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Abstract

This note is a supplement to [3]. Let C be a weakly abelian category. Let n > 0.
Let C(Ay) be the category of diagrams of shape A, = [1,n] with values in C. Let
C(A,,) be its quotient modulo split such diagrams. We know by [3, Prop. 5.5.(1),

Prop. 2.6] that there is a Frobenius category C (A# ) whose classical stable category
C(A¥) is equivalent to C(A,). In particular, C(A,) is weakly abelian. We give a

direct proof of this fact, exhibiting a structure of a Frobenius category on C (An)
such that C(A,,) is its classical stable category.

Contents

0 Introduction 1
0.1 A construction principle for Frobenius categories . . . . . ... ... ... ... ...... 1
0.2 Application to C(Ay) . . . . o o o L 2
0.3 Notation and conventions . . . . . . . . . . . . . . e e 2

1 Construction of exact categories 3

2 The construction principle 5

3 Application to C(A,) 6

0 Introduction

0.1 A construction principle for Frobenius categories

Given an exact category £ and a full subcategory N C &, we ask for a modification of
the exact structure on £ in such a way that the result is a Frobenius category with N as
a sufficiently big subcategory of bijective objects.

Declaring a pure short exact sequence in £ to be N-pure if each object of N is bijective
with respect to it, we verify that £, equipped with the set of AN-pure short exact sequences,
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actually is an exact category. For it to be Frobenius, A only has to be big enough; see
Remark 4.

0.2 Application to C(A,)

Let C be a weakly abelian category; cf. e.g. [3, Def. A.26]. Let n > 0.

Let C(An) be the category of diagrams of shape A,, = [1,n] with values in C. Let C(A,)
be its quotient modulo split such diagrams.

For the definition of the poset A¥, see [3, §1.1]. For the definition of the category C*(A%),
see [3, §1.2.1.1]. Roughly, it is the category of diagrams on A% that have zeroes on the
boundaries and weak squares wherever possible. The category C*(A#) is Frobenius by
[3, Prop. 5.5.(1)].

Its classical stable category C*(A#) is equivalent to C(A,) by [3, Prop. 2.6]. In particular,

since CT(A#) is weakly abelian, so is C(A,,). Cf. also [1, Prop. 8.4].

We find a structure of an exact category on C(4,,) such that it is a Frobenius category

with C(A,,) as its classical stable category. This reproves the fact that C(A,) is weakly
abelian.

Whereas the category C (A,) looks smaller and simpler than C*(A#), it behaves worse.
Firstly, while C*(A#) carries a shift functor by diagram shift, the category C(A,) does

not allow such a diagram shift, and can only artificially be given a shift functor via
the equivalence C(A,) ~ C*(A#). Therefore, in the definition of a Heller triangulated

category [3, Def. 1.5.(i)], we rather use C*(A#). Secondly, and of relevance here, the

exact structure on CT(A¥) is the obvious one that declares pointwise split short exact

sequences to be pure. The exact structure on C(A,,) has to be constructed; see Proposition
6 below.

0.3 Notation and conventions

(i) Given elements z,y of some set X, we let 0, , = 1 in case x =y and 0, , = 0 in case z # y.

(ii) For an assertion X, which might be true or not, we let {X} equal 1 if X is true, and equal 0 if X
is false. So for instance, {x = y} = 0y .

(iii) For a, b € Z, we denote by [a,b] :={z € Z : a < z < b} the integral interval.

(iv) Given n > 0, we denote by A,, := [0, n] the linearly ordered set with ordering induced by standard
ordering on Z. Let A,, := A, ~ {0} = [1,n], considered as a linearly ordered set.

(v) Maps act on the right. Composition of maps, and of more general morphisms, is written on the

b b
right, i.e. S =B
F @ FG
(vi) Functors act on the right. Composition of functors is written on the right, i.e. — — = —.

Accordingly, the entry of a transformation a between functors at an object X will be written Xa.
(vii) All categories are supposed to be small with respect to a sufficiently big universe.

(viii) Given a category C, and objects X, Y in C, we denote the set of morphisms from X to Y by
o X,Y), or simply by (X,Y), if unambiguous.



