Aufgabe 1.

- (1) Ja. $x \in X$: $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x))) = (h \circ g)(f(x)) = ((h \circ g) \circ f)(x)$.
- (2) Ja. $x, y \in X$: $g(f(x)) = g(f(y)) \stackrel{g \text{ inj.}}{\Rightarrow} f(x) = f(y) \stackrel{f \text{ inj.}}{\Rightarrow} x = y$.
- (3) Nein. $X = \{1\}, Y = \{2, 3\}, Z = \{4\} \text{ mit } f(1) = 2, g(2) = 4, g(3) = 4.$
- (4) Nein. $X = \{1, 2\}, Y = \{3\}, f(1) = 3, f(2) = 3, U = \{1\}.$
- (5) Nein. $X = \{1\}, Y = \{2, 3\}, f(1) = 2, V = \{2, 3\}.$
- (6) Ja. Ann: f ist surj. Dann $\exists y \in X$ mit $f(y) = \{x \notin f(x) \mid x \in X\}$. Man folgert: $y \notin f(y) \Rightarrow y \in f(y)$ und $y \in f(y) \Rightarrow y \notin f(y)$. Widerspruch.

Aufgabe 2.

- (1) $U \subset \mathfrak{P}(X)$. Für jedes $x \in X$ dürfen wir entweder $x \in U$ oder $x \notin U$ wählen. Damit $\#\mathfrak{P}(X) = 2^n$.
- (2) Für jedes $x \in X$ hat man m Wahlmöglichkeiten für $y \in Y$, d.h. $\#\{f: X \to Y\} = m^n$.
- (3) Beginnt man mit einem Element $x \in X$, so kann dieses auf m verschiedene $y \in Y$ geschickt werden. Fixiert man eine solche Zuordnung, so verbleiben für ein $x' \in X \setminus \{x\}$ noch die Elemente $Y \setminus \{y\}$, d.h. noch m-1. So fortfahrend erhält man die Anzahl der injektiven Abbildungen zu $m(m-1)\cdots(m-n+1)$. Beachte, daß dies Auswahl für m < n (natürlich) gleich 0 ist.
- (4) Für das erste Element x von X das wir abbilden möchten, haben wir n Möglichkeiten uns f(x) zu wählen, Für das zweite haben wir n-1 Möglichkeiten, für das dritte dann n-2 usw. Insgesamt gibt es n! Bijektionen von X nach X. (Alternativ: Die Zahl der Injektionen von X nach X ist n! und bei Mengen mit gleicher Anzahl an Elementen ist injektiv und surjektiv dasselbe.)

Aufgabe 3.

- (1) Definiere auf \mathbf{Z} z.B. $a \sim b \Leftrightarrow a \leq b$. Dann ist für $a, b, c \in \mathbf{Z}$:
 - $a \sim a$, da $a \leq a$.
 - $a \sim b$, $b \sim c \Rightarrow a \leq b$, $b \leq c \Rightarrow a \leq c$, d.h. $a \sim c$.
 - \bullet Aber da 1 ~ 2 und nicht 2 ~ 1 ist die Relation nicht symmetrisch.
- (2) Definiere auf **Z** z.B. $a \sim b \Leftrightarrow |a-b| \leq 1$. Dann ist für $a, b \in \mathbf{Z}$:
 - $a \sim a$, da $|a a| = 0 \le 1$.
 - $a \sim b \Rightarrow |a b| \le 1 \Rightarrow |b a| \le 1 \Rightarrow b \sim a$.
 - Da $1 \sim 2$ und $2 \sim 3$ aber nicht $1 \sim 3$ ($|1-3| \not\leq 1$) ist die Relation nicht transitiv.
- (3) Betrachte z.B. die leere Relation, d.h. $(\sim) = \emptyset \subseteq \mathbf{Z} \times \mathbf{Z}$. Symmetrie und Transitivität sind erfüllt. (\sim) ist nicht reflexiv, da es keine Elemente $(x,x) \in \emptyset$ gibt.
- (4) Wir wollen zeigen, daß es sich um eine Äquivalenzrelation handelt. Seien hierzu $x, y, z \in \mathbf{Z}$ und $x', y', z' \in \mathbf{Z} \setminus \{0\}$.
 - (Zu A 1) Es ist $(x, x') \sim (x, x')$, da xx' = xx'.
 - (Zu A 2) Wir folgern $(x, x') \sim (y, y') \Leftrightarrow xy' = yx' \Leftrightarrow yx' = xy' \Leftrightarrow (y, y') \sim (x, x')$.
 - (Zu A 3) Ist $(x, x') \sim (y, y')$ und $(y, y') \sim (z, z')$, so wird mit xy' = yx' und yz' = zy'

$$xy'z' = x'yz' = x'y'z,$$

und da $y' \neq 0$, so folgt xz' = x'z, d.h. $(x, x') \sim (z, z')$.

