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Chapter O

Introduction

Suppose given groups A and G, not necessarily abelian.

0.1 A problem and its history

If A is abelian and we are given an action of G on A, the equivalence classes of group extensions
of A by G that induce this action are in bijection to the second cohomology group H*(G, A) ;
cf. e.g. [2, IV, Th. 3.12].

For general A, we want to describe the set Ext(G, A) of equivalence classes of group extensions
of A by G.

In 1926, SCHREIER introduced what we call normalized generalized 2-cocycles to describe the
set Ext(G, A); cf. [8, Satz ], Lemma 2.7.

We write Out(A) = Aut(A)/ Int(A) for the outer automorphism group of A. A group extension
11— A— E — G — 1 induces a group morphism G — Out(A).

In 1947, EILENBERG and MAC LANE conversely supposed given a group morphism
w : G — Out(A)

and found an obstruction in H*(G, Z(A)) to the existence of a group extension of A by G that
induces w ; cf. [6].

They proceeded as follows. Let & € Aut(A) be a lift of w, € Out(A) for ¢ € G. Note
that G — Aut(A), g — &, is not a group morphism in general. But we may choose a map
f G x G — A such that

g0 8&n = Int(f(g,h)) o &
for g, h € G. It turns out that there is a 3-cocycle ¢ € Z*(G, Z(A)) such that

for g, h, k € G. Then a group extension of A by G that induces w exists if and only if
¢ BNG,Z(A)) = L) -

Cf. Remark 3.2, Lemma 3.5 and Theorem 3.7.



More generally, EILENBERG and MAC LANE start with an abelian group Z and consider the set
of pairs (A, G — Out(A)), where A is a group with center isomorphic to Z and G — Out(A) is
a group morphism. On this set, they define an equivalence relation. On the set of equivalence
classes, they define a group structure; cf. [6, §6]. They show that this group is isomorphic to
H3(G, Z); cf. [6, Th. 10.1]. An equivalence class of a pair (A, G — Out(A)) is mapped to the

trivial element of H*(G, Z) if and only if there exists a group extension 1 - A — E — G — 1

inducing G — Out(A).

In addition, they show that if a group extension 1 - A — EF — G — 1 inducing w exists,
then the set of equivalence classes of group extensions of A by G inducing w is in bijection to
H(G,Z(A)); cf. [6, Th. 11.1].

Already in 1934, BAER has shown the obstruction part and the H?-part of this theory in the
particular case Z(A) = 1; cf. [1, p. 375].

Mac LANE gave an account of this theory in [5, Ch. IV, §8 and §9]. BROWN gives a sketch in
[2, Ch. IV, §6].

In 2000, MORANDI introduced an equivalence relation on the set z%(G, A) of normalized gen-
eralized 2-cocycles. The set of equivalence classes is written h?*(G, A). He showed a bijection

between h*(G, A) and Ext(G, A). Cf. [7].

We give an account of the result of SCHREIER and MORANDI. Moreover, we give an account of
the obstruction part and the H?-part of the theory of EILENBERG and MAC LANE. We shall
summarize the results in the following §0.2.

0.2 Results

The following results are a reformulation of results of SCHREIER, MORANDI, EILENBERG and
Mac LANE; cf. [8], [7], [6]. For the history of these results, see §0.1.

Recall that A and G are groups, not necessarily abelian.

The set h*(G, A) of equivalence classes of normalized 2-cocycles is defined in Lemma 2.7. We
write Ext(G, A) for the set of equivalence classes of group extensions of A by G; cf. Defini-
tion 2.3.

Theorem 2.17. We construct mutually inverse bijections

Ext(G, A) h*(G, A) ;

cf. Propositions 2.9 and 2.14.

Suppose given a group morphism w : G — Out(A4). Then w induces a group morphism
w? : G — Aut(Z(A)); cf. Remark 3.2. Cohomology groups of G' with values in Z(A) are
formed with respect to w?.

To @ we attach an element (., € H*(G,Z(A)); cf. Lemma 3.5.(3).



Theorem 3.7. There is a group extension of A by G inducing the group morphism
w : G — Out(A)

if and only if
(w=1
in H*(G, Z(A)).
We give an example in which the map ( is trivial in spite of |Mor(G, Out(A4))| # 1 and
|H*(G,Z(A))| # 1 and 1 < Z(A) < A; cf. Example 3.17.

Let Ext, (G, A) be the subset of Ext(G, A) consisting of those equivalence classes of group
extensions of A by G that induce w in the sense of Remark 3.1.

Let hZ (G, A) be the subset of h*(G, A) consisting of those equivalence classes of normalized
generalized 2-cocycles (w, f) such that w lifts w; cf. Lemmata 2.7 and 3.9.

Then the bijections of Theorem 2.17 restrict to the subsets Ext. (G, A) and h% (G, A). The
restrictions are written o, and 3, respectively.

We use a normalized variant H2 (G, Z(A)) of H*(G,Z(A)), in which the cohomology classes

are represented by normalized 2-cocycles; cf. Remark 3.3, part 2. By Lemma 1.13, we have

Hom (G Z(A)) & H(G.Z(4)) .

Theorem 3.13. Suppose that there exists a group extension of A by G inducing the given
group morphism w : G — Out(A).

Therefore hZ (G, A) # 0; cf. Lemma 3.9. So we may choose an element (£, f) in z%(G, A) such
that [57 fO] € h?z(G7A)

We construct mutually inverse bijections 9%/ and n%/° so that altogether we obtain the fol-
lowing diagram.

Ko 9&:fo
hZ (G, A)

B néfo

Eth<G’ A) Hiorm(G’ Z(A)) HQ(Gﬂ Z<A>>

In particular, if A is abelian, we recover the theory of group extensions with abelian kernel; cf.
Remarks 3.8 and 3.16.



Conventions

(1) Given a, b € Z, we write [a,b] :={z€Z :a<z<b}.

(2) Suppose given a set X. Suppose given a, b € Z. Suppose given x; € X for ¢ € [a,b]. We

(3)

write
Tlap) = (Tas Tag1,- -, Tp) -
In particular, if @ > b, then z[,4 is the empty tuple.
Suppose given a set X. Suppose given k > 1. Suppose given a;, b; € Z for i € [1,k].

Suppose given a tuple x, 5] With entries in X for 7 € [1,k]. Then, by abuse of notation,
we write

(Tfay ba]s Tlas,bals - - - Tlagbe]) = (Tars Tay+1s -+ Thys Tags Tag4iys- - Tbyy - 5 Lags Tagtls- - -5 Thy)

for the concatenation of the tuples x5, for i € [1,k].
Single elements of X are viewed as tuples with one element in this context.
Empty tuples vanish when concatenated.

For example,
(x[l,?:}u Y, T[7,10]> T[13,12]; Z) = ($1,$27$3; Y, 7,28, X9, T10, Z) )
where all entries are in X.

Given sets X and Y, we write Map(X,Y) for the set of maps from X to Y.

Given groups G and H, we write Mor(G, H) for the set of group morphisms from G to H.
The group morphism from G to H that maps g to 1 for g € GG is denoted by !.

Cf. also Definition 1.1.

For a set X and k > 0, we let X* := [Ticpm X

In particular, X° = {( )}, containing only the empty tuple.



Chapter 1

Preliminaries on cohomology groups

Let G be a group acting on an abelian group M via a group morphism ¢ : G — Aut(M).
We often write (¢(g))(m) = 9m for g € G and m € M.

1.1 The cohomology groups

Definition 1.1. Let X be a set. Let Y be a group. We write Map(X,Y) for the set of maps
from X to Y. Suppose given f, f’ € Map(X,Y). We define their product via

(f- @) = (f Mapixy) [ (@) = f(z) vy fl(2)

for v € X. Then (Map(X,Y),-) is a group, often denoted by Map(X,Y).
If Y is abelian, then Map(X,Y’) is abelian.
Its identity element is given by the map

Y

. ¢
x l(x):=1.

%
H
Lemma 1.2. Suppose given n > 0. We define the map 9, : Map(G™, M) — Map(G™*', M) by

(On(f))(g15925 - Gnr1) = P f(g2,- s Gns1) - F(9192, 93,2 Gns1) " - f915 9205, 945 - - -, Gns1)

_1)n+1

f(g1. 920y Gty GnGns1) TV (91, G2e -y Gn)

for f € Map(G™, M) and g1,...,g,11 € G.
We often write just 0 := 0,, and 9f := 0,(f).
Then 9 : Map(G™, M) — Map(G™™!, M) is a group morphism between abelian groups.
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Proof. Suppose given f, f' € Map(G"™, M). Because M is abelian, we have

(a(f ' f/>>(g17g27 cee agn+1)
gl(f G2 Gnyr) - (F - [)(9192, 93, - - ,9n+1)_1

: (f : f')(gb 92, --509n—1, 9n9n+1)(71)n : (f : f’)(91, g2, .. ,gn)(fl)ﬂ1

glf(927 s 7g'n,+1) . f(91927g37 o 7gn+1)_1

f91, 02, gne1s 0ugns) TV Flo1, g2, 90) DT

I f(g2s s gnrr) - f(91925 93, - - 7gn+1)_1'

'f/(gh g2, -, 9n-1, 9n9n+1)(71)n : f’(gh g2, .. ,gn)(*l)n+1
af(gh R 7gn+1) : af/(gb R 7gn+1>
(af : af/)(gla s 7gn+1)

So 0 is a group morphism.

Lemma 1.3. Suppose given g1 ,11] := (g1, 92, - - -

We write

Ilimg1] ¥ 1= <

Then we have

(92,2 Gnt1) = J2,n+1]
(91927 gs. .. ’gn+1) = (91927 9[3,n+1])
(G151 9i-1, 9iGi+1, Git2s - - -2 Gn41) =  (911,i-1] GiGit1> Glit2,n+1])
(91> 9n1, GnGn+1) = (9pn-1), gngn+1)
(915 9n) = 9
Gltn+2) ¥ J %1 = Gni2) * 1% (j—1)

for0<i<j<n+2.

Proof. Suppose that i =0 and 7 = 1. Then

g[lmﬁ]*i*(j—l) = Gtz x0%0
= gpn+2 *0
= J[38,n+2]
= (9192, 93n+2) ¥ 0
= Gun+2 ¥ 10

= 9in+2 *J k1

]

. gns1) € G™L. Suppose given i € [1,n + 1].

ifi=20
ifi=1
ifie2,n—1]
ifi=n
ifi=n+1
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Suppose that i =0 and j € [2,n + 1]. Then

J[1nt2] * 1 * -1 = Iint2) * 0% (j—1)
= 9gpn+2) * (-1
= (9125-1159395+1, Glj+2,n+2))
= (91411 959j+1> Gj+2.n+2)) * 0
= gtz *J*0

= ghn+2) * ]k

Suppose that i = 0 and j = n + 2. Then

G ¥ix (J—1) = gy *x0x (n+1)
= gnto * (n+1)
912,n+1]
= gnn+1 *0
Gint2 ¥ (n+2) %0

= 9nn+2 *J K0

Suppose that i € [1,n] and j =i+ 1. Then

G2 ¥i% (J—1) = guago *i*i
(9[1,¢—1], 9igi+1, g[i+2,n+2]> * 1
= (9[1,1'71]» 9i9i+19i+2; 9[i+3,n+2})
(9[1,1'], Gi+19i+2; g[i+3,n+2]) * 1
= Qg x (1 +1)*i

= 9[1,n+2] *] *7 .

Suppose that i € [1,n — 1] and j € [i +2,n + 1]. Then

Innt2 ¥ 1% (3 —1) = (9p,i-1], GiGit+1> Givant2)) * (5 — 1)
(9[1,%1] » 9i9i+1, 9[i+2,5-1] 95 9j+1, 9[j+2,n+2])
= (9[1,j—1},9jgj+1a g[j+2,n+2]) * 1

g[17n+2] *] *7 .

