CATÉGORIES DE PICARD RESTREINTES

HOÀNG XUÂN SINH

Ecole Supérieure de Pédagogie de Hanoi

On se propose dans cet article de représenter toute catégorie de Picard restreinte par un complexe de chaînes et en déduire que la classification des catégories de Picard préréglées de type (M, N) qui sont restreintes est triviale.

1. CATÉGORIES DE PICARD RESTREINTES

DEFINITION 1.1. Une catégorie de Picard est une Gr-catégorie munie d'une contrainte de commutativité compatible avec sa contrainte d'associativité. Une catégorie de Picard P est dite restreinte si sa contrainte de commutativité d vérifie

$c_{x,x} = \text{identité} \text{ pour tout } x \in \text{ob } P$ [1]

2. COHOMLOGIE DE GROUPES ABÉLIENS LIBRES

2.1. Soit π un groupe et A un π-module. Considérons la B-ré solution

$B(\mathbb{Z}[\pi])$ [3]

$B_n \rightarrow B_{n-1} \rightarrow \cdots \rightarrow B_1 \rightarrow B_0 \rightarrow 0$

où B_n est le π-module libre de générateurs $[x_1 | \cdots | x_n]$ avec $x_i \notin \{1, \ldots, x_{n-1} \}$ appartenant à π et les homomorphismes de π-module φ sont définis pour $n>0$ par

$\varphi[x_1 | \cdots | x_n] = x_1 [x_1 | \cdots | x_n] + \sum_{i=1}^{n-1} (-1)^i [x_1 | \cdots | x_i x_{i+1} | \cdots | x_n] + (-1)^n [x_1 | \cdots | x_{n-1}]$

La B-résolution avec l'homomorphisme

$\varepsilon : B_0 \rightarrow \mathbb{Z}$

$[x] \mapsto 1$

où \mathbb{Z} est considéré comme un π-module trivial est une résolution libre du π-module trivial \mathbb{Z}, et on a par définition

$\text{Ext}_\pi^0 (\mathbb{Z}, A) = H^0 (\pi, A)$ [3]
Nous nous proposons de donner ici une autre résolution libre du \(\pi \)-module trivial \(Z \) en cas où \(\pi \) est un groupe abélien libre de base \([t_i]_{i \in I} \).

2.2. Soit \(\pi \) un groupe abélien libre de base \([t_i]_{i \in I} \) où \(I \) est muni d'un bon ordre. Considérons les \(\pi \)-modules libres \(X_n = \bigoplus_{n>0} \bigoplus_{t_i \in I} \bigoplus_{i \leq n} \bigoplus_{t_k \in I} \bigoplus_{k \leq n} u_{i_k} \) avec \(i_1, \ldots, i_k \in I \) et \(i_1 < \ldots < i_k \) et les homomorphismes de \(\pi \)-modules \(\delta \):

\[
\delta : X_n \rightarrow X_{n-1} u_1 \oplus \cdots \oplus u_n \rightarrow \bigoplus_{k=1}^{n} (-1)^{k-1} (u_{i_k} - 1) u_{i_1} \oplus \cdots \oplus u_{i_k} \oplus \cdots \oplus u_{i_n}
\]

où le \(\delta \) désigne l'omission.

Proposition 2.3.

\[
\rightarrow X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow Z \rightarrow 0
\]

est une résolution libre du \(\pi \)-module trivial \(Z \).

Démonstration. Le cas où \(I \) est fini est démontré dans [3]. Considérons le cas où \(I \) est infini. Soit

\[
c = \sum_{i \in I} \sum_{j \in J} e_i u_{i_1} \oplus u_{i_2} \oplus \cdots \oplus u_{i_n} \in X_n
\]

où \(e_i \) sont des éléments du groupe abélien libre de base \([t_i]_{i \in I} \), et tel que \(c \delta = 0 \). Soit \(I \subset I \) la partie de \(I \) contenant les indices qui se figurent dans les coefficients et les générateurs \(u_{i_1} \oplus u_{i_2} \oplus \cdots \oplus u_{i_n} \) expriment \(c \). Nous avons un groupe abélien libre de base \((t_i)_{i \in I} \) et puisque \(I \) est fini, une résolution libre du \(\pi \)-module trivial \(Z \):

\[
\rightarrow X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow Z \rightarrow 0
\]

où les \(\pi \)-modules libres \(X_n \) (\(n \geq 0 \)) et les homomorphismes \(\delta \) sont définis comme dans 2.2. Le cycle \(c \in X_n \) par conséquent un bord, \(c = \delta(x) \), \(x \in X_{n+1} \) ou \(c = \delta x \) en considérant \(\pi \) comme un élément de \(X_{n+1} \).

