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Abstract

This note is a supplement to [3]. Let C be a weakly abelian category. Let n ≥ 0.
Let C(∆̇n) be the category of diagrams of shape ∆̇n = [1, n] with values in C. Let
C(∆̇n) be its quotient modulo split such diagrams. We know by [3, Prop. 5.5.(1),

Prop. 2.6] that there is a Frobenius category C(∆̄#
n ) whose classical stable category

C(∆̄#
n ) is equivalent to C(∆̇n). In particular, C(∆̇n) is weakly abelian. We give a

direct proof of this fact, exhibiting a structure of a Frobenius category on C(∆̇n)
such that C(∆̇n) is its classical stable category.
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0 Introduction

0.1 A construction principle for Frobenius categories

Given an exact category E and a full subcategory N ⊆ E , we ask for a modification of
the exact structure on E in such a way that the result is a Frobenius category with N as
a sufficiently big subcategory of bijective objects.

Declaring a pure short exact sequence in E to be N-pure if each object of N is bijective
with respect to it, we verify that E , equipped with the set of N-pure short exact sequences,
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actually is an exact category. For it to be Frobenius, N only has to be big enough; see
Remark 4.

0.2 Application to C(∆̇n)

Let C be a weakly abelian category; cf. e.g. [3, Def. A.26]. Let n ≥ 0.

Let C(∆̇n) be the category of diagrams of shape ∆̇n = [1, n] with values in C. Let C(∆̇n)
be its quotient modulo split such diagrams.

For the definition of the poset ∆̄#
n , see [3, §1.1]. For the definition of the category C+(∆̄#

n ),
see [3, §1.2.1.1]. Roughly, it is the category of diagrams on ∆̄#

n that have zeroes on the
boundaries and weak squares wherever possible. The category C+(∆̄#

n ) is Frobenius by
[3, Prop. 5.5.(1)].

Its classical stable category C+(∆̄#
n ) is equivalent to C(∆̇n) by [3, Prop. 2.6]. In particular,

since C+(∆̄#
n ) is weakly abelian, so is C(∆̇n). Cf. also [1, Prop. 8.4].

We find a structure of an exact category on C(∆̇n) such that it is a Frobenius category
with C(∆̇n) as its classical stable category. This reproves the fact that C(∆̇n) is weakly
abelian.

Whereas the category C(∆̇n) looks smaller and simpler than C+(∆̄#
n ), it behaves worse.

Firstly, while C+(∆̄#
n ) carries a shift functor by diagram shift, the category C(∆̇n) does

not allow such a diagram shift, and can only artificially be given a shift functor via
the equivalence C(∆̇n) ' C+(∆̄#

n ). Therefore, in the definition of a Heller triangulated

category [3, Def. 1.5.(i)], we rather use C+(∆̄#
n ). Secondly, and of relevance here, the

exact structure on C+(∆̄#
n ) is the obvious one that declares pointwise split short exact

sequences to be pure. The exact structure on C(∆̇n) has to be constructed; see Proposition
6 below.

0.3 Notation and conventions

(i) Given elements x, y of some set X, we let ∂x,y = 1 in case x = y and ∂x,y = 0 in case x 6= y.

(ii) For an assertion X, which might be true or not, we let {X} equal 1 if X is true, and equal 0 if X
is false. So for instance, {x = y} = ∂x,y.

(iii) For a, b ∈ Z, we denote by [a, b] := {z ∈ Z : a ≤ z ≤ b} the integral interval.

(iv) Given n ≥ 0, we denote by ∆n := [0, n] the linearly ordered set with ordering induced by standard
ordering on Z. Let ∆̇n := ∆n r {0} = [1, n], considered as a linearly ordered set.

(v) Maps act on the right. Composition of maps, and of more general morphisms, is written on the

right, i.e. -a -b = -ab
.

(vi) Functors act on the right. Composition of functors is written on the right, i.e. -F -G = -FG
.

Accordingly, the entry of a transformation a between functors at an object X will be written Xa.

(vii) All categories are supposed to be small with respect to a sufficiently big universe.

