Algebra für Lehramt, SoSe 20

Blatt 3

Aufgabe 9 Sei R ein faktorieller Ring. Seien $x, y \in R^{\times}$. Man zeige oder widerlege.

- (1) Sei z ein größter gemeinsamer Teiler von x und y. Dann ist (x, y) = (z).
- (2) Liege $z \in R$ mit (x,y) = (z) vor. Dann ist z ein größter gemeinsamer Teiler von x und y.
- (3) Es ist $(x \cdot y) = (x) \cap (y)$.
- (4) Ist 1 ein größter gemeinsamer Teiler von x und y, dann ist $(x \cdot y) = (x) \cap (y)$.

Aufgabe 10 Sei R ein Integritätsbereich.

- (1) Sei $x \in R^{\times} \setminus U(R)$ gegeben, also weder null noch invertierbar. Man zeige, daß x genau dann prim ist, wenn R/(x) ein Integritätsbereich ist.
- (2) Seien $x, y \in R$ gegeben mit (x, y) = (1). Man zeige, daß der Ringmorphismus

$$R \rightarrow R/(x) \times R/(y)$$

 $r \mapsto (r+(x), r+(y))$

surjektiv ist. Man bestimme seinen Kern, in Abhängigkeit von x und y.

Aufgabe 11 Sei p prim.

- (1) Man weise $|\operatorname{GL}_2(\mathbb{F}_p)| = (p^2 1)(p^2 p)$ nach.
- (2) Man bestimme $e := v_p(|\operatorname{GL}_2(\mathbb{F}_p)|).$ Man bestimme eine Untergruppe von $\operatorname{GL}_2(\mathbb{F}_p)$ von Ordnung p^e .
- (3) Man weise $|\operatorname{GL}_3(\mathbb{F}_p)| = (p^3 1)(p^3 p)(p^3 p^2)$ nach.
- (4) Man bestimme $e := v_p(|\operatorname{GL}_3(\mathbb{F}_p)|).$ Man bestimme eine Untergruppe von $\operatorname{GL}_3(\mathbb{F}_p)$ von Ordnung p^e .

Aufgabe 12 In den Antworten ist die Zykelschreibweise für Elemente der symmetrischen Gruppe zu verwenden.

- (1) Ist S_3 abelsch?
- (2) Ist $S_3 = \langle (1,2), (2,3) \rangle$?
- (3) Gibt es in S_4 eine zyklische Untergruppe von Ordnung 6?
- (4) Gibt es in S_4 eine nichtabelsche Untergruppe von Ordnung 8?

pnp.mathematik.uni-stuttgart.de/lexmath/kuenzer/alg20/