Suppose that i € [1,n] and j = n + 2. Then

Junsg * % (J—1) = gunpgxi*x(n+1)
= (gn,i-1]» 9iGi+1, Gi+on+2) * (N + 1)
= (9[1,1'—1]7 9igi+1, g[i—|—2,n+l]>
= G+l * 1
= Gnniy ¥ (n+2)*i

= Glnt2] *J*1.
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Suppose that i =n + 1 and 7 = n + 2. Then
Jun+g * 0% (J—1) = gunrgx(n+1)x(n+1)

= (9pn]s Int19nt2) * (n+ 1)

= 9am

= gunry *(n+1)

= Ypmyz x (n+2) % (n+1)

= 9l1,n+2 R
Then we have proved that

G2 ¥ J %1 = g ¥ 1% (J — 1)
for 0 <i<j<n+2.
Example 1.4. Suppose given n > 0. Suppose given f € Map(G", M).
For g := gpin41) € G"*', we have
@)(9) = “flg=0)-( IT FlgxdY).
i€[1,n+1]
Proposition 1.5. Suppose given n > 0. We have
(00f)(91;- -+ Gnt2) = 1

for f € Map(G™, M) and for ¢1,..., g2 € G.
L.e. we have 00f = ! for f € Map(G™, M).
Le. we have 99 = ! : Map(G™, M) — Map(G"*2, M).

Proof. Let g := g nt2) € G"2. Using Lemma 1.3 repeatedly, we obtain
00f(g) = #@Ngx0)-( T (0N(g*H)

jell,n+2]
= 2 2(flgx0x0)- I flgx0x0)D")
i€[l,n+1] A
0 (flgx1x0)7) - TT flgx x0T
i€[L,n+1] o
[T (2(flgxi=0)) TI flgxji)=D")
JjE€[2,n+2] i€[1,n+1]
= 2 IT flgx0x)0)-( T 2 f(g*j*0)")
i€[1,n+1] JjE€[2,n+2]
(1)1 N (_1)itd
S IT flgx1+0)007) - IT  I1 flgxgx)th™)
i€[l,n+1] j€[2,n+2] i€[1,n+1]
= (T (flox0x (= 1)) flgxjx0)))
jel2n+2]
N(_1)\1+2 . N(__1)i+T
T flgx1x)07) - (T [T flgxjxdtV™)
i€[1,n+1] JE[2,n+2] i€[1,n+1]

= I II flg=j*i)0

JE[L,n+2] i€l n+1]

= I1 flg*jxi)=b™
(3,)€[1,n+1]x[1,n+2]
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Let
X = {Gj)eln+t1] x[l,n+2]:i<j}
Y = {5 el,n+1]x[1,n+2]:i>j}
We have X NY =0 and XUY = [I,n+1] x [1,n +2].

We have mutually inverse bijections

X & Y
(Zaj) 'ii (] - LZ)
(7,i+ 1) & (1,7) .

Therefore, using Lemma 1.3, we obtain

90f(g) = I1 flg*j=i)cu™

i€[1,n+1]x[1,n+2]

= (II flg=j*0)0) - ( I1 flg*j*)D™)

(i,j)eX (i.j)eY
i+j . N (—1)+7
= (II flgxj=d)"7)-( IT flg#j=i)=)
l])EX (7'7.])€q(X) i
1)i+i . . _1\i—1+i
= (I flgxg=)=07) - ( IT flgxix(G—1)0")
(i.))eX o (i,5)eX o
= (II flg*j*=)"07) - IT flgxj») =)
(1,5)eX (1,5)eX
= 1.
O
Definition 1.6. Suppose given n > 1. We define subgroups
7M(G, M) = ker(Map(G", M) % Map(G™',M)) = {f € Map(G™, M) : 0f =1}.
and
B"(G, M) = im(Map(G™', M) % Map(G", M)) = {0f : f € Map(G"™, M)}
of the abelian group Map(G™, M); cf. Lemma 1.2.
An element of Z" (G, M) is called an n-cocycle of G with values in M.
An element of B"(G, M) is called an n-coboundary of G with values in M.
Lemma 1.7. The group B"(G, M) is a subgroup of Z"(G, M).
Proof. Note that 00f =!; cf. Proposition 1.5. That means
Of € ker(Map(G", M) 9, Map(G™* M)
for f € Map(G™, M). Hence B"(G, M) <Z"(G, M). O

Definition 1.8. Suppose given n > 1. The nth cohomology group of G with values in M is
defined via
H"(G,M) = Z"(G,M)/B"(G, M)
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Example 1.9. We consider the particular case n = 2; cf. Definitions 1.6 and 1.8, Lemma 1.2.

(a) The group of 2-cocycles of G with values in M is given by

f is a map such that
Z(G,M) = $GxGHM o 9f(hk)- fgh, k)™ flg,hk) - flg, ) =1
for g, h, k€ G

(b) The group of 2-coboundaries of G with values in M is given by

v:G — M is a map, and
BX (G, M) = {Gx G2 M (9v)(g,h) = %(h) - v(gh)~' - v(g)
for g,h € G

(¢) The second cohomology group of G with values in M is the factor group
H*(G,M) = Z*(G,M)/B*(G,M) .
Example 1.10. We consider the particular case n = 3; cf. Definitions 1.6 and 1.8, Lemma 1.2.

(a) The group of 3-cocycles of G with values in M is given by

f is a map such that

9f (h, k,1) - f(gh,lf,l)_1 - f(g, hk,1)
f(g7ha kl)il ' f(g7ha k) =1

for g,h,k,l € G

Z3G. M) = {GxGxGL M

(b) The group of 3-coboundaries of G with values in M is given by
v:G x G — M is a map, and
B3 G, M) = {GxGx G2 M 1 (9v)(g,h,k) = %(h, k) -v(gh, k)™ - v(g, hk) - v(g, h) !
for g, h,k € G
(¢) The third cohomology group of G with values in M is the factor group
(G, M) = 7*(G, M) /B*(G, M) .

1.2 The groups Z* B? and H?

norm ? norm norm

Definition 1.11. The group of normalized 2-cocycles of G with values in M is defined as

73 (G, M) = {f € Z(G, M) : f(g,1)=1and f(l,g) =1forg e G} )

The group of normalized 2-coboundaries of G with values in M is defined as

norm
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The normalized second cohomology group of G with values in M is defined as

H2, . (G,M) = 72 (G, M)/B2 (G, M)

norm norm

Cf. Example 1.9.
Remark 1.12. We have
v:G — M is a map with v(1) = 1, and
B2 (G, M) = {Gx G M = (9v)(g,h) = %(h) v(gh)™ - v(g)
for g,h e G

Proof.

Ad 2. Suppose given a map v : G — M with v(1) = 1. We have to show that dv is contained
in B2, (G,M) =72 _.(G,M)NB*G,M). It suffices to show that (9v)(g,1) = 1 and that
(0v)(1,9) =1 for g € G.

We obtain (9v)(g,1) = % (1) -v(g-1)"t-v(g) = 91 =1,

Moreover, we obtain (9v)(1,g) = 'v(g) - v(1-g)™" - v(1) =v(1) = 1.

Ad C. Suppose given a map v : G — M such that Jv is contained in the subgroup
B2 (G, M) =72 (G, M)NB*G,M). We have to show that v(1) = 1.

(G, M), we have in fact 1 = (9v)(1,1) = (1) -v(1-1)"1-0(1) = v(1). O

Lemma 1.13. Given a map f : G x G — M, we define the constant map

Since dv € 72

norm

¢ L M
g = [flg):=/(11)
We have the isomorphism of abelian groups
Moo (G, M) & HY(G,M)
f ’ Biorm(G7 M) '£>

f
fo@f) 7 BLn(G M) & fBXG, M)

norm

Proof. The map ¢ : H2 (G, M) — H*(G, M) is a well-defined group morphism because

norm

72 (G, M) is a subgroup of Z*(G, M) and because B2 (G, M) is a subgroup of B*(G, M).

norm

We show that o~ : H*(G, M) — H2 (G, M) is well-defined.

norm

First, we show that f - (9f)~! € Z2._(G, M) for f € Z2(G, M).
Note that 1 = 9f(1,1)- f(g-1,1)" - f(g,1-1) - f(g,1)7!, whence 9f(1,1) = f(g,1) for g € G.
Note that 1 = f(1,9)- f(1-1,¢9)7*- f(1,1-9g)- f(1,1)7}, whence f(1,9) = f(1,1) for g € G.
Suppose given g € G. We get
(F-0H D@D = f@1) 0N

= flg. 1) 9f ()" flg-1) - flg)™

= flg,1)-9f(1, 1)

= 1.
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Moreover, we get

(f ) (af)_l)(lvg> = f(1>g) ’ (af
(

Second, given f, f € Z*(G, M) such that f-B*(G, M) = f-B*(G, M), we show that

Fo(@f) B2 (G M) £ F(0f) B2 (G M)

norm

We have b € B*(G, M) with f=f-o. Thenf: f-b, because f(g) _ f(l,l) — F(1,1)-b(1,1) =
f(g) - b(g) for g € G. So

Fo@f)™ = fob-@F ) = (F-@H) (b 007

Now b - (9b)~' € 72, (G, M), as seen in the first step. Moreover, b- (9b)~' € B*(G, M), as

b e B%(G, M) and db € B*(G, M). Hence b- (9b)~' € B2, (G, M), as required.

norm

We have to show that the claimed inverse ¢! actually is a both-sided inverse of .

For f € 72...(G, M), we get

norm

—1

f'B2 (GvM) e fB2<G7M) R f(af>71B2 <G7M> = f'B2 (G7M)>

since f(g) = f(1,1) =1 for g € G, whence f = !, whence df =!.
For f € Z*(G, M), we get

f'B2<G’M> 'iglf'(af')_l'B2 (G’M) '£> f(af)_lBQ(GvM) = f-BQ(G,M),

norm

since (0f)~' € B(G, M). O



Chapter 2

Group extensions with
not necessarily abelian kernel

Let A and G be groups, both not necessarily abelian.

2.1 The sets Ext(G, A) and h?*(G, A)

Definition 2.1.

(1) We denote by Aut(A) the group of automorphisms of A, carrying the multiplication given
by composition (o).

(2) Given a € A, we write Int(a) € Aut(A) for the inner automorphism ¢ — ata™! of A.

(3) We write Int(A) := {Int(a) : a € A} for the set of inner automorphisms of A. We have
Int(A) < Aut(A).

(4) We write Out(A) := Aut(A)/Int(A) for the group of outer automorphisms of A. Its
multiplication is again written (o).

(5) We write p : Aut(A) — Out(A), 0 — o o Int(A) for the residue class morphism.

Remark 2.2. Recall that in a short exact sequence 1 - A = E 5 G — 1 of groups and
group morphisms, ¢ is injective, 7 is surjective and ¢(A) = ker(r).

Definition 2.3. A group extension of A by G is a short exact sequence 1 - A - EF — G — 1.

We say that two group extensions
1-ASEDLG—1
and
1AL ESG—1
of A by G are equivalent, if there exists a group isomorphism ¢ : £ — E’ such that the diagram

17
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is commutative, which means that /' = ¢ ot and m = 7’ o ¢. The set of equivalence classes of
group extensions of A by G is denoted by

Ext(G, A) .
Remark 2.4. Consider a group extension 1 - A 5 E 5 G — 1.

There exists a map s such that 7 os = idg and such that s(1g) = 1g. In fact, we may choose
an image s(g) € 7 '(g) for each element g € G. Since 1x € 7 !(1g), we may in particular
choose s(1g) = 1g. Note that such an element s(g) is determined only up to multiplication by
an element of ker(m) = ¢(A).

If we find a group morphism s such that 7 o s = idg, then the group extension (¢, 7) is said to
be split. In this case E is a semidirect product of A and G.

Definition 2.5. Suppose given a group extension 1 - A = E 5 G — 1.

Suppose given a map s : G — FE such that 7 o s = idg and that s(1g) = 1g; cf. Remark 2.4.

(1) We have a group isomorphism 7 := ¢|“) : A = 1(A). So we get a group isomorphism

1

I Aut(e(A)) = Aut(A)
—>

o L " o0o0l
In fact, given o, 0/ € Aut(c(A)), we get

1 1

i(o)oi(c") = 17 ogotioi™ -1

ocd'ot =1 'ocgocd’ ol = i(cod).
The inverse to 7 is given by i7! : Aut(A) — Aut(v(A)), o> Tooor L
(2) Define the map

w G — Aut((A))
g = (g :u(a) = s(g)ua)-s(g)™),where a € A.

Then @, is an automorphism of ¢(A) since ¢(A4) < E.