(viii) Given a category C, and objects X, Y in C, we denote the set of morphisms from X to Y by
C(X, Y ), or simply by (X, Y ), if unambiguous.
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(ix) Pure monomorphy in an exact category is indicated by X -r Y , pure epimorphy by X - Y .
Concerning exact categories in the sense of Quillen, cf. [3, §A.2].

(x) A morphism in an additive category A is split if it is isomorphic, in A(∆1), to a morphism of

the form X ⊕ Y -

“
0 0
1 0

”
Y ⊕ Z. A morphism being split is indicated by X // // Y (not to be

confused with monomorphy). Accordingly, a morphism being a split monomorphism is indicated
by X // • // Y , a morphism being a split epimorphism by X // � // Y .

(xi) A sequence X ′ - X - X ′′ in an additive category A is split short exact if it is isomorphic, in

A(∆2), to the sequence X ′ -(1 0)
X ′ ⊕X ′′ -

“
0
1

”
X ′′.

(xii) For the definition of a weakly abelian category, see e.g. [3, Def. A.26]; cf. [2, §3, l. 1–2],
[1, Def. 8.6].

(xiii) Given a weakly abelian category C and n ≥ 1, the category C(∆̇n) is defined as C(∆̇n) modulo the
subcategory of split diagrams; cf. [3, §2.4].

(xiv) Concerning the Freyd category Ĉ of a weakly abelian category C, we refer to [3, §A.6.3]. The
Freyd category Ĉ is an abelian Frobenius category that contains C as a sufficiently big subcategory
of bijectives.

1 Construction of exact categories

Remark 1 If (E ,Si) are exact categories for i in some index set I, where Si denotes the
respective set of pure short exact sequences, then also (E ,

⋂
i∈I Si) is an exact category.

A sequence X ′ -X -X ′′ in an exact category (E ,S) is called left exact if X ′ -X is
purely monomorphic and a kernel of X -X ′′.

A sequence X ′ -X -X ′′ in an exact category (E ,S) is called right exact if X -X ′′

is purely epimorphic and a cokernel of X ′ -X.

Let (E ,S) and (E ′,S ′) be exact categories, and let E -F E ′ be an additive functor. Let
SF denote the set of short exact sequences in S whose image under F , applied pointwise,
is in S ′.

The short exact sequences in S will also be called S-pure; etc. The short exact sequences in
SF will also be called SF -pure; etc. We will continue to denote an S-pure monomorphism
in E by -r , and an S-pure epimorphism by - .

The functor F is called left exact if for any pure short exact sequence (X, Y, Z) in E , the
sequence (XF, Y F, ZF ) is left exact.

The functor F is called right exact if for any pure short exact sequence (X, Y, Z) in E , the
sequence (XF, Y F, ZF ) is right exact.

Lemma 2

(1) If E -F E ′ is left exact, then (E ,SF ) is an exact category.

(2) If E -F E ′ is right exact, then (E ,SF ) is an exact category.
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Proof. Ad (1). Consider a left exact functor E -F E ′.

We use the axioms from [3, §A.2.1]. The axiom (Ex 2) is redundant; cf. [4].

Verification of (Ex 3). Suppose given a commutative triangle

M

�
AAAA
p

  AAAA

X •
ip

//

i
>>||||||||

Y

in E in which, moreover, ip is SF -purely monomorphic and p is SF -purely epimorphic.

By exactness of (E ,S), we can complete it to a diagram

X ′

•D
DDD
i′

!!DDDD

•
i′p′

// Y ′

�
AAAA
s′

  AAAA

M

�BBBB
p

!!BBBB

<||||

p′
==||||

Z ,

X

•zzzz

i
==zzzz

•
ip

// Y

=
}}}}

s
>>}}}}

in E with S-pure short exact sequences (X,M, Y ′), (X ′,M, Y ), (X, Y, Z) and (X ′, Y ′, Z).
Moreover, (X ′,M, Y ) and (X, Y, Z) are SF -purely short exact, i.e. (X ′F,MF, Y F ) and
(XF, Y F, ZF ) are pure short exact sequences in E ′. Hence, application of the left exact
functor F yields a diagram

