Algebra für Lehramt, SoSe 22

Blatt 8

Aufgabe 29

- (1) Sei $n \ge 1$. Sei K ein Körper. Sei $G = \operatorname{GL}_n(K)$. Sei $X = K^{n \times 1}$. Man zeige: Vermittels herkömmlicher Multiplikation von Matrizen mit Vektoren wird X zu einer G-Menge.
- (2) Man bestimme die Bahnen der G-Menge X.
- (3) Sei nun n=2 und $K=\mathbb{F}_5$. Es ist also $G=\mathrm{GL}_2(\mathbb{F}_5)$ und $X=\mathbb{F}_5^{2\times 1}$.
 - (a) Man bestimme $U := \operatorname{Stab}_G(\binom{1}{0})$.
 - (b) Wir betrachten die *U*-Menge $\mathbb{F}_5^{2\times 1}$. Man bestimme die Bahnen von $\mathbb{F}_5^{2\times 1}$ unter der Operation von U.

Aufgabe 30 Sei $a := (1, 2, 3, 4) \in S_4$. Sei b := (2, 4). Sei $D_8 := \langle a, b \rangle \leqslant S_4$.

(1) Man verifiziere: ${}^{b}a = a^{-1}$. Man verwende dies, um

$$D_8 = \{ a^i \circ b^j : i \in [0,3], j \in [0,1] \}$$

zu begründen. Man gebe alle Elemente von D_8 in Zykelschreibweise an.

- (2) Es ist [1,4] eine D_8 -Menge, wobei Multiplikation durch Anwendung gegeben ist. Man bestimme dafür den Stabilisator $Stab_{D_8}(2)$.
- (3) Man bestimme die Konjugationsklassen von D_8 . Man bestimme das Zentrum $Z(D_8)$.

Aufgabe 31 Seien G und H Gruppen. Sei $\varphi: G \to H$ ein Gruppenmorphismus. Sei $k \ge 1$ und seien $g_1, \ldots, g_k \in G$. Sei $U := \langle g_1, \ldots, g_k \rangle \leqslant G$.

- (1) Man zeige: $\varphi(U) = \langle \varphi(g_1), \dots, \varphi(g_k) \rangle$.
- (2) Sei $x \in G$. Man zeige: ${}^xU = \langle {}^xg_1, \dots, {}^xg_k \rangle$.
- (3) In der S₄-Menge $\mathcal{U}(S_4)$ liegt $U := \langle (1, 2, 3, 4) \rangle \leqslant S_4$. Man zeige: $\operatorname{Stab}_{S_4}(U) = D_8$; vgl. Aufgabe 30.

Aufgabe 32

- (1) Sei $n \ge 3$. Man zeige: $Z(S_n) = 1$.
- (2) Sei $n \ge 2$. Sei K ein Körper. Man zeige: $Z(GL_n(K)) = \{c \cdot E_n : c \in K^{\times}\}.$

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/alg22/