(ix) Pure monomorphy in an exact category is indicated by X —e—Y | pure epimorphy by X —++Y.
Concerning exact categories in the sense of QUILLEN, cf. [3, §A.2].
(x) A morphism in an additive category A is split if it is isomorphic, in A(A;), to a morphism of

00
the form X @Y (1—())» Y @ Z. A morphism being split is indicated by X >——=7Y (not to be

confused with monomorphy). Accordingly, a morphism being a split monomorphism is indicated
by X >—e—=Y , a morphism being a split epimorphism by X >—+—=Y .
(xi) A sequence X’ —= X — X" in an additive category A is split short exact if it is isomorphic, in
0
10
A(As), to the sequence X’ U9, x o X" Q» X".

(xii) For the definition of a weakly abelian category, see e.g. [3, Def. A.26]; cf. [2, §3, 1. 1-2],
[1, Def. 8.6].

(xiii) Given a weakly abelian category C and n > 1, the category C(A,,) is defined as C(A,,) modulo the
subcategory of split diagrams; cf. [3, §2.4].

(xiv) Concerning the Freyd category C of a weakly abelian category C, we refer to [3, §A.6.3]. The
Freyd category C is an abelian Frobenius category that contains C as a sufficiently big subcategory
of bijectives.

1 Construction of exact categories

Remark 1 If (£,S;) are exact categories for i in some index set I, where S; denotes the
respective set of pure short exact sequences, then also (€, ﬂid S;) is an exact category.

A sequence X’ — X —» X" in an exact category (£,S) is called left exact if X' — X is
purely monomorphic and a kernel of X — X"

A sequence X' — X — X" in an exact category (£,S) is called right ezact if X — X"
is purely epimorphic and a cokernel of X' — X.

Let (€,S) and (£',8’) be exact categories, and let € . & be an additive functor. Let
Sr denote the set of short exact sequences in § whose image under F', applied pointwise,
is in §'.

The short exact sequences in S will also be called S-pure; etc. The short exact sequences in

Sr will also be called Sg-pure; etc. We will continue to denote an S-pure monomorphism
in £ by —, and an S-pure epimorphism by —.

The functor F' is called left ezact if for any pure short exact sequence (X,Y, 7Z) in &, the
sequence (X F, Y F, ZF) is left exact.

The functor F' is called right exact if for any pure short exact sequence (X, Y, Z) in £, the
sequence (X F,Y F, ZF) is right exact.

Lemma 2
(1) If€ L& s left exact, then (€,S8F) is an exact category.

(2) If € L& is right exact, then (E,8F) is an exact category.



Proof. Ad (1). Consider a left exact functor £ e
We use the axioms from [3, §A.2.1]. The axiom (Ex 2) is redundant; cf. [4].

Verification of (Ex 3). Suppose given a commutative triangle

M
S
ip
X Y

in £ in which, moreover, ip is Sp-purely monomorphic and p is Sg-purely epimorphic.

By exactness of (£,S), we can complete it to a diagram

\/\
/\/

in €& with S-pure short exact sequences (X, M,Y"), (X', M,Y), (X,Y,Z) and (X", Y’ Z).
Moreover, (X', M,Y) and (X,Y, Z) are Sp-purely short exact, i.e. (X'F,MF,YF) and
(XF,YF,ZF) are pure short exact sequences in £'. Hence, application of the left exact
functor F yields a diagram

(@'p"F
'F . Y'F
N 2N
MF ZF
S
(i)l
XF . YF

in & with (XF,MF,Y'F) and (X'F,Y'F, ZF) left exact. By composition, s'F" is purely
epimorphic, and hence (X'F,Y'F, ZF') is a pure short exact sequence. The quadrangle
(MF,YFY'F,ZF) is a pure square, for on the kernels, we have the identity on X'F
as induced morphism, and the cokernels are zero; cf. [3, §A.4; §A.2.2; Lem. A.11].
In particular, it is a pullback, and so p'F is purely epimorphic. We conclude that
(XF,MF,Y'F) is a pure short exact sequence.