Define the map

wt™s = = Tow : G — Aut(A)

So for g € G and a € A, we have

Uwy(a)) = iwy(a)) = (i~ (@, ((a))) = @y(e(a)) = s(g) w(a)-s(g)™"



(3) Given g, h € G, we have

(s(g) - s(h) - s(gh)™") = m(s(g)) - m(s(h)) - m(s(gh))™" = g-h-(gh)" =1

and thus s(g) - s(h) - s(gh)™! € L(A).

So we may define

fems — f . GxG — A
(g:h) = flg,h) = 17 (s(g) - s(h) - s(gh)™!) .

Note that ¢(f(g,h)) =t(f(g,h)) = s(g) - s(h) - s(gh)~ for g, h € G.

Lemma 2.6. Suppose given a group extension 1 - A = F 5 G — 1.
Suppose given a map s : G — F such that 7 o s =idg and that s(1g) = 1.
Abbreviate w := w®™* and f := {7 ¢f. Definition 2.5.(1,2).

The following assertions (1,2, 3, 4) hold.

1) We have wy owy, = Int(f(g,h)) ow,, for g, h € G.

(1)

(2) We have wy, =1id4.

(3) We have f(g,h)- f(gh,k) = wy(f(h,k))- f(g,hk) for g, h, k € G.
(4) We have f(1g,9) = f(g9,1g) = 14 for g € G.

Proof. Ad (1). Suppose given g, h € G. We need to show that

(wy o wp)(a) = (Int(f(g, k) o wyn)(a)

for a € A. Since ¢ is injective, it suffices to show that

t((wg o wn)(a)) = o((Int(f(g,h)) o wyn)(a))

The left side is calculated as follows.

t((wgown)(a)) = 1(wy(wn(a)))

The right side is calculated as follows.
t((Int(f(g, 7)) owgn)(a)) = o(T9Mwg(a)
= e < 1(a)
= =(0rs=M 7 (5(gh) - 1(a) - s(gh) ")
= s(g)- () v(a) - s(h)™" - s(g)™!

So both sides are equal.

19
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Ad (2). We know that s(1g) = 1g. So for a € A, we get

Hwig(a)) = s(lq) - t(a) - s(1e) ™" = w(a) .
Hence wy,(a) = a for any a € A. Therefore we have w;, =id4 .

Ad (3). Suppose given g, h, k € G. Since ¢ is injective, it suffices to show that
|

Since ¢ is a group morphism, the left side is calculated as follows.

(f(g,h) - flgh k) = «(f(g.h)) - u(f(gh,k))
= 5(g) - s(h)-s(gh)~" - s(gh) - s(k) - s(ghk)™!
s(g) - s(h) - s(k) - s(ghk)™"

The right side is calculated as follows.

Hwy(f(h,K)) - flg,hk)) = u(wy(f

k) - s(ghk)™
So both sides are equal.
Ad (4). For g € G, we have
(f(le,9) = s(le)-s(9) - s(la-9)™" = 1p = u(la)

and
L(flg9,1a) = s(g)-s(1a)-s(g-1a)™ = 1g = o(1a) .
Hence f(lg,9) = f(g,1¢) = 1a. O

Lemma 2.7 (and definition). A normalized generalized 2-cocycle of G with coefficients in A is
a pair (w, f), where w : G — Aut(A) and f : G x G — A are maps satisfying the following
conditions (1,2,3,4).

(1) We have w, 0wy, = Int(f(g,h)) owgy, for g, h € G.

(2) We have w;y, =1id4.

(3) We have f(g,h) - f(gh,k) =w,(f(h,k)) - f(g,hk) for g, h, k € G.
(4) We have f(g,1¢) =14 = f(1g,g) for g € G.

The set of normalized generalized 2-cocycles of G with coefficients in A is called

7*(G, A) .

Note that w and f here are arbitrary maps that do not necessarily stem from a group extension.
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Now we define a relation (~) on the set z*(G, A). For (w, f), (', f') € 2*(G, A), we write
(w, f) ~ (&', f')
and say that (w, f) and (', f') are cohomologous, if there is a map t : G — A such that
t(1) =1,
such that
= Tnt(t(g)) o,
for g € G and such that
f'(g.h) = t(g) - wy(t(h)) - f(g,h) - t(gh)™"
for g,h € G.
Then (~) is a equivalence relation on z*(G, A).

The equivalence class of (w, f) € z*(G, A) is denoted by [w, f]. The set of equivalence classes
is denoted by

h*(G,4) = 22(G, A)/(~) = {lw. fl : (w,f) €2(G,A)}.

Proof. We need to prove that (~) is reflexive, symmetric and transitive.
Reflexivity.

Suppose given (w, f) € z%(G, A). We have (w, f) ~ (w, f) by choosing the trivial function
t:G— A g— 1.

Symmetry.
Suppose given (w, f), (W', f) € z*(G, A). Suppose that (w, f) ~ (', f') viat: G — A.
Define t' : G — A, g — t'(g) :=t(g)~'. Then
w, = Int(t(g))™"
= Int(t'(g)) o w,

for g € G and

Fgh) = () tg)™ - (g, h) - tgh)

= wy(t'(h))-t'(g) - f'(g, ) -'(gh)™"

= (Int(t'(9)) o wy)(¥'(h)) - t'(9) - f'(g,h) - t'(gh)~"
= t'(g)-wy(t'(h)-t'(9)~" -t (g)- f’(g, h) - t'(gh)~!
= t'(g)-wi(t'(h)- f'(g,h)-t'(gh)™!

for g, h € G. Therefore (W', f') ~ (w, f).
Transitivity.

Suppose given (w, f), (W', f'), (W, f") € z*(G,A) such that (w,f) ~ (W, f) viat: G = A
and (&', f') ~ (", f") viat' : G — A. So for g,h € G we have

/

wy, = Int(t(g))ow,

fg,h) = t(g) - wy(t(h))- f(g,h) t(gh)~"
wy, = Int(t'(g))ow,
f'(g,h) = t(g)-w,(t'(h)- f'(g,h)-t(gh)~!
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wy, = Int(t'(g)) ow,
Int(t'(g)) o Int(t(g)) o wy
Int(t'(9)t(g)) © wy
t(g) o Wy

for g € G and

f'(g.h) = t(g)-

"(9) - t(g) - wy(t'(R)) - t ) -
g) - wy(t'(h)t(h)) - f(g,h) - t(gh)™"
g) - wy(t(h)) - f(g, h) - t(gh)™!

for g, h € G. Therefore (w, f) ~ (W", f"). O

I
~

wy(t'(h)) - f'(g,h) -
)

~— ~—

t(
t(

2.2 The bijection between Ext(G, A) and h*(G, A)

Remark 2.8. Suppose given a group extension 1 - A 5 E 5 G — 1.
Suppose given a map s : G — E such that 7 o s =idg and that s(1g) = 1.
Then (w®™s %) € 22(G, A); cf. Lemmata 2.6 and 2.7.

Proposition 2.9. The map

Ext(G,A) = h*G,A)
[1 — A —L> E l) G — 1] — [w(b,ﬂ),s’ f(L,ﬂ'),s]‘

is well-defined, where s : G — E'is an arbitrary map such that mos = ids and that s(1¢) = 1g.
Cf. Definition 2.3, Lemma 2.7.

Proof. Given two equivalent group extensions
1A ESG—1

and ) /
1-ASESLG—1

and maps s, s’ : G — E such that mos = mos’ = idg and that s(1) = s/(1) = 1, we need to prove
that the representing normalized generalized 2-cocycles (™ f&m5) and (7" ()"
are cohomologous; cf. Lemma 2.7.

Due to the equivalence of the given group extensions we have a commutative diagram as follows,
cf. Definition 2.3.
A—t=F-">@G

! /

A—F "G



We write w = w&™s, f = 6™ and o = 0@ f .= )% Jike in Definition 2.5.
We have to show (w, f) ~ (W', ).
Write 7 := o/ A 5 1(A).
Note that for g € G, we have
(07 (s'(9)) - s(9)™h) = 7(e7(s'(9))) - 7(s(9)) T = T(s'(9)) - 7(s(g) T = g9 =

and thus o= 1(s'(g)) - s(g)~t € L(A).

Define
t:G — A
g = e (s'(9) - s(g)7h)
Then
Ut(g)) = ¢ '(s'(9)) - s(g)™"
for g € G.

We aim to show that (w, f) ~ (W', f") via t; cf. Lemma 2.7.
We have (t(1)) = ¢ 1(s'(1)) - s(1)"' =1-1 =1, and thus (1) = 1.
We have to show that wj, < Int(t(g)) o w, for g € G.

Suppose given a € A. It suffices to show «(w;(a)) = t((Int(t(g)) o wy)(a)).
On the one hand, we get the following.

Hwg(a))

t((Int((g)) o wy)(a))

We have to show that f'(g, h) = t(g) - wy(t(h)) - f(g,h) -t(gh)~' for g, h € G.

It suffices to show that «(f'(g, h)) = L(t(g) - wy(t(h)) - f(g,h)-t(gh)~t). We calculate.
On the one hand, we get the following.

u(f'(g, 1))

o
o

23
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On the other hand, we get the following.

L(t(g) - wy(t(h)) - f(g.h) - t(gh)™)
= ut(9)) - lwy(t(R))) - e(f (g, 1)) - 1(t(gh) ™)
= ut(9)) - wy(t(R))) - e(f (g, 1)) - e(t(gh) ™)
= ¢ 1(s'(9) - s(g) " - tlwy(t(h))) - 5(g) - s(h) - s(gh)™" - s(gh) - 7 (s'(gh) ™)
= ¢ (5'(9) - s(9)7" - lwy(t(h))) - 5(g) - s(h) - ™} (s'(gh) ™)
= ¢ (s'(9) - s(9)" - s(g) - elt(h)) - s(g) " - s(g) - s(h) - 7 (s'(gh) ™)
= ¢ 1(s'(9)) - e(t(h) - s(h) - 971 ('(gh) ™)
= ¢ (s'(9) - @ ((h) - s(h) ™ s(h) - o7 (s'(gh) )
Pl (s'(9) - (S (R) - 7 (s (gh) ™)
v (' (g) - s'(h) - &' (gh) )
Thus, we have (w, f) ~ (&, f'). So the map « is well-defined. O

Example 2.10. Suppose given a group extension 1 - A 5 F 5 G — 1 withmaps s : G — F
and s’ : G — E such that mo s = mos =idg and that s(1) = s'(1) = 1.

Then (w®™5 f&™) and (wm 6™ are cohomologous.

In fact, by Proposition 2.9 the image of [1 -+ A = E = G — 1] under the map ot is independent
of the choice of the map s.

Lemma 2.11. Suppose given (w, f) € z*(G, A), we define an operation ( e ) on A x G by

w,f
(wof): AxG)x(AxGE) — AxG
((a,9), (0, 1)) = (a,g) o (bh):=(a-wy(b)- flg.h). g-h)

Then (A x G, of ) is a group, denoted by A x G.
w, w,f

1

Specifically, for (a, g) € Ax G, we have (a, )" = (w, (a7 - f(g, 97") "), 971).
w?f

Note that (a, 1) 2 (1,g) =(a-wi(1)- f(1,9),9) = (a,g) for (a,g) € AwaG.

We simply write (o) instead of ( . ) if unambiguous.

Proof. First of all, we have a - wy(b) - f(g,h) € Aand g-he Gfora, b € Aand g, h € G.
We show associativity. Suppose given (a, g), (b, h), (¢, k) € A x G:

((a,g) o (b,h)) e (e, k) = (a-wy(b)-flg,h), gh)e(c,k
((a-wy(0) - f(g,h))- )

(a,g) o (b-wn(c) - f(h, k), hk

(@-wy(b-wnle)- f(h,k))- f

(aag) d <<b7 h) d (C, k)) =

We need to prove that

a-wyb) - f(g,h) - won(c) - Flgh,k) = a-wylb-wi(c)- f(h,k)) - f(g,hk) .
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So we need to prove that
Flg.h) - wogn(e) - F(gh k) = wylwn(c)) - wy(f (R k) - f(g. k)
Using (w, f) € 2%(G, A), cf. Lemma 2.7, we obtain in fact

(g7h)71 ’ f(97 h) ’ f(gha k)
(gh, k) .

(Wg o wh)(c) ) wg(f(h7 k)) ' f(gv hk) = f(gv h) ’ wgh(c) ’ f
= f(gvh)'wgh(c) f
So we have the associativity.

