqa) —mz) +2 .
We denote
to = vr(Res(g), 93)) » ty = vx(Res(g), 9)) —me) + 1,

ti = vz(Res(ga), 929)) . ' = vx(Res(gn), 9293))) —ma) +1.
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We have

Res(g(1), 9¢2)) - Res(9(1y, 9(3)) - Res(9¢2), 9(3))
Res(gu) ) 9(2)9(3)) : Res(g(z) ) 9(3)) .

Res(91), 9(2) 5 963))

It follows that

va(Res(g1y , 9293) - Res(9e2), 93)))
ve(Res(g(1y, 9293))) + vr(Res(ge2) 5 93)))
= tf+1
and
" =t — 2my — mya) + 2
= ] +t5 — 2ma) — m) + 2
(tf —mq) + 1) + (tg — me) + 1) —mq
= tllll + tg’ —mq) -
Let s > 2t" + 1.
Suppose that
F(X) =rs 90)(X) - 92)(X) - 93 (X) .

Note that s > 2t" +1 > ¢ + " + 1.

2.4.2.2 Existence

So we can apply Lemma 22.(1) to this factorisation into three factors modulo 7°, to obtain monic
polynomials f](l)(X) , g(z) (X) , f](g)(X) € R[X] such that

70 (X) =, e 9(k) (X) forkell,3]

iii
" FX) = G00(6) i) - (X).
We can also apply Lemma 22.(1) to the factorisation of f(X) into the two factors g(1)(X) and
92)(X) - g(3(X) modulo 7°. Doing so, we shall obtain an improved factorisation of f(X) into,
say, iz(l)(X) and B(g)(X), where ﬁ(l)(X) is congruent to g()(X) and where il(g) (X) is congruent
to g(2)(X) - g(3(X), modulo a certain power of 7. Then we can apply Lemma 22.(1) to this
factorisation of A (X) into the two factors g (X) and g (X) modulo said power of 7.

We want to compare the results of both methods, i.e. of the above single application of
Lemma 22.(1) for three factors on the one hand, of two subsequent applications of Lemma 22.(1)
for two factors on the other hand.

So we have

(%) F(X) =xe 90)(X) - (9(X) - 95 (X)) -
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To apply Lemma 22.(1) to the factorisation (**) into two factors modulo 7° we have to assure
that

!

L. Res(g(1)7 9(2)9(3)) 7& 07
!
2. s >t +t+ 1.

1. We have seen above that Res(gn), g(2)9(3)) divides Res(gqy, 9(2) s 93))-
Since Res(gq1y, 92, 93)) # 0 it follows that Res(ga), 9¢2)93)) # 0.

2. Since
" =t +t]
it follows that
t" >t

So we have
s > 2"4+1 > 200 +1 >t +t] +1.

By 1. and 2. we are allowed to apply Lemma 22.(1) to (). This yields monic polynomials
h(1)<X), h(z)(X) € R[X] such that

il(l)(X) Eﬂ_sft/lll 9(1)(X)7
h(X) =_.w 92(X) - g6 (X),
FX) = ey hy(X) - hg(X)

Now we want to apply Lemma 22.(1) to
hiy(X) = o g)(X) - g (X) .

So we have to assure that

!
3. Res(92)» 93)) # 0,
|
4. s =t > th+ty + 1.
3. We have seen above that Res(g(2), g(3)) divides Res(gq), 9(2), 93))-

Since Res(gq1), 92, 93)) # 0 it follows that Res(g(2), g¢3)) # 0.

4. Recall that
=t t

So

s > 2"+1 > 2t"—m—may+3—t] = (2tg—m@e+1)+({tf—muy+1)+1 = (tg+to)+t7+1.
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Hence
s—t > tg+ty +1.

By 3. and 4. we are allowed to apply Lemma 22.(1) to h)(X) = v 92)(X) - g@3)(X). This
yields monic polynomials g2 (X), g (X) € R[X] such that

I2(X) = cung 9@)(X)

9(3)(X) = (s—t]H—ty! 9(3)(X)

and
h@)(X) = 2oy 92)(X) - gy (X) -

Altogether, the two subsequent applications of Lemma 22.(1) for two factors yield

hay(X) = oy 91)(X)
(ivy) 92 (X) =_s—t'—y G(2) (X)
§(3) (X) Eﬂsft’l”ftﬁ,” 9(3) (X)

and

f(X) Eﬂ_z(s_t/lu) h(l) (X) . iL(Q) (X
= sty Py (X) - Gy (X) - g3 (X) -

~—

(ng)

Comparing the result (iii) of Lemma 22.(1) for three factors with the result (ivy,ive) of two
subsequent applications of Lemma 22.(1) for two factors, the former method yields a precision
of s — " for the factors and a precision of 2(s — t"”") for the product decomposition, the latter
method yields a precision of s — t{/ —t|" for the factors and a precision of 2(s — t{’ —t{") for the
product decomposition. Since t" = t{" + ¢ —m) <t + 1, the former method yields a higher
precision.
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Chapter 3

Miscellanea

3.1 Using the discriminant only

We derive the following corollary, in which, roughly, the resultant is replaced by the discriminant.
In general, this will cause loss of precision.

We neglect the question of uniqueness.

Corollary 24. Let R be a complete discrete valuation ring.
Let m € R be a generator of the maximal ideal of R.

Let f(X) € R[X] be a monic polynomial such that A(f) # 0.
Denote t := v(A(f)). Denotet' := [%].

Let s >t+1. Let goy(X), ..., gm)(X) € R[X] be monic polynomials of degree > 1 such that
FX) = ] 9w(X)
ke([l,n]
Then there exist monic polynomials g1, (X), ..., g (X) € R[X] such that

é(k) (X) =sv guy(X)  forke[l,n] .

and

FX) =TT d0(X).

ke(l,n]

Proof. We have t > 2t” by Remark 15. Hence s > t + 1 > 2t” + 1, so that we may apply
Theorem 17.

Since % > t", we have t/ = L%J > t”, whence s —t' < s —t”. So the monic polynomials
I(X) =pevr gu(X)  for k€ [1,n]
and

FX) = 11 9w
]

keln

57



o8

also satisfy
é(k)(X) = st/ g(k)(X) for k € [1,71] ,

as required. O

It might be useful to have the following version of Lemma 16 not involving resultants. Over
a complete discrete valuation ring, it follows from Corollary 24; conversely, an iteration of
Lemma 25 yields Corollary 24.

Lemma 25. Let R be a discrete valuation ring.

Let m € R be a generator of the maximal ideal of R.

Let f(X) € R[X] be a monic polynomial such that A(f) # 0.

Denote t := v(A(f)). Denotet' := [%].

Letn > 1. Let gy(X), ..., gwm)(X) € R[X] be monic polynomials of degree > 1.

Let s >t+1.

Suppose that

X) = [] 9(X)

ke([l,n)

Then there exist monic polynomials gy (X), ..., Gm)(X) € R[X] such that

G (X) =pev gw(X)  for k€ [1,n]

and
f ( =g2(s—t') H g(k
ke(ln]
Proof. Since s > t, Lemma 16 gives monic polynomials g1y(X), ..., gm)(X) € R[X] such that
Gy (X) =, guy(X)  for k € [1,n]
and

f( = 2(s—t) H gkz)

ke[l,n]

By Remark 15 we know that
t>2t"

whence £ > ¢”, which, together with t” € Z, yields

t'>1t".

Hence the assertion is shown. O
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3.2 Hensel’s lemma, classical version

We derive the classical version of Hensel’s Lemma from Lemma 16. More precisely speaking, we
derive the inductive step for Hensel’s Lemma in the version found e.g. in [8, (I1.4.6)].

Lemma 26. Let (| k be an extension of fields with ¢ algebraically closed.
Let hq)(X), h@)(X) be polynomials in k[X].
Then hay(X), h)(X) are coprime in k[X] if and only if hy(X), h)(X) are coprime in £[X].

This is also a consequence of Euclid’s algorithm. We give a direct argument.
Proof. First we show that
|
hy(X), h(z)(X) are coprime in k[X] < h@)(X), he)(X) are coprime in ¢[X] .

We assume that hq)(X), h)(X) have a common factor of degree > 1 in k[X].
Then they also have a common factor of degree > 1 in ¢[X]. 4
So they are coprime in k[X].

Now we show that

|
hy(X), h(2)(X) are coprime in k[X] = h@)(X), he)(X) are coprime in ¢[X] .

We assume that h)(X), h)(X) have a common factor ¢(X) of degree > 1 in £[X].

Since ¢ is algebraically closed, ¢(X') has aroot & € £. Let pe(X) € k[X] be its minimal polynomial
over k. We have

ha(E) = 0,
hi(§) = 0.
It follows that (X)) is a factor of both h(1)(X) and ) (X).
Since deg pe > 1 it follows that hy(X), he)(X) are not coprime in k[X]. 7
So h1)(X), h2)(X) are coprime in £[X]. O
Lemma 27 (Hensel, [5, p. 81], [3, §374], cf. e.g. [8, (IL.4.6)]).

Let R be a discrete valuation ring. Let m € R be a generator of the maximal ideal of R.

Given u(X) € R[X], we denote by u(X) € B/ [X] its image under the residue class map
RIX] = B/z[X].

Let f(X) € R[X] be a monic polynomial such that A(f) # 0.
Let s > 1. Let gay(X), g¢2)(X) € R[X] be monic polynomials of degree > 1 such that

(X)) == 901y (X) - g92)(X)

and such that gay(X), gey(X) are coprime in 11/ [X].
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Then there exist monic polynomials gy (X), §e)(X) € R[X] such that

I (X) == gu)(X),
9(2)()() =rs g(2)(X)

and

F(X) =r gy (X) - gp(X) -

Proof. Let E be an algebraic closure of 12/ .
Denote

Res(9a), 9¢2)) =: Resr(9q), 9(2))

the resultant of gy, g in R.