Verification of (Ex 3°). Suppose given a commutative triangle

N

X——Y

in which, moreover, ip is Sp-purely epimorphic and ¢ is Sp-purely monomorphic.



By exactness of (£,S8), we can complete it to a diagram

X/ %%Yl

N
\/\

in £ with pure short exact sequences (X, M,Y"), (X', M,Y), (W, X,Y) and (W, X" Y").
Moreover, (X, M,Y’) and (W, X,Y') are Sp-purely short exact, i.e. (XF,MF,Y'F) and
(WF,XF,YF) are pure short exact sequences in £. Hence, application of F' yields a

diagram
(@) F
>\ / (ip)F\
XF i YF

in & with (WF, X'F,Y'F) and (X'F, MF,Y F) left exact. By composition, the morphism
pF' is purely epimorphic, and thus (X'F, MF,Y F) is a pure short exact sequence. By
(Ex 3°) in &', the morphism (i'p’)F' is purely epimorphic, and thus (WF, X'F.Y'F) is a
pure short exact sequence. o

Remark 3 A possible source of mistakes. Given an S-pure monomorphism X ——Y in &
such that its image F'X —s—= F'Y is purely monomorphic, we cannot conclude that X —s—=Y
is Sp-purely monomorphic. In fact, the image of every S-pure monomorphism under F is
purely monomorphic.

2 The construction principle

Let (£,8) be an exact category, where S denotes the set of pure short exact sequences,
and let A/ C &€ be a full additive subcategory.

Consider the following set of pure short exact sequences.

< m S£(N’_)) m ( m ‘S‘E(_»N)> '
NeObN NeObN

Then (&€, Sy ) is an exact category by Lemma 2 and Remark 1. The short exact sequences
in Sy are called N-pure short exact sequences. The pure monomorphisms in this exact
category are called N-pure monomorphisms, and the pure epimorphisms therein are called
N-pure epimorphisms.

By construction, the subcategory N' C & consists of bijective objects in (£, Sy); that is,
each N € Ob is bijective with respect to the N-pure short exact sequences.



Written out, an MN-pure short exact sequence in £ is a pure short exact sequence
X' -+ X — X" such that for any N € ObN and any morphism N — X" there exists
a factorisation (N — X") = (N — X —+= X"); and, dually, such that for any N € Ob N/
and any morphism X’ — N there exists a factorisation (X' — N) = (X' -+ X — N).

An N-pure short exact sequence X' -~ N —+ X" in & is called N-resolving if N € Ob .

Remark 4 The category (€,Sy), i.e. the given exact category £ together with the set of
N-pure short exact sequences Sy, is a Frobenius category if the following conditions (1)
and (2) are fulfilled. In this case, N is a sufficiently big subcategory of bijectives.

(1) Forall X" € Ob¢&, there exists a N-resolving pure short exact sequence with cokernel
term X".

(2) For all X' € Ob &, there exists a N-resolving pure short exact sequence with kernel
term X'.

3 Application to C(A,)

Suppose given n > 1. Recall that A, = A, ~ {0} = [1,7n].

Let C be a weakly abelian category. We shall consider the category C(A,,). For ease of

notation, we formally put X,,.; := 0 for X € ObC(A,).

A sequence X' X P X"ing (An) is called pointwise split short exact, if the sequence

X} % X, 25 X7 s split short exact for all k € [1,n]. The kernel in a pointwise split short
exact sequence is pointwise split monomorphic, the cokernel pointwise split epimorphic.

The additive category C(A,), equipped with the set of pointwise split short exact se-
quences as pure short exact sequences, is an exact category; cf. e.g. [3, Ex. A.3, Ex. A.4].

Consider the full subcategory C®%(A,) C C(A,) whose objects are diagrams
X € ObC(A,) such that Xj, — X is split for all k, | € [1,n] with k < [.

Let S denote the set of pointwise split short exact sequences in C(A,,).

Lemma 5 Suppose given a pointwise split short evact sequence X' Lox Lx"in
C(A,) such that, for all I, m € [1,n] with | < m, the quadrangle (X;, X, X', X))
has the following property ().

