
LOCALLY CONFORMALLY PRODUCT STRUCTURES

BRICE FLAMENCOURT

Abstract. A locally conformally product (LCP) structure on compact manifold M is a con-
formal structure c together with a closed, non-exact and non-flat Weyl connection D with

reducible holonomy. Equivalently, an LCP structure on M is defined by a reducible, non-flat,

incomplete Riemannian metric hD on the universal cover M̃ of M , with respect to which the

fundamental group π1(M) acts by similarities. It was recently proved by Kourganoff that in

this case (M̃, hD) is isometric to the Riemannian product of the flat space Rq and an incom-

plete irreducible Riemannian manifold (N, gN ). In this paper we show that for every LCP

manifold (M, c,D), there exists a metric g ∈ c such that the Lee form of D with respect to g
vanishes on vectors tangent to the distribution on M defined by the flat factor Rq , and use this

fact in order to construct new LCP structures from a given one by taking products. We also

establish links between LCP manifolds and number field theory, and use them in order to con-
struct large classes of examples, containing all previously known examples of LCP manifolds

constructed by Matveev-Nikolayevsky, Kourganoff and Oeljeklaus-Toma (OT-manifolds).

1. Introduction

On any Riemannian manifold, there exists a unique torsion-free metric connection, called the
Levi-Civita connection, which is the basic tool of Riemannian geometry. However, if one consider
the slightly more general context of conformal geometry, the uniqueness of compatible connection
does not hold anymore.

Conformal structures were introduced in 1919 by Weyl in the third edition of the book Raum,
Zeit, Materie [14], in an attempt to unify electromagnetism and gravity. He defined conformal
classes of Riemannian metrics, and considered the set of torsion-free compatible connections,
nowadays called Weyl structures. The fundamental theorem of conformal geometry states that
they form an affine space modelled on the space of one-forms.

In general, a Weyl structure does not preserve any metric in the conformal class, even locally.
Those which satisfy this property in a neighbourhood of each point are called closed, and those
which preserve a global metric are called exact Weyl structures. In this article we are mostly
interested in the closed, non-exact Weyl structures on compact conformal manifolds.

The study of closed Weyl structures on a conformal manifold M can be better understood

in terms of the universal cover M̃ . Indeed, the lift of a closed Weyl structure D to M̃ is

exact, meaning that it is the Levi-Civita connection of a Riemannian metric hD on M̃ , uniquely
defined up to a constant factor and consistent with the lift of the given conformal structure. The

fundamental group of M acts by hD-similarities on M̃ , all of them being isometries if and only
if D is exact.

Every geometrical property of the closed Weyl connection D can be interpreted on the Riemann-

ian manifold (M̃, hD), and conversely. One natural question to study is the reducibility of the
holonomy group of D, or equivalently of the Riemannian metric hD.

A first step in this direction was done by Belgun and Moroianu in [1], where the authors,
motivated by a result of Gallot [4], conjectured that a closed non-exact Weyl structure on a
compact conformal manifold has reducible holonomy if and only if it is flat. They showed that
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the conjecture holds under an additional assumption about the lifetime of half-geodesics on the
universal cover. However, soon after the formulation of the conjecture, a counter-example was
proposed by Matveev and Nikolayevsky [8] who constructed a cocompact action by a group of
similarities on the Riemannian product of an Euclidean space and an incomplete irreducible
Riemannian manifold. Additionally, the same authors proved that this is the only possible type
of counter-example in the analytic setting [9].

Recently, Kourganoff extended this result to the smooth setting [5, Theorem 1.5]. More precisely,
he proved that if a closed, non-exact Weyl structure D on a compact conformal manifold (M, c)

is non-flat and has reducible holonomy, then the Riemannian manifold (M̃, hD) is isometric to
the Riemannian product Rq×(N, gN ) where Rq (the flat part) is an Euclidean space and (N, gN )
(the non-flat part) is an irreducible, non-complete manifold. In this case, (M, c,D) is called a
locally conformally product structure, or LCP structure for short. This article is devoted to the
study of these particular structures on compact manifolds.