Likewise we define Resr, (9(1), 92)) and Resg(gq), 9@2))-
Note that

Resr/,(9(1), 92)) = Resr(9), 92)) -

Since g1)(X), g(2)(X) are coprime in B/[X] we know by Lemma 26 that g1)(X), g (X) are
also coprime in F[X].

So

Resr, (1), 9@2) = Resr(9a), 92)
= Resp(90), 9)
20,

So we have

Resr(941) s 92)) Zr 0.

So
t" = vz (Resr(90), 9¢2)) = 0.

Since s > 1 = 2¢" +1, Lemma 16 yields that there exist monic polynomials §1y(X), g2)(X) €
R[X] such that

I)(X) =r g)(X),
Jo(X) = g)(X)
and
F(X) =re goy(X) - g (X) -
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3.3 Newton-Hensel

3.3.1 Lifting roots

Remark 28. Let R be a commutative ring.
Let w € R. Let f(X) € R[X].

Then we have the first degree Taylor ezpansion
F(X) = f(w) + (X —w)f'(w) + O((X - w)?).
Proof. We consider f(X) — f(w). By polynomial division by (X — w) we have
F(X) = f(w) = (X —w)h(X) +r

for a polynomial A(X) € R[X] and r € R.
Evaluation at w yields r = 0.

So we have

for a polynomial k(X) € R[X].

Hence

Deriving yields

So

Lemma 29. Let R be a discrete valuation ring, with maximal ideal generated by m € R.

Let f(X) € R[X] be a polynomial. Let w € R be such that f'(w) # 0. Suppose given d € Z: such
that

f(w) = v.(f(w)) = v.(f(w vi(f(w)) = a
O () = @) vl w) 2 d > () = oz 0.

Note that
f(w) Eﬂ-Qa O
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Then there exists W € R, unique modulo m*=°R, such that

W = d w ,

f(if}) = 2d 0.

We call such an element w € R an admissible lift of w € R with respect to d.

In addition, for any admissible lift w of w € R with respect to d we have

va(f(@) > va(f(w)) if d=va(f(w)) = va(f'(w)),

and we have

Va(f(@)) > 2va(f' (@) = 2vx(f'(w)) .

Proof. For existence, we let

- flw)
W = w Filw)
Note that w =4 w.
We have
fw) = flw ﬁ((i)))
O f(w) - L f/(w) + O((£15)2)
— 0+ 0((4)).
So

f(ﬁ}) = 2d 0.
Now we show uniqueness modulo 724~ R.

Recall that

Suppose given W € R such that

We have to show that

Let Z € R be such that

w=w+7z.
So
fw) = flw+m%2)
2 f(w) + mEf (w) + O(n) .
So
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Likewise, for 0 = w + 792, where 2 € R, we have

f() =pea f(w) + 72 f (w) .

So we have

Fw) + 72 (W) Zpoa f(B) Zpea 0 Zpaa f(B) Zpea f(w) + 72 (w) .

It follows that
12 f (W) Zpea T2f (W) .

So
(W) =g Af(w)
So
z =d— %
Hence
d~

W= w+T7T"Z =r2d-a w+72 = w.
Finally, we show that the additional assertions hold for an element w € R such that

(*) ﬁj =pd W,

(**) f(ﬁ)) =r2d 0.

Again, we write @0 = w + 792, where 2 € R; cf. (*).

If d=v,(f(w)) —v(f'(w)), then

(@) S 2
= 2(Va(f(w)) = va(f'(w)))
= Va(f(w) + (va(f(w)) = 2vo(f'(w)))
2 v (fw)
note that f(w) # 0.
We have
Fl) = flw+n)

R.:28 f’(w)+7Td%f”(w)+o((7rd%)2)-

Note that d > a = v,(f'(w)). It follows that f'(0) = f'(w) #pa O.
So vz (f'()) = va(f'(w)) < d.

Hence
(@) S 2d > 2va(f(@) = 2va(f ().
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Theorem 30. Let R be a complete discrete valuation ring. Let m € R be a generator of the
mazximal ideal of R.

Let f(X) € R[X] be a polynomial. Let w € R be such that f'(w) # 0 and

va(f(w)) > 2va(f'(w)) .

Write
d = vi(f(w)) —v.(f(w)) .

Then there exists a unique element w € R such that

v _
W =pd W,

fw) = 0.

In addition, we have

va(f'()) = va(f'(w)).

. \%
Proof. We show existence of w.

We want to construct a sequence (w;);>1 in R and a sequence (d;);>; in Zxq such that wy; = w
and d; = d and such that
di < dl'+1

W; =pd; Wi+1
f(wi+1> =,2d; 0
Va(f'(wis1)) = va(f'(ws))

for ¢ > 1.

Then, letting
w = limw; ,
(2
we have

v . R.69 _.
w = limw; = limw;, = wy = w
7 (2

and

R. 67
) =

fo) = fllimw,) "E" lim f(w; 0.

Furthermore, we have
v . R. 71 . R. 66 ;.
Va(F) = va( i) " v (lim ) " v (7)) = va(7(w))
So we have to construct such a sequence.
Let wy ;= w and d; :=d.
Step 1. It follows by Lemma 29 that there exists wy € R such that

w2 Eﬂ'dl wl bl

f(wg) =,2d; 0
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and
ve(f(wa)) > va(f(wr)),
Va(f(wa)) > 2vi(f'(wa)) = 2va(f'(w1)).
We define
dy = vg(f(ws)) _VW(f/(MQ)) .
Then

dy = Vx(f(w2)) = va(f'(ws))

|
.
S

Step 2. Tt follows by Lemma 29 that there exists w3 € R such that

W3 =pdy W2,

f(UJ3> Eﬂ_2d2 0

and
ve(f(ws)) > va(f(ws)),
Va(f(ws)) > 2va(f'(ws)) = 2vi(f'(w2)) .
We define
d3 = vi(f(wsz)) — va(f'(w3))
Then

Steps > 3. Continue as above.
We show uniqueness of 1.

Suppose given w € R such that

and XU € R such that

v Y
We have to show that w = w.

Write a := v, (f'(w)). Both w and W are admissible lifts of w with respect to d in the sense of
Lemma 29. Therefore v, (f'(w)) = a = Vﬂ(f’(tvu)) by Lemma 29.
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Let d; := d. Both w and 2 are admissible lifts of % with respect to d; in the sense of Lemma 29,
since
I\l/) =rd1 I\l/) s
f(ﬁ)) =n2d 0 )
Voo v
w =pd w ,
f(?j)) = 2d; 0.
So Lemma 29 yields

Voo v
w :71.2(11—(1 w .

Let dy := 2d; — a. Note that dy = dy + (d; — a) > d; > a. Both w and 1% are admissible lifts of
w with respect to dy in the sense of Lemma 29, since

So Lemma 29 yields

Let d3 := 2dy — a. Note that d3 = dy + (dy — a) > dy > a. Continue as above.

This yields a strictly increasing sequence (dy),>1 of integers such that

A
W =_a, W for ¢ > 1.

™

Hence

S<

N4
w =

3.3.2 Comparison of Hensel and Newton-Hensel

Let R be a discrete valuation ring. Let 7 € R be a generator of the maximal ideal of R.

Let f(X) € R[X] be a monic polynomial with deg f > 2. Let w € R be such that f(w) # 0.
Write

t" = vi(f'(w)) .
Suppose that
s > 2t".

1. We want to apply Hensel, i.e. Lemma 16, to lift w.

By polynomial division, we have f(X) = (X —w) - g2)(X) + f(w) = (X —w) - go)(X) for
some monic polynomial g2 (X) € R[X].
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Write g1y(X) := X —w. Then

J(X) = 90)(X) - g (X) -

Since

(X)) =rs gy (X) - 9oy (X) + 901y (X) - g2)(X) = (X —w) - gy (X) + g2)(X) ,

we have
f (W) =z gey(w) .
Since t” < s, this implies

1= va(f'(w) = Valge(w) =" va(Res(X —w, g(X))) = va(Res(ga, g0)) -

In particular, this resultant does not vanish.

Lemma 16.(1) yields monic polynomials §)(X), G2)(X) € R[X] with the following properties.
o X —ﬁ} = g(l)(X) = st 9(1)(X) = X —w

* J2)(X) = g2y(X)

o f(X) =r2(s—t") §(1)(X) '§(2)(X) = (X —IAU) ‘§(2)(X)

In particular, comparing the constant coefficients resp. plugging in 0, we obtain

A
oW =_. v W,

[ ] f(ﬁ]) Eﬂg(sft//) 0

2. We want to apply Newton-Hensel, i.e. Lemma 29, to lift w.
Since 2t" < s, we have f'(w) # 0.

Write
d = vi(f(w)) = va(f'(w)) = s—1".

By assumption, we have d > v.(f"(w)) =t".

Lemma 29 yields an admissible lift @w € R of w with respect to d, i.e. we have the following

properties.
® W=_4w
° f(lD) = 2d 0

The admissible lift is uniquely determined modulo 724" R.
3. Comparison of Hensel and Newton-Hensel via Newton-Hensel.

Recall that d = s —t”.
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So

L t/l\J = d W,
° f(ﬁ}) = 2d 0.

So both @ from 1. and @ from 2. are admissible lifts of w with respect to d. The uniqueness
from 2. now guarantees that

AN
w = 2d—t" w .

4. Comparison of Hensel and Newton-Hensel via Hensel.
We want to use the uniqueness assertion of Lemma 16.(2) to recover the result in 3.

Recall that d = s — ¢” and that

o X —ww = gn)(X) = g(X) = X —w,

e §)(X) = g2)(X),

o f(X) =paem G0)(X) - Gi)(X) = (X — ) - ) (X).
On the other hand, polynomial division yields

FX) = (X =) - hy(X) + f() Zpee (X =) - hy(X) .
Writing iz(l)(X) = X — w, we have
F(X) Zpan hy(X) - hey (X)
We have @ =4 w =,4 W, and so
hy(X) = X — 0 = X —w.

