Aufgabe 39.

- (1) Es wird A geeignet umgeformt zu $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & s+1 \end{pmatrix}$. Damit ist rk A=1 falls s=-1 und rk A=2 sonst.
- (2) Es wird A geeignet umgeformt zu $\begin{pmatrix} 1 & -1 & i \\ 0 & -s & is \\ 0 & 0 & s-1 \end{pmatrix}$. Damit ist rk A = 2 falls s = 0 oder s = 1 und rk A = 3 sonst.
- (3) Es wird A geeignet umgeformt zu $\begin{pmatrix} 1 & \alpha & 1+\alpha \\ 0 & s-1 & 0 \\ 0 & 0 & s^3-1 \\ 0 & 0 & 0 \end{pmatrix}$. Damit ist rk A=3 falls s=0, rk A=2 falls $s=\alpha$ oder $s=\alpha+1$ und rk A=1 falls s=1.

Aufgabe 40.

- (1) Es ist A singulär für a = -3. Für $a \neq -3$ wird (A|E) umgeformt zu $\begin{pmatrix} 1 & 0 & 0 & \frac{a+1}{a+3} & \frac{2}{a+3} & -\frac{2}{a+3} \\ 0 & 1 & 0 & 0 & \frac{1+2a}{a+3} & \frac{a-2}{a+3} & \frac{5}{a+3} \\ 0 & 0 & 1 & \frac{1}{a+3} & -\frac{1}{a+3} & \frac{1}{a+3} \end{pmatrix}.$ Damit ist $A^{-1} = \frac{1}{a+3} \begin{pmatrix} a+1 & 2 & -2 \\ -(1+2a) & a-2 & 5 \\ 1 & -1 & 1 \end{pmatrix}$. Zur Probe sehen wir $AA^{-1} = E$ oder $A^{-1}A = E$.
- (2) Es ist A regulär, falls $a, d, f \neq 0$. In diesem Fall wird (A|E) umgeformt zu $\begin{pmatrix} 1 & 0 & 0 & \frac{1}{a} & \frac{b}{ad} & \frac{be-cd}{adf} \\ 0 & 1 & 0 & 0 & \frac{1}{d} & -\frac{e}{fd} \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{f} \end{pmatrix}.$

Damit ist
$$A^{-1} = \begin{pmatrix} \frac{1}{a} - \frac{b}{ad} & \frac{be - cd}{adf} \\ 0 & \frac{1}{d} & -\frac{e}{fd} \\ 0 & 0 & \frac{1}{f} \end{pmatrix}$$
.

(3) Es ist A regulär und (A|E) wird umgeformt zu $\begin{pmatrix} 1 & 0 & 0 & | & \beta+1 & \beta & 0 & \beta \\ 0 & 1 & 0 & 0 & | & \beta & \beta^2+1 & \beta & 0 \\ 0 & 0 & 1 & 0 & | & 0 & \beta & \beta & \beta \\ 0 & 0 & 0 & 1 & | & 1 & 1 & 0 & 1 \end{pmatrix}$. Damit ist $A^{-1} = \begin{pmatrix} \beta+1 & \beta & 0 & \beta \\ \beta & \beta^2+1 & \beta & 0 \\ 0 & \beta & \beta & \beta & \beta \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$.

Aufgabe 41.

- (1) Diese Aussage gilt i.a. nicht. Denn z.B. gilt für $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in \mathbf{R}^{3 \times 3}$, daß $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ mit rk $A^2 = 1$, aber $A^3 = 0 \in \mathbf{R}^{3 \times 3}$ mit rk A = 0.
- (2) Diese Aussage ist i.a. falsch. Denn z.B. ist für $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ und $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ jeweils aus $\mathbf{R}^{3 \times 3}$ rk $(E + A) = \text{rk}(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}) = 3 = n$.
- (3) Für die Direktheit der Summe ist hier zu zeigen, dass Kern $(x \mapsto Ax) \cap \text{Im}(x \mapsto A^tx) = 0$ gilt. Sei also $y = A^tx \in \text{Im}(x \mapsto A^tx)$ und gleichzeitig $y \in \text{Kern}(x \mapsto Ax)$, d.h. $Ay = A(A^tx) = 0$. Daraus folgt: $x^tAA^tx = 0$, was äquivalent ist zu $(A^tx)^tA^tx = 0$. Da $A^tx \in \mathbf{R}^n$, folgt hieraus $y = A^tx = 0$. Also gilt: falls ein Element sowohl im Kern als auch im Bild liegt, kann es nur 0 sein.