We need to show that (14, 1g) is the identity element. Suppose given (a,g) € A x G. We get

(1a,1g) @ (a,9) = (la-wig(a)- f(la,9), 1a-9)
= (la-ida(a)-14, g)
(a, g)

and
(a,9) @ (1a,1c) = (a-wy(la)- f(g,1c), - 1c)
(a, g) -

Suppose given (a, g) € A x G. We need to find the inverse element (b, h) € A x G to (a, g).
So we need

(1a, 16) = (a, g) o (b, h) = (a-w,(b) - f(g,h), gh) ,

which is equivalent to h = ¢~ and b = w; " (a™" - f(g, g7)7").

Therefore (w,*(a™" - f(g, g7')7"), g7') is a right inverse of (a, g). Now the right inverse is also

a left inverse, so that we have found an inverse element of (a, g). O

Remark 2.12. If f(g,h) = 1for g, h € G, thenw : G — Aut(A), g — w, is a group morphism,

i.e. G acts on A via w. In this case, A x G is the semidirect product of A by G via w.
w?f

In general, despite the similarity, the symbol A x G defined here does not necessarily denote a
semidirect product of A by G. wf

Lemma 2.13. Suppose given (w, f) € z*(G, A). Then we have group morphisms

(@) (@)
A 5 AxG = @G
w,f

a +— (a, 1)
(a,9) = g

NoN)) 7 (@.) , .
and (1 = A —— AxG —— G — 1) is a group extension of A by G.
w?f

Proof. Write ¢ := (/) and 7 := 7).
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We show that ¢ is a group morphism. For a, b € A, we have

wa)-u(b) =

We have ker(¢) = {1}, so that ¢ is a injective group morphism.

We show that 7 is a group morphism. For (a, g), (b, h) € Ax G, we have
w,f

W((a,g)'(b,h)) = (( () (gah)vg'h))
= g-h

(( g))-m((b, h)).
For g € G, we have 7((1, g)) = g, so that 7 is a surjective group morphism.

We need to prove that (1 = A = Ax G 5 G — 1) is a short exact sequence. To that end, it
w?f
remains to show that ¢(A) = ker(m). In fact, we have t(A) = {(a, 1) : a € A} = ker(n). O

Proposition 2.14. We have a well-defined map

WG, A) & Ext(G, A)
w, f] =

1—AY% awe ™ 651,
w?f

Concerning A x G , ¢f. Lemma 2.11. Concerning ¢“) and 7/, ¢f. Lemma 2.13.
w?f

Proof. Suppose given cohomologous pairs (w, f) ~ (&, f') in z*(G, A) ; cf. Lemma 2.7.
Write ¢ := ) and 7 := 7@ Write / := ") and 7’ := 7"/,

We need to prove that there is a group isomorphism ¢ between A x G and A x G such that
the diagram wf WS
A——=AxG—"=G
w?f
zlso
AL A% GG
w/’f/

is commutative.

Since (w, f) and (&', f') are cohomologous, there is a map ¢ : A — G such that

t(1 1
Int(t(g)) o w,

= t(g) - wy(t(h)) - fg,h) - t(gh)™

~— Q ~ ~—

w
f'(g.h
for g, h € G.



Let
AxG 5 AxG
w,f WL f!
(a,1) = (a,1)
Lg) = (t(g) " 9)
(@0)= (@1) s (Lg) = (@1) s (106)"9) = (a-1lg)™, 9).

The map ¢ is bijective, for its inverse is given by A x G — Ax G, (a,g) — (a-t(g9),9)-
w7f

w/,f{

We show that ¢ is a group morphism. Suppose given (a, g), (b,h) € AxG. Then
w7f

w((&,g)wjf(b,h)) = p(a-wy(d)- f(g,h), gh)
= (a-wy(b)- f(g,h)-t(gh)~", gh)
and
#((a,9)) b w((b h)) = (a-tlg)~'g) e (b-t(h)~", h)
= (a-t(g)"-wy(b-t(h)~") - f'(g,h), gh)
= (a-t(g)~" - t(g) - wy(b) - wy(t(h)™)
t(g)7t - t(g) - wy(t(h)) - f(g,h) - t(gh)~", gh)
= (a-wy(b)- f(g,h)-t(gh)™", gh)
Hence ¢( (a, g) o (0,h)) = w((a,9)) e @((b,h)).
We get
p(a)) = o

for a € A. Hence por =1

We get
m(p((a.9))) = 7((a-t(9)™" 9))

for (a,g9) € AxG. Hence 7’ o p = 7.
w,f

Proposition 2.15. The composite 3 o « is the identity on Ext(G, A).
Cf. Propositions 2.9 and 2.14.

27

Proof. Given a group extension (1 - A % E = G — 1), we choose a map s : G — FE such

that 7 o s = idg and such that s(1) = 1.
Write w := w®™s and f := -7,
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Write o := /&) and 7 := 7@, Cf. Lemmata 2.11 and 2.13.

We have to show that the group extension
1—-A5ESG—1)
is equivalent to the group extension

15ADAxGSG—1).
w?f

Recall that we have the isomorphism 7 := | : A — ((A). We remark that for z € E, the
element z - s(m(x))~! satisfies 7(z - s(w(x))™!) = W(I) ((mos)(m(z)))~' = 1, whence it lies in
ker(m) = ¢(A). So we may define

E 5 AxG
w7f

v (0N s(r(@) 7Y w(@)

We show that ¢ is a group morphism. For z, y € E, we get

p(r)eply) = (27 (z-s(m(x)™),m(z)) e (7 (y-s(n(y) ™). 7(y))
= (7 z-s(m(2) ™) wa@) (0 - s(w(@)™h) - f(w(@), 7 (y), w(xy))
= (7@ s(r(@) ™) 0 (s(m(2) -y - s(m(y) ™ - s((2) ™)
e (s(m(@) - s(w(y) - s(m(zy)) ™), w(wy))
(27 (ay - s(w(xy)) ™), m(zy))

We define 0 : AxG — E, (a,g) — t(a) - s(g). For x € E, we have
w,f

(600)(@) = (i (@ s(x(@)) ™) - s(xlw)) = 2 - s(n()) ™ - s(x(2)) =@ .

Thus 6 o p = idg . For (a,g) € AxG, we have m(c(a) - s(g)) = g and thus
w,f

(o 0)(a,9) = ¢(ula) - s(g)) = (77" (ula) - s(g) - s(n(u(a) - 5(9) "), 7(e(a) - 5(9))) = (a, g) -

Thus @ 00 =idy .. Altogether, ¢ is bijective.
w,f

We have

N—
V2]
3

—
~

—
Q

N—

N—

N—

I
—

N—
3

—~
~

—
Q

SN—

SN—

N—

—
S
—_

N—

—

N—

p(u(a)) = (17} ((a) -
for a € A and
T(p(x)) =7z s(n(x) ™), n(z)) = ()

for z € FE. Therefore we have ¢ o1 = ¢ and 7 o ¢ = w. Hence

1—-ASESG—=1]=01-A4A23A4AxG5G —1].
w,f
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Proposition 2.16. The composite oo B is the identity on h*(G, A).
Cf. Propositions 2.9 and 2.14.

Proof. Suppose given (w, f) € z*(G, A). Then

Bllw f]) = 1= A5 awe ™ ¢ 1),
w?f

We write ¢ := (/) and 7 := 77 ; ¢f. Lemma 2.13.

We define a map s : G — Ax G by
w7f

G 5 AxG
w7f
g — (Lg)
Note that (7o s)(g) = 7((1,g9)) = g for g € G, hence m o s = ide. Furthermore, note that
S(1G> = (17 1) = 1A><fG-

So

(o B)([w, f]) = al[l = A Awg ™0 @ 1)) = [wms, (s
w, f

Write & := w®™s and f =
We have to show that [w, f] L (@, f], i.e. that (w, f) "y @, f).
For a € A and g € G we have

A
L, Lg)™!
) o (Lg) e (19)
)
Thus @y(a) = w,y(a). We conclude that © = w.

For g,h € G we have



30

Thus f(g, h) = f(g,h). We conclude that f=f.
Altogether, we have (w, f) = (&, f). Hence (w, f) ~ (&, f).

Theorem 2.17. Consider the maps

Ext(G, A) ~ h?(G, A)
B

defined in Propositions 2.9 and 2.14, running between the sets defined in Definition 2.3 and
Lemma 2.7.

Then o« and 3 are mutually inverse bijections.

Proof. By Propositions 2.15 and 2.16, the maps « and (3 are mutually inverse. O



Chapter 3

Existence and classification of
group extensions

Let A and G be groups, both not necessarily abelian.

3.1 The problem

A group extension 1 -+ A & E 5 G — 1 induces a group morphism G — Out(A); cf.
Remark 3.1 below.

Conversely, suppose given a group morphism
w : G — Out(4).

There are two questions. First, when does there exist a group extension of A by G inducing
w? Second, if such a group extension exists, can we classify all group extensions of A by G
inducing w?

Remark 3.1. Suppose given a group extension
1A ESG—1.
Choose a map s : G — E such that m o s = idg . Then we have a map

wt™s G = Aut(A)
gng;

cf. Definition 2.5.(2). This map satisfies

W™ o wit™* = Int(f(g, h)) o wyi™

for g, h € G ; cf. Lemma 2.6. Therefore,
p(wf ™) 0 p(wfi ™) = p(wyi™)
in Out(A); cf. Definition 2.1. So the composite

pow™* . G — Out(A)

31
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is a group morphism, induced by the group extension 1 - A 5 E 5 G — 1.

More formally, recall that we have the bijection
Ext(G,A4) = h*(G,A) .
We shall show well-definedness of the map

h?(G,A) L Mor(G, Out(A))
w, f] —

pow

The group morphism induced by 1 = A % E 5 G — 1 is then

(Yox)(1 = AL EDSG—1]).

To show well-definedness of 'y, suppose given (w, f), (', f') € z*(G, A) such that
(w, [) ~ (W f)
Then there is a map ¢ : G — A such that w) = Int(t(g)) ow, for g € G. So
(pow)(g) = w'g oInt(A) = Int(t(g)) owy o Int(A) = w,oInt(4A) = (pow)(g) .

for g € G. Hence pow’ = pow.

3.2 Action of G on Z(A) induced by a group morphism
from G to Out(A)

Suppose given a group morphism w : G — Out(A).

Remark 3.2. We choose a map § : G — Aut(A) such that po & = w. We write &, for the
image of g € G under £. So & o Int(A) = p(§,) = w, .

Note that Z(A) is a characteristic subgroup of A and &, is a group automorphism for g € G.
So we have
§(2(A)) € Z(A)

Therefore we can define a map w? via

Then w? is a group morphism. So G acts on Z(A) via @?.

Moreover, @’ does not depend on the choice of ¢.

Proof. For g, h € G, we have

P(Sg_hl 08go0&) = Wg_hl owgowy = lout(a)
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and thus
gg_hl 0 &y 0 &, = Int(a)

for some element a € A. So, for z € Z(A) we have

(€5l 0 08&)(2) = a-z-a”' = 2.
Hence
Z(A Z(A 7(A
£g|ZEA; O€h|ng§ = 5gh\Z§A; .
Therefore w? is a group morphism.

Suppose given a map ¢ : G — Aut(A) such that po¢’ = w. We write &/ for the image of g € G
under &'

Suppose given g € G and z € Z(A). We have to show that & (z) = & (2).

In fact, we have
p(gg) = Wy = p({;)
and thus
g = 5; o Int(a)

for some a € A. So
&(2) = (§olnt(a))(z) = glaza™) = §(2).
So the induced group morphism w@? does not depend on the choice of &. O

Remark 3.3. Recall that the group morphism w : G — Out(A) induces a group morphism
w?: G — Aut(Z(A)), by means of which G acts on Z(A); cf. Remark 3.2.

We want to specialize Examples 1.9 and 1.10 and Definition 1.11 to the present case, i.e. we let
w? . G — Aut(Z(A)) play the role of ¢ : G — Aut(M) there.

Note that @’ (z) = & (2) for g € G and z € Z(A) by construction.

1. The second cohomology group.

(a) The group of 2-cocycles of G with values in Z(A) is given by

f is a map such that
Z(G,Z(A) = S Gx G D LAY &(F(hk))- [(gh, k)™ - [(g,hk) - (g, ) =1
for g,h,k € G

Recall that (f1 - f2)(g,h) = fi(g,h) - fo(g, h) for fi, fo € Z*(G,Z(A)) and g,h € G.

