Lineare Algebra für Informatiker, Übungen

Aufgabe 44 (12.5 Punkte). Sei K ein Körper, sei $A \in K^{n \times n}$. Berechne det A.

- (1) $A := \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbf{R}^{2 \times 2}$.
- (2) $A := \begin{pmatrix} 1+i & 1+i & 1-i \\ -1 & -i & 2 \\ 0 & 0 & i \end{pmatrix} \in \mathbf{C}^{3\times3}.$
- (3) $A := \begin{pmatrix} 9 & 1 & 5 & 4 \\ 3 & 10 & 6 & 9 \\ 7 & 2 & 8 & 0 \\ 8 & 3 & 2 & 1 \end{pmatrix} \in \mathbf{F}_{11}^{4 \times 4}.$
- $(4) \ \ A := \begin{pmatrix} 1 & -\iota 1 & 0 & 1 \\ \iota & -1 & \iota & 0 \\ -\iota + 1 & -\iota & \iota 1 & \iota 1 \\ 0 & 1 + \iota & \iota & -\iota \end{pmatrix} \in \mathbf{F}_9^{4 \times 4}.$
- $(5) \ \ A := \begin{pmatrix} 7 & 0 & 10 & -12 & 12 & 1 \\ 5 & 3 & 13 & 10 & 15 & 4 \\ 8 & 0 & 11 & 5 & 13 & 2 \\ 9 & 0 & 12 & 9 & 14 & 3 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 10 & -1 & 13 & 3 & 15 & 0 \end{pmatrix} \in \mathbf{R}^{6 \times 6}.$

Aufgabe 45 (8 Punkte).

- (1) Es sei $A_n := \begin{pmatrix} 1 & -s & 0 & 0 & \cdots & 0 \\ s & 1 & -s & 0 & \cdots & 0 \\ 0 & s & 1 & -s & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & s & 1 & -s \\ 0 & \cdots & 0 & s & 1 \end{pmatrix} \in \mathbf{C}^{n \times n}$. Zeige: $\det A_n = \sum_{j \geq 0} s^{2j} \binom{n-j}{j}$. (Hinweis: Induktion mit Laplace.)
- (2) (Vandermondesche Determinante). Sei K ein Körper, seien $x_1, \ldots, x_n \in K$, und sei $A := \begin{pmatrix} x_1^0 & x_2^0 & \cdots & x_n^0 \\ x_1^1 & x_2^1 & \cdots & x_n^1 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}$. Zeige: $\det A = \prod_{1 \leq i < j \leq n} (x_j x_i)$. (Hinweis: Induktion.)
- (3) Sei $A = \begin{pmatrix} 1 & 1+\alpha & \alpha & 1+\alpha \\ \alpha & 1 & 1 & 0 \\ 0 & 1+\alpha & 0 & 1 \\ 1+\alpha & 0 & 0 & 1 \end{pmatrix} \in GL_4(\mathbf{F}_4)$. Berechne den Eintrag von A^{-1} an den Stellen (3, 2) und (1, 4) vermittels der Cramerschen Regel (also ohne die komplette Inverse zu bestimmen).
- (4) Für $\xi \in \mathbf{F}_9$ sei $f_{\xi} : \mathbf{F}_9 \to \mathbf{F}_9 : \eta \mapsto \eta \xi$ die lineare Abbildung, die durch Multiplikation mit ξ auf dem \mathbf{F}_3 -Vektorraum \mathbf{F}_9 gegeben ist. Sei $A(\xi) = A(f_{\xi})_{\underline{x},\underline{x}} \in \mathbf{F}_3^{2\times 2}$ ihre beschreibende Matrix bezüglich $\underline{x} = (1, \iota)$. Berechne det $A(\xi)$ für alle $\xi \in \mathbf{F}_9$ und vergleiche mit ξ^4 . Was fällt auf?

Aufgabe 46 (2+1 Punkte).

- (1) Sei $A \in \mathbf{Z}^{n \times n}$ eine $n \times n$ Matrix mit Einträgen in \mathbf{Z} . Zeige: det $A \in \{-1, +1\}$ gilt genau dann, wenn A eine Inverse mit Einträgen aus \mathbf{Z} besitzt. (Hinweis: Cramer.)
- (2) Zeige: $GL_n(\mathbf{Z}) := \{ A \in \mathbf{Z}^{n \times n} \mid \det A \in \{-1, +1\} \} \leq GL_n(\mathbf{Q}).$

Aufgabe 47 (5 Punkte). Sei K ein Körper, sei $n \ge 1$, und seien $A, B \in K^{n \times n}$. Zeige oder widerlege.

- (1) Wenn es ein $m \ge 1$ gibt mit A^m regulär, so ist auch A regulär.
- (2) Für $\lambda, \mu \in K$ ist $\det(\lambda A + \mu B) = \lambda \det(A) + \mu \det(B)$.
- (3) Sind A und B obere Blockdreiecksmatrizen, so auch AB.
- (4) $\operatorname{SL}_n(K) := \{ A \in \operatorname{GL}_n(K) \mid \det(A) = 1 \}$ ist eine Untergruppe von $\operatorname{GL}_n(K)$.
- (5) Es gibt n!/2 Permutationsmatrizen in $GL_n(K)$ mit Determinante 1.

http://www.mathematik.uni-ulm.de/ReineM/kuenzer/WS02/