Algebraische Zahlentheorie, SS 18

Blatt 7

Aufgabe 26 (6 Punkte) Zu zeigen ist folgendes.

- (1) Sei R ein kommutativer Ring. Sei $n \ge 1$. Sei $\mathfrak{a}_i \in \text{Ideale}(R)$ für $i \in [1, n]$. Sei $\mathfrak{a}_i + \mathfrak{a}_j = R$ für $i, j \in [1, n]$ mit $i \ne j$. Der Ringmorphismus $R \xrightarrow{\chi} \prod_{i \in [1, n]} R/\mathfrak{a}_i$, $r \longmapsto (r + \mathfrak{a}_i)_i$ ist surjektiv. Hierbei seien Addition und Multiplikation auf $\prod_{i \in [1, n]} R/\mathfrak{a}_i$ eintragsweise erklärt.
- (2) Sei D ein Dedekindbereich. Sei $n \ge 1$. Seien $\mathfrak{p}_i \in \mathrm{Ideale}_{\mathrm{prim}}^{\times}(D)$ mit $\mathfrak{p}_i \ne \mathfrak{p}_j$ für $i, j \in [1, n]$ mit $i \ne j$, und seien $k_i \ge 1$ für $i \in [1, n]$. Der Ringmorphismus $D \xrightarrow{\chi} \prod_{i \in [1, n]} D/\mathfrak{p}_i^{k_i}$, $d \longmapsto (d + \mathfrak{p}_i)_i$ ist surjektiv.

Aufgabe 28 (8+2 Punkte) Zu zeigen ist folgendes.

- (1) Sei D ein Dedekindbereich. Seien $\mathfrak{g}, \mathfrak{h} \in \underline{\mathrm{Ideale}}^{\times}(D)$. Dann sind auch $\mathfrak{gh}, \mathfrak{g} \cap \mathfrak{h}, \mathfrak{g} + \mathfrak{h}, \mathfrak{g}^{-1} \in \underline{\mathrm{Ideale}}^{\times}(D)$. Ist $\mathfrak{g} \subseteq D$, dann ist $\mathfrak{g} \in \underline{\mathrm{Ideale}}^{\times}(D)$. Sind bereits $\mathfrak{g}, \mathfrak{h} \in \underline{\mathrm{Ideale}}^{\times}(D)$, dann sind auch $\mathfrak{gh}, \mathfrak{g} \cap \mathfrak{h}, \mathfrak{g} + \mathfrak{h} \in \underline{\mathrm{Ideale}}^{\times}(D)$.
- (2) Sei R ein kommutativer Ring. Sei $\mathfrak{p} \in \text{Ideale}_{\text{prim}}(R)$. Seien $\mathfrak{a}, \mathfrak{b} \in \text{Ideale}(R)$. Es ist $\mathfrak{ab} \subseteq \mathfrak{p}$ genau dann, wenn $\mathfrak{a} \subseteq \mathfrak{p}$ oder $\mathfrak{b} \subseteq \mathfrak{p}$ ist.

Aufgabe 29 (2+2+2+3+4+4+3 Punkte) Sei D ein Dedekindbereich. Sei $K := \operatorname{Quot}(D)$. Sei $\mathfrak{p} \in \operatorname{Ideale}_{\operatorname{prim}}^{\times}(D)$. Seien $\mathfrak{g}, \mathfrak{h} \in \operatorname{Ideale}^{\times}(D)$. Seien $\mathfrak{g}, \mathfrak{h} \in \operatorname{Ideale}^{\times}(D)$. Sei $S \subseteq D^{\times}$ mit $1 \in S$ und mit $st \in S$ für $s, t \in S$.

- (1) Sei $k \ge 0$. Man zeige, daß genau dann $\mathfrak{a} \subseteq \mathfrak{p}^k$ ist, wenn $v_{\mathfrak{p}}(\mathfrak{a}) \ge k$ ist.
- (2) Wir schreiben $\gamma := v_{\mathfrak{p}}(\mathfrak{g})$ und $\chi := v_{\mathfrak{p}}(\mathfrak{h})$. Wie hängen $v_{\mathfrak{p}}(\mathfrak{gh})$, $v_{\mathfrak{p}}(\mathfrak{g} \cap \mathfrak{h})$, $v_{\mathfrak{p}}(\mathfrak{g} + \mathfrak{h})$, $v_{\mathfrak{p}}(\mathfrak{g}^{-1})$ von γ und χ ab?
- (3) Seien $x, y \in K^{\times}$. Man zeige $v_{\mathfrak{p}}(xy) = v_{\mathfrak{p}}(x) + v_{\mathfrak{p}}(y)$. Man zeige $v_{\mathfrak{p}}(x+y) \geqslant \min\{v_{\mathfrak{p}}(x), v_{\mathfrak{p}}(y)\}$, wobei Gleichheit gilt, falls $v_{\mathfrak{p}}(x) \neq v_{\mathfrak{p}}(y)$.
- (4) Man zeige, daß genau dann $\mathfrak{a} + \mathfrak{b} = (1)$ ist, wenn es kein $\mathfrak{q} \in Ideale_{prim}^{\times}(D)$ gibt, das in der Primidealfaktorzerlegung von \mathfrak{a} und von \mathfrak{b} als Faktor auftritt.
- (5) Man zeige, daß es $x, y \in D$ gibt mit $\mathfrak{a} = (x, y)$.
- (6) Sei $\mathfrak{a} + \mathfrak{b} = (1)$. Man zeige, daß $\mathfrak{ab} \oplus D$ und $\mathfrak{a} \oplus \mathfrak{b}$ als D-Moduln isomorph sind.
- (7) Man zeige, daß $\mathfrak{a} \oplus \mathfrak{a}^{-1}$ und $D \oplus D$ als D-Moduln isomorph sind. Ist \mathfrak{a} in eine direkte Summe von echten D-Teilmoduln zerlegbar? Wann ist \mathfrak{a} isomorph zu D als D-Modul?
- (8) Man zeige $S^{-1}(\mathfrak{a}\mathfrak{b}) = (S^{-1}\mathfrak{a})(S^{-1}\mathfrak{b})$, $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) = (S^{-1}\mathfrak{a}) \cap (S^{-1}\mathfrak{b})$ und $S^{-1}(\mathfrak{a} + \mathfrak{b}) = (S^{-1}\mathfrak{a}) + (S^{-1}\mathfrak{b})$. Man zeige $\mathfrak{a}_{\mathfrak{p}} = (\mathfrak{p}_{\mathfrak{p}})^{v_{\mathfrak{p}}(\mathfrak{a})}$.

www.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/az18/