Moreover,

iL(l) (X) . h(g) (X) Eﬂ.Qd f(X) Eﬂ.Qd §(1) (X) '§(2) (X) .

So
I0(X) - he)(X) = (X —w) - hey(X)

= 7‘6(1>(X )+ hey (X)
=rt G)(X) - g2 (X)
(X)) 9@ (X) -
Since §(1)(X) = X — W is not a zero divisor in R/W [X |, we conclude that
h)(X) =m0 g)(X) .

So we may apply Lemma 16.(2) with r := 0 to get
J0)(X) =gaa-v by (X)

1.e.

A
w = 2d—t" w .



Chapter 4

Examples

4.1 Construction of examples

To illustrate Theorem 17 we consider some polynomials in the complete discrete valuation ring
Z,, for a prime number p. We turn Lemma 16 into an algorithm and iterate it a few times. Given
a polynomial in Z[X| C Z,[X] and a factor decomposition in Z[X] to a certain p-adic precision,
this algorithm returns a factor decomposition in Z[X] to a higher p-adic precision.

We use the notation of Lemma 16.
We choose the initial precision to be t 4 1.

Let s be the current precision.

Write
gm(X) = > XY
I (X) =1 3wy X!
JE€0,m 1))

for k € [1,n], where cuy;, ¢); € Z.
Let the deviation be

/

s' = min {va(cw); — Cwy;) : k€ [1,n], 7 €[0,mu]}.

By Lemma 16, we have s’ > s —t".

Let the defect be s — s'. The defect is bounded above by ¢”.

Let
fX) = > \NX
J€[0,M]
I gwX) = > X’
k€[1,n] J€[0,M]

where A\;, u; € Z.

Let the (maximal possible) precision for the subsequent step be
§ = min {v.(A\; —p;) : j€[0,M]}.

69
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By Lemma 16, we have § > 2(s — t”). Recall that 25’ > 2(s —t").

Let the surplus be 5§ — 2s’; cf. Conjecture 59 below.

In the examples below we will concentrate on the following observables.

e The current p-adic precision s, resulting from the initial data resp. the previous step.

e The deviation.
e The defect.

e The surplus.

We use the computer algebra system MAGMA [1] (student version of V2.16-13) and the following

code.

Z := Integers();

Q := FieldOfFractions(Z);

PQ<X> := PolynomialRing(Q);

p :=5;

f := PQ!(X"6 - 6%¥X"3 - 6*%X72 - 5xX + 2);
t := Valuation(Discriminant(f),p);

R := pAdicRing(p,t+1);

PR<X> := PolynomialRing(R);
g_fac := Factorisation(PR!f);

g =

n := #g;

M := Degree(f);

m := [Degree(u) : u in gJ;

mm := [0] cat [&+[m[i] : i in [1..k]]

print "initial decomposition:", [g[i]

f_approx := &*[PQ!gl[i] : i in [1..n]];

s = t+1;
MS := RMatrixSpace(Rationals(),M,M);

A := MS!0;
for k in [1..n] do

a := Coefficients(&*[g[i] : i in [1..n]

for j in [1..m[k]] do
for r in [0..#a-1] do

// prime number under consideration

// polynomial f(X) under considera-
// tion; cf. Example 55 below
/]t

cat[[PQ!g_fac[il[1] : j in [1..g_fac[il[2]]1] : i in [1..#g_facll;

: k in [1..n]];

;i din [1..n]];

!/l M

// m(l),...,m(n)

/7 m©@ o m™

// product of ggu),...,9m)

// current precision

// calculation of valuation of
// discriminant

| i ne k]);
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Almm[k]+j,j+r] := alr+1]; /1 A9y, -5 9m))
end for;
end for;
end for;
tt := Valuation(Determinant(A),p); /]t

while f ne f_approx do
b := p (tt-s)*PQ! (f - &*g);
beta := Coefficients(b);
VS := RMatrixSpace(Rationals(),1,M);
betavec := VS!0;
for i in [1..#betal do
betavec[1,i] := betalil;
end for;
/7 (Bor- -, Bui)
MS := RMatrixSpace(Rationals(),M,M);
A := MS!0;
for k in [1..n] do
a := Coefficients(&*[g[i] : i in [1..n] | i ne k]);
for j in [1..m[k]] do
for r in [0..#a-1] do

Almm[k]+j,j+r] := alr+1]; /7 Algay, - 9w))
end for;
end for;
end for;
print "valuation of resultant = ", Valuation(Determinant(A),p);
// returns VW(RGS(Q(U, o ,g(n))) ,

// known to be equal to t”

U := betavec * A™-1;
u := [&+[Ul1,mm[k] + i + 1] * (PQ!'X)"1 : i in [0..m[k]-1]] : k in [1..n]];
gg = [glk] + p~(s-tt)*ulk] : k in [1..n]];

/7 Gays -5 9m)

cdg := &cat[Coefficients(ggl[i] - gl[i]l) : i in [1..n]];
// ask for variation of new factors
min_val_cdg := Minimum([Valuation(cdgli],p) : i in [1..#cdgll);

print "deviation = ", min_val_cdg; // returns deviation §
print "defect = ", s - min_val_cdg, "(bounded above by", tt, ")";
// returns defect s — s (< t7)

f_approx := &*[PQ!gg[i] : i in [1..n]]; // product of guy,...,3gm)
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c := Coefficients(f - f_approx);

s := Minimum([Valuation(c[i],p) : i in [1..#cll);

print "s = ",s; // returns the "new" s for the next
// induction step (the "best" s we
// can get, the increment from
// "old" s to "new" s can be greater
// than 1)

print "surplus = ", s - 2*min_val_cdg;

g := [PQ!PolynomialRing(pAdicRing(p,s))!ggli] : i in [1..n]];
// choice of inverse image
print "g = ", g; // returns the list gu),...,Jm)
// of the factors of the output
// factorisation of this step,
// which is the input factorisation
// of the next step
end while;

The factorisations modulo powers of p and the observed parameters depend on the choice of the
inverse images in the last but one step; cf. Examples 35, 36 below. Therefore, in some examples
we shall record not only the observed parameters, but also the lifted decompositions of f(X)
modulo some powers of p that result from the choices made by Magma.

If f(X) =, XM and the degrees of the factors gk)(X) are sorted increasingly, then this algorithm

P

is at the same time an implementation of the proof of Lemma 22, carrying an extra factor
along, which appears on both sides of the equation U - A(gay, ..., gwm)) = (Bo ... Bu—1), as the
reader may check by comparison with the proof of Lemma 16. In this case, the defect s — s’ is
bounded above by t”; cf. Lemma 22.

In the Examples 48, 49 below, we raise the initial precision from ¢+ 1 a bit. This will be indicated
there.

4.2 Examples for p = 2

Example 31. We consider the polynomial
f(X)=X>+X*—2X +38

at p = 2.
This polynomial is also used as an example in [7, §3.12, Einleitung zu §4, §4.4].
We start with initial precision s = 3.

We consider the development of the factors g)(X), g(2)(X), g(3)(X) during steps 1 to 6, starting
with the initial factorisation during step 1.



step 1 | gy(X) =X
92)(X) =X +2
g3 (X) =X +7
step 2 | gy(X) =X +12
g2)(X) =X +14
g3 (X) =X +7
step 3 | gy(X) = X +52
g2 (X) =X +54
ge)(X) = X +23
step 4 | g)(X) = X + 980
9@ (X) = X +470
9(3)(X) = X 4599
step 5 | gy (X) = X 4 167380
9 (X) = X + 224214
g3 (X) = X + 132695
step 6 | gy (X) = X 4 1339592148
(X)

93)(X) = X + 3497133655

We obtain the following results in the first 10 steps. The defect is bounded above by ¢’ = 1.

step | current | deviation | defect | surplus
precision
s s’
1 3 2 1 0
2 4 3 1 0
3 6 5 1 0
4 10 9 1 0
5 18 17 1 0
6 34 33 1 0
7 66 65 1 0
8 130 129 1 0
9 258 257 1 0
10 514 513 1 0
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The defect seems to be constant with value 1. The surplus seems to be constant with value 0.

We observe that the defect is maximal.

Note that in step 1, the precision grows only by 1; cf. Lemma 25.
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Example 32. We consider the polynomial
f(X)=X°"-3X*+X -3

at p = 2. We start with initial precision s = 5.

We consider the development of the factors ga)(X) and g)(X) during steps 1 to 6, starting
with the initial factorisation during step 1.

step 1 | gy(X) = X? + 22X 429
gi2)(X) = X3 +10X2+7X+1
step 2 | gy (X) = X% 4 438X + 861
(2)(X) = X3+ 586X2 + 519X + 289
step 3 | gy(X) = X? +201142X + 102237
g2)(X) = X? + 847434 X2 + 794119X + 477473
step 4 | gy(X) = X? + 251921633718 X + 311299247965
@) (X) = X3 — 251921633718 X2 — 495014109689.X + 194909784353
step 5 | gy(X) = X? — 270217790319937134063178 X — 544923714111370010980515
2)(X) = X3 +270217790319937134063178 X * + 421158365255857157709319.X

— 134133273637563871573727

step 6 | g)(X) = X? + 1161841035186714144482004276703276572678013784502.X
—8896149675014378390198791312919731229595431075

g2)(X) = X3 — 1161841035186714144482004276703276572678013784502.X 2
+ 1232654860762977154444380361450459171069714243079.X
— 254604116792662003423810497290610860675602888415

We obtain the following results in the first 10 steps. The defect is bounded above by " = 0.

step | current | deviation | defect | surplus
precision
s s
1 5 5 0 0
2 10 10 0 0
3 20 20 0 0
4 40 40 0 0
) 80 80 0 1
6 161 161 0 0
7 322 322 0 0
8 644 644 0 3
9 1291 1291 0 1
10 2583 2583 0 0
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Example 33. We consider the polynomial
f(X) = X"043X° +2X° + X? +3X -2

at p = 2. We start with initial precision s = 10.

