Blatt #3, 31. Okt. 2002

Aufgabe 9.

(1) Zu (R 1): $(\mathfrak{P}(M), +)$ ist abelsche Gruppe (mit neutralem Element 0) nach Aufgabe 7.(3). Zu (R 2a): $(\mathfrak{P}(M), \cap)$ ist abelsches Monoid mit 1. Seien dazu $A, B, C \in \mathfrak{P}(M)$, dann gilt: (G 1) $A \cap (B \cap C) = (A \cap B) \cap C$;

(G 2) Mit $1 := M \in \mathfrak{P}(M)$ gilt $A \cap 1 = 1 \cap A = A$;

(G 4) $A \cap B = B \cap A$.

Zu (R 3): Da (\cappa) kommutativ ist, genügt $(A + A') \cap B = ((A \setminus A') \cup (A' \setminus A)) \cap B =$ $\left(\left((A \cap B) \setminus (A' \cap B)\right) \cup \left((A' \cap B) \setminus (A \cap B)\right)\right) = (A \cap B) + (A' \cap B) \text{ für } A, A', B \in \mathfrak{P}(M).$ (2) Nach Vorlesung gilt: $(\mathfrak{P}(M), +, \cap)$ Körper $\Leftrightarrow 1 \neq 0$ (d.h. $M \neq \emptyset$) und $\forall A \in \mathfrak{P}(M) \setminus \{\emptyset\}$ $\exists B \in A$

 $\mathfrak{P}(M): A \cap B = M = 1.$

#M=0. Kein Körper, da $M=\emptyset$.

#M=1. Da $\mathfrak{P}(M)\setminus\{\emptyset\}=\{M\}$ und $M\cap M=1$, ist $(\mathfrak{P}(M),+,\cap)$ ein Körper.

 $\#M \geq 2$. Sei $A \in \mathfrak{P}(M) \setminus \{\emptyset, M\}$. Dann gilt $\forall B \in \mathfrak{P}(M) : A \cap B \subseteq A \subseteq M = 1$, also existient zu A kein Inverses, und folglich ist $(\mathfrak{P}(M), +, \cap)$ kein Körper.

- (3) Es ist $\mathfrak{P}(N) \leqslant \mathfrak{P}(M)$ bzgl. (+) nach Aufgabe 7.(4); da $\forall A \in \mathfrak{P}(N) \quad \forall B \in \mathfrak{P}(M) : A \cap B \subseteq \mathfrak{P}(M)$ $A \in \mathfrak{P}(N)$, ist $\mathfrak{P}(N)$ Ideal.
- (4) Nach Definition ist $\mathfrak{P}(M)/\mathfrak{P}(N) = \{\bar{A} \mid A \in \mathfrak{P}(M)\}$ mit $\bar{A} = \{A + B \mid B \in \mathfrak{P}(N)\}$. Damit ist $\mathfrak{P}(M)/\mathfrak{P}(N)=\{\overline{\emptyset},\overline{\{b\}}\}$ mit $\overline{\emptyset}=\{\emptyset,\{a\}\}$ und $\overline{\{b\}}=\{\{b\},\{a,b\}\}$. Repräsentantenweise Ausführung der Operationen ergibt:

(5) Für $a, b \in R$ ist $0 = (a+b)^2 - (a+b) = (a^2 + ab + ba + b^2) - (a+b) = ab + ba$. Mit c = a = bfolgt $0 = c^2 + c^2 = c + c$, d.h. stets c = -c und damit auch ab = -ba = ba.

Aufgabe 10.

