Kommutative Algebra, WS 17/18

Blatt 12

Aufgabe 45 (6 Punkte) Sei R ein kommutativer Ring.

Sei $S=(S,\alpha)$ eine kommutative R-Algebra. Sei $T=(T,\beta)$ eine kommutative S-Algebra. Dann ist $T=(T,\beta\circ\alpha)$ eine kommutative R-Algebra. Zu zeigen ist folgendes.

- (1) Ist T endlich über S und ist S endlich über R, dann ist T endlich über R.
- (2) Ist T ganz über S und ist S ganz über R, dann ist T ganz über R.

Aufgabe 46 (3 Punkte) Sei R ein kommutativer Ring.

Sei $S = (S, \alpha)$ eine kommutative R-Algebra. Sei S endlich erzeugt als R-Algebra. Zu zeigen ist, daß genau dann S endlich über R ist, wenn S ganz über R ist.

Aufgabe 47 (2+2+3+2+4+4+2 Punkte)

Sei R ein kommutativer Ring. Seien S und T kommutative R-Algebren.

Sei $S \xrightarrow{f} T$ ein R-Algebrenmorphismus. Es ist T = (T, f) eine kommutative S-Algebra. Seien S-Moduln M und M'' sowie eine S-lineare Abbildung $M \xrightarrow{u} M''$ gegeben. Zu zeigen ist folgendes.

- (1) Es ist $T \otimes M$ ein T-Modul vermöge $t' \cdot (\sum_{i \in I} t_i \otimes m_i) = \sum_{i \in I} (t't_i) \otimes m_i$, wobei I eine endliche Menge ist und wobei $t' \in T$, $t_i \in T$ und $m_i \in M$ für $i \in I$.
- (2) Wir haben die T-lineare Abbildung $T \underset{S}{\otimes} u \colon T \underset{S}{\otimes} M \to T \underset{S}{\otimes} M''$, die $t \otimes m$ nach $t \otimes u(m)$ schickt für $t \in T$ und $m \in M$.
- (3) Wir haben die S-lineare Abbildung $v''\colon M''\to T\otimes M''\colon m''\to 1\otimes m''$. Sei X ein T-Modul. Wir können X via f zu einem S-Modul einschränken. Sei $h\colon M''\to X$ eine S-lineare Abbildung. Dann gibt es genau eine T-lineare Abbildung $\hat{h}\colon T\otimes M''\to X$ mit $\hat{h}\circ v''=h$.
- (4) Ist u surjektiv, dann ist $T \underset{S}{\otimes} u$ surjektiv. Ist u injektiv, dann ist im allgemeinen $T \underset{S}{\otimes} u$ nicht injektiv.
- (5) Sei u surjektiv. Sei $M' := \operatorname{Kern}(u) := u^{-1}(0)$. Sei $i : M' \to M : m' \mapsto m'$. Es ist das Bild von $T \underset{S}{\otimes} i$ gleich dem Kern von $T \underset{S}{\otimes} u$.

Sei $N \subseteq S$ eine multiplikative Teilmenge. Sei im folgenden $T = S /\!\!/ N$ und $f = \lambda_{S,N}$.

- (6) Jedes Element von $T \underset{S}{\otimes} M$ ist von der Form $\frac{1}{n} \otimes m$ mit $n \in N$ und $m \in M$. Für $n, \tilde{n} \in N$ und $m, \tilde{m} \in M$ ist genau dann $\frac{1}{n} \otimes m = \frac{1}{\tilde{n}} \otimes \tilde{m}$, wenn es ein $x \in N$ mit $x\tilde{n}m = xn\tilde{m}$ gibt. Hinweis: Man verwende die gewünschten Eigenschaften zur Definition eines T-Moduls $M/\!\!/N$ und vergleiche diesen mit $T \underset{S}{\otimes} M$ mittels universeller Eigenschaften.
- (7) Ist u injektiv, dann ist $T \underset{S}{\otimes} u$ injektiv.