(%) The morphism induced from the kernel of X, v X,, inC to the kernel of X]' =~ X"
i C 1s epimorphic.

Suppose given Z € ObC™®*(A,). Then application of the functors (Z,—) = can(Z,—)
and (=, Z) = ¢\~ Z) yields short exact sequences




of abelian groups. In other words, the sequence X' S x o xr s CSpht(An)-purely short
exact, still in other words, it is contained in Scspm( An)-

Proof. We claim that (7, X) — @, (Z,X") is surjective. By Lemma [3, A.25], applied to

the abelian Frobenius category C, we may assume that Z is an interval, say Z = Cj

with C' € ObC and [, m € [1,n] with [ < m; cf. [3, §A.6.2].

A morphism C[l m] — X" is determined by a morphism C X / such that the composite
(C - X/ AN X;’l +1) vanishes. To prove the asserted surjectivity, we have to find a
morphism C' L X, such that the composite (C' - X, = X,ny1) vanishes and such that
(C Lo X 20 X7y = (C -1 X)),

To do so, we may assume that m < n. Let K, —» X denote the kernel of X, —» X1
$

in C, and let K, uﬁX” denote the kernel of X”HX’ ., in C. By (%), we ob-
tain an induced eplmorphlsm K, HKM, characterized by gs” = sg;,. We factor
(C'HX”) = (CHK " HX”) by the universal property of s”. Then we factor
(CH Kun) = (C’H K, -2~ K;) by epimorphy of § and by bijectivity of C in C. We
may use t’ := tos. This proves the claim.

We claim that (X', Z) ~—— 7 (X, Z) is surjective. By duality, it suffices to show that, given
I, m € [1,n] with [ < m, the morphism induced from the cokernel of X] — X’ in C to
the cokernel of X; —» X,, in C , is monomorphic. This in turn follows by an application
of the snake lemma in C to the morphism (X, X;, X/') ) | (X, X, X!) of short
exact sequences.

This proves the second claim. o

Proposition 6 The category C(A,), equipped with the set Sesptie(A,y Of CsPlt(A)-pure
short exact sequences, is a Frobenius category with CSp“t(An) as a sufficiently big subcat-
egory of bijectives.

Proof. By Remark 4 and by duality, it suffices to show that for each object X € ObC (A,)
there exists a C5P(A,,)-resolving pure exact sequence with cokernel term X.

Write K; 41 := X, for i € [1,n]. For the notion of a weak square, we refer to [3, Def. A.9].



Choose a diagram

Ko 0
k +
K F LK
1,3 2,3 0
k + k +
K F LK b Ky —
1,4 2,4 3,4 0
k + k + k +
k + k + k + k + + kl
k k k k k
Kl,n KQ,n KS,n K4,n T — = Np-1n 0
k + k + k + k + + kl + J{
K L L F k k kK
Intl — > Nopt1 — > B3 p+1 — > Bypny1 ——> -+ —— By 1p+1 —> Bpntr1 —>0

in C, and where (Kjni1 —> Kpni1) = (X; = X,n) for I, m € [1,n] with [ < m. This is
possible since [1, n] is linearly ordered, proceeding from right to left and from the bottom
to the top.

We write also K ; LN Ky j whenever i, j, ¢, j € [1,n+1] with i < j, Withi < j', with
1 <iand j < 7. In particular for i =i’ and j = j’, the morphism K; -H K, is an
identity. Note that K; 'H Ky jr is zero unless ¢/ < j.

The morphism (K ; L K n41) is a weak kernel of (K 41 L K1) = (X, = X;) for
i, j € [1,n] with ¢ < j; cf. [3, Lem. A.14, Rem. A.27].