2.4. La cohomologie d'un groupe abélien libre \(\pi \) à coefficients dans un \(\pi \)-module \(A \) peut être calculée par la résolution (2.3.1) par la formule

\[
H^*(\pi; A) = \text{Ext}_{\pi}^* (Z, A)
\]

Une cohomologie \(f : X_\pi \rightarrow A \), comme un homomorphisme de module, est déterminée par les élements arbitraires \(f(u_{i_1} \oplus u_{i_2} \oplus \cdots \oplus u_{i_n}) \in A \), et

\[
\delta(f(u_{i_1} \oplus u_{i_2} \oplus \cdots \oplus u_{i_n})) = \sum_{k=1}^{n+1} (-1)^{k-1} (u_{i_k} - 1) f(u_{i_1} \oplus u_{i_2} \oplus \cdots \oplus u_{i_k})
\]

En particulier, si \(\Lambda \) est un groupe abélien regardé comme un \(\pi \)-module trivial \(t_i = 0 \) pour tout \(i \), alors \(\delta f \) est toujours nul, et ainsi \(H^0(\pi; A) = \Lambda \oplus A_i \) où

\[
J = \{ (i_1, \ldots, i_n) \mid i_1 < \ldots < i_n \}
\]

est une partie de \(I^2 \) et \(A_i = A \) pour tout \(i \in J \).

2.5. \(\pi \) étant toujours un groupe abélien libre de base \([t_i]_{i \in I} \) considérons l'homomorphisme de \(\pi \)-module :

\[
h_B : X_n \rightarrow B_n, \quad u_{i_1} \oplus \cdots \oplus u_{i_n} \rightarrow \bigoplus_{\sigma \in \Sigma_n} \sigma u_{i_{\sigma(1)}} \oplus \cdots \oplus u_{i_{\sigma(n)}}
\]

où la \(\sigma \) est le groupe symétrique, \(s_\sigma \) la signature de la permutation \(\sigma \). Il est clair que nous avons un diagramme commutatif

\[
\rightarrow X_n \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow Z \rightarrow 0
\]

que nous donnons un isomorphisme

\[
\text{Hom}(\pi; \Lambda) \cong H^0(\pi; A) \cong H^0(\text{Hom}_{\pi}(B, A)) \cong H^0(\text{Hom}_{
(\pi, A)}(X, A))
\]

pour tout \(\pi \geq 0 \) et tout \(\pi \)-module \(A \).

2.6. Nous supposons toujours que \(\pi \) est un groupe abélien libre de base \([t_i]_{i \in I} \) noté additivement. Introduisons le complexe de groupes abéliens suivant :

\[
0 \rightarrow L_0(\pi) \rightarrow L_1(\pi) \rightarrow L_2(\pi) \rightarrow L_3(\pi) \rightarrow L_4(\pi) \rightarrow L_5(\pi) \rightarrow 0
\]

où

\[
L_0(\pi) = Z[\pi], \quad L_1(\pi) = Z[\pi \times \pi], \quad L_2(\pi) = Z[\pi \times \pi \times \pi], \quad L_3(\pi) = Z[\pi \times \pi \times \pi \times \pi], \quad L_4(\pi) = Z[\pi \times \pi \times \pi \times \pi \times \pi]
\]

et

\[
L_5(\pi) = Z[\pi \times \pi \times \pi \times \pi \times \pi \times \pi]
\]

les \(\pi \) étant les groupes abéliens libres engendrés par \([X_{i_1}, \ldots, X_{i_n}], X_{i_1} \cdots X_{i_n} \in \pi \)

et différents de 0, (\(i = 1, 2, 3, 4 \)). On pose \(x_i = 0 \) si un de ces \(x_i \) est nul. Puisque \(t_i \) est libre, un homomorphisme du groupe \(L \) dans un groupe abélien \(A \) est uniquement déterminé par ses valeurs sur les générateurs. D'où le complexe Hom \((L(\pi), A) \) est identifié au complexe suivant :

\[
\text{Hom}(L(\pi), A) : 0 \rightarrow \text{Hom}_{\pi}(\pi, A) \rightarrow \text{Hom}(\pi, A) \rightarrow \text{Hom}(\pi \times \pi, A) \rightarrow \text{Hom}(\pi \times \pi \times \pi, A) \rightarrow \text{Hom}(\pi \times \pi \times \pi \times \pi, A)
\]

et

\[
\text{Hom}(\pi \times \pi \times \pi \times \pi \times \pi, A) \rightarrow \text{Hom}(\pi \times \pi \times \pi \times \pi \times \pi, A) \rightarrow \text{Hom}(\pi \times \pi \times \pi \times \pi \times \pi \times \pi, A)
\]
PROPOSITION 2.6.1. Le complexe \(L(x) \) est une résolution tronquée de \(\pi \), en d'autres termes la suite \(L_0 \to L_2 \to L_1 \to \pi \to 0 \) est exacte.