X ′F

•I
IIII
i′F

$$IIIII

•
(i′p′)F

// Y ′F
s′F

##FFFFFFFF

MF

�HHHHH
pF

$$HHHHH

p′F
;;vvvvvvvvv

ZF

XF

•uuuuu

iF
::uuuuu

•
(ip)F

// Y F

8xxxx

sF
;;xxxx

in E ′ with (XF,MF, Y ′F ) and (X ′F, Y ′F,ZF ) left exact. By composition, s′F is purely
epimorphic, and hence (X ′F, Y ′F,ZF ) is a pure short exact sequence. The quadrangle
(MF, Y F, Y ′F,ZF ) is a pure square, for on the kernels, we have the identity on X ′F
as induced morphism, and the cokernels are zero; cf. [3, §A.4; §A.2.2; Lem. A.11].
In particular, it is a pullback, and so p′F is purely epimorphic. We conclude that
(XF,MF, Y ′F ) is a pure short exact sequence.

Verification of (Ex 3◦). Suppose given a commutative triangle

M
p

  AAAAAAAA

X
�ip //

•||||

i
>>||||

Y

in which, moreover, ip is SF -purely epimorphic and i is SF -purely monomorphic.
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By exactness of (E ,S), we can complete it to a diagram

X ′

•D
DDD
i′

""DDDD

�i
′p′

// Y ′

W

•{{{{

r′
=={{{{

•D
DDD

r
!!DDDD

M

�CCCC
p

!!CCCC

;{{{{

p′
=={{{{

X

•yyyy

i
<<yyyy

�ip // Y

in E with pure short exact sequences (X,M, Y ′), (X ′,M, Y ), (W,X, Y ) and (W,X ′, Y ′).
Moreover, (X,M, Y ′) and (W,X, Y ) are SF -purely short exact, i.e. (XF,MF, Y ′F ) and
(WF,XF, Y F ) are pure short exact sequences in E ′. Hence, application of F yields a
diagram

X ′F

•I
IIII
i′F

$$IIIII

(i′p′)F // Y ′F

WF

•vvvvv

r′F
::vvvvv

•H
HHHH

rF $$HHHHH

MF
pF

$$HHHHHHHHH

6vvvvv

p′F
;;vvvvv

XF

•uuuuu

iF
::uuuuu

�(ip)F
// Y F

in E ′ with (WF,X ′F, Y ′F ) and (X ′F,MF, Y F ) left exact. By composition, the morphism
pF is purely epimorphic, and thus (X ′F,MF, Y F ) is a pure short exact sequence. By
(Ex 3◦) in E ′, the morphism (i′p′)F is purely epimorphic, and thus (WF,X ′F, Y ′F ) is a
pure short exact sequence.

Remark 3 A possible source of mistakes. Given an S-pure monomorphism X -r Y in E
such that its image FX -r FY is purely monomorphic, we cannot conclude that X -r Y
is SF -purely monomorphic. In fact, the image of every S-pure monomorphism under F is
purely monomorphic.

2 The construction principle

Let (E ,S) be an exact category, where S denotes the set of pure short exact sequences,
and let N ⊆ E be a full additive subcategory.

Consider the following set of pure short exact sequences.

SN :=

( ⋂
N∈ObN

S
E(N,−)

)
∩

( ⋂
N∈ObN

S
E(−,N)

)
.

Then (E ,SN ) is an exact category by Lemma 2 and Remark 1. The short exact sequences
in SN are called N-pure short exact sequences. The pure monomorphisms in this exact
category are called N-pure monomorphisms, and the pure epimorphisms therein are called
N-pure epimorphisms.

By construction, the subcategory N ⊆ E consists of bijective objects in (E ,SN ); that is,
each N ∈ ObN is bijective with respect to the N-pure short exact sequences.
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Written out, an N-pure short exact sequence in E is a pure short exact sequence
X ′ -r X -X ′′ such that for any N ∈ ObN and any morphism N -X ′′, there exists
a factorisation (N -X ′′) = (N -X -X ′′); and, dually, such that for any N ∈ ObN
and any morphism X ′ - N , there exists a factorisation (X ′ - N) = (X ′ -r X - N).

An N-pure short exact sequence X ′ -r N -X ′′ in E is called N-resolving if N ∈ ObN .