Ein Repräsentantensystem ist gegeben durch $S = \{(x,x') \in X \mid x \text{ und } x' \text{ teilerfremd und } x' > 0\}$. In der Tat ist zum einen $(xz',x'z') \sim (x,x')$, so daß wir gemeinsame Faktoren in erster und zweiter Stelle kürzen dürfen. Zum anderen, sind (x,x') und (y,y') in S, und gilt $(x,x') \sim (y,y')$, so ist wegen xy' = yx' jeder Teiler von x auch ein Teiler von yx'. Da x und x' teilerfremd sind, ist jeder Teiler von x ein Teiler von y. Dies gilt nun auch umgekehrt, jeder Teiler von y ist Teiler von x. Damit ist $y = \pm x$. Aus x', y' > 0 folgt nun x = y. Ist $x \neq 0$, so folgt auch x' = y'. Ist x = 0, so folgt bereits aus der Definition von x0, daß x'1, y'2, y'3, impliziert, daß x'3, y'4, y'5.

Eine Bijektion nach **Q** ist nun durch $X/\sim \mathbf{Q}: \overline{(x,x')} \mapsto x/x'$ gegeben. Diese repräsentantenweise definierte Abbildung hängt nicht vom Repräsentanten ab, da aus $(x,x') \sim (y,y')$, d.h. aus xy' = yx' folgt, daß x/x' = y/y'. Die Abbildung ist ersichtlich surjektiv, es liegt jeder

Bruch im Bild. Injektiv ist sie, da zwei Brüche x/x' und y/y' genau dann gleich sind, wenn xy' = yx'.

Bemerkung. Diese Konstruktion kann zur Definition von Q herangezogen werden.

Aufgabe 4.

- (1) Zunächst zeigen wir, daß es sich um eine Äquivalenzrelation handelt. Seien hierzu $g, h, k \in G$. (Zu A 1) Es ist $g \sim g$ wegen $1 \in U$, und also $g \cdot 1 = g$.
 - (Zu A 2) Ist $g \sim h$, so gibt es ein $u \in U$ mit gu = h. Dann ist $h = gu^{-1}$, und also $h \sim g$
 - (Zu A 3) Ist $g \sim h$ und $h \sim k$, so gibt es $u, v \in U$ mit gu = h und hv = k. Es folgt guv = k, was wegen $uv \in U$ auch $g \sim k$ zeigt.

Also ist (\sim) eine Äquivalenzrelation, mit Äquivalenzklassen $\bar{g} = \{gu \mid u \in U\}$.

Für alle g ist $\#\bar{g} = \#U$, da die Abbildung $\bar{g} \to U$, $x \mapsto g^{-1}x$ bijektiv ist, wie man am besten durch Angabe der Umkehrabbildung $U \to \bar{g}$, $y \mapsto gy$. Da G als disjunkte Vereinigung gleich großer Äquivalenzklassen geschrieben werden kann, ist

$$\#G = \#U \cdot \#(G/\sim) .$$

Insbesondere ist #U ein Teiler von #G.

- (2) Seien $g, h \in G$. Wegen $g^2 = 1$ ist $g^{-1} = g$, wegen $h^2 = 1$ ist $h^{-1} = h$. Aus $(gh)^2 = 1$ folgt also $gh = h^{-1}g^{-1} = hg$. Somit ist G abelsch.
- (3) Für $x \in G$ wird

$$\begin{array}{rcl} x_r^{-1}x & = & x_r^{-1}x((x_r^{-1})(x_r^{-1})_r^{-1}) \\ & = & x_r^{-1}(x(x_r^{-1}))(x_r^{-1})_r^{-1} \\ & = & x_r^{-1}(x_r^{-1})_r^{-1} \\ & = & e_r \ . \end{array}$$

Also ist jedes rechtsinverse Element von x auch linksinvers (in Wirklichkeit gibt es genau eines).

Weiter wird für $x \in G$ mit dem eben Gezeigten

$$e_r x = (xx_r^{-1})x$$

$$= x(x_r^{-1})x)$$

$$= x,$$

d.h. e_r ist auch linksneutrales Element. Damit gelten (G 2, 3).