(1)

+	0	1	$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 0 \\ 1 \end{array} $	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

(2)

•	0	1	2	3	$ \begin{array}{c} 4 \\ 0 \\ 4 \\ 1 \\ 5 \\ 2 \\ 6 \\ 3 \end{array} $	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

- (3) Es ist $x \equiv_7 3$ oder $x \equiv_7 5$.
- (4) \mathbf{F}_p ist Körper, d.h. $(\mathbf{F}_p \setminus \{0\}, \cdot)$ ist abelsche Gruppe mit p-1 Elementen. Sei $x \in \mathbf{F}_p \setminus \{0\}$. Dann ist $G_x := \{x^m \mid m \in \mathbf{Z}\} \leqslant \mathbf{F}_p \setminus \{0\}$ Untergruppe. Da $\#G_x = (\text{Ordnung von } x)$, gibt es nach Aufgabe 4.(1) ein $k \in \mathbf{Z}$ mit (Ordnung von x) k = p - 1. Also $x^{p-1} \equiv_p (x^{(\text{Ordnung von } x)})^k \equiv_p (x^{(\text{Ordn$

 $1^k \equiv_p 1$ und damit $x^{p-1} - 1 \equiv_p 0$. Also gilt $x^p - x \equiv_p x(x^{p-1} - 1) \equiv_p 0$ sowohl für $x \in \mathbf{F}_p \setminus \{0\}$ als auch für $x \equiv_p 0$.

Aufgabe 11.

- (1) Alle Potenzen sind bereits gegeben durch $\{3^i \mid i \in \mathbf{Z}\} = \{1, 3, 9, 11\}.$
- (2) E ist $\{x \in \mathbf{Z}/16\mathbf{Z} \mid 6 \cdot x \equiv_{16} 0\} = \{0, 8\}.$
- (3) Invertierbar sind:

- (4) Einsetzen aller 16 Werte ergibt $\{x \in \mathbf{Z}/16\mathbf{Z} \mid x^3 + x + 2 \equiv_{16} 0\} = \{3, 6, 7, 11, 15\}.$
- (5) Nach (3) gilt $\{x \in \mathbf{Z}/16\mathbf{Z} \mid 5 \cdot x \equiv_{16} 1\} = \{13\}$. Mit dem Ansatz x = 13 + 16k mit $k \in \mathbf{Z}$ ergibt sich $\{(x,y) \in \mathbf{Z} \times \mathbf{Z} \mid 5 \cdot x + 16 \cdot y = 1\} = \{(x,y) \in \mathbf{Z} \times \mathbf{Z} \mid x = 13 + 16k, y = -4 5k, k \in \mathbf{Z}\}$.
- (6) Für $x \in \mathbf{Z}/16\mathbf{Z}$ errechnet man $x^4 \equiv_{16} 0$ oder $x^4 \equiv_{16} 1$. Also ist die Restklasse der Summe von 14 Biquadratzahlen enthalten in $\{0, 1, \ldots, 14\}$. Eine solche Summe kann demnach nicht von der Form 16k + 15 sein.

Aufgabe 12.

(1) Es ist

$$\begin{array}{rclcrcl} 0 \cdot x & = & 0 \cdot x + (0 \cdot x - 0 \cdot x) & \text{nach (R 1)} \\ & = & (0 + 0) \cdot x - 0 \cdot x & \text{nach (R 3)} \\ & = & 0 \cdot x - 0 \cdot x & \text{nach (R 1)} \\ & = & 0 & \text{nach (R 1)} \end{array}$$

und genauso folgt $x \cdot 0 = 0$.

(2) Seien $a, b, c \in R$. Falls alle beteiligten Elemente aus $R \setminus \{0\}$ stammen, gilt die jeweilige Aussage aus (G 1, 2, 4) nach (R 4). Bleiben folgende Fälle zu betrachten:

Zu (G 1): Ist (mind.) eines der Elemente a, b, c gleich null, so folgt mit (1):

$$0 = (a \cdot b) \cdot c = a \cdot (b \cdot c) = 0.$$

Zu (G 2): Nach (1) ist $1 \cdot 0 = 0 \cdot 1 = 0$.

Zu (G 4): Ist (mind.) eines der Elemente a, b gleich null, so folgt mit (1): $0 = a \cdot b = b \cdot a = 0$.