Kommutative Algebra, WS 17/18

Blatt 11

Aufgabe 42 (8+3 Punkte) Sei R ein kommutativer Ring.

Seien $A = (A, \alpha)$ und $B = (B, \beta)$ kommutative R-Algebran. Zu zeigen ist folgendes.

(1) Es wird der R-Modul $A \underset{R}{\otimes} B$ zu einem kommutativen Ring vermittels

$$\left(\sum_{i\in I} a_i \otimes b_i\right) \cdot \left(\sum_{j\in J} a'_j \otimes b'_j\right) := \sum_{i\in I, j\in J} a_i a'_j \otimes b_i b'_j,$$

wobei I und J endliche Mengen sind, wobei $a_i \in A$ und $b_i \in B$ liegen für $i \in I$ und wobei $a_j' \in A$ und $b_j' \in B$ liegen für $j \in J$.

Es wird $A \underset{R}{\otimes} B$ zu einer kommutativen R-Algebra vermittels des Strukturmorphismus $\gamma \colon R \to A \underset{R}{\otimes} B \colon r \mapsto \gamma(r) := \alpha(r) \otimes 1 = 1 \otimes \beta(r).$

Die R-Modulstruktur auf $A \underset{R}{\otimes} B$ aus Definition 120 stimmt mit der via Strukturmorphismus γ und Beispiels 112.(4) überein.

(2) Es sind $\kappa_1 \colon A \to A \underset{R}{\otimes} B \colon a \mapsto a \otimes 1$ und $\kappa_2 \colon B \to A \underset{R}{\otimes} B \colon b \mapsto 1 \otimes b$ Morphismen von R-Algebren.

Sei eine kommutative R-Algebra $T=(T,\delta)$ gegeben, zusammen mit R-Algebrenmorphismen $t_1\colon A\to T$ und $t_2\colon B\to T$. Dann gibt es genau einen R-Algebrenmorphismus $t\colon A\otimes B\to T$ mit $t\circ\kappa_1=t_1$ und $t\circ\kappa_2=t_2$. Dieser erfüllt $t(a\otimes b)=t_1(a)\cdot t_2(b)$ für $a\in A$ und $b\in B$.

Aufgabe 43 (2+2+4+2) Punkte) Sei R ein kommutativer Ring.

Seien R-Moduln M, M', N und N' gegeben.

Sei $f: M \to M'$ eine R-lineare Abbildung. Sei $g: N \to N'$ eine R-lineare Abbildung. Zu zeigen ist folgendes.

- (1) Wir haben die R-lineare Abbildung $f \otimes g \colon M \otimes N \to M' \otimes N'$ mit $(f \otimes g)(m \otimes n) = f(m) \otimes g(n)$ für $m \in M$ und $n \in N$.
- (2) Wir haben den Isomorphismus von R-Moduln $\sigma \colon M \underset{R}{\otimes} N \to N \underset{R}{\otimes} M$ mit $\sigma(m \otimes n) = n \otimes m$ für $m \in M$ und $n \in N$.
- (3) Wir haben die R-lineare Abbildung $f\colon (M\oplus M') \underset{R}{\otimes} N \to (M\underset{R}{\otimes} N) \oplus (M'\underset{R}{\otimes} N)$ mit $f((m,m')\otimes n) = (m\otimes n,m'\otimes n)$ für $m\in M,\,m'\in M'$ und $n\in N.$ Wir haben die R-lineare Abbildung $g\colon (M\underset{R}{\otimes} N) \oplus (M'\underset{R}{\otimes} N) \to (M\oplus M')\underset{R}{\otimes} N$ mit $g(m\otimes n,m'\otimes \tilde{n}) = (m,0)\otimes n + (0,m')\otimes \tilde{n}$ für für $m\in M,\,m'\in M'$ und $n,\,\tilde{n}\in N.$ Es sind f und g sich invertierende Isomorphismen von R-Moduln.
- (4) Wir haben den Isomorphismus von R-Moduln $f: R \otimes M \to M$ mit $f(r \otimes m) = rm$ für $r \in R$ und $m \in M$.

Aufgabe 44 (10 Punkte) Folgendes ist zu zeigen oder zu widerlegen.

Sei R ein kommutativer Ring. Seien R-Moduln M und N gegeben. Seien kommutative R-Algebren $A = (A, \alpha)$ und $B = (B, \beta)$ gegeben.

- (1) Ist $M \neq 0$ und $N \neq 0$, dann ist auch $M \underset{R}{\otimes} N \neq 0$.
- (2) Die Abbildung $\tau_{M,N}$ ist surjektiv.
- (3) Seien X und Y Elemente. Es gibt den R-Algebrenisomorphismus $f \colon R[X] \underset{R}{\otimes} R[Y] \xrightarrow{\sim} R[X,Y]$ mit $f(X \otimes 1) = X$ und $f(1 \otimes Y) = Y$.
- (4) Seien A und B integer. Dann ist $A \underset{R}{\otimes} B$ eine integre $R\text{-}\mathsf{Algebra}.$
- (5) Wir betrachte die R-Algebrenmorphismen κ_1 und κ_2 aus Bemerkung 123. Sei $F := \{ (\mathfrak{p}_1, \mathfrak{p}_2) \in \operatorname{Spec}(A) \times \operatorname{Spec}(B) : \alpha^{-1}(\mathfrak{p}_1) = \beta^{-1}(\mathfrak{p}_2) \}$ das Faserprodukt. Die Abbildung $\operatorname{Spec}(A \otimes B) \to F : \mathfrak{p} \mapsto (\kappa_1^{-1}(\mathfrak{p}), \kappa_2^{-1}(\mathfrak{p}))$ ist bijektiv.

www.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ca17/