There are up to now only few examples of LCP manifolds. As mentioned before, the first one
was given in [8], and generalized in [5, Example 1.6] (we outline the construction in Example 2.8
below). This example is very restrictive because it only provides LCP manifolds of dimension 3
or 4, with a flat part of dimension 1 or 2 [7]. Nevertheless, they are the only examples when the
non-flat part is of dimension 2 [5, Theorem 1.8].

The other class of example comes from the theory of locally conformally Kähler (or LCK) mani-
folds. A conformal complex manifold is LCK if for any point there exists a metric in the conformal
class which is Kähler in a neighbourhood of this point. This is equivalent to the existence of a
Kähler metric on the universal cover, which belongs to the lift of the conformal class. In [12],
Oeljeklaus and Toma constructed a class of complex manifolds called OT-manifolds, some of
which admit LCK structures (we recall the construction in Example 2.18 below) which turn out
to be LCP structures. These LCP manifolds have flat parts of dimension 2, so they are still
restrictive examples.

One can define several invariants on LCP manifolds. On the one hand, the dimensions of the flat
and the non-flat parts, and on the other hand, the rank of the subgroup of R∗

+ generated by the

similarity ratios of π1(M) acting on (M̃, hD), which we call the rank of the LCP manifold. As
noticed before, in the known examples the possibilities for these numbers are limited: the flat
part is always of dimension 1 or 2, and it is not clear whether or not the rank can be higher than
1. Our first goal in the present text is to extend the examples of LCP manifolds, and to show,
in particular, that the three invariants previously introduced can be chosen arbitrarily large.

Let us now describe the organization of the paper and the results within. In Section 2, we
recall the background of Weyl structures and we define LCP manifolds. We also remind some
basics about algebraic number fields, which will be needed in the sequel. Indeed, it turns out
that the study of LCP manifolds is closely related to number theory, a fact that we can already
notice from the previous examples, which involve matrices in GLn(Z) [5] and algebraic number
fields [12]. The structure theorem for LCP manifold proved by Kourganoff [5, Theorem 1.9], is
also restated. This last article will actually be our main tool, so we will often refer to it in the
subsequent lines.

Section 3 is devoted to the proof of several properties of LCP manifolds. First, we prove in
Proposition 3.6 that there exists a metric in the conformal class c on M with respect to which
the Lee form of the Weyl structure D vanishes on the flat distribution of D. This property is
equivalent to the existence of a smooth function defined on the non-flat factor N , having the

same equivariance as the metric hD on M̃ with respect to the action of π1(M). In turn, the
existence of such functions allows us to construct, starting from a given compact LCP manifold

(M, c,D), infinitely many new examples, by taking the product of M̃ with the universal cover
of a compact manifold, endowed with a warped product metric admitting a free cocompact
action by similarities. This leads to the concept of reducible LCP manifolds. Moreover, in
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Proposition 3.12 we exhibit the link between number theory and LCP structures by proving

that the similarity ratios of π1(M) acting on (M̃, hD) are always units in some algebraic number
field. This particular fact enlighten the construction of the previous examples and their a priori
surprising use of number theory, as well as it gives a direction to construct other LCP manifolds.

In Section 4, we give new examples of LCP manifolds. Extending the ideas of the OT-manifolds,
we construct a class of particular manifolds on which we can define LCP structures, such that this
class contains all previously introduced examples of LCP manifolds. Using some Galois theory
and Dirichlet’s unit theorem, we construct LCP manifolds with arbitrary rank (Proposition 4.9)
belonging to this class. We also find LCP manifolds with flat and non-flat part of arbitrarily large
dimension, proving that the invariants previously defined can be chosen arbitrarily. In addition,
the previous considerations allows us to construct an LCP structure on any OT-manifold by
showing that they are a particular case of the class we just defined.

Acknowledgements. The author would like to thank the anonymous reviewer of this article
for reading it very carefully and for the suggestions made. He also thanks the referees of his
PhD thesis, Vestislav Apostolov and Michal Wrochna, for their remarks for the improvement of
the article, as well as his advisor Andrei Moroianu for his help during the redaction.

