Algebra für Lehramt, SoSe 21

Blatt 2

Aufgabe 5

- (1) Seien R, S und T Ringe. Seien $f:R\to S$ und $g:S\to T$ Ringmorphismen. Man zeige: $g\circ f:R\to T$ ist ein Ringmorphismus.
- (2) Seien R und S Ringe. Sei $f:R\to S$ ein Ringisomorphismus. Man zeige: $f^{-1}:S\to R$ ist ein Ringisomorphismus.
- (3) Man finde ein Ideal in $\mathbb{Q}[X]$, das maximal ist.
- (4) Man finde ein Ideal in $\mathbb{Q}[X]$, das nicht maximal ist.

Aufgabe 6

- (1) Sei $f(X) := 3X^3 + 3X^2 + X + 2 \in \mathbb{Q}[X]$. Hat f(X) eine positive Nullstelle in \mathbb{R} ? Man bestimme alle Nullstellen von f(X) in \mathbb{Q} .
- (2) Sei $f(X) := X^4 \frac{3}{2}X^3 \frac{3}{2}X 1$. Man bestimme alle Nullstellen von f(X) in \mathbb{Q} .

Aufgabe 7 Sei $\mathbb{Q}(\sqrt{2}) := \{ a + b\sqrt{2} : a, b \in \mathbb{Q} \} \subseteq \mathbb{R}.$

- (1) Man zeige: Es ist $\mathbb{Q}(\sqrt{2})$ ein Teilring von \mathbb{R} und ein \mathbb{Q} -Unterraum von \mathbb{R} . Dabei hat $\mathbb{Q}(\sqrt{2})$ die \mathbb{Q} -lineare Basis $(1, \sqrt{2})$.
- (2) Sei $\varphi: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}^{2\times 2}: a+b\sqrt{2} \mapsto \binom{a}{b} \binom{a}{a}$. Man weise nach, daß φ ein injektiver Ringmorphismus ist. Ist $\mathbb{Q}(\sqrt{2})$ isomorph zu einem Teilring von $\mathbb{Q}^{2\times 2}$?
- (3) Sei $\psi: \mathbb{Q}[X] \to \mathbb{R}: f(X) \mapsto f(\sqrt{2})$. Man weise nach, daß ψ ein Ringmorphismus ist, welcher Bild $\mathbb{Q}(\sqrt{2})$ hat.

Man bestimme ein Ideal $I \leq \mathbb{Q}[X]$ mit $\mathbb{Q}[X]/I \simeq \mathbb{Q}(\sqrt{2})$.

Aufgabe 8

- (1) Man stelle die Additionstafel und die Multiplikationstafel von \mathbb{F}_7 auf.
- (2) Man finde $a, b, c \in \mathbb{F}_7$ mit

$$\frac{1}{(X+1)^2 \cdot (1-X)} = \frac{a}{X-1} + \frac{b}{X+1} + \frac{c}{(X+1)^2} \in \mathbb{F}_7(X) .$$

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/alg21/