(b) The group of 2-coboundaries of G with values in Z(A) is given by

v:G — Z(A) is a map, and
BY(G,%(A)) = $ G x G2 Z(A): (9v)(g,h) = &(u(h)) - v(gh) ™ - v(g)
for g, h € G
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(¢) The second cohomology group of G with values in Z(A) is given by
H*(G,Z(A)) = Z°(G,Z(A))/ B*(G, Z(A4)) .

2. The normalized second cohomology group.

(a) The group of normalized 2-cocycles of G with values in Z(A) is given by
Znorm (G, Z(A)) = {f € Z*(G,Z(A)) : f(g.1) =1 and f(1,9) = L for g € G}
(b) The group of normalized 2-coboundaries of G with values in Z(A) is given by

Brom(GZ(A)) = Znom(G.Z(A)) N BX(G,Z(A))

v:G — Z(A) is a map with v(1) = 1, and

R.1. ov _

=" SGxGBLA) o (9)(g.h) = &(v(h)) - v(gh) ™ - u(g)
for g,h € G
(¢) The normalized second cohomology group of G with values in Z(A) is given by
Hiomn (G Z(A)) = Lo (G Z(A))/ B (G, Z(A)) -
By Lemma 1.13, we have
Hiom(G Z(4)) & HX(GZ(A))

norm

3. The third cohomology group.

(a) The group of 3-cocycles of G with values in Z(A) is given by
f is a map such that
7 f(g7h7kl)_1f(g7h7k>:1
for g, h,k,l € G

Recall that (fi - f2)(g, h, k) = fi(g, h, k) - fo(g, h, k) for fi, fo € Z*(G,Z(A)) and
g, h, k € G.

(b) The group of 3-coboundaries of G with values in Z(A) is given by

v:Gx G —7Z(A) is a map, and

3 o % % ov . (av)(g,h,k)
PG 2A) = N OXCXCDED T _ o, k)) - wlgh, )" v(g, hk) - o(g, b)
for g,h, k € G

(¢) The third cohomology group of G with values in Z(A) is given by
H(G,Z(A)) = Z°(G,Z(4)) / B (G, Z(A)) .
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3.3 Obstruction in H*(G,Z(A)) against the existence of a
group extension inducing w : G — Out(A)

Suppose given a group morphism @ : G — Out(A). We write w, € Out(A) for the image
of g € G under w. So we have an induced group morphism w? : G — Aut(Z(A)) by means
of which Z(A) becomes a G-module; cf. Remark 3.2. Using w?, we form H*(G,Z(A)), cf.
Example 1.10 and Remark 3.3.(3.c).

Remark 3.4. Suppose given v € Aut(A4) and a € A. We have
v oInt(a) = Int(y(a)) oy

Proof. We have
(yoInt(a))(b) = ~(a-b-a™)
= (@) -v(b) - y(a)™!
= (Int(y(a)) o 7)(b)
for b € A. O

Lemma 3.5 (and definition). Recall that p : Aut(A) — Out(A) is the residue class morphism.

We choose a map & : G — Aut(A) such that p o { = w. We write {, for the image of g € G
under . So &; o Int(A) = p(§,) = w, .

In particular, we may choose & :=id4 .

Consequently, for g, h € G we get p(§,0&, Of;hl) = wgowhowg_hl =1, ie. §go§ho§g_h1 € Int(A).
We choose a map f: G x G — A such that {; 0 &, = Int(f(g,h)) 0o, for g, h € G.

In particular, we may choose f(g,1) :=1 and f(1,h) :=1for g, h € G.

Let
GxGxG 5 A
H

<g> hv k) C(gah7k) = f(97 h) : f(gha k) : f(g7hk)_1 : £9<f(h7 k))_l :
So

(1) We have c(g,h, k) € Z(A) for g, h, k € G.
We write again ¢ := c[?™) : G x G x G — Z(A) by abuse of notation.
(2) The map c¢: G x G x G — Z(A) is a 3-cocycle, i.e. ¢ € Z*(G, Z(A)).
(3) The cohomology class
(o = c-B*G,Z(A) € HG,Z(A))

is uniquely determined by .

Le. ¢-B*(G,Z(A)) is independent of the choice of ¢ and of the choice of f.
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Proof. Ad (1). For a € A and g € G, we get, for z € A,

(Int(&y(a)))(z) = &la)-2-Eyla)™!
= &la-& M (x)-a™t)
(&, 0 Int(a) o fg‘l)(:v) )

So
Int(§y(a)) = & olnt(a)o fg_l .

For g, h, k € G, we have
Int(f(g,h) - fgh,k)) = (§0&no&n) 0 (6o & o &) = &0 &0 &0 &y, -
Moreover,
Int(&(f(h, k) - f(g,hk)) = &0 (§n 0 &k 0 &) 0 &5 0 (6 0 & © i) = €90 6n © &k 0 Eyp -
Therefore we have
mt(f (g, h) - f(gh, k)) = Int(&(f(h, k) - f(g, hk)) -

So
(g, b k) = (f(g,h) - f(gh, k) - (&(f(h, k) - f(g,hk))™" € Z(A).

Ad (2). Suppose given g, h, k € G. Since ¢(g, h, k) € Z(A) by (1), we may conjugate (g, h, k)
in A without changing it. In particular, we get

c(g,h,k) = f(g,h)- f(gh k) f(g,hk)~" - & (f (R k)"
= f(gh,k)- f(g,hk)=" - &(f(h, k)7~ f(g,h)
= [(g,hk)~ - &(f(h k)1 flg,h) - fgh, k)
= &(f(h k)™ - f(g,h) - flgh, k) - f(g, k)~

We need to prove that

& (c(h, k1)) - c(gh, k, D' e(g, hk, 1) - c(g, h, kD)™t - c(g, h, k) L1

for g, h,k,l € G; cf. Remark 3.3.(3.a). Because ¢ has images in Z(A), it suffices to show that

Eg(e(h, k1)) - c(g, h, k) - clg, hk,1) = c(g, h,kl) - c(gh, k1) .

We have
ole(h, k1) = &(f(h k) - & (f(Rk, D)) - &(f (R kD)™ &(&n(f (R, 1))~
= &(f(h k) &(f(hk, 1)) - & (f (R, kD)™ (&g 0 &n)(f (/f;) -
= &(f(h k))& (f(hk, 1)) - & (f (R, kD)™ - (Int(f(g. 1)) 0 Egn) (f (K, 1)~
= &(f(h k) &(f(hk, 1) - & (f (R kD)™ - fg,h) - En(f (R, D)7 flg,h)!
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and
c

(9.h.k) = flg.h)- flgh, k)~ fg,hk)~" - &(f (R, k)) ™!
C(g hk,1) = f(g,hk) - f(ghk,1)- f(g, hkl)™" - &(f(hk, 1))~
c(g, b, kl) = flg, hkl)™" - &(f(h, kD)™" - f(g, ) - f(gh. kl)

c(gh, k1) = flgh, k)" &n(f(k,D)7" - f(gh, k) - f(ghk,1) .

Note that &,(c(h, k1)) - ¢(g, h, k) € Z(A), whence

fg(C(h, k’ l)) : C(gv h> k) = y_l 'fg(c(h’ ka l)) : C(Qa h7 k) Y

for y € A. Therefore

Eg(c(h, k1)) - c(g, h, k)
= €g(f( k) - Eg(f(hk, 1) - &G(f(h, kD))~ f(g, h) - En(f(k, 1)~ f(g,h)~
- f(g, 1) - fgh, k) - f(g, hk)™" - & (f(h, k)"
= &G(f(hk, 1)) - &(f(hRD)) - fg, ) - Egn(f (R, D)1 - flg,h) ™!
~f(g,h) - f(gh, k) - f(g, hk)~"
= &(f(hk, D) - &(f (R KD)) T fg, h) - En(f (R, D)7 fgh, k) - fg,hk)™"

Consequently, the left side is

Eg(c(h, k1)) - c(g, h, k) - c(g, hk,1)
= &(f(hk, 1) - &(f(RRD) T fg, h) - Ean(f (R, D))~ fgh, k) - fg, hk)™!
- f(g, hk) - f(ghk,1) - f(g, hkl)~" - & (f(RE, 1))~
= &(f(h kD)™ - flg, h) - En(f (R, D)7 flgh, k) - f(g, hk)™
- (g, hk) - f(ghk,l) - f(g, hkl)™!
= &(f(hRD) - fg,h) - Ean(f (R, D)~ fgh, k) - f(ghk,1) - f(g, hkl)™!

Moreover, the right side is
c(g, h,kl) - c(gh, k,1)
= flg. hkD)™" - &(f(h, kD)™ - fg,h) - f(gh, kl) - fgh, kD)™ - En(f(k, D)7 fgh, k) - f(ghk,1)

1)
= &(f(h kD)™ flg.h) - fgh, kL) - f(gh, k)" - En(f(k, D)7~ fgh, k) - f(ghk,1) - f(g, hkD)~!
= &(f(h kD))" f(g, ) - En(f (K, 1) ™" - fgh, k) - f(ghk, D) - f(g, hkl)~!

So both sides agree.
Ad (3). We have to show independence of ¢ - B*(G, Z(A)) of the choice of ¢ and of f.

First, we keep &, but vary f. That is, we suppose given a map f' : G x G — A such that
Eg0&, =1Int(f'(g,h)) 0&yn for g, h € G. Welet ¢ : G x G x G — Z(A) be defined by

cl(ga h, k) = f/<g> h) ’ f/<gh7 k) ’ f/<g’ hk)il 'gg(f/(ha k))il :

We have to show that ¢ - B*(G, Z(A)) = B*(G, Z(A)).
Given g, h € GG, we have

Int(f(g,h)) =& o&n ok, = Int(f'(g,h)) .
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So we get

v(g.h) = flg.h)- f'(g.h)™" € Z(A)
Further we have v(g,h) = f(g,h) - f'(9,h)" = f'(g,h)~* - f(g,h) by conjugation.
So for g, h, k € G, we get

c(g,h, k)=t c(g,h k)
Eg(f(h, k) - fg,hk) - flgh, k)™~ f(g,h)™" - (g, h) - f'(gh, k) - f'(g,hk)™" - & (f'(h, k)~
= &(f(h,K)) - f(g, hk) - f(gh, k)™t -v(g,h)~" - f(gh, k) - f'(g, hk) ™" &G(f' (R, k)~
= &(f(h,k)) - f(g, hk) - v(gh, k)" ’(g,hk‘) ! ég(f( k)=t w(g, h)7!
= &(f(h, k) -v(g, hk) - &(f'(h, k)~ - v(gh, k)~ - v(g, h) ™!
= &u(h, k) -v(gh, k)" -v(g, hk) - v(g,h)~!

Therefore ¢! - ¢ € B*(G, Z(A)); cf. Remark 3.3.(3.b). Le. ¢- B*(G,Z(A)) = ¢ - B*(G, Z(A)).

Second, we vary £. That is, we suppose given a map {N : G — Aut(A) such that po{~ =w = pof
and such that & =idy.

We shall let ¢ : G x G x G — Z(A) be defined by
c(g,ho k) = F(g,h) - F(gh, k) J(g, hk) ™"+ &(F (R, k)"

for a particular choice of a map f G x G — Asuch that ,08, = Int(f(g, h))o&, forg, h € G
and such that f(g,1) =1 and f(1,h) =1for g, h € G.

We then shall show that ¢ - B*(G, Z(A)) = ¢-B*(G,Z(A)) by showing that actually c =G

By the first step, this will suffice to show that ¢ - B*(G, Z(A)) is independent of the choice of ¢
and f.

Since p o € = p o &, we have &, o Int(A) = &, o Int(A) in Out(A), for g € G. So there exists a
map 4 : G — A such that p(1) =1 and such that

ég = &g o Int(u(g)) -

Now we have, using Remark 3.4 repeatedly,

§obnoly = &olnt(u(g))o fhoh’lt( (h)) o Int(u(gh)) ™! O§;h
= Int(&§(1(g))) 0 & 0 & o Int(u(h)) o Int(u(gh)~") o
= Int(fg(#(g)))olnt(ﬁg(fh( (h)))) o Int(&,(&n (g ) ))) Egonoly,)
= Int( §(u(9)) - & (En(p(h)) - Eg(En(plgh))) ™t ) 0 &yo fhofgh
= Int( &(u(9)) - &(&n(p(h)) - & (& (u(gh))) ™" - f(g.R) ) -

Let
f:GxG = A
(9.h) — flg.h) = &ulg)) - &(&(u(h))) - &(&n(ulgh))) ™ - f(g,h) .