2. Preliminaries

2.1. Locally conformally product manifolds. Let M be a smooth manifold of dimension
n and denote by Fr(M) its frame bundle. For every k ∈ R we define the weight bundle Lk :=
Fr(M)×

|det|
k
n
R, which is an oriented bundle.

A conformal class onM is a positive definite section of the fibre bundle Sym(T ∗M⊗T ∗M)⊗L2.
The manifold M together with this section is called a conformal manifold. Equivalently, a
conformal manifold is given by M and a class of metrics c which are related in the following
manner: for any g, g′ ∈ c, there is f :M → R such that g′ = e2fg.

On a conformal manifold, there is no preferential connection as in the Riemannian case with the
Levi-Civita connection, because the metric is defined up to multiplication by a positive function.
However, a new class of connections is relevant:

Definition 2.1. A Weyl structure on a conformal manifold (M, c) is a torsion-free connection
D on TM which preserves c i.e. such that for any g ∈ c, there is a 1-form θg on M , called the
Lee form of D with respect to g, satisfying Dg = −2θg ⊗ g.

It comes from the definition that if θg is the Lee form of D with respect to g ∈ c, then for any
g′ := e2fg ∈ c, the Lee form of D with respect to g′ is θg − df . Then, the Lee form of D with
respect to g is closed (resp. exact) if and only if the Lee form of any metric in c is closed (resp.
exact). For this reason, we introduce the following terminology:

Definition 2.2. A Weyl structure D on a conformal manifold (M, c) is closed (resp. exact) if
the Lee form of at least one metric (and then of all metrics) in c is closed (resp. exact).

An easy consequence of the definition is that a closed Weyl structure is locally the Levi-Civita
connection of a metric in c, and an exact Weyl structure is the Levi-Civita connection of a metric
in c.

We recall that a similarity between two Riemannian manifolds (M1, g1) and (M2, g2) is a diffeo-
morphism s : M1 → M2 such that s∗g2 = λ2g1 for some positive real number λ > 0 called the
similarity ratio. In order to define the main object of this text, we need the following definition:

Definition 2.3. A similarity structure on a compact manifold M is a metric h on its universal

cover M̃ such that π1(M) acts by similarities on (M̃, h). A similarity structure is said to be
Riemannian if in addition π1(M) acts only by isometries.
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It turns out that this notion is closely related to closed Weyl structures. More precisely, we have
the following result:

Proposition 2.4. On a conformal manifold (M, c) there is a one-to-one correspondence between
closed Weyl structures and similarity structures h in the lifted conformal structure c̃ on the
universal cover, defined up to multiplication by a positive real number. This correspondence
takes exact Weyl structures to Riemannian similarity structures.

Proof. Let D be a closed Weyl structure on (M, c). Let M̃ be the universal cover ofM and c̃ the

induced conformal structure on M̃ . The connection D induces a Weyl structure D̃ on M̃ which

is exact since M̃ is simply connected. Thus, there is a metric hD ∈ c̃, unique up to multiplication

by a positive number, such that ∇hD = D̃, where ∇hD is the Levi-Civita connection of hD. If

g ∈ c is a metric on M , the induced metric g̃ on M̃ can be written g̃ = e−2fhD for some real-

valued function f of M̃ , and a simple calculation shows that the Lee form of D̃ with respect to g̃

is df , which means that the pull-back θ̃g of the Lee form θg is equal to df . Now, let γ ∈ π1(M).

One has df = θ̃g = γ∗θ̃g = γ∗df , thus there is λ > 0 such that γ∗f = f +lnλ and γ∗hD = λ2hD.

We conclude that the elements of π1(M) act on (M̃, hD) as similarities. Moreover, if these
similarities are all isometries, the Weyl structure D is exact.