Remark 4 The category (E ,SN ), i.e. the given exact category E together with the set of
N-pure short exact sequences SN , is a Frobenius category if the following conditions (1)
and (2) are fulfilled. In this case, N is a sufficiently big subcategory of bijectives.

(1) For all X ′′ ∈ Ob E, there exists a N-resolving pure short exact sequence with cokernel
term X ′′.

(2) For all X ′ ∈ Ob E, there exists a N-resolving pure short exact sequence with kernel
term X ′.

3 Application to C(∆̇n)

Suppose given n ≥ 1. Recall that ∆̇n = ∆n r {0} = [1, n].

Let C be a weakly abelian category. We shall consider the category C(∆̇n). For ease of
notation, we formally put Xn+1 := 0 for X ∈ Ob C(∆̇n).

A sequence X ′ -
i
X -p X ′′ in C(∆̇n) is called pointwise split short exact, if the sequence

X ′k -ik Xk
-pk X ′′k is split short exact for all k ∈ [1, n]. The kernel in a pointwise split short

exact sequence is pointwise split monomorphic, the cokernel pointwise split epimorphic.
The additive category C(∆̇n), equipped with the set of pointwise split short exact se-
quences as pure short exact sequences, is an exact category; cf. e.g. [3, Ex. A.3, Ex. A.4].

Consider the full subcategory Csplit(∆̇n) ⊆ C(∆̇n) whose objects are diagrams

X ∈ Ob C(∆̇n) such that Xk
-x Xl is split for all k, l ∈ [1, n] with k ≤ l.

Let S denote the set of pointwise split short exact sequences in C(∆̇n).

Lemma 5 Suppose given a pointwise split short exact sequence X ′ -
f
X -g X ′′ in

C(∆̇n) such that, for all l, m ∈ [1, n] with l ≤ m, the quadrangle (Xl, Xm, X
′′
l , X

′′
m)

has the following property (∗).

(∗) The morphism induced from the kernel of Xl
-x Xm in Ĉ to the kernel of X ′′l -x X ′′m

in Ĉ is epimorphic.

Suppose given Z ∈ Ob Csplit(∆̇n). Then application of the functors (Z,−) = C(∆̇n)(Z,−)
and (−, Z) = C(∆̇n)(−, Z) yields short exact sequences

(Z,X ′) -(Z,f)
(Z,X) -(Z,g)

(Z,X ′′)

(X ′, Z) �(f,Z)
(X,Z) �(g,Z)

(X ′′, Z)
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of abelian groups. In other words, the sequence X ′ -
f
X -g X ′′ is Csplit(∆̇n)-purely short

exact; still in other words, it is contained in SCsplit(∆̇n).

Proof. We claim that (Z,X) -
(Z,g)

(Z,X ′′) is surjective. By Lemma [3, A.25], applied to

the abelian Frobenius category Ĉ, we may assume that Z is an interval, say Z = C[l,m]

with C ∈ Ob C and l, m ∈ [1, n] with l ≤ m; cf. [3, §A.6.2].

A morphism C[l,m]
-X ′′ is determined by a morphism C -t X ′′l such that the composite

(C -t X ′′l -x
′′
X ′′m+1) vanishes. To prove the asserted surjectivity, we have to find a

morphism C -t
′
Xl such that the composite (C -t

′
Xl

-x Xm+1) vanishes and such that

(C -t
′
Xl

-gl X ′′l ) = (C -t X ′′l ).

To do so, we may assume that m < n. Let Kx
-s Xl denote the kernel of Xl

-x Xm+1

in Ĉ, and let Kx′′
-s
′′
X ′′l denote the kernel of X ′′l -x

′′
X ′′m+1 in Ĉ. By (∗), we ob-

tain an induced epimorphism Kx
-̃g Kx′′ , characterized by g̃s′′ = sgl. We factor

(C -t X ′′l ) = (C -t1 Kx′′
-s
′′
X ′′l ) by the universal property of s′′. Then we factor

(C -t1 Kx′′) = (C -t2 Kx
-̃g Kx̃) by epimorphy of g̃ and by bijectivity of C in Ĉ. We

may use t′ := t2s. This proves the claim.