We consider the development of the factors gq)(X), ..., g¢)(X) during steps 1 to 4, starting
with the initial factorisation during step 1.

step 1 | ga)(X) = X + 198

= X2+ 949X + 425
= X3 +379X? + 766X + 413

(X)
(X)
(X)
(X)
(X)
step 2 | g (X)
(X) = X2 + 187188X + 14687
(X) = X2 + 234198X + 92367
(X) = X2 + 86965X + 154025
95 (X) = X3 4 214395 X2 4 178942X + 252317
(X)
(X)
(X)
(X)
(X)
(X)
(X)
(X)
(X)
(X)

= X — 24530323258

= X? + 4237482804 X — 811320993

= X? + 23559377622X + 6353938639

= X? — 3594955851 X — 28305630807

= X3 4 328418683X?% + 6572129022X + 25297148317

= X + 10327978227227752646

= X? + 114409858972804897588 X — 363420929239795091105

step 3 | g(1)

step 4 | g(1)

+ 303003932483942341021

We obtain the following results in the first 10 steps. The defect is bounded above by " = 2.

step | current | deviation | defect | surplus
precision
s s
1 10 9 1 0
2 18 18 0 0
3 36 35 1 0
4 70 69 1 0
5 138 137 1 0
6 274 273 1 0
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step | current | deviation | defect | surplus
precision
s s
7 546 545 1 0
8 1090 1089 1 0
9 2178 2177 1 0
10 4354 4353 1 0

We observe that the defect seems to be eventually constant with value 1. The surplus seems to
be constant with value 0.

Example 34. We consider the polynomial
f(X) = X1 —3X°+3X* —2X? —2X? - 3X —2

at p = 2. We start with initial precision s = 3, for which we have the initial factorisation into
the factors

gny(X) = X +6
92)(X) X +5
93)(X) X +3
91)(X) X?4+4X? 45X +5
95 (X) = X' +6X°+7X+3.

We obtain the following results in the first 16 steps. The defect is bounded above by ¢’ = 1.

step | current | deviation | defect | surplus
precision
s s
1 3 3 0 0
2 6 6 0 0
3 12 12 0 0
4 24 24 0 0
5 48 48 0 0
6 96 96 0 0
7 192 192 0 0
8 384 383 1 0
9 766 765 1 0
10 1530 1529 1 0
11 3058 3057 1 0
12 6114 6113 1 0
13 12226 12225 1 0




step | current | deviation | defect | surplus
precision
s s
14 24450 24449 1 0
15 48898 48897 1 0
16 97794 97793 1 0

7

We observe that the defect seems to be eventually constant with value 1. The surplus seems to

be constant with value 0.

Example 35. We consider the polynomial

f(X)=X"+3X*-3X+3

at p = 2. We start with initial precision s = 5.

We consider the development of the factors gq)(X) and g)(X) during steps 1 to 6, starting
with the initial factorisation during step 1.

step 1 | gay(X) = X% 4+ 14X + 21
g2y(X) = X3 +18X2 + 15X + 23
step 2 | ga)(X) = X? + 1518X + 1333
g2)(X) = X? +530X? + 1039X + 1879
step 3 | gy (X) = X? + 2678254X + 734517
92)(X) = X3 4+ 1516050X 2 + 3773455.X + 3252055
step 4 | g1)(X) = X? + 981553700334X — 969776876235
92)(X) = X? — 981553700334 X2 + 5362836673551.X + 3109471493975
step 5 | ga)(X) = X? + 136856578014323778920177134X + 66283235484745208632653109
g2y(X) = X3 — 136856578014323778920177134.X % + 63782842028386175032071183.X
+ 129490234793427530966736727
step 6 | ga)(X) = X? + 82422067802911383256208107137144780115218721818598894.X

— 85698031960557848133419601243968614722028563974113995
g2)(X) = X3 — 82422067802911383256208107137144780115218721818598894 X 2

— 22918790278798121204233407851463930424639208936598513.X

— 60433394948600245234823447328740042682277080945549481

We obtain the following results in the first 12 steps. The defect is bounded above by ¢’ = 0.

step | current | deviation | defect | surplus
precision
s s’
1 5 5 0 1
2 11 11 0 0
3 22 22 0 0
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step | current | deviation | defect | surplus
precision
s s
4 44 44 0 0
5 88 88 0 1
6 177 178 0 0
7 356 357 -1 2
8 716 716 -1 1
9 1433 1433 0 1
10 2867 2868 0 0
11 5736 5736 —1 0
12 11472 11472 0 0

We observe that the defect is negative in certain steps.

Example 36. We consider the polynomial

f(X)=X"+3X%*-3X +3

at p = 2. We start with initial precision s = 5.

This is the same polynomial as in Example 35. We will vary the inverse images chosen in the
last but one step of the algorithm, to the effect that the factors g, (X) will change, and so will

all of the observed parameters.

We consider the development of the factors ga)(X) and g()(X) during steps 1 to 6, starting

with the initial factorisation during step 1.

step 1 | gay(X) = X2 + 14X + 21
@) (X) = X? +18X* 4 15X + 23
step 2 | gy(X) = X? + 1518X + 3381
(X)) = X3+ 530X2 + 1039X + 3927
step 3 | gay(X) = X2 + 2678254 + 13317429
@) (X) = X? + 5710354.X? 4 7967759X + 15834967
step 4 | gy(X) = X? — 51795004432914.X + 86991153345845
g2)(X) = X3 +51795004432914.X? + 5362836673551.X + 196623517982551
step 5 | gy (X) = X% 4 9421406872654675840663608814.X + 26681994080120421118963823925
@) (X) = X? — 9421406872654675840663608814.X ? + 682752861671076312481633295.X
+ 17151165774967406310829694807
step 6 | gy (X) = X? — 34781851486896060144396186760532389147211096307858350610.X
+ 479202282373846182603439613140015228562038631898947466549
g2)(X) = X3 + 34781851486896060144396186760532389147211096307858350610.X 2
+ 191155899932740836958999558229149606726013066283467772943 X
+ 567729164495863221776532750111860812488060567688079056727




We obtain the following results in the first 12 steps. The defect is bounded above by ¢ = 0.

step | current | deviation | defect | surplus
precision
s s
1 5 5 0 1
2 11 11 0 1
3 23 23 0 1
4 47 47 0 0
5 94 94 0 0
6 188 188 0 0
7 376 376 0 3
8 755 755 0 0
9 1510 1510 0 0
10 3020 3020 0 0
11 6040 6040 0 1
12 12081 12081 0 0
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Cf. the table in the preceding Example 35, dealing with the same polynomial.
Example 37. We consider the polynomial
f(X) = X1 -3X° -3X* —2X*4+3X? -3X —1

at p = 2. We start with initial precision s = 9, for which we have the initial factorisation into
the factors

g (X) = X?+100X + 359
g2(X) = X?+375X%+ 183X + 143
g (X) = X°+37X*+191X3 4 365X2 + 66X + 71.

We obtain the following results in the first 13 steps. The defect is bounded above by " = 2.

step | current | deviation | defect | surplus
precision
s s
1 9 8 1 0
2 16 16 0 0
3 32 31 1 0
4 62 62 0 0
5 124 124 0 0
6 248 247 1 0
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step | current | deviation | defect | surplus
precision
s s
7 494 494 0 0
8 988 988 0 0
9 1976 1976 0 0
10 3952 3951 1 0
11 7902 7901 1 0
12 15802 15802 0 0
13 31604 31604 0 0

The defect seems to be non-periodic. The surplus seems to be constant with value 0.
Example 38. We consider the polynomial
f(X) = X1 -3X° -3X*—2X® - X?-3X +3

at p = 2. We start with initial precision s = 9, for which we have the initial factorisation into
the factors

g(X) = X?+28X +375

go(X) = X?+215X? + 199X + 123

g3 (X) = X°+269X* 4+ 231X3 +177X? + 394X + 239 .

We obtain the following results in the first 13 steps. The defect is bounded above by " = 2.
step | current | deviation | defect | surplus
precision
s s

1 9 8 1 0
2 16 16 0 0
3 32 31 1 0
4 62 61 1 0
) 122 122 0 0
6 244 244 0 0
7 488 488 0 0
8 976 975 1 0
9 1950 1950 0 0
10 3900 3900 0 0
11 7800 7799 1 0
12 15598 15597 1 0
13 31194 31194 0 0

The defect does not seem to show a regular behaviour, whereas the surplus seems to be constant

with value 0.
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Example 39. We consider the polynomial
f(X) = X®+3072X* + 16384

at p = 2. We start with initial precision s = 103, for which we have the initial factorisation into
the factors

guy(X) = X +4806835024200164988203597724980

go(X) = X —4806835024200164988203597724980

g3 (X) = X°%—1093062124198142780466248559984.X *
—4943636030726675686411786481408 X2 — 4341143474460317541052331090944.

We obtain the following results in the first 10 steps. The defect is bounded above by t” = 23.
Since f(X) =, X®, the defect is even bounded above by t"” = 22.

step | current | deviation | defect | surplus
precision
s s
1 103 100 3 0
2 200 196 4 0
3 392 387 5 0
4 e e 1 0
5 1546 1537 9 0
6 3074 3071 3 0
7 6142 6135 7 0
8 12270 12267 3 0
9 24534 24527 7 0
10 49054 49051 3 0

The defect does not seem to show a regular behaviour, whereas the surplus seems to be constant
with value 0.