Conversely, assume one has a compact manifoldM and a metric h on its universal cover M̃ such

that π1(M) acts by similarities on (M̃, h). Then, the metric h does not define a metric on M ,
but it induces a conformal class c, and the Levi-Civita connection ∇h descends to a closed Weyl
structure on (M, c). If the elements of π1(M) are all isometries, this Weyl structure is exact. □

As we mentioned in the introduction, it was conjectured by Belgun an Moroianu [1] that given a
conformal manifold together with a closed, non-exact Weyl structure, the induced connection on
the universal cover must be flat or irreducible. A counter-example to this conjecture was found
by Matveev and Nikolayevsky [8], who showed that in the non-flat, analytic case, the universal
cover is a Riemannian product Rq×N where q ≥ 0 and N is a non-complete, irreducible manifold
of dimension at least 2. This result was extended by Kourganoff to the smooth setting. More
precisely, he proved the following theorem [5, Theorem 1.5]:

Theorem 2.5. Consider a compact manifold M endowed with a non-Riemannian similarity

structure, and its universal cover M̃ is equipped with the corresponding Riemannian metric hD
(D being the closed non-exact Weyl structure associated via Proposition 2.4). Then we are in
exactly one of the following situations:

(1) (M̃, hD) is flat.

(2) (M̃, hD) has irreducible holonomy and dim(M̃) ≥ 2.

(3) (M̃, hD) = Rq × (N, gN ), where q ≥ 1, Rq is the Euclidean space, and (N, gN ) is a
non-flat, non-complete Riemannian manifold which has irreducible holonomy.

In the third case of Theorem 2.5, we say that M is a locally conformally product manifold, or
LCP manifold for short. Then, a LCP manifold (M, c,D) is the data of a compact manifold, a
conformal class, and a closed, non-exact Weyl structure, with reducible, non-flat holonomy.

Remark 2.6. We recall that the Cauchy border of a Riemannian manifold Z is ∂Z := CZ \ Z,
where CZ is the metric completion of Z. The classification of flat similarity structures was done

in [3]. From this result, it comes that in the first case of Theorem 2.5, the Cauchy border of M̃
must be a single point. But this cannot happen in the case of an LCP manifold, because the flat

part is a Riemannian factor of M̃ and the non-flat part is incomplete, so ∂M̃ must have infinite
cardinal. A direct consequence of this observation is that on a compact conformal manifold

(M, c), a closed, non-exact Weyl structure D defines an LCP structure if and only if (M̃, hD)

(where M̃ is the universal cover of M , and hD is the similarity structure induced by D) has
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reducible holonomy and infinite Cauchy border, or equivalently if (M̃, hD) has a flat Riemannian
factor R.

We will often write the universal cover of an LCP manifold (M, c,D) as (M̃, hD) = Rq×(N, gN ).

In this case, Rq will always stand for the flat part of the de Rham decomposition of M̃ , (N, gN )
is the non-flat, incomplete, irreducible part, and hD is the similarity structure induced by D,
defined up to a constant factor.

We define the following invariant on LCP manifolds:

Definition 2.7. The rank of an LCP manifold (M, c,D) is the rank of the subgroup of R∗
+

generated by the ratios of the elements of π1(M) viewed as similarities acting on (M̃, hD).

Equivalently, the rank of an LCP manifold (M, c,D) is the minimal rank of a subgroup of
H1(M,Z) whose span in H1(M,R) contains the cohomology class [θ] of the Lee form of D. To
prove this last fact, we recall that there is a canonical isomorphism

Ξ : H1(M,R) → Hom(π1(M),R), [w] 7→
(
[γ] 7→

∫
γ

w

)
. (1)

This map induces an isomorphism from H1(M,Z) to Hom(π1(M),Z). In addition, an easy
computation shows that Ξ([θ]) is exactly the composition of the logarithm and the morphism
associating to an element of π1(M) its similarity ratio, so the rank of the image of Ξ([θ]) is the
rank of the LCP manifold, denoted by r. Since Ξ is an isomorphism, it is sufficient to prove that
the rank s of the smallest subgroup of Hom(π1(M),Z) whose span contains Ξ(θ) is r. Since the
image of Ξ(θ) is of rank r, there exist r morphisms p1, . . . , pr ∈ Hom(π1(M),R), whose images
are of rank 1, such that Ξ(θ) =

∑r
k=1 pk. For all 1 ≤ k ≤ r, there is ak ∈ R such that pk = akp

′
k

where p′k ∈ Hom(π1(M),Z). Consequently, Ξ(θ) =
∑r

k=1 akp
′
k, thus s ≤ r. In addition, r ≤ s

because if Ξ(θ) =
∑s

k=1 pk with the pk’s being morphisms with images of rank 1, then the rank
of the image of Ξ(θ) is smaller than s.