We claim that (X ′, Z) -(f,Z)
(X,Z) is surjective. By duality, it suffices to show that, given

l, m ∈ [1, n] with l ≤ m, the morphism induced from the cokernel of X ′l -X ′m in Ĉ to
the cokernel of Xl

-Xm in Ĉ, is monomorphic. This in turn follows by an application

of the snake lemma in Ĉ to the morphism (X ′l , Xl, X
′′
l ) -(x′, x, x′′)

(X ′m, Xm, X
′′
m) of short

exact sequences.
� //

•
��

•
��

X ′l •
fl //

x′

��

Xl
�gl //

x

��

X ′′l

x′′

��

X ′m
•
fm //

_

��

Xm
�gm //

_

��

X ′′m

// • //

0

This proves the second claim.

Proposition 6 The category C(∆̇n), equipped with the set SCsplit(∆̇n) of Csplit(∆̇n)-pure

short exact sequences, is a Frobenius category with Csplit(∆̇n) as a sufficiently big subcat-
egory of bijectives.

Proof. By Remark 4 and by duality, it suffices to show that for each object X ∈ Ob C(∆̇n)
there exists a Csplit(∆̇n)-resolving pure exact sequence with cokernel term X.

Write Ki,n+1 := Xi for i ∈ [1, n]. For the notion of a weak square, we refer to [3, Def. A.9].
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Choose a diagram

K1,2
//

k
��

+

0

��
K1,3

k //

k
��

+

K2,3
//

k
��

+

0

��
K1,4

k //

k
��

+

K2,4
k //

k
��

+

K3,4
//

k
��

+

0

��
...

k

��
+

...

k

��
+

...

k

��
+

...

k

��
+

· · ·

+

...

k

��
K1,n

k //

k
��

+

K2,n
k //

k
��

+

K3,n
k //

k
��

+

K4,n
k //

k
��

+

· · · k //

+

Kn−1,n
//

k
��

+

0

��
K1,n+1

k // K2,n+1
k // K3,n+1

k // K4,n+1
k // · · · k // Kn−1,n+1

k // Kn,n+1
// 0

in C, and where (Kl,n+1
-k Km,n+1) = (Xl

-x Xm) for l, m ∈ [1, n] with l ≤ m. This is
possible since [1, n] is linearly ordered, proceeding from right to left and from the bottom
to the top.

We write also Ki,j
-k Ki′,j′ whenever i, j, i′, j′ ∈ [1, n+ 1] with i < j, with i′ < j′, with

i ≤ i′ and j ≤ j′. In particular, for i = i′ and j = j′, the morphism Ki,j
-k Ki,j is an

identity. Note that Ki,j
-k Ki′,j′ is zero unless i′ < j.

The morphism (Ki,j
-k Ki,n+1) is a weak kernel of (Ki,n+1

-k Kj,n+1) = (Xi
-x Xj) for

i, j ∈ [1, n] with i ≤ j; cf. [3, Lem. A.14, Rem. A.27].

We shall define an object P ∈ Ob Csplit(∆̇n). Given l ∈ [1, n], we let

Pl :=
⊕
i∈[1,l]

⊕
j∈[l+1,n+1]

Ki,j .

Given l, m ∈ [1, n] with l < m, we let the morphism Pl -
p
Pm be defined by the matrix

p = (p(i,j),(i′,j′))(i,j),(i′,j′), where

p(i,j),(i′,j′) := ∂j,j′(∂i,i′ + k∂i,l{i′ ∈ [l + 1,m]}) .

First, let us verify that (Pl -
p
Pm -p Pr) = (Pl -

p
Pr) for l < m < r in [1, n]. In fact,

at i ∈ [1, l], j ∈ [l + 1, n+ 1], i′′ ∈ [1, r], j′′ ∈ [r + 1, n+ 1], we obtain∑
i′∈[1,m]

∑
j′∈[m+1,n+1] ∂j,j′ (∂i,i′ + k∂i,l{i′ ∈ [l + 1,m]}) ∂j′,j′′ (∂i′,i′′ + k∂i′,m{i′′ ∈ [m+ 1, r]})

= ∂j,j′′
(
∂i,i′′ + k∂i,m{i′′ ∈ [m+ 1, r]}+ k∂i,l{i′′ ∈ [l + 1,m]}+ k∂i,l{i′′ ∈ [m+ 1, r]}

)
= ∂j,j′′

(
∂i,i′′ + k∂i,l{i′′ ∈ [l + 1, r]}

)
.