Example 40. We consider the polynomial
f(X) = X®+3072X72 + 49152

at p = 2. We start with initial precision s = 103, for which we have the initial factorisation into
the factors

gn(X) = X?—4518325313890813072239378327856

g2(X) = X?+3656840515312832738059998389772.X
—3029064992395295772940018582304.X + 955005618431619133244515494176

gi3(X) = X?—3656840515312832738059998389772.X 2
—3029064992395295772940018582304.X — 955005618431619133244515494176.
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We obtain the following results in the first 10 steps. The defect is bounded above by t” = 38.
Since f(X) =, X8, the defect is even bounded above by t"” = 33.

step | current | deviation | defect | surplus
precision
s s
1 103 95 8 0
2 190 187 3 0
3 374 371 3 0
4 742 741 1 0
5 1482 1475 7 0
6 2950 2947 3 0
7 5894 5893 1 0
8 11786 11779 7 0
9 23558 23555 3 0
10 47110 47107 3 0

The defect does not seem to show a regular behaviour, except for seemingly eventually having
values in {1, 3,7}, whereas the surplus seems to be constant with value 0.

4.3 Examples for p = 3

Example 41. We consider the polynomial
f(X) = X°+X? - X +17
at p = 3. We start with initial precision s = 3.

We consider the development of the factors gq)(X), g2)(X), g(3)(X) during steps 1 to 6, starting
with the initial factorisation during step 1.

step 1 | gay(X) =X +22
g2)(X) = X + 16
g)(X) =X +17

step 2 | gay(X) =X +49
g2)(X) = X + 475
93)(X) = X + 206

step 3 | ga)(X) = X + 42574
92)(X) = X + 4606
93)(X) = X + 11870

step 4 | g)(X) = X + 372543349
92)(X) = X + 73382830
93)(X) = X + 328914800
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step 5 | gay(X) = X — 7088836743567680
92)(X) = X + 4687989319796947
95 (X) = X + 2400847423770734
step 6 | gay(X) = X + 1538938796580846668959159516393
(X)

93)(X) = X — 5137125380081211175386751119340

We obtain the following results in the first 10 steps. The defect is bounded above by ¢’ = 1.

step | current | deviation | defect | surplus
precision
s s
1 3 3 0 0
2 6 5 1 0
3 10 9 1 0
4 18 17 1 0
5 34 33 1 0
6 66 65 1 0
7 130 129 1 0
8 258 257 1 0
9 514 513 1 0
10 1026 1025 1 0

The defect seems to be eventually constant with value 1. The surplus seems to be constant with

value 0

Example 42. We consider the polynomial
f(X) =X - X' —6X°—4X?+6X -5

at p = 3. We start with initial precision s = 7, for which we have the initial factorisation into

the factors

= X +193
= X +418
= X%+ 160X + 388
= X2+ 1416X + 88.

We obtain the following results in the first 10 steps. The defect is bounded above by " = 2.

step | current | deviation | defect | surplus
precision
s s’
1 7 5 2 0
2 10 8 2 0
3 16 14 2 0
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step | current | deviation | defect | surplus
precision
s s
4 28 26 2 0
5 52 50 2 0
6 100 98 2 0
7 196 194 2 0
8 388 386 2 0
9 772 770 2 0
10 1540 1538 2 0

The defect seems to be constant with value 2, assuming its upper bound. The surplus seems to
be constant with value 0.

Example 43. We consider the polynomial

f(X) = X' —243X? 4 236196

at p = 3. We start with initial precision s = 61, for which we have the initial factorisation into

the factors

g(X) =
9o (X) =

X2 —13042118319744681711552300219
X8 +13042118319744681711552300219X° — 56032415346549399812708590278 X *
+11087349476104727094118682187X? + 51474734628950573644800392019.

We obtain the following results in the first 11 steps. The defect is bounded above by t” = 10.
Since f(X) =3 X9 the defect is even bounded above by " = 9.

step | current | deviation | defect | surplus
precision
s s’
1 61 61 0 0
2 122 117 ) 0
3 234 234 0 0
4 468 463 5 0
5 926 926 0 0
6 1852 1847 5 0
7 3694 3694 0 1
8 7389 7384 5 0
9 14768 14768 0 0
10 29536 29531 5 0
11 59062 59062 0 0

The defect seems to be periodic.
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Example 44. We consider the polynomial
f(X) = X" +54X — 243

at p = 3. We start with initial precision s = 46, for which we have the initial factorisation into
the factors

guy(X) = X +1254845291302170687078

g2)(X) = X°+ 3439114880299728595329.X2 + 2097912255269159518284.X
+2387878303991212496958

gi3(X) = X+ 4168977948050601813522.X° + 3414335924445189447372.X*
—469523799801953629710X3 — 3733781694469525960542 X
+2741122263554615006433.X + 3057293995913895085035.

We obtain the following results in the first 10 steps. The defect is bounded above by " = 13.
Since f(X) =3 X'°, the defect is even bounded above by ¢ = 10.

step | current | deviation | defect | surplus
precision
s s
1 46 43 3 0
2 86 86 0 0
3 172 169 3 0
4 338 336 2 0
5 672 671 1 0
6 1342 1340 2 0
7 2680 2679 1 0
8 5358 5356 2 0
9 10712 10711 1 0
10 21422 21420 2 0

The defect seems to be eventually periodic. The surplus seems to be constant with value 0.
Example 45. We consider the polynomial

f(X) = X" —81X* —81X* — 1729
at p = 3. We start with initial precision s = 47.

We consider the development of the factors gu)(X), ..., gu)(X) during steps 1 to 3, starting
with the initial factorisation during step 1.
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step 1 g(n()()::)(24—12476944095490426480470)(——1827344990806843265208
gca()()::)(24—11518164134498883612837)(——12549192272943808130988
gcn()()::)(2——12773699960698996533003)(%—9393800803929134496474
g(4)(X)::)(4——11221408269290313560304)(3——1377298952693256324294)(2
-+ 6835699768973000181444X + 947509305312943983276
step 2 g(n()()::)(24—36820749038204180589362862181933872927528999)(
— 91624476734439161455421444098017228793510116
gcn()()::)(2——27726121953148399310894552746603293786229950)(
— 291527411655902047313240170888143858718501686
gtg()()::)(24—42735550065994251178522910368901543543746020)(
+ 129174542220527722811394650759681492356179021
g@@()()::)(4——51830177151050032456991219804232122685045069)(3
— 310935444659398389059157508266271062110634234 X 2
— 112957315355865865126419592237912544154306729.X
+ 762721859326053211606998197935283610557397
step 3 g(n()()::)(247605530929980921660332245016906262173086430328368742930472184361

854209710152218573994311.X

+ 91892625746913888646031403888730515696852709404978139004195130806092

5288617133009893775
g(@()()::)(2——3698680368706316218808399692143364447368447517537862769819112439022

93329411539036368303.X

— 145643038384702576548519246014016296841671032377956934590931977586310

65713212604431968
gog()()::)(24—2336662717957601390531333617737067845229880361619004331924778220

600476207739737457574132X

— 24673480335808018423506580934239899220806215468649517936255812286964

21429683703706552171
g@@()()::)(4——136126375110604810831824863161646922740660528149647512447068261

4843973168175979847211518 X3

— 206346843405541203798544553027752563222393203581480667752973981190658

6792272056549939814 X 2

+ 14879079485348385200390168433504455112317776246877794944688422128217

49540492433306914356 X

+ 3084960308393797676329552270646664610267075959770523672828351373414

525331518388254410666

Here, linebreaks within the coefficients have not been marked.
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We obtain the following results in the first 12 steps. The defect is bounded above by t” = 18.
Since f(X) =3 X'° the defect is even bounded above by " = 9.

step | current | deviation | defect | surplus
precision
s s
1 47 47 0 0
2 94 92 2 0
3 184 183 1 0
4 366 365 1 1
5 731 729 2 0
6 1458 1458 0 0
7 2916 2915 1 0
8 5830 5829 1 1
9 11659 11657 2 1
10 23315 23314 1 1
11 46629 46627 2 0
12 93254 93253 1 0

Example 46. We consider the polynomial

F(X) = X* 4531441 X* + 531441

at p = 3. We start with initial precision s = 301, for which we have the initial factorisation into
the factors

gn(X) =

9g2)(X) =

g3 (X) =

X% 4 14724340788178134468602169629772161096878074740071686087025456851825017837
3644027156325805645615038232238529113536333003561507420866513784470970.X 2
—134673399860164952991074852935458232488015158715254166032786719208542941262090
79486145399130380512640478762952511866707858715041317702541630530

X* —147243407881781344686021696297721610968780747400716860870254568518250178
373644027156325805645615038232238529113536333003561507420866513784470970.X 2
—13467339986016495299107485293545823248801515871525416603278671920854294126
209079486145399130380512640478762952511866707858715041317702541630530

X8 — 62942469501026597767591231977176276190897020816815178805910850728180625835
990237634124872720415893813970667048997521316706755048931584880492700.X
—38142020704012076499532021346810347903035462598477319930087881362460986484 7563
77515847494960712069527462736826329199717957000303873582308805587 X 4
+9911017940556640647998099169116118624892570360461492838413234815261128062020
326913441412862546062480595951148238801022561618590311462904029127 X 2
—8033149382062369970849677986828280937111656374724582259395713370190535370320
1310734046130895256527432435024860902337439659724299617631211572510
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X8 +62942469501026597767591231977176276190897020816815178805910850728 18062
5835990237634124872720415893813970667048997521316706755048931584880492700.X 6
—38142020704012076499532021346810347903035462598477319930087881362460986484
756377515847494960712069527462736826329199717957000303873582308805587 X 4
—991101794055664064799809916911611862489257036046149283841323481526112806
2020326913441412862546062480595951148238801022561618590311462904029127 X 2
—80331493820623699708496779868282809371116563747245822593957133701905353
703201310734046130895256527432435024860902337439659724299617631211572510.

9o (X)

Here, linebreaks within the coefficients have not been marked.