Then ég o0& = Int(f(g,h))o fgh for g, h € G.
Moreover, f(g,1) =1 and f(1,h) =1for g, h € G.



Recall that &, 0 &, = Int(f(g,h)) o & for g, h € G.
For g, h € G, we have

Flg.h) = &(u(g))  &(&lu(h)) - &(&n(ulgh))) ™ - f(g, k)

(
&(1(9)) - (t(f(g, 1)) 0 ) () - (Int(f (g, 1)) © Exn) (lgh)) ™ - f (g, h)
,11(0)) - F(0:h) - Eqn((h)) - Ep(u(gh) "

Suppose given g, h, k € G. We calculate.

flg.h) - flgh, k) - g, k)™ - &
( ( )) f( ) fgh( ( )) fgh
fgh( (gh)) - f(gh, k) - fghk( (k)) -
Eonk (H(GhK)) - Eoni (R(hE)) - f(g
&g Enn(p(hk)) - Epi(pu(k)) = - f(h k)~

c(g, h, k)

o~ — o~ —~

Note that for a € A we have

§y(a) = (& oInt(u(g)))(a) = &(u(g) - a- pu(g)™") = &(u(g)) - &(a) - &(ulg) ™" .

So we can continue our calculation.

(g, h, k) = &(u(g) - fg:h) - Eon(pa(h)) - Eonpa(gh)) !
~Egn(p(gh)) - f(gh, k) - Egni (k) - Egnr((ghk))
£ghk(ﬂ(9hk)) Egni((hk)) ™" flg, hk) ™" - E4(ulg)) ™!
Eg(11(9)) - Eo( Enr(p(hk)) - Enn(pu(k)) - f(h k)1 Eu(pa(h) ™) - &oplg)) ™

= &(u(9) - (g, ) - Egnlp(h))

- f(gh, k) - Egni(p(k))

~Egni(p(hk)) ™" - f(g, hk)~!

<o ( Enr(p(hk)) - S (p(k)) =1 f (R R) ™ Eu(pa(R) ™) - € (plg)) ™
= &(u(g)) - (g, ) - Egn(pu(h))

- f(gh, k) - Egni(p(k))

Egni(u(hk)) =~ f(g, k)"

Eg(Enr (k) - (k) =) - &G (f (R k)~ - Eg(Enlpe(R))) 1 - Eo(lg)) !

h g
= &(ulg)) - f(g,h) - En(p(h))
- f(ghy k) - Egni(pa(k))
Egni(p(hk)) =" - f(g, hk)~!
- (g, hk) - Egnic(p (hk‘)'u(/f)_l)'f(gvhk)_l'€g(f(h,/€))_1
f(g, ) - Egn(pu(R)) ™1 (g )™ Eo(plg)) ™

39
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By conjugation, we can move the product f(g, h)-&un(u(h)) - f(g, k)&, (u(g)) ! to the first
place without changing é(g, h, k) € Z(A). So we can continue our calculation as follows.

)7 flg h) T € (ulg) T
) - Egn(p(h))

&g, hk) = flg,h) - En(p(h)
&g(u(g)) - flg:h) - &
- fgh, k) - fghk(ﬂ(k))
~Eoni(pu(RE)) 1 f(g, hk)™!
(g, hk) - Egni(pu(hk) - (k) =) - fg, b))~ - & (f (R, k)7
= f(g:h)
- fghy k) - Egni(p(k))
~Egni(u(hk)) ™!
Egn((hk) - p(k) ™) - fg, hk) ™" - &g(f (R, k)7
= f(g:h)
- flgh, k) - Egni(n(k))
g (p(k) ™) - fg, hbk) ™ &y (f (R, )~
= flg,h)- f(gh,k) - f(g,hk)=" - & (f(h, k)~
= c(g,h,k) .

Hence ¢ = ¢, as was to be shown. O

Example 3.6. Consider the group morphism ! : G — Out(A), sending all elements to 1.
As map £ : G — Aut(A) satisfying po & =! and §; = ids, we may choose §, :=idy4 for g € G.

Asmap f: G x G — A satistying £, 0 &, = Int(f(g,h)) 0 &, and f(g,1) =1 and f(1,h) =1
for g, h € G, we may choose f(g,h) :=1for g, h € G.

Therefore,
C(ga hv k) = f(g7 h) ' f(gha k) ’ f(g7hk>_1 ' §g<f(h; k))_l =1
for g, h, k € G.
Hence (; = ¢- B*(G,Z(A)) = 1.
Theorem 3.7. There is a group extension of A by GG inducing the group morphism
w : G — Out(A)
if and only if
Cw =1
in H*(G,Z(A)). Cf. Remark 3.1, Lemma 3.5.(3).
Proof. Recall that (, has been constructed as follows. We choose a map £ : G — Aut(A),
g — &, , such that po = w. In particular, we choose & :=id4. We choose amap f : GXxG — A

such that ; o &, = Int(f(g,h)) o & for g, h € G. In particular, we choose f(g,1) := 1 and
f(,h):=1for g, h € G. Let

GxGxG 5 A
(gah7k) = C(g>h7k) = f(g7h)f<ghvk)f(g7hk)71€g(f(h’k‘))il
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Then (,, = c- B*(G,Z(A)).
Note that ¢(1,h, k) = f(1,h) - f(1-h k) - f(1,hk)1 - & (f(h k)" =1 for h, k € G.
Note that ¢(g,1,k) = f(g,1) - f(g-1,k)- f(g,1- k)" - &(f(L, k)t =1for g, k € G.
Note that c(g,h,1) = f(g,h) - f(gh,1) - f(g,h-1)" - &(f(h, 1)) =1for g, h € G.

First, if (g = ¢-B*(G,Z(A)) = 1 in H*(G, Z(A)), then there is a map b : G x G — Z(A) such
that
0(97 ha k) = Sg(b<hv k)) ’ b(gh7 k)_l ' b(g7 hk) ’ b(ga h)_1 .

In particular,

1 = c(g,h,1) = &(b(h,1)) - b(gh,1)™" - b(g,h-1)-b(g,h)™" = &(b(h,1)) - b(gh,1)~"
for g, h € G. Moreover,

1 = c(1,1,k) = &(b(1,k)-b(1-1,k)7 - b(1,1-k)-b(1,1)"" = b(1,k)-b(1,1)7"

for k € G.
Let
b: GxG — Z(A)
(9:h) = blg,h) == blg,h)-bg,1)".
Then
& (b k) - blgh. k)~ - blg. hk) - bg.h) - N

= &(b(h, k)) - b(gh, k)" - b(g, hk) - b(g, h) ™" - &(b(h, 1)) 7" - b(gh, 1) - b(g, 1) 7! - b(g, 1)

= ¢(g,h,k)
for g, h, k € G.

Moreover, b(g,1) = 1 for g € G. Furthermore, b(1,g) = b(1,g) -b(1,1)"' =1 for g € G.
We define the map
ff:GxG — A

Because b(g,h) € Z(A) and therefore Int(b(g, h)) = id, we have

Int(f'(g,h)) = Int(f(g,h)) o Int(b(g, ) = Int(f(g,h))
for g, h € G.

Moreover we have

f'(g,h) - f'(gh,k) = f(g,h)-blg,h)- f(gh,k)-b(gh, k)
= f(g,h)- f(gh,k)-b(g,h) - b(gh, k)
= c(g,h. k) - §(f(h.k)) - f(g, hk) - b(g, ) - b(gh, k)
= &(b(h,k)) - b(gh, k)~ - b(g, hk) - b(g, h) =" - &, (f(h, k)

- f(g,hk) - b(g, h) - b(gh, k)

= &(b(h k) - &(f(h, k) - f(g,hk) - b(g, hk)

= &(f'(hk)) - f'(g, hk) .
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We summarize.

(1) We have {,0&, = Int(f'(g,h)) o0&y, for g, h € G by Lemma 3.5 and the calculation above.
(2) We have & =1id4 .
(3) We have f'(g,h) - f'(gh, k) = &(f' (h,k)) - f'(g,hk) for g, h, k € G by the calculation

above.

(4) We have f'(1,9) = f(1,9)-b(1,9) =1 and f'(g,1) = f(g,1)-b(g,1) = 1 for g € G by the
calculation above.

According to lemma 2.7 we have (¢, f') € z2(G, A). Write B([¢, f]) = 1= A S E 5 G —
1] € Ext(G, A), where 1 - A% E 5 G — 1 is a short exact sequence of groups.

The group morphism induced by 1 = A % E 5 G — 1 is then

(o)l = A= E=G—=1) = (yo)(BUE f) = v f]) = poé = w
as required; cf. Remark 3.1 and Theorem 2.17.

Second, suppose that we have a group extension 1 =+ A = E 5 G — 1 that induces @w. Choose
amap s: G — E such that 7 o s = idg and s(1) = 1. Then @ = p o w®™,

We claim that ( L 1; cf. Lemma 3.5.

Concerning properties of the pair (w(“’r)’s,f(““)’s), we refer to Lemma 2.6, or, by choice,
Lemma 2.7.

L,TT),8

To calculate (., we may use & := w! since @ = pow(®™. Moreover, we may use f := {3
by loc. cit. (1,4). For g, h, k € G, we obtain

loc. cit. (3)

c(g:h, k) = f(g,h)- flgh,k) - flg,hk) ™ - wl™=(f(h,k)~H 77 =" 1.
Hence (., = c-B*(G,Z(A)) = 1. O
Remark 3.8. Suppose that A is abelian.
Then p : Aut(A) — Out(A) is an isomorphism, which we identify with the identity.
Moreover, Z(A) = A.
Consider the situation of Lemma 3.5.

The only choice for € is to let £ = w. In particular, £ : G — Aut(A) is a group morphism.

We have to choose a map f : GxG — A such that £;,0&, = Int(f(g, h))o&,, holds for g, h € G.
Since £ is a group morphism, we may choose f(g,h) =1 for g, h € G.

Therefore, ¢(g,h, k) =1 for g, h, k € G. Thus
Cw =1.

To summarize, if A is abelian, then { maps each element of Mor(G,Out(A)) to 1 € H*(G, A).

In fact, an extension inducing w does exist, namely the semidirect product of A with G with
respect to w. This confirms Theorem 3.7 in this case.
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3.4 Classification of group extensions inducing w

Suppose given a group morphism w : G — Out(A). We write w, € Out(A) for the image
of g € G under @. So we have an induced group morphism w? : G — Aut(Z(A)) by means
of which Z(A) becomes a G-module; cf. Remark 3.2. Using w?, we form H2 (G, Z(A)), cf.
Definition 1.11 and Remark 3.3.(2.c).

Lemma 3.9 (and definition). We define
b2 (G, A) == v '({w}) = {lw, f]€h*(G,A) : pow=w};

cf. Remark 3.1. Note that for [w, f] € h2 (G, A), we have w, o Int(A) = w, for g € G.
We define

Ext, (G, A)
= (yox)"'({w})
= {1245 E5G -1 €Ext(G,A) : 1 A5 ES G — 1 induces w}
{1—-A>ESG—1]€Ext(G,A) : G Eis amap such that 7o s = idg
and s5(1) = 1, and p o w®™s = w} :
cf. Theorem 2.17, Remark 3.1. Note that for [l = A % E 5 G — 1] € Ext,(G, A) and for s
as above, we have w{™" o Int(A) = w, for g € G.
Then o, := oc\}E%t(f(’é? 4y and o = B]fg t(ZEjSA) exist and are mutually inverse bijections

K

Exto (G, A) h? (G, A)

B
Proof. We have

a( Exta(G.A)) = a((yoo) ' ({m}) = v ({=)) = BA(C, 4)

and

B(hz(G,4) = a' (v ({w}) = (vo)"'({w}) = Exto(G,4).

Lemma 3.10. Suppose given (&, fy) € z2(G, A) such that [§, fo] € hi,(G,A).
The map
n& o HZ (G Z(A) — hI(G,A)

norm

is well-defined, where (z - fy)(g,h) := z(g,h) - fo(g, h) for g,h € G.