Démonstration. Les \(L_i \) étant libres, l'exactitude de \(L(\pi) \) est équivalente à l'exactitude des complexes Hom \(L(\pi, A) \) pour \(A \) un groupe abélien arbitraire. Démontrons que Hom \(L(\pi, A) \) est exact. Il est clair qu'il est exact si \(\text{Hom}(\pi, A) \) et Hom \((\pi, A) \). Montrons qu'il est exact en Hom \((\pi, A) \). Soit \(f: \pi \times \pi \to A \) une application de \(\pi \times \pi \) dans \(A \) vérifiant la condition de normalisation \(f(x, y) = 0 \) si \(x = y \) et nul, et telle que

\[
\begin{align*}
&f(x, y) - f(x, y) + f(x, y + z) - f(x, y) = 0 \\
&f(x, y) - f(x, y) = 0
\end{align*}
\]

pour tous \(x, y, z \in \pi \). Il est clair que \(f \) est un 2-cocycle symétrique de Hom \((\pi, A) \) où \(A \) est considéré comme un \(\pi \)-module trivial (2.1). En vertu de la symétrie de \(f \) et de l'isomorphisme (2.5.1) nous obtenons

\[
f = \partial g, \text{ avec } g: \pi \to A.
\]

et par conséquent

\[
f(x, y) = g(y) - g(x+y) + g(x)
\]

pour tous \(x, y \in \pi \). D'où l'exactitude en Hom \((\pi, A) \). Enfin montrons que Hom \(L(\pi, A) \) est exact en Hom \((\pi \times \pi \times \pi, A) \times \text{Hom}(\pi, A) \). Soient \(f: \pi \times \pi \times \pi \times \pi \times \pi \to A \) et \(g \in \text{Hom}(\pi, A) \) deux applications vérifiant les conditions de normalisation et telles que

\[
\begin{align*}
&f(x, y, z, t) - f(x, y + z, t) - f(x, y, z + t) + f(x, y, z) = 0 \\
&f(x, y, z, t) - f(x, y, z) + f(x, y, z + t) - f(x, y, z) = 0 \\
&g(x, y) + g(y, x) = 0 \\
g(x, y) = 0
\end{align*}
\]

i.e. \(f, g \) est un 2-cocycle de Hom \(L(\pi, A) \). Définissons une application \(k: \pi \times \pi \to A \) par la relation

\[
g(x, y) = k(x, y) - k(y, x)
\]

pour tous \(x, y \in \pi \), i.e. \(g = \text{ant } k \), et considérons le cocycle

\[
(f, k, g - \text{ant } k = 0)
\]

Donc \(f: \pi \times \pi \to A \) vérifie les conditions de normalisation et telle que

\[
\begin{align*}
&f(x, y) - f(x, y) + f(x, y + z) - f(x, y) = 0 \\
&f(x, y, z) - f(x, y, z) + f(x, y, z + t) - f(x, y, z) = 0 \\
&g(x, y) + g(y, x) = 0 \\
g(x, y) = 0
\end{align*}
\]

i.e. \(f, g \) est un 3-cocycle de Hom \((\pi, A) \), et en vertu de la dernière relation de (2.6.1.4), l'isomorphisme (2.5.1) nous donne

\[
f = \partial g, \text{ avec } u: \pi \times \pi \to A.
\]

Remarquons que \(\text{ant } u \) est une application bilinéaire en vertu de (2.6.1.5) de la dernière relation de (2.6.1.4). Proposons nous de définir un 2-cocycle \(v \) de Hom \((B, A) \) tel que

\[
\text{ant } v = \text{ant } u, \text{ pour cela prenons une application bilinéaire}
\]

\[
v: \pi \times \pi \to A \text{ définie de la façon suivante:}
\]

Il est clair que \(v \) est un 2-cocycle et \(\text{ant } v = \text{ant } u \), puisque \(\text{ant } u \) est bilinéaire comme nous avons remarqué ci-dessus. Par conséquent, nous obtenons un nouveau 2-cocycle de Hom \((L(\pi, A), A) \):

\[
(f = \partial u, 0) \to (0 = \partial v, \text{ant } u = \text{ant } v) = (0, \text{ant } u).
\]

On en déduit que \(L(\pi) \) et \(f, 0 \) sont des cobordés. On le fait que \(f, 0 \) est un cobord qui existe une application symétrique \(g: \pi \times \pi \to A \) telle que

\[
\begin{align*}
&f(x, y, z) = g(x, y) - g(x + y, z) + g(x, y + z) = g(x, y) \\
&\text{pour tous } x, y, z \in \pi, \text{ce qui permutent de conclure que}
\end{align*}
\]

\[
\begin{align*}
&f(x, y, z) - f(x, z, y) - f(x, y, z) = 0 \text{ (resp. } g(x, y) = g(y, x)).
\end{align*}
\]

3. REPRÉSENTATION D'UNE CATÉGORIE DE PICARD RESTRIITE PAR UN COMPLEXE DE CHAINES

3.1. On se propose ici de chercher à représenter une catégorie de Picard restreinte par un complexe de groupes abéliens en appliquant les résultats de [2] et de (2.6.1).