We obtain the following results in the first 10 steps. The defect is bounded above by ¢t = 112.
Since f(X) =3 X?4, the defect is even bounded above by ¢ = 71.

step | current | deviation | defect | surplus
precision
s s
1 301 296 5 0
2 592 592 0 0
3 1184 1178 6 0
4 2356 2353 3 0
5 4706 4705 1 0
6 9410 9406 4 0
7 18812 18809 3 0
8 37618 37616 2 0
9 75232 75231 1 0
10 150462 150457 5 0

The defect seems to be unperiodic. The surplus seems to be constant with value 0.

4.4 Examples for p = 5
Example 47. We consider the polynomial

FX) =X+ X7+ X0 —7X° —2X* —2X3 4+ 6X? +6X +6
at p = 5. We start with initial precision s = 6.

We consider the development of the factors g)(X) and g)(X) during steps 1 to 6, starting
with the initial factorisation during step 1.
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step 1 | gy (X) = X? +12828X + 13401
9(2)(X) = X© 4 2798X° + 106 X* 4 3602X° + 13661X> + 1913X + 13981
step 2 | g(1)(X) = X2 + 25075328 X + 27310276
9(2)(X) = X6 + 219065298 X5 4 49265731 X * + 20378602X ® + 97216786 X ? + 44767538 X
+ 168404606
step 3 | ga)(X) = X2 — 7379844457346547X — 11525498507845974
9(2)(X) = X6 4 7379844457346548 X > — 7563817821828019X* + 15329971211784852X %
+ 5360665624560536.X 2 + 26040840620939413X — 19943609206595394
step 4 | ga)(X) = X? + 119367276470724754106209009450328 X — 1346036419688215148053513644564724
9(2)(X) = X6 — 119367276470724754106209009450327 X ® — 1570746366648678071910131298390519.X *
— 1245070533219204529691085917121398 X ® + 740725216789353376027169530810536.X 2
+ B37760927557576622777748579923788 X + 680809369432817558372125656685856
step 5 | g1)(X) = X? — 5247046845950474457923303760058654768276293493259437311485082346547 X
— 3036733296298709742777870425786799227110072804106068215714572299099
9(2)(X) = X6 4 5247046845950474457923303760058654768276293493259437311485082346548 X ®
+ 5566410675618331735261903999534629711384791865270249432336963328231.X *
— 6193875638975111397557381600069541429065364969373926091537577277648 X ®
+ 519312246940536749590766 7355892812851 776387876081948872628515185536.X 2
+ 5764668448471790569919603491308557435126561188701715284157271330038 X
+ 330017900645302140354157301612725984665104805592761429558 7570748356
step 6 | g1)(X) = X2 — 10677900254920587690854693998545400435937161647779940338625521507744
0699548550555914800501230257783326629809645550708956945731908518422.X
— 429446552354343086335285773187828253551564139904314109190935857772606851
0233304449367333133655741492798354279200037610135422824252224
9(2)(X) = X° + 10677900254920587690854693998545400435937161647779940338625521507744

0699548550555914800501230257783326629809645550708956945731908518423 X

— 1878400720670337299483618749758783074913868200635192432951325514428706295
22841350306516450471199696989693442350851115174704778515187394.X 4

— 1048633407893709208630620651857602790433689975168224522833856058098139787
67282625667703991310604765112481317854577155097890243631965148 X 3

— 174885871646888379719936161524820495306178690663803914233334504855124857
968461674941267778568141377181147448946970332676772055322705089.X 2

+ 130913381480264111529765348677064885685956359800863498631812153034840079
380468128755285761561978061362592620201042484667115974898283163 X

— 38544210800342953639425160333309594482479150654214477820131917250437896
6104031917864571741429320394949117091693560515185272588698782894

Here, linebreaks within the coefficients have not been marked.
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We obtain the following results in the first 15 steps. The defect is bounded above by ¢ = 0.

step | current | deviation | defect | surplus
precision
s s
1 6 6 0 0
2 12 12 0 0
3 24 24 0 0
4 48 48 0 0
5 96 96 0 0
6 193 193 0 1
7 386 386 0 0
8 772 772 0 0
9 1544 1544 0 0
10 3088 3088 0 0
11 6176 6176 0 0
12 12352 12352 0 0
13 24704 24704 0 0
14 49408 49408 0 0
15 98816 98816 0 0

The defect seems to be constant with value 0.

Example 48. We consider the polynomial

f(X) =X+ X" +5X° + X? —2X +3

at p = 5. The valuation ¢ of its discriminant equals 0.

We start with initial precision s =5 (>t + 1).

We consider the development of the factors gn)(X) and g)(X) during steps 1 to 5, starting
with the initial factorisation during step 1.

step 1 | gy(X) = X 4 2678
(X)) = X7 + 447X + 2034 X5 + 2123 X + 2107X% + 1209X2 + 2924X + 776
step 2 | gy (X) = X + 5615178
92)(X) = X7 4 4150447X° 4 9127934X° + 6286498 X* + 9186482X3 + 8610584.X2
+ 8859174X + 900776
step 3 | gay(X) = X +30097427490178
92)(X) = X7 —30097427490178 X6 + 14052987643559X 5 + 6347232848998 X 4
+ 45739345123982.X3 — 33239796076916 X2 — 4896993093951 X
— 12793348708599
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step 4 | gy (X) = X — 619520783612888756332275447

g2)(X) = X7 + 619520783612888756332275447X ¢ — 1954209833621869339346340816 X >
+ 2356930284562975554996520873 X * — 2534872224892761267490813518 X
+ 3934907652318444390819157459X 2 + 718137988256163468485421674.X
— 1087695738960088171766677349

step 5 | gy (X) = X 4 307894497424152490936737229503086227573265868720474365178
g2)(X) = X7 — 307894497424152490936737229503086227573265868 720474365178 X ©

+ 52262327363840820833270663086160605930507292495370456059 X °

— 397252227135632422152852907254244680867728322357601135377 X

— 918174018505691549930507918363934660634364273108311126018 X

+ 193584644786002846100156920505766244530558552880809391834 X 2

— 20245633911529642450613405134581988869799428114766531451.X

+ 776026277245315900724643471566018038981866060815049728901

We obtain the following results in the first 14 steps. The defect is bounded above by " = 0.

step | current | deviation | defect | surplus
precision
s s
1 5 5 0 0
2 10 10 0 0
3 20 20 0 0
4 40 40 0 2
5 82 82 0 0
6 164 164 0 1
7 329 329 0 0
8 658 658 0 0
9 1316 1316 0 0
10 2632 2632 0 1
11 5265 5265 0 2
12 10532 10532 0 0
13 21064 21064 0 0
14 42128 42128 0 0

The defect seems to be constant with value 0, whereas the surplus seems to be non-periodic.

Example 49. We consider the polynomial
f(X)=X"—2X° —2X*+ X? +3X* - 3X +3

at p = 5. The valuation ¢ of its discriminant equals 0.

We start with initial precision s =6 (>t +1).
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We consider the development of the factors ga)(X) and g()(X) during steps 1 to 4, starting

with the initial factorisation during step 1.

step 1 | gy(X) = X 49758
g2)(X) = X? +5867X° + 15439 X7 + 2488X5 + 3346 X5 + 5980X* + 6533 X3 + 987X
+ 9482X + 5891
step 2 | gy (X) = X — 5851552742
g2)(X) = X? + 5851552742 X" — 2221187686 X7 — 13406419387X° — 7214309154 X5
+ 10736537230X % — 11602946592 X3 — 8929577138 X2 + 14798087607 X
+ 12999412141
step 3 | gy (X) = X — 1963549745336662099617
g2)(X) = X? + 1963549745336662099617 X% — 1413636760622338375186.X 7
+ 2254176923204367018113X° — 1680427973548474074779X°
— 1032566939137212681520X* — 2271480125194708415342.X3
— 2138946050423968639638 X % + 785796165206448478232X
— 1896221043077820900359
step 4 | gy (X) = X + 2862548197841876509592767483103021492197258

g2)(X) = X? — 2862548197841876509592767483103021492197258 X ®
+ 9278580536776704471142480260772794409671689X 7
— 10794283425533751284198443960360120828294387 X ®
+ 923996642334529046051386421735008654831471 X °
+ 4185324069222896079410697603310801752162230.X *
+ 2179948453672017644720674508053058465412783 X >
+ 3594833195270842779588609304434042584094737 X
— 1947557898386085355914343388557693942146768 X
— 8868329229261108379575457472206560486915984

We obtain the following results in the first 13 steps. The defect is bounded above by t” = 0.

step | current | deviation | defect | surplus
precision
s s
1 6 6 0 3
2 15 15 0 1
3 31 31 0 0
4 62 62 0 0
) 124 124 0 1
6 249 249 0 1
7 499 499 0 1
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step | current | deviation | defect | surplus
precision
s s
8 999 999 0 0
9 1998 1998 0 0
10 3996 3996 0 0
11 7992 7992 0 0
12 15984 15984 0 0
13 31968 31968 0 0

The defect seems to be constant with value 0.

Example 50. We consider the polynomial

f(X)=X"—5X5 +5X* —2X3 +2X% —5X +5

at p = 5. We start with initial precision s = 4, for which we have the initial factorisation into

the factors

9
g
g
9
9

1
2
3

4
5

<

)(
)(
)(
(
(

= = =

)
)
)
)
)

)
)

»

X? + 565

X + 366

X + 396

X3 +540X2 + 146X + 506
X3 +573X2 + 577X + 272,

We obtain the following results in the first 10 steps. The defect is bounded above by ¢’ = 1.

step | current | deviation | defect | surplus
precision
s s
1 4 3 1 0
2 6 5 1 0
3 10 9 1 0
4 18 17 1 0
5 34 33 1 0
6 66 65 1 0
7 130 129 1 0
8 258 257 1 0
9 514 513 1 0
10 1026 1025 1 0

The defect seems to be constant with value 1. The surplus seems to be constant with value 0.
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Example 51. We consider the polynomial

f(X) =

X0 _5X°4+2X*-3X3—-5X%2-5X-5

at p = 5. We start with initial precision s = 7, for which we have the initial factorisation into

the factors

X3 4 32960X2% + 27750X + 53060

X 4 2537

X + 36187

X + 24719

X4 4+ 59847X3 + 45029X? + 50382X + 14882.