Proof. First of all we need to show that the pair (£, 2 - fy) is an element of z*(G, A). We show
conditions (1) to (4) from Lemma 2.7, using that these conditions are satisfied for (&, fo).

Ad (1). Since z takes values in Z(A), we get Int(z(g,h) - fo(g,h)) = Int(fo(g, h)) and thus

Int((z - fo)(g,h)) 0 &n = Int(z(g,h) - folg, h)) 0 &n = Int(fo(g,h)) o &en = & o &n
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for g, h € G.
Ad (2). We have & = id
Ad (3). For g, h, k € G, we have

(z- fo)(g.h) - (= fo)(gh, k) = z(g,h)- fo(g.h) - 2(gh. k) - fo(gh, k)
= z(g,h) - z(gh. k) - folg, h) - fo(gh, k)
= 2(g,h) - z(gh, k) - &(fo(R, k)) - folg, hk)
= Z(Q,h) Z(g k)¢ (Z( k)~ z(g, hk) ™!
= 1-&((2- fo)( )) ( fo)(gjhk‘)-
Ad (4). Due to the definition of H2 (G, Z(A)) we have
(Z fO)(lag) = Z(lag fO(lvg)_ =1

Note that y([¢, 2 - fo]) = Y([€, fo]) = @, so that [€, 2 - fo] € h2 (G, A).
Suppose given z, 2’/ E 7*(G,7Z(A)) with z - B2 (G 7Z(A)) = 2 - B2, (G,Z(A)). We have to

norm norm

show that [¢, z - fo] (€, 2"+ fo], i.e. that (§, 2 fo) ~ (&, 2"+ fo); cf. Lemma 2.7.
There exists a map v : G — Z(A) such that

g, h) 2 (g h) = (271 2)(g.h) = &(v(R)) - v(gh) ™t - v(g)
for g, h € G and such that v(1) = 1; cf. Remark 3.3.(2.b).
We have £, = Int(v(g)) 0§, for g € G.

Moreover, we have

Z(g,h) - folg, h) = z(g,h)-&v(h))-v(gh)~" - v(g) - folg, h)
= w(g) - &(v(h) - (2(g.h) - folg,h)) - v(gh)™

Hence (§, ¢ fo) ~ (&, ¢ fo). u
Lemma 3.11. Suppose given (&, fo) € z2(G, A) such that [¢, fo] € h2 (G, A). Then, for each
[w, f] € h2 (G, A), there exists a map f': G x G — A, such that [¢, f] = [ ,f]in h2 (G, A).

Proof. We have pow =w =pof,iewolnt(A) =¢olInt(A).
So there is a map ¢t : G — A with ¢(1) = 1 such that

& = Int(t(g)) o w,
for g € G.

We define
f'(g.h) = t(g) - wy(t(h) - f(g,h) - t(gh)™"
for g, h € G.
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We show that (&, f') é 7*(G, A); cf. Lemma 2.7.
Ad (1). Using Remark 3.4, we obtain

£g0&, Int(t(g)) o wy o Int(t(h)) o wy,
nt(t(g) - wy(t(h))) o wy o wy,
t(t(g) - wy(t(h))) o Int(f(g,h)) o wyn

(
(t(g) -
(t(g) - wy(t(h
nt(t(g) - wy(t(h))) o Int(f(g,h)) o Int(t(gh)~") o
(t(g) - wy(t(h
(f'(g,

—

—

j—
E

nt(t(g) - wy(t(h)) - f(g,h) - t(gh)™") o &gn
Int f/( h) Ofgh

1 (|
—
=

for g, h € G.
Ad (2). We have & = id, since (&, fo) € 22(G, A).
Ad (3). We have

f(g,h) - f'(gh, k)
= t(g) - wy(t(h)) - f(g,h) - t(gh)~" - t(gh) - wen(t(K)) - f(gh, k) - t(ghk)~!
= t(g) - wy(t(h)) - f(g, ) - wn(t(K)) - fgh, k) - t(ghk)~"
= t(g) - wy(t(h)) - f(g,h) - wen(t(k)) - f(g,h)~" - f(g, ) - f(gh, k) - t(ghk)™!
= t(g) - wy(t(h)) - (Int(f(g, ) o wen)(t(k)) - f(g,h) - f(gh, k) - t(ghk)~!
= t(g) - wy(t(R)) - wy(wn(t(k))) - wy(f (. k) - (g, hk) - t(ghk)~!
= t(g) - wy(t(R)) - we(wn(t(k))) - wy(f(h, k) - wy(t(hk)) 1 - t(g)~"
-t(g) - wy(t(hk)) - f(g, hk) - t(ghk)™!
= (Int(t(g)) o wy)(t(R) - wa(t(k)) - f(h, k) - t(hk)~") - f'(g, hk)
= &(f'(h,k)) - f'(g, k)
for g, h, k € G.

Ad (4). We have
f(Lh) = t(1)-wit(h) - f(1,A) - t(1-h)" =1
for h € G. We have

for g € G.

So (&, f") € 22(G, A).

By construction, we have (w, f) ~ (&, f'); cf. Lemma 2.7. So [w, f] = [£, f'] in h*(G, A). Hence
[w, f1=[¢ f]in hZ (G, A). O
Lemma 3.12. Suppose given (€, fy) € z2(G, A) such that [¢, fo] € h2 (G, A).

By Lemma 3.11, each element of h (G, A) can be written in the form [¢, f] for some map

[ : G x G — Asuch that (&, f) € 2%(G, A).
Define f;': G x G — A, (9,h) — fi'(g9,h) == folg,h)"L.

Then the map

&S] = (ffo ) Brom(GLZ(4)) .
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is well-defined.

Proof. First of all we need to show that f - f; ' is an element of Z

We have

G. Z(A)).

HOI‘H’I(

(a) fO(g7h)f0(gh7k) :gg(fb(h’k))f(](g?hk)
and

(b) f(g, h) - f(gh, k) =& (f(h, k) - f(g, hk)
for g, h, k € G.

Let z:= f- f;'. So z(g,h) := f(g,h) - fo(g,h)* for g, h € G. Since
Int(f(gv h)) = ég © fh © 5;}3 = Int(f0(97 h)) )
we know that z(g, h) € Z(A).

In particular, note that
Z(ga h) = f(gv h) ’ f0(97 h)_l = fO(g’h)il(f(gv h) ’ f0(97 h)_l) = f0(97h)_1 ’ f(97 h)
for g, h € G.

!
We have to show that z € Z*(G, Z(A)). In fact, we have

e(2(h, k) - z(gh, k)~ - 2(g, hk) - 2(g,h) ™"
z2(g, hk) - §4(2(h, k)) - z(gh, k)~ - 2(g,h) !
f(g, hk) - folg, k)™ - &g (fo(h, k)1 - &(f(h, k) - folgh, k) - f(gh, k)~
~folg,h) - f(g,h)~!
= f0(97 hk)~! §g(f0(h k)7t & (f(hK)) - fg,hE) - folgh, k) - f(gh, k)~
folg:h) - f(g,h)~
CE folgh k)T folg ) flg ) - Flghak) - folgha k) - f(gh, k)~
- folg, h) - f(g, )
= Jolgh,k)"- folg,h)~" - f(g,h) - f(gh, k) - f(gh,k)~" - fo(gh, k)
- folg, h) - f(g, )
= folgh, k)"~ folg, W)~ f(g,h) - folgh, k)
- folg, h) - f(g, )
= fo(ga ) ! f(ga ) fo( ) f( )1
= [(g:h) folg, )" folg,h) - f(g,h)~"
- 1

for g, h, k € G. Hence z € Z*(G,Z(A)); cf. Remark 3.3.(1.a).
Further we have

and
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for g € G.
Hence z = f - fy ! is in 72, (G, Z(A)).

Now we need to show that the image of [£, f] is independent of the chosen representative.

Suppose given a map f : G x G — A such that (¢, f) € z%(G, A) and such that

. f] = [¢ £l

in h (G, A).
Since (£, f) ~ (€, f), we have a map t : G — A with t(1) = 1 such that

fg = Int(t(g)) © £g
for g € G and )
flg.h) = t(g) - &(t(h)) - f(g,h) - t(gh) ™
for g, h € G.
Then we have Int(t(g)) = id4 and thus t(g) € Z(A) for g € G.

So we have

E(t(h)) - t(gh)™ - t(g) = [flg,h)- flg, )"
= (flg.h)- £5 (9. 1)) - (F(g.B) - £ (g, 1))~
for g, h € G.
So we have (f- f7) - (f- fiH)~' € B2,,..(G,Z(A)) and therefore

(- Jo)  Brom(GLZ(A) = (f - fg) - Bhom(G, Z(A))
in H2 (G, Z(A)). O

norm

Theorem 3.13. Recall that @ : G — Out(A) is a group morphism. Recall that we have an
induced group morphism @? : G — Aut(Z(A)) used to form H2_ (G, Z(A)); cf. Remark 3.2,
Definition 1.11 and Remark 3.3.(2.c).

Note that H2 (G, Z(A)) 2= H*(G, Z(A)), 2-B% ... (G, Z(A)) — 2-B*(G,Z(A)) ; cf. Lemma 1.13.

norm norm

Suppose that there exists a group extension of A by G inducing the given group morphism
w: G — Out(A).

Therefore h? (G, A) # 0; cf. Lemma 3.9. So we may choose (&, fy) in z*(G, A) such that
€. ol € o (G A)

Then we have the diagram

oo 9&fo
Exto(G,A) —_~ = h3(G.A) =~ (G, Z(A))

I’IOI'I’II
Bw n§7f0

where o, and B, are mutually inverse bijections and where 9 ¢/ and 1%/ are mutually inverse
bijections. Cf. Lemmata 3.10 and 3.12.
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Proof. By Lemma 3.9, the maps «,, and (3, are mutually inverse bijections.
Consider 9%/0 and n &/,

Suppose given an element in h? (G, A), which we may write in the form [¢, f] by Lemma 3.11.
By Lemmata 3.12 and 3.10, we obtain

(&P 09 0) (&, f1) = nSP((f - fo ) Brom(GLZ(A))) = [&(F- fo 1) - fol = [&.f]

Suppose given z € Z2 (G, Z(A)). By Lemmata 3.10 and 3.12, we obtain

norm

(0570 0m&I0) (2 Brom(GLZ(A))) = 980([€, 2+ fol)
= ((z-fo) fo ') Brom(G. Z(A)) = 2 Bloum(G.Z(A)) .

So the maps 9%/0 and &/0 are mutually inverse bijections. O

Corollary 3.14. Suppose that Z(A) = 1.
Recall that w is a group morphism from G to Out(A).
Then the assertions (1) and (2) hold.

(1) There exists a group extension 1 - A = E 5 G — 1 inducing @ ; cf. Theorem 3.7.

(2) Suppose given group extensions 1 — A SE TG s1andl 5 AS BTG o1
that induce w. Then these two group extensions are equivalent; cf. Theorem 3.13.

Remark 3.15.

(1) Corollary 3.14 has been shown by other means by BAER; cf. [1, p. 375].

(2) MAC LANE remarks in [5, Ch. IV, Th. 9.1] that Corollary 3.14.(1) can be shown by a
direct construction as follows.
Retain the supposition that Z(A) = 1.
Consider the subgroup

E = {(o,g) € Aut(A) x G : aoInt(A) =w, } < Aut(4) x G,
which is in fact a subgroup since p : Aut(A) — Out(A) and w : G — Out(A) are group

morphisms.

We choose a map & : G — Aut(A) such that & o Int(A) = w, for g € G, i.e. such that
poé=mw.

Consider the following maps.

A S E e
a +— (Int(a),1)
(,9) = g

Note that (Int(a),1) € E, that a — (Int(a), 1) is a group morphism and that the kernel
of tis {a€ A : Int(a) =1} =Z(A) = 1. Hence ¢ is an injective group morphism.
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Note that 7 is a group morphism. Note that (§,,g) € E for g € G. Hence 7 is a surjective
group morphism.

We have m ot =1, the trivial morphism.

An element (o, g) € E is in the kernel of 7 if and only if ¢ = 1. But then a o Int(A) =
w; = idgoInt(A), hence a € Int(A). So we may write a = Int(a) for some a € A. Thus

(a,9) = (o, 1) = (Int(a), 1) = (a).