Bleibt noch zu zeigen, dass die Summe gleich \mathbb{R}^n ist. Dies folgt aber aus

$$\dim(\operatorname{Kern}(x\mapsto Ax)\oplus\operatorname{Im}(x\mapsto A^{\operatorname{t}}x)) = \dim\operatorname{Kern}(x\mapsto Ax) + \dim\operatorname{Im}(x\mapsto A^{\operatorname{t}}x)$$

$$= \dim\operatorname{Kern}(x\mapsto Ax) + \operatorname{rk}A^{\operatorname{t}}$$

$$= \dim\operatorname{Kern}(x\mapsto Ax) + \operatorname{rk}A$$

$$= \dim\operatorname{Kern}(x\mapsto Ax) + \dim\operatorname{Im}(x\mapsto Ax)$$

$$= n.$$

(4) Sei $f: x \mapsto Ax$. Ist $\operatorname{rk} A^m = \operatorname{rk} A^{m+1}$, so ist $\operatorname{Im} f^m = \operatorname{Im} f^{m+1}$, d.h. $f^m(K^n) = f^{m+1}(K^n)$. Anwenden von f auf beide Seiten liefert $f^{m+1}(K^n) = f^{m+2}(K^n)$, und somit $\operatorname{rk} A^{m+1} = \operatorname{rk} A^{m+2}$.

(5) Analog zu (3) ist zu zeigen, dass Kern $(x \mapsto A^m x) \cap \operatorname{Im}(x \mapsto A^m x) = 0$. Mit (2) folgt, dass rk $A^m = \operatorname{rk} A^{m+1} = \cdots = \operatorname{rk} A^{2m}$, also dim Im $A^m = \dim \operatorname{Im} A^{2m}$. Mit der Dimensionsformel folgt dann dim Kern $A^m = \dim \operatorname{Kern} A^{2m}$ und somit wegen Kern $A^{2m} \geq \operatorname{Kern} A^m$ auch Kern $A^m = \operatorname{Kern} A^{2m}$.

Sei nun $y = A^m x \in \text{Im } A^m$ gewählt und gelte gleichzeitig $y \in \text{Kern } A^m$. Damit folgt $A^m y = A^m (A^m x) = A^{2m} x = 0$, d.h. $x \in \text{Kern } A^{2m} = \text{Kern } A^m$. Also gilt $y = A^m x = 0$ und somit ist nur 0 in obigem Schnitt enthalten.

Aufgabe 42.

(1) Für $A \in K^{3\times 3}$ gilt nach Leibniz:

$$\begin{array}{lcl} \det A = \sum_{\sigma \in \mathcal{S}_3} \varepsilon_\sigma \prod_{i \in [1,3]} a_{\sigma(i),i} &=& a_{1,1} a_{2,2} a_{3,3} + a_{2,1} a_{3,2} a_{1,3} + a_{3,1} a_{1,2} a_{2,3} \\ & & -a_{1,1} a_{3,2} a_{2,3} - a_{2,1} a_{1,2} a_{3,3} - a_{3,1} a_{2,2} a_{1,3} \;. \end{array}$$

(2) Für die Auswertung der Leibnizschen Formel benötigt man (n!-1) Additionen und (n-1)n! Multiplikationen (oder aber $n \cdot n!$, wenn man ε_{σ} nicht als Vorzeichen, sondern als Faktor ansieht).

Aufgabe 43.

Diese Aussage ist i.a. falsch. Z.B. ist für $A:=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ das charakteristische Polynom $\chi_A(X)=\det(XE-A)=X^3-X^2-X+1$. Damit nimmt $\chi_A'(X)=3X^2-2X-1$ an der Stelle 0 den Wert -1 an.