We obtain the following results in the first 10 steps. The defect is bounded above by " = 2.

step | current | deviation | defect | surplus
precision
s s’
1 7 5 2 0
2 10 8 2 0
3 16 14 2 0
4 28 26 2 0
5 52 50 2 0
6 100 98 2 0
7 196 194 2 0
8 388 386 2 0
9 772 770 2 0
10 1540 1538 2 0

The defect seems to be constant with value 2, assuming its upper bound. The surplus seems to

be constant with value 0.

Example 52. We consider the polynomial

f

(X)= X5+ X% — X3 - X? 415625

at p = 5. We start with initial precision s = 13, for which we have the initial factorisation into

the factors

9)(
9
963)(
g (

X) = X — 272453000

X) X + 28328000

X) X? — 183124998X — 61062499
X) = X +427249999.



We obtain the following results in the first 10 steps. The defect is bounded above by " = 3.

step | current | deviation | defect | surplus
precision
s s
1 13 13 0 0
2 26 24 2 0
3 48 45 3 0
4 90 87 3 0
5 174 171 3 0
6 342 339 3 0
7 678 675 3 0
8 1350 1347 3 0
9 2694 2691 3 0
10 5382 5379 3 0
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The defect seems to be eventually constant with value 3, assuming its upper bound. The surplus
seems to be constant with value 0.

Example 53. We consider the polynomial
f(X)=X"42X° —2X* —5X° +4X*+2X — 5

at p = 5. We start with initial precision s = 7, for which we have the initial factorisation into
the factors

gy (X) = X 448635

g (X) = X + 56492

g (X) = X +6742

gw(X) = X7+ 44381X5 + 59132X5 + 1103X* + 36075X3 + 77735X2 + 17688X + 25683.

We obtain the following results in the first 10 steps. The defect is bounded above by " = 3.

step | current | deviation | defect | surplus
precision
s s
1 7 4 3 0
2 8 5 3 0
3 10 7 3 0
4 14 11 3 0
5 22 19 3 0
6 38 35 3 0
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step | current | deviation | defect | surplus
precision
s s
7 70 67 3 0
8 134 131 3 0
9 262 259 3 0
10 518 515 3 0

The defect seems to be constant with value 3, assuming its upper bound. The surplus seems to
be constant with value 0.

Note that in step 1, the precision grows only by 1.
Example 54. We consider the polynomial
f(X) = X" +5°

at p = 5. We start with initial precision s = 57, for which we have the initial factorisation into
the factors

X* 4 3229788025263357194581558482437919254375
X — 3229788025263357194581558482437919254375.

We obtain the following results in the first 10 steps. The defect is bounded above by t” = 16.
Since f(X) =5 X8, the defect is even bounded above by " = 13.

step | current | deviation | defect | surplus
precision
s s
1 57 57 0 0
2 114 110 4 0
3 220 216 4 0
4 432 428 4 0
5 856 852 4 0
6 1704 1700 4 0
7 3400 3396 4 0
8 6792 6788 4 0
9 13576 13572 4 0
10 27144 27140 4 0

The defect seems to be eventually constant with value 4. The surplus seems to be constant with

value 0.
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Example 55. We consider the polynomial
f(X)=X"—6X°—-6X>—-5X+2

at p = 5. We start with initial precision s = 4, for which we have the initial factorisation into
the factors

g(l)(X) = X + 97
g(g)(X) = X2 + 589X + 344
93 (X) = X®+564X2+ 619X + 589.

We obtain the following results in the first 10 steps. The defect is bounded above by t” = 1.

step | current | deviation | defect | surplus
precision
s s
1 4 4 0 0
2 8 8 0 0
3 16 15 1 0
4 30 30 0 0
5 60 59 1 0
6 118 118 0 0
7 236 235 1 0
8 470 470 0 0
9 940 939 1 0
10 1878 1878 0 0

The defect seems to show eventually a periodic behaviour. The surplus seems to be constant
with value 0.

Example 56. We consider the polynomial
fX)=X%—4X° - X' +3X° - X? —4X +1

at p = 5. We start with initial precision s = 7, for which we have the initial factorisation into
the factors

(X) = X +46886
(X) = X +11288

g (X) = X2+462726X + 34569
(X) = X +20884
(X) = X®45466X2 + 1745X + 73242,
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We obtain the following results in the first 10 steps. The defect is bounded above by " = 2.

step | current | deviation | defect | surplus
precision
s s
1 7 5 2 0
2 10 10 0 0
3 20 20 0 0
4 40 39 1 0
) 78 7 1 0
6 154 153 1 0
7 306 305 1 0
8 610 610 0 0
9 1220 1218 2 0
10 2436 2436 0 0

The defect seems to show a non-periodic behaviour. The surplus seems to be constant with

value 0.

Example 57. We consider the polynomial

f(X)= X" 45X +2X? —2X? +4X +5

at p = 5. We start with initial precision s = 7, for which we have the initial factorisation into

the factors

X + 73145

X + 30378

X2 +13441X + 63539

X + 55514

X2 4+ 19353X + 74958

X3 442544 X% 4 61381X + 39536.

We obtain the following results in the first 10 steps. The defect is bounded above by " = 2.

step | current | deviation | defect | surplus
precision
s s
1 7 5 2 0
2 10 9 1 0
3 18 18 0 0
4 36 34 2 0
) 68 67 1 0
6 134 133 1 0




step | current | deviation | defect | surplus
precision
s s
7 266 265 1 0
8 530 529 1 0
9 1058 1057 1 0
10 2114 2114 0 0
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The defect seems to show a non-periodic behaviour. The surplus seems to be constant with

value 0.
Example 58. We consider the polynomial

f(X) = X% +15625X° — 15625X° — 781250X — 390625

at p = 5. We start with initial precision s = 57, for which we have the initial factorisation into
the factors

gn(X) = X —2028633115745113308933875614354486144895
92)(X) = X —675463496491321688393531645821676989040
9i3)(X) = X +2129197047896441463764013076390787569515
91)(X) X 4 333752639092427103957708870036174845345
g (X) = X?+650117238910327529702042488934985953375.X

—1196653187372395937261278206849310832950
ge)(X) = X?—408970313662761100096357175185785234300.X
—1326996979077085273054487134665644039550.

We obtain the following results in the first 10 steps. The defect is bounded above by t” = 26.
Since f(X) =5 X8, the defect is even bounded above by t"” = 15.

step | current | deviation | defect | surplus
precision
s s
1 57 57 0 0
2 114 112 2 2
3 226 223 3 0
4 446 445 1 0
5 890 889 1 0
6 1778 1777 1 0
7 3554 3553 1 0
8 7106 7106 0 0
9 14212 14210 2 0
10 28420 28419 1 0
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The defect seems to show a non-periodic behaviour. The surplus seems to be eventually constant
with value 0.

4.5 A conjecture concerning the surplus

Since the observed surplus was nonnegative throughout, the examples in §4.2, §4.3 and §4.4 lend
evidence to Conjecture 59 below.

We use the notation of Lemma 16.
Suppose given a prime p € Z. Suppose that R = Z, and 7 = p
Recall that

Im(X) = X cwX?
JEO,m (1]

Jn(X) = > CwX7,
JE0,m ()]

where cqy;, ¢y, € Z for k € [1,n] and j € [0, m(y)], and that the deviation is given by

/

s' = min{ vi(cw); — Cwy;) + k€ [1,n], j€[0,mu]}.

Recall that
f(X) = > NX

J€[0,M]
II gwX) = > mX
kefin] jelom]

where \;, pu; € 7, and that

Conjecture 59. We have

1.€.

and
s—t" < §.

So if the defect s — s’ equals its upper bound ", then 2(s —t") = 25, so that Conjecture 59 does
not yield anything new in this case.



Appendix A
Complete discrete valuation rings

We collect some well-known basic facts.

Let R be a discrete valuation ring. Let m € R be a generator of the maximal ideal of R.

Definition 61. Let (a;);>1 be a sequence in R.

(1) Let v.(r) denote the valuation at 7 of the element r € R.
(2) We say (a;);>1 is convergent in R with limit a € R if

VMelN INeN : v.(a; —a)> M fori> N.

Remark 62. Let (a;);>1 be a convergent sequence in R. Then its limit is unique.

Proof. Suppose that there exist two limits a and a’ of the sequence (a;);>1 -

We have
vela—d) = ve((a—a;)+ (a;— a))

> min {v.(a —a), v-(a; — ')}

V

Let M € IN.
We have to show that there exists N € IN such that
min {Vﬁ(a —a;), vp(a; — a’)} > M fori> N.
Since (a;);>1 is convergent with limit a there exists N, € IN such that
vela—a;) > M fori>N,.
Since (a;);>1 is convergent with limit o’ there exists N, € IN such that

ve(a;—a') > M fori> N, .

For N :=max {N,, Ny} it follows that
min {v.(a —a;), ve(a; —a')} > M fori> N.
So vy(a—a')> M fori > N.

Hence a = d'.
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Definition 63. Let R be a discrete valuation ring. Let m € R be a generator of the maximal
ideal of R.

Let (a;);>1 be a convergent sequence in R with limit a € R.
We denote the limit a of the sequence (a;);>1 by l‘i>nll a;, i.e.
a =: lima; .
i>1

Definition 64. Let (a;);>1 be a sequence in R.

(1) We call (a;);>1 a Cauchy sequence in R if

VMeN INeN : v(a; —aj) > M fori,j > N.
(2) We say R is complete if every Cauchy sequence in R is convergent in R.

