Lineare Algebra für Informatiker, Ubungen

Aufgabe 5 (4 * 2 Punkte). Gegeben sind

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}, \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 2 & 3 \end{pmatrix} \in \mathcal{S}_5.$$

- (1) Gib σ , ρ , σ^{-1} , ρ^{-1} in Zykelschreibweise an. (2) Berechne $\sigma \circ \rho$, $\rho^{-1} \circ \sigma^2$, $\sigma^2 \circ \rho^{-1}$.
- (3) Berechne ε_{σ} , ε_{ρ} , $\varepsilon_{\sigma \circ \rho}$, $\varepsilon_{\rho^{-1} \circ \sigma^{2}}$, $\varepsilon_{\sigma^{2} \circ \rho^{-1}}$.
- (4) Bestimme die Ordnung von σ und von ρ .

Aufgabe 6 (2+1+1+1) Punkte).

(1) Gib eine Verknüpfungstafel für S_3 an, d.h. eine Tabelle der Produkte aller möglicher Paare $(\rho, \sigma) \in \mathcal{S}_3 \times \mathcal{S}_3$ in der Form:

- (2) Gib für alle $\sigma \in \mathcal{S}_3$ das Signum ε_{σ} und die Ordnung an.
- (3) Gib alle 6 Untergruppen von S_3 an.
- (4) Sei Aut(S_3) die Gruppe der bijektiven Gruppenmorphismen von S_3 nach S_3 , mit der Komposition als Verknüpfung. Betrachte

$$\begin{array}{ccc} \mathcal{S}_3 & \stackrel{g}{\longrightarrow} & \operatorname{Aut}(\mathcal{S}_3) \\ \sigma & \longmapsto & g_{\sigma} \text{ mit } g_{\sigma} : \mathcal{S}_3 \to \mathcal{S}_3, \rho \mapsto \sigma \circ \rho \circ \sigma^{-1}. \end{array}$$

Zeige: g ist Gruppenmorphismus, g ist injektiv, g ist surjektiv.

(Hinweis für surjektiv: Ist $a \in \text{Aut}(S_3)$, so haben $\sigma \in S_3$ und $a(\sigma)$ dieselbe Ordnung.)

Aufgabe 7 (1+1+2+1 Punkte). Sei M eine Menge und auf $\mathfrak{P}(M)$ die symmetrische Differenz definiert:

$$\begin{array}{ccc} \mathfrak{P}(M) \times \mathfrak{P}(M) & \to & \mathfrak{P}(M) \\ (A,B) & \mapsto & A \cdot B := (A \setminus B) \cup (B \setminus A). \end{array}$$

- (1) Gib im Falle $M = \{1, 2\}$ die Verknüpfungstafel an.
- (2) Gib ein neutrales Element 1 bzgl. der symmetrischen Differenz an. Zeige, daß $A^2=1$ für alle $A \in \mathfrak{P}(M)$ gilt.
- (3) Zeige, daß $(\mathfrak{P}(M), \cdot)$ eine abelsche Gruppe bildet.
- (4) Zeige: Ist $N \subseteq M$, so ist $\mathfrak{P}(N)$ eine Untergruppe von $\mathfrak{P}(M)$.

Aufgabe 8 (3 Punkte).

- (1) Zeige, daß $V = \{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\} \subseteq S_4$ Untergruppe ist und gib eine Verknüpfungstafel von V an.
- (2) Bestimme die Elemente von $U := \{ \sigma \in \mathcal{S}_4 \mid \varepsilon_{\sigma} = 1 \}$ und zeige, daß dies eine Untergruppe von
- (3) Gibt es in S_4 ein Element der Ordnung 5? Begründe die Antwort.