Algebraische Zahlentheorie, SS 18

Blatt 4

Aufgabe 14 (4+2+3 Punkte) Zu zeigen ist folgendes.

- (1) Sei $n \ge 0$. Sei $A \in \mathbf{Z}^{n \times n}$ mit $\det(A) \ne 0$. Dann ist $|\mathbf{Z}^{n \times 1}/A\mathbf{Z}^{n \times 1}| = |\det(A)|$.
- (2) Sei $n \ge 0$. Sei X ein endlich erzeugt freier **Z**-Modul mit **Z**-linearer Basis $\underline{x} = (x_i : i \in [1, n])$. Sei $Y \subseteq X$ ein **Z**-Teilmodul mit **Z**-linearer Basis $\underline{y} = (y_j : j \in [1, n])$. Sei $y_j = \sum_{i \in [1, n]} a_{i,j} x_i$ für $j \in [1, n]$, wobei $A := (a_{i,j})_{i,j} \in \mathbf{Z}^{n \times n}$. Dann ist $|X/Y| = |\det(A)|$.
- (3) Sei $K|\mathbf{Q}$ eine endliche Körpererweiterung. Sei $\underline{y} := (y_i : i \in [1, n])$ eine \mathbf{Q} -lineare Basis von K, die in \mathcal{O}_K liegt. Sei $X := \mathbf{z}\langle y \rangle \subseteq K$. Dann ist $|X^\#/X| = |\Delta_{K|\mathbf{Q},y}|$.

Aufgabe 15 (2*+2 Punkte) Man zeige oder widerlege.

Sei L|K eine endliche Körpererweiterung mit K perfekt. Sei $\ell := [L:K]$. Sei $A \subseteq K$ ein ganzabgeschlossener Teilring mit $\operatorname{Quot}(A) = K$. Sei $B \subseteq \Gamma_L(A)$ ein Teilring.

Sei $\underline{g} := (g_i : i \in [1, \ell])$ eine K-lineare Basis von L mit $B = A(\underline{g})$.

- (1) Ist [L:K] ungerade, dann ist $\det(\operatorname{Vand}_{L|K,g}) \in A$.
- (2) Ist L|K galoisch und [L:K] ungerade, dann ist $\det(\operatorname{Vand}_{L|K,g}) \in A$.

Aufgabe 17 (6+3 Punkte)

(1) Sei $n \ge 1$. Man zeige, daß $\mathbf{Q}(\zeta_n)|\mathbf{Q}$ galoisch ist, mit einem Gruppenisomorphismus

$$U(\mathbf{Z}/(n)) \stackrel{\sim}{\longrightarrow} Gal(\mathbf{Q}(\zeta_n)|\mathbf{Q})$$

 $k+(n) \longmapsto (\zeta_n \mapsto \zeta_n^k).$

(2) Für $n \ge 1$ sei $\Phi_n(X) := \mu_{\zeta_n, \mathbf{Q}}(X) \in \mathbf{Z}[X]$ das n-te Kreisteilungspolynom. Man zeige

$$X^n - 1 = \prod_{d \in \mathbf{Z}_{\geqslant 1}, \ n \equiv_d 0} \Phi_d(X) \ .$$

Aufgabe 22 (4 Punkte) Sei $K|\mathbf{Q}$ eine endliche Körpererweiterung.

Dann ist $\Delta_K \equiv_4 0$ oder $\Delta_K \equiv_4 1$.

Hinweis: Man schreibe $\det(\operatorname{Vand}_{K|\mathbf{Q},\underline{g}}) = P - N$, wobei in P die Terme aus der Leibnizformel mit positivem Vorzeichen stehen. Man zeige, daß P + N und PN in \mathbf{Z} liegen.

www.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/az18/