Remark 65. For convergent sequences (a;);>1 and (b;);>1 € R we have

(1) lim(a; +b;) = lima; + limb; ,
i>1 i>1 i>1
i>1 >1 >l

Proof. Denote lima; =: a and lim b; =: b.
i>1 i>1

Ad (1).
We have
ve((a;+b;) — (a+0b) = vo((a; —a)+ (b — b))
> min {v.(a; —a), v.(b; — b)} .
Let M € IN.

We have to show that there exists N € IN such that

min {v.(a; —a), vz(b; —b)} > M fori> N.

Since (a;);>1 is convergent there exists N, € IN such that

Vola; —a) > M fori>N,.

Since (b;);>1 is convergent there exists N, € IN such that

Vﬂ-<bl—b) > M forisz.

For N := max {N,, Nb} it follows that
min {Vﬂ(ai —a), v (b — b)} > M fori> N.

So v ((a; +b;) — (a+b)) > M for i > N.

Hence lim(a; + b;) = lima; + lim b, .
i>1 i>1 i>1
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Ad (2).
We have
V,,((ai . bz) — (CL . b)) = Vﬂ-((ai — Cl)bz + Cl(bl — b))
> min {VW((CLZ' — a)bi) Vi (a(bi — b))}
Let M € IN.

We have to show that there exists N € IN such that

min {V,T((ai — a)bi) , V,T(a(bi — b))} > M fori> N.

Note that
vﬂ((ai — a)bi) = vqo(a; —a)+v(b;)) > vg(a;—a),
>0
ve(a(b; = b)) = ve(a)+va(b;—b) > v.(b;—b).
e

So we have
min {vﬁ((ai — a)bz-) , Vi (a(bi — b))} > min {V,,(ai —a), v (b — b)} )

Since (a;);>1 is convergent there exists N, € IN such that

vo(la;—a) > M fori>N,.

Since (b;);>1 is convergent there exists N, € IN such that

Va(bi—b) > M fori>N,.

For N :=max {N,, Nb} it follows that

min {VW((CLZ' — a)bz-) , Vw(a(bi — b))} > min {Vw(ai —a), vq(b — b)} > M fori¢> N.

So VW((a,;'b,»)—(a-b)) > M fori> N.

Hence lim(a; - b;) = lima; - lim b; . O]
i>1 i>1 i>1

Remark 66. Let (a;);>1 be a convergent sequence in R.

Then

liizrrllvﬂ(ai) = V”(liizrﬁlai)'

Note that (vr(a;));>1 on the lefthand side of the asserted equation is a sequence in Zso. We
understand the limit in Z as the limit in R and Z C RR. So either there exists k£ € IN such that

(vr(a;))i>1 is constant for ¢ > k or 11>rr11 Va(a;) = 0.
12
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Proof. Denote a :=lima; .
i>1
First we consider the case v(a) < co.

Since (a;);>1 is convergent with limit a, we have

VMelN INeN : v.(a; —a)> M fori> N.

It follows that

a =M

for ¢ > N. So there exists r; € R such that
a; = a + r;
for 1 > N, whence
Mr;)

vaela;) = ve(a+7%7r;).

Since v, (a) is finite, we may choose M > v, (a) to obtain

V,r(a+7eri) = min {V,r(a)7 V,,(WMn-)} = min {V,r(a), M—i—v,r(ri)} = vp(a)

for > N.
So
vr(a;) = vx(a)
for s > N.
Hence
liizrglvﬁ(al-) = vq(a) = Vﬂ(liiZHllai).

Now we consider the case v,(a) = co.
So a = 0.

Since (a;);>1 is convergent with limit a = 0, we have

VMeN INeN : v, (a;) > M fori> N.

So
liizrrllv,r(ai) = 00 .
Hence
liiznllv,,(ai) = V“(liiznllai)'

Remark 67. Let (a;);>1 be a sequence in R with vi(a;) < vi(ai11) fori > 1.

Then lima; = 0.
i>1
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Proof. By assumption we have v, (a;) — oo for i — oo.
So for every M € NN there exists N € N such that v,(a; — 0) = v,(a;) > M fori > N. O
Remark 68. Suppose R to be complete.

Let (¢;)i>1 be a sequence in R. Let x € Zso. Suppose that (w%c;);>1 converges. Then (¢;)i>1
converges, and

lim7%¢; = ©*limg;
i>1 i>1

Proof. In view of Remark 65.(2), it suffices to show that (¢;);>1 converges. Since R is complete,
it suffices to show that (¢;);>1 is a Cauchy sequence.
Write d := lim n%¢; .
i>1
Suppose given M € IN. There exists N € IN such that v, (7%¢; — d) > M + z for i > N.

For 7, 7 > N, we obtain

ve(m¥c; —m¥¢j) —x

ve((7%¢; — d) + (d — 7°¢;)) —

V(e —¢j)

> min {Vﬂ(ﬂxcz‘ —d), va(d — chj)} -
> (M+z)—x
= M.

Remark 69. Suppose R to be complete.
Let (a;)i>1 , (bi)i>1 be convergent sequences in R.
Let x € Z>y .
Suppose that
a; == b; Vi > 1.

Then

lima;, =.. limb, .
i>1 ¢ >

Proof. Since a; == b; for ¢ > 1, there exists an element ¢; € R such that

a; = bi+7TmCZ' W) Z 1.

It follows that
lima; = lim(b; + 7°¢;)
i>1 i>1
Since (a;)i>1 , (b;)i>1 are convergent it follows that (7%¢;);>; is convergent. By Remark 68, the

sequence (¢;);>1 is convergent, and we have lim 7%¢; = 7*lim ¢; . So by Remark 65 we have
= i>1 i>1

lima; = limb; + lim7°¢; = limb; + 7*lim¢; =, limb; .
i>1 i>1 i>1 i>1 i>1 i>1
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Definition 70. Let R be a discrete valuation ring. Let m € R be a generator of the maximal
ideal of R.

Let f(X), g(X) be polynomials in R[X] and let (p;(X));>1 be a sequence of polynomials in R[X].

Denote
f(X) = Z foaXa )
a>0
g(X) = Z gaXa )
a>0
pi(X) =1 > piaX* fori>1.
a>0

(1) Suppose given s > 0. Recall that the polynomials f(X) and g(X) are congruent modulo 7*
if f(X)—g(X) e mR[X], ie. if f, =z go for a > 0.

(2) We say (pi(X));>1 is convergent in R[X] with limit f(X) € R[X] if the sequence of coeffi-
cients (p;q)i>1 is convergent with limit f, for a > 0.

Remark 71. Suppose given a convergent sequence (a;);>1 in R. Suppose given f(X) € R[X].
Remark 65.(1, 2) yields
11121111 flai) = f(lzlznllaz) :
In that sense, f(X) is continuous.
Remark 72. Suppose R to be complete.
Let (n;)i>1 be a sequence in Zso with n; < n;q ¥i > 1.
Let d € Zi> .
Let (pi(X))i>1 be a sequence in R[X] such that degp; < d and such that

pz(X) = pj(X) fori<j.

Then the sequence (p;(X))i>1 is convergent.

If all p;(X) are monic, then so is their limit.

Proof. Let
pi(X) =: Zpi,aXa for i > 1.

a>0
Suppose given o > 0. Since p;(X) =z p;(X) for ¢ < j, we have
Va(Dia = Pja) = M4
for ¢+ < 7.
Suppose given M € IN. Choose N € N such that ny > M. For i, j > N, we get

Vﬁ(pi,a — PN,a + PN, — pj,oz)
min {Vﬂ(pi,a - pN,Oz) ) V7r<pN,a - pj,a)}
min {nN, nN}

M .

Vr (pi,a - pj,oz)

AVARLAVARLV]
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So the sequence (p; o)i>1 is Cauchy, hence convergent. Write Dy 1= 1'i>H11 Dia -
Note that p; o, = 0 for a > d and 7 > 1, so that ]Sa =0 for a > d.
Let

PX) =) paX”.
a>0
Suppose given M € N. For a € [0,d], there exists N, € IN such that
Va(Pia — Do) > M fori> N, .
Let N :=max { N, : a € [0,d] }. Then
pi(X) = p(X) fori>N.
Hence p(X) is the limit of the sequence (p;(X))i>1 . O

Remark 73. Suppose R to be complete.

Let (n;);i>1 be a sequence in Zso with n; < n;q ¥i > 1.
Let f(X) be a polynomial in R[X].

Let (p;i(X))i>1 be a sequence in R[X] such that

f(X) =i pi(X) fori>1.

Then the sequence (p;(X))i>1 is convergent with limit f(X).

Proof. Let
f(X) = X fa X",
a>0
pi(X) =1 > piaX* fori>1.
a>0

Since f(X) =z pi(X) for i > 1 we have
Vw(fa _pi,a) Z n;

fori>1 and a > 0.

Since n; < m;qq for ¢ > 1 we have v, (fo — pia) — 00 for i — co. So the sequence (p;q)i>1 is
convergent with limit f, for & > 0. So the sequence (p;(X));>1 is convergent with limit f(X).

]

Remark 74. Suppose R to be complete.
Let (n;)i>1 be a sequence in Zi>o with n; < nj1q ¥i > 1.
Let (m;)i>1 be a sequence in Z>q with m; < m;q Yi > 1.

Let f(X) be a polynomial in R[X].
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Let (p1,i(X))i>1, -5 (Pni(X))i>1 be sequences in R[X] of constant degree with
ps,i(X) =rn ps,j(X) fori<yj,

such that

f(X) =nxmi H ps,i(X)

s€[1,n]
fori > 1.

By Remark 72, these sequences converge, and we may write py(X) = li>Hllps,i(X).

If all ps;(X) are monic, then so are their limits p,(X).

Then
Fx) = I b

s€[l,n]

Proof. We have
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