DEFINITION 3.2. Soit

\[
\begin{align*}
o &\to L_4 \to L_0 \to 0
\end{align*}
\]

un complexe de groupes abéliens. La catégorie de Picard stricte \(P \) (i.e. ses contraintes d'associativité de commutativité et d'u noté sont des identités) définie de la manière suivante:

\[
\begin{align*}
\Omega P_0 (x, y) = \{(x, y), x \to y+1, y \to x+1 \} \to (x, y)
\end{align*}
\]

et pour \(((x, y), f) : x_1 \to y_1, ((x, y), f_2) : x_2 \to y_2, x_1 \otimes x_2 = x_1 + x_2
\]

et \(((2), f_1 \otimes (x, y), f_2) = ((x_1 + x_2, y_1 + y_2), f_1 + f_2) \)

est appelée catégorie de Picard stricte définie par un complexe de groupes abéliens. Réprésenter une catégorie de Picard restreinte par un complexe de groupes abéliens, c'est montrer que la catégorie est équivalente à une catégorie de Picard stricte définie par un complexe de groupes abéliens.

PROPOSITION 3.3. Toute catégorie de Picard restreinte peut être représentée par un complexe de groupes abéliens.

Démonstration. Soit \(P \) une catégorie de Picard restreinte dont la catégorie réducte est \(S(M, N, a, o) \) [1], où \(a \) est un 3-cocycle symétrique de \(\text{Hom}_R(B(Z(M)), N) \), \(N \) étant considéré comme un \(M \)-module trivial. Soit \(L \) le
groupe abélien libre engendré par les éléments $M - \{0\}$ et $u : L_0 \rightarrow M$ l'homomorphisme canonique. En vertu de (2.6.1.6), il existe une application symétrique $f : L_0 \times L_0 \rightarrow N$ telle que

$$a^*(x), b^*(y), c^*(z) = f(y, z) - f(x + y, z) + f(x, y + z) - f(x, y)$$

pour tous $x, y, z \in L_0$. Remarquons que $f|_{\text{Ker} \times \text{Ker}}$ est un 2-cocycle. Or, étant un sous-groupe d'un groupe abélien libre $\text{Ker} u$ est aussi un groupe abélien libre, et par conséquent en vertu de (2.61.1) il existe $g : \text{Ker} u \rightarrow N$ telle que $f(x, y) = g(y) - g(x + y) + g(x)$

pour tous $x, y \in \text{Ker} u$. Définissons $g : L_0 \rightarrow N$ de la manière suivante

$$g(x) = g(x), x \in \text{Ker} u$$

$g(x)$ arbitraire pour $x \in \text{Ker} u$

et $f' : L_0 \times L_0 \rightarrow N$ par:

$$f(x, y) = g(y) - g(x + y) + g(x).$$

Il est clair que $df = 0$ et $f'|_{\text{Ker} \times \text{Ker}} = f|_{\text{Ker} \times \text{Ker}}$ et par conséquent en posant

$$\tilde{u} = f - f'$$

nous obtenons

(3.3.1) $a^*(x), b^*(y), c^*(z) = \tilde{u}$ symétrique et (3.3.2) $\tilde{u}|_{\text{Ker} \times \text{Ker}} = 0$

En appliquant les résultats de [3] et compte tenu de (3.3.1) (3.3.2), nous avons P équivalente à la catégorie de Picard stricte définir par

le complexe

$$d : L_0 \rightarrow L_1 \rightarrow L_2 \rightarrow 0$$

où

$$L_0 = \text{Ker} u \times N \text{ et } L_1 = \text{Ker} u \times N \rightarrow L_2$$

$(x, m) \rightarrow x$.

Remarquons que nous avons

$$\text{H}(L) = \pi_0(P) = M$$

$$\text{H}(L) = \pi_1(P) = N$$

i.e. les groupes homologiques du complexe sont les invariants de P.

Corollaire 3.3. La classification des catégories de Picard pr préépinglées de type (M, N) qui sont restreintes est triviale.

Received April 22, 1982

BIBLIOGRAPHIE