Altogether, 1 - A 5 E 5 G — 11is a group extension.
It remains to show that this group extension induces w .
Let s : G = E, g = s(g) :== (&, 9)-

For g € G and a € G, we have

s(g)-u(a)-s(g)”" =

Thus w®™ = ¢ cf. 2.5.(2). Hence the group extension 1 =+ A % E 5 G — 1 induces
pow®™ =poé=w;cf Remark 3.1.

Remark 3.16. Suppose that A is abelian. Cf. Remark 3.8.
Then a group extension of A by GG inducing w exists; cf. Remark 3.8.

The bijections from Theorem 3.14 yield a bijection between Ext, (G, A) and H*(G, A), recov-
ering the assertion from the theory of extensions with abelian kernel; cf. e.g. [2, TV, Th. 3.12].

3.5 An example

The following example was constructed with the help of Magma [4].
Example 3.17. We define groups A, F and G as follows.
A = Dg = (a,b: a*, b* (ba)?)
E = {(u,z:ub 2% zur'u?)
G = Cy = (d: d*
Note that ba = a®b, that |A| = 8, that A = {aibj : 1€ [0,3], j € [0,1]} and that for
i, € [0,3] and j, j* € [0,1], we have @'t/ = " if and only if i =4’ and j = j'.
Note that Z(A) = (a?).
Note that zu = v®z in E. Hence E = {u'z’ : i €[0,7], j € [0,1] }, so |E| < 16.
Consider the map
Ss
(1,2,3,4,5,6,7,8)
(2,4)(3,7)(6,8) .

(u,2}y B
u
r
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We have h(u®) = h(z?) = h(zuz~'u~3) = 1. Thus there is a group morphism

E 5 s
— (1,2,3,4,5,6,7,8)
2,4)(3,7)(6,8) .

u

T =

Note that |((1,2,3,4,5,6,7,8), (2,4)(3,7)(6,8))| = 16. Thus |E| > 16.
Altogether, we have |E| = 16. Moreover, fori, ' € [0,7] and 7, j* € [0,1], we have u'a’ = u¥z7'
if and only if i =4 and j = j'.
Consider the map )
{a, b} & E
a — u?

b — x

We have i(a*) = 7(b?) = i((ba)?) = 1. Thus there is a group morphism

A S5 F
a — u?
b — x
Analogously, we have the group morphism
E 5 G
u — d
— 1.

Then 7 is surjective and ker(r) = {u?*2! : k €[0,3], 1 €[0,1]} = 1(A).

Since ker(m) = ¢(A) we have
Cy = m(E) ~ E/iu(A)

hence [¢(A)] =16/2 = 8 = |A| and so ¢ is injective.

Altogether we have the group extension

12ASESG—1.

Consider the map

a — @
1 1 I
S oS

We have mo s =idg .

The map f := f“™* . G x G — A is determined by its value on (d,d); cf. Definition 2.5.(3),
Lemma 2.6.(4). We obtain

o(f(d.d)) = s(d)-s(d)-s(d-d)!
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So
fld,d) = a.

Write w := w®™* : G — Aut(A); cf. Definition 2.5.(2). We have w; = id4 ; cf. Lemma 2.6.(2).
The automorphism wy : A — A is determined by its values on a and b. We obtain

wi(a)) = s(d)-w(a)-s(d)™

= 4(a)

and
Uwa(b)) = s(d)-u(b) - s(d)~!
= 1(a®)) .
So
we(a) = a, wq(b) = a’b .

Altogether, we have calculated that

Al ASESG—1]) = [wf].

Note that (wg)?(b) = wa(a®b) = a®a®b = a?b, so that (wy)? # idg = w; .
Therefore, w : G — Aut(A) is not a group morphism.
Consider p : Aut(A) — Out(A).

First, we consider Aut(A). Suppose given o € Aut(A). Then o(a) is an element of order 4, so
o(a) = a®*T! for some j € [0,1]. Moreover, o(b) is an element of order 2 that conjugates o(a)
to o(a)~'. So o(b) = a'b for some i € [0, 3]. Conversely, the relations defining A show that for
all i € Z and all j € Z, an automorphism

A =54
a +— a¥t!

b — a'b

exists. So we have
Aut(A) = {o;; :i€]0,3], j€[0,1]}.

Note that Int(a*b*) = o9, for k € [0,3] and £ € [0,1]. So
Int(A) = {ng,g ke [0,1], (e [0, 1]} .

is of order 4, whence

Out(A) = Aut(A)/Int(A)

is of order 2, the element of order 2 being the coset oy 0 Int(A) = {010, 030, 011, 031 }-
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In particular, wg = 0¢ 3, whence p(wy) is of order 2.

We have two group morphisms from G to Out(A), namely the group morphism ! and the group
morphism ¢ that sends d to the element of order 2. So

Mor(G,0Out(A)) = {!, i}
Therefore, our extension 1 — A = E 5 G — 1 induces the group morphism
pow = 1;
cf. Remark 3.1.

So, by Theorem 3.7, we know that (; = 1. We want to verify this equality in this example by
a direct calculation.

We have to choose a map & : G — Aut(A) such that & =id and po & =i. We choose £ := w.
Using the map f from above, we remark that w,owy, = Int(f(g, h))owy, and f(g,1) = f(1,h) =1
for g, h € G; cf. Lemma 2.7.(1,4). So we may use this map f. Thus, letting

C(ga ha k) = f(ga h) ’ f(gh'7 k) ' f(gv hk)_l ’ gg(f(h’v k))_l
for g, h, k € G, we obtain (; := c- B*(G,Z(A)).
By Lemma 2.7.(3), we have ¢ =!.

Alternatively, we have

c(1,h, k) =c(g,1,k) = c(g,h,1) = 1
for g, h, k € G; cf. Lemma 3.5, proof of Theorem 3.7. Moreover,
C(dv d7 d) - f(d7 d) ' f(la d) ’ f(dv 1)71 : €d<f(d7 d))il

= a-1-1-wg(a)™?

= a-wgy(a)™?

=1
So also this direct calculation shows that ¢ =!.
Hence

¢ = ¢-B(G,Z(4) = 1.

Example 3.6 shows that ¢, = 1.

Since G = Cy and Z(A) = (a?) ~ Cy, we have H*(G,Z(A)) ~ Cy, as it is well-known, e.g. via
the package HAP of GAP [3].

Altogether, we have the map

{',7,} ZCQ
- % N ¢ /S_H
Mor(G,0Out(A4)) = H’(G,Z(A))
I = Cg =1

So this map is trivial in our example. Note that | Mor(G, Out(A))| # 1, that | H*(G, Z(A))| # 1
and that 1 < Z(A) < A. Cf. Remark 3.8.



References

BAER, R., Erweiterung von Gruppen und ihren Isomorphismen, Math. Zeit. 38, p. 375-416, 1934.
BrowN, K., Cohomology of Groups, Springer Graduate Texts in Mathematics 87, 1982.

ELuis, G., Homological Algebra Programming, version 1.9.5, GAP package, available under
WwWw.gap-system.org/Manuals/pkg/Hapl.9/www/, 2011.

Bosma, WIEB; CANNON, JOHN; PLAYOUST, CATHERINE, The Magma algebra system. I. The user lan-
guage, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24, p. 235-265,
1997.

Mac LANE, S., Homology, Grundlehren der Mathematik 114, Springer, 1963.

EILENBERG, S.; MAc LANE, S., Cohomology theory in abstract groups. II. Group Extensions with a
non-Abelian Kernel., Ann. of Math. (2) 48, p. 326-341, 1947.

MORANDI, P., Group extensions and H?, manuscript, available under
sierra.nmsu.edu/morandi/notes/GroupExtensions.pdf, 2000.

SCHREIER, O., Uber die FErweiterung von Gruppen, Monatshefte fiir Mathematik und Physik 34, 1926.
SMITH, P.A., review for [6], Mathematical Reviews, MR0020996.

23



o4

Zusammenfassung

Die folgenden Resultate gehen zuriick auf SCHREIER, MORANDI, EILENBERG und MAC LANE;
siehe [8], [7], [6].

Seien A und G Gruppen, nicht notwendig abelsch.

Wir fithren die Menge h*(G,A) der Aquivalenzklassen normalisierter verallgemeinerter
2-Cozyklen ein; siehe Lemma 2.7. Wir schreiben Ext(G, A) fiir die Menge der Aquivalenzklassen
der Gruppenerweiterungen von A mit G ; siehe Definition 2.3.

Theorem 2.17. Wir konstruieren wechselseitig inverse Bijektionen

x

Ext(G, A) h*(G, A) ;

B

siehe Propositionen 2.9 und 2.14.

Sei ein Gruppenmorphismus w : G — Out(A) gegeben. Dann induziert w einen Gruppenmor-
phismus @w? : G — Aut(Z(A)); sieche Bemerkung 3.2. Cohomologiegruppen von G mit Werten
in Z(A) sind beziiglich @? zu bilden.

Wir ordnen w ein Element (., € H*(G,Z(A)) zu; sieche Lemma 3.5.(3).

Theorem 3.7. Genau dann gibt es eine Gruppenerweiterung von A mit G, die den Gruppen-
morphismus

w : G — Out(A)

induziert, wenn sich in H*(G, Z(A))
(o=1
ergibt.
Wir geben ein Beispiel, in welchem die Abbildung  trivial ist, obwohl | Mor(G, Out(A))| # 1
und | H?*(G,Z(A))| # 1 und 1 < Z(A) < A ist; siehe Beispiel 3.17.
Sei Ext (G, A) die Teilmenge von Ext(G, A), die aus den Aquivalenzklassen der Gruppener-

weiterungen von A mit G besteht, die @ induzieren im Sinne von Bemerkung 3.1.

Sei h2 (G, A) die Teilmenge von h*(G, A), die aus den Aquivalenzklassen der normalisierten
verallgemeinerten 2-Cozyklen (w, f) besteht, fiir welche w eine Hebung von w ist; siehe Lem-
mata 2.7 und 3.9.

Dann schranken die Bijektionen von Theorem 2.17 ein auf die Teilmengen Ext, (G, A) und
h% (G, A). Die Einschrinkungen werden o, und B geschrieben.

Wir verwenden eine normalisierte Variante H2 (G, Z(A)) von H*(G,Z(A)), in welcher die
Cohomologieklassen von normalisierten 2-Cozyklen reprasentiert werden; sieche Bemerkung 3.3,
Teil 2. Dank Lemma 1.13 ist

Hiom (G Z(A)) & H(G.Z(4)) .
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Theorem 3.13. Es existiere eine Gruppenerweiterung von A mit GG, die den Gruppenmorphis-
mus w : G — Out(A) induziert.

Somit ist h (G, A) # ); siche Lemma 3.9. Wir konnen also ein Element (¢, f) in z%(G, A)
withlen mit [, fo] € h2 (G, A).

Wir konstruieren wechselseitig inverse Bijektionen 957/ und né/0 derart, dass wir insgesamt
folgendes Diagramm erhalten.

X 9¢&:fo
Ext (G, A) hZ (G, A) =7 Hpow(GZ(4) —Z— H(G.Z(A))
Bw né,fO

Ist insbesondere A abelsch, so erhalten wir als Spezialfall die Theorie der Gruppenerweiterungen
mit abelschem Kern; sieche Bemerkungen 3.8 und 3.16.

Versicherung
Hiermit versichere ich,

1. dass ich meine Arbeit selbststandig verfasst habe,

2. dass ich keine anderen als die angegeben Quellen benutzt habe und alle wortlich oder
sinngemaf aus anderen Werken iibernommenen Aussagen als solche gekennzeichnet habe,

3. dass die eingereichte Arbeit weder vollstandig noch in wesentlichen Teilen Gegenstand
eines anderen Priifungsverfahrens gewesen ist und

4. dass das elektronische Exemplar mit den anderen Exemplaren tibereinstimmt.

Stuttgart, Juni 2017

Chen Zhang



	Introduction
	A problem and its history
	Results

	Preliminaries on cohomology groups
	The cohomology groups
	The groups Z2norm, B2norm and H2norm

	Group extensions with not necessarily abelian kernel
	The sets Ext(G,A) and h2(G,A)
	The bijection between Ext(G,A) and h2(G,A)

	Existence and classification of group extensions
	The problem
	Action of G on Z(A) induced by a group morphism from G to Out(A)
	Obstruction in H3(G,Z(A)) against the existence of a group extension inducing pi: G -> Out(A)
	Classification of group extensions inducing pi
	An example