We shall define an object P € ObC*®*(A ). Given I € [1,n], we let

-D D K-

i€[Ll] jell+1,n+1]

Given [, m € [1,n] with [ < m, we let the morphism P, 2~ P,, be defined by the matrix
P = (P).@r.3)) ). 5, where

Py = 05 (O +kOy{i € [l +1,m]}) .
First, let us verify that (P, 2~ P,, *~ P,) = (B2~ P,) for | < m < r in [1,n]. In fact,
at i€ [L,l],jel+1,n+1],i" € [1,r], j” € [r+1,n+ 1], we obtain
D iveim] 2ojreimiintt) 95 (Oui + kOy{i" € [L+1,m]}) Oy jr (O in + kOir i {i" € [m +1,7]})
= i (Our + ROy 1" € [+ L]} + KO (" € [L+ 1]} + kO, {i" € [m+1,0]})
— O (a + kO, {i" € [+ 1,7"]}) .

Given [, m € [1,n] with [ < m, we let P, = @,cny Djcpmiinsy Kij- The pro-



jection P, — P}, is split epimorphic. The morphism F,,, — F,, given by the matrix
p‘Pl’m = (P(ij),(i".5)) ij),(#,57) 15 split monomorphic, for it has the projection P,, — P, as

a retraction. Now since our morphism factors as (P2~ P,) = (P,— Py — Pp), it is
split. We conclude that P € ObC1t(A,)).
Given [ € [1,n], we let P,—~ K;,,.1 = X; be the morphism given by the column vector
™ = (T(i4))(i,5) With

7T(z',j) = i,lk .
So P, Kin+1 = X is split epimorphic, for it has the inclusion of K, into F; as a
coretraction.

We claim that these morphisms furnish a pointwise split epimorphism P —— X . Suppose
given [, m € [1,n] with { < m. We have to show that

(P "o Kppo1 = K1) = (P =2 Py~ Kppns1) -

Suppose given i € [1,(] and j € [I41,n]. At position (¢, 7), the right hand side composition
has the entry

Diveptm) 2ojreimitntt) g (O + kO {i" € [L+1,m]}) Oy bk
= {jem+1,n+1]}0,k
gk s

being the entry and so does the left hand side composition. We conclude that 7k = pm.
We claim that P —~ X is CSpht(An)—purely epimorphic. By Lemma 5, it suffices to show

that for I, m € [1,n] with [ < m, for the quadrangle (P}, Py, X}, X,,), the induced

morphism from the kernel of P, -2~ P, in C to the kernel of X | — X, in Cis epimorphic.
Since by [3, Rem. A.27], the induced map from the weak kernel Kj,, to the kernel of

X, %+ X,, is epimorphic, it suffices to find an epimorphic induced morphism from the
kernel of P,-2+~ P, to K.

The kernel of P, %~ P,, is given by Dicpy Djeprim Kij» together with the inclusion
into F.

As induced morphism @,.,, D
(&Jk‘)(i’j).

This induced morphism is split epimorphic, for it has the inclusion of Kj,, into that kernel

eli+1.m] K;; — K, we take the column vector

. . . ™
as a coretraction. This proves the claim on P — X. o

Example 7 We display the matrix of the morphism Pj 2+ P; in the case n = 7 (in the
notation of the proof of Proposition 6). We have

Py = (K1 40Ki158K160K170K13)P(Kou® Ko 5P KB Ko7 PKog)B (K3 a®K35BK36PKs37BK33)
Py = (Ki6®Ki 70K 18)® (KD Kor®Kog)D(K36BK37®K38)®(Ku6PKy7DKyg)D(K560Ks57DKs55),
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and the morphism P LA P; is given by the matrix

[elelololo] (elelelolo] (ool telo)]
[elelololo] (elelelolo] (ol jelelw}]
[elclclole) [olelolole] | elelelo]
[slelolole] ool Holo] (eolelelele]
[olololole) o]l Jolole] [elelele)e]
OO0 OOHOOOOCOOOO
[l elel[slslolole] [slefelele}
el ool [clelelolo] (ele]lel el
HOOOO|I0O0000|00000
[oloklole] lolelelele] [elelele)e]
[ok ool [elolelolo] (alelel el
FTOOOO OO0 |0O0O0O0O
COFTOO|COCOO|I00000O
[ok ool [clslelolo] (ale]lel el
Elelololo](elelelele] (elelelele]
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