Given l, m ∈ [1, n] with l < m, we let Pl,m :=
⊕

i∈[1,l]

⊕
j∈[m+1,n+1] Ki,j. The pro-
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jection Pl - Pl,m is split epimorphic. The morphism Pl,m - Pm given by the matrix
p|Pl,m

= (p(i,j),(i′,j′))(i,j),(i′,j′) is split monomorphic, for it has the projection Pm - Pl,m as

a retraction. Now since our morphism factors as (Pl -
p
Pm) = (Pl - Pl,m - Pm), it is

split. We conclude that P ∈ Ob Csplit(∆̇n).

Given l ∈ [1, n], we let Pl -
π
Kl,n+1 = Xl be the morphism given by the column vector

π = (π(i,j))(i,j) with

π(i,j) = ∂i,lk .

So Pl -
π
Kl,n+1 = Xl is split epimorphic, for it has the inclusion of Kl,n+1 into Pl as a

coretraction.

We claim that these morphisms furnish a pointwise split epimorphism P -π X. Suppose
given l, m ∈ [1, n] with l < m. We have to show that

(Pl -
π
Kl,n+1

-k Km,n+1)
!

= (Pl -
p
Pm -π Km,n+1) .

Suppose given i ∈ [1, l] and j ∈ [l+1, n]. At position (i, j), the right hand side composition
has the entry

∑
i′∈[1,m]

∑
j′∈[m+1,n+1] ∂j,j′ (∂i,i′ + k∂i,l{i′ ∈ [l + 1,m]}) ∂i′,mk

= {j ∈ [m+ 1, n+ 1]}∂i,lk
= π(i,j)k ,

being the entry and so does the left hand side composition. We conclude that πk = pπ.

We claim that P -π X is Csplit(∆̇n)-purely epimorphic. By Lemma 5, it suffices to show
that for l, m ∈ [1, n] with l < m, for the quadrangle (Pl, Pm, Xl, Xm), the induced

morphism from the kernel of Pl -
p
Pm in Ĉ to the kernel of Xl

-x Xm in Ĉ is epimorphic.
Since by [3, Rem. A.27], the induced map from the weak kernel Kl,m to the kernel of

Xl
-x Xm is epimorphic, it suffices to find an epimorphic induced morphism from the

kernel of Pl -
p
Pm to Kl,m.

The kernel of Pl -
p
Pm is given by

⊕
i∈[1,l]

⊕
j∈[l+1,m] Ki,j, together with the inclusion

into Pl.

As induced morphism
⊕

i∈[1,l]

⊕
j∈[l+1,m] Ki,j

- Kl,m , we take the column vector

(∂i,lk)(i,j).

This induced morphism is split epimorphic, for it has the inclusion of Kl,m into that kernel

as a coretraction. This proves the claim on P -π X.

Example 7 We display the matrix of the morphism P3
-p P5 in the case n = 7 (in the

notation of the proof of Proposition 6). We have

P3 = (K1,4⊕K1,5⊕K1,6⊕K1,7⊕K1,8)⊕(K2,4⊕K2,5⊕K2,6⊕K2,7⊕K2,8)⊕(K3,4⊕K3,5⊕K3,6⊕K3,7⊕K3,8)
P5 = (K1,6⊕K1,7⊕K1,8)⊕(K2,6⊕K2,7⊕K2,8)⊕(K3,6⊕K3,7⊕K3,8)⊕(K4,6⊕K4,7⊕K4,8)⊕(K5,6⊕K5,7⊕K5,8) ,
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and the morphism P3
-p P5 is given by the matrix

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 k 0 0 k 0 0
0 0 0 0 0 0 0 1 0 0 k 0 0 k 0
0 0 0 0 0 0 0 0 1 0 0 k 0 0 k


.
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