Problem 17 Let $p > 0$ be a prime.
Let $P \in \text{Ob } C(F_pC_p{-}\text{-Mod})$ be the projective resolution of the trivial F_pC_p-module as found in Problem 9.(1).
Let $X := (P)$, so that X has P as its only tuple entry.
Let $A := \text{Hom}_{F_pC_p}(X)$ be the regular differential graded category, i.e. differential graded algebra over $\mathbb{Z} = \mathbb{Z} \times [1,1] \times [2,2]$.
Recall from Problem 9 and Problem 14 that we have calculated the \mathbb{Z}-graded module HA, i.e. that we know F_p-linear generators for its graded pieces.
Find a minimal A_3-structure $(\bar{m}_1, \bar{m}_2, \bar{m}_3)$ on HA and a quasiisomorphism $(q_1, q_2, q_3) : HA \to A$ of A_3-algebras.

Problem 18 Suppose R to be a field.
Let Z be a grading category. Let $n \in [1, \infty]$. Let A be a unital A_n-algebra over Z.
Consider the shift-graded linear residue class map $ZA \overset{\rho}{\to} HA$ of degree 0.
Show that there exists a shift graded linear map $ZA \overset{\sigma}{\leftarrow} HA$ of degree 0 such that $\sigma \rho = \text{id}_{HA}$ and such that $(1_X \rho) \sigma = 1_X$ for $X \in \text{Ob}(Z)$.

w5.mathematik.uni-stuttgart.de/fachbereich/Kuenzer/ai16/