A first example of LCP manifold was given by Matveev and Nikolayevsky [8] and generalized by
Kourganoff [5, Example 1.6]. We outline it here:

Example 2.8. Let M̃ := Rq+1 × R∗
+ with q ≥ 1. Let b be a symmetric positive definite

bilinear form on Rq+1 and A ∈ SLq+1(Z) such that there exist λ ∈ (0, 1) and a decomposition
Rq+1 = Eu ⊥ Es (where the orthogonal symbol refers to the metric induced by b) stable by A
with A|Es = λO where O ∈ O(Es, b|Es), and Eu is one-dimensional.

Let G be the group of transformations of M̃ generated by the translations Rq+1×R∗
+ ∋ (x, t) 7→

(x+ ek, t), k ∈ {1, . . . , q+ 1} where ek is the k-th vector of the canonical basis of Rq+1, and the
transformation Rq+1 × R∗

+ ∋ (x, t) 7→ (Ax, λt).

Let φ : R∗
+ → R∗

+ be a function satisfying φ(λt) = λ2q+2φ(t). We define a metric h on M̃ by

hx,t := b|Es + φ(t)b|Eu + dt2

for any (x, t) ∈ M̃ . Then, the metric h defines a similarity structure on the manifold M̃/G.

However, as it was pointed out in [7, Proposition 1], the only admissible values of q in Example 2.8
are q = 1, 2, so this construction only provides examples of LCP manifolds of dimension 3 or 4.

In the remaining part of this section, (M, c,D) is an LCP manifold, and (M̃, hD) = Rq×(N, gN )
is its universal cover.

Let γ ∈ π1(M). Since γ acts as a similarity on (M̃, hD), it must preserve the de Rham decom-
position, meaning that there is a similarity γE (for Euclidean) of Rq and a similarity γN of N
such that γ = (γE , γN ).

Thus, we introduce the following definitions:



LOCALLY CONFORMALLY PRODUCT STRUCTURES 6

Definition 2.9. We define P = {p ∈ Sim(N),∃γ ∈ π1(M), γN = p}, the restriction of π1(M) to

the non-flat part N . We also introduce P , P
0
which are respectively the closure of P in Sim(N),

and the identity connected component of this closure.

The groups considered in Definition 2.9 were introduced by Kourganoff in [5], and their analysis
provides several useful results on LCP manifolds. We will keep these notations throughout this

text. From [5, Lemma 4.1] we know that P
0
is abelian and by [5, Lemma 4.13] that P

0
acts on

N by isometries.

There is actually a correspondence between P and π1(M):

Lemma 2.10. The group P is isomorphic to π1(M).

Proof. The second projection π1(M) → P, γ 7→ γN is a group morphism. We will show that
it is an isomorphism. Assume there is γ ∈ π1(M) \ id such that γN = id, so γ is an isometry

of (M̃, hD) since γ is a similarity. Let v ∈ π1(M) whose similarity ratio is λ ∈ (0, 1). By the
Banach fixed point theorem, vE has a fixed point, and we can assume without loss of generality
that it is 0. Then, we can find Rv, Rγ ∈ Oq(R) and tγ ∈ Rq such that vE(a) = λRva and
γE(a) = Rγa+ tγ for any a ∈ Rq. Since γ cannot have a fixed point, because π1(M) acts freely

on M̃ , one has tγ ∈ ker(Rγ − Id) \ {0}.
One has, for any k ∈ N and (a, x) ∈ Rq ×N :

vkγv−k(a, x) = (Rk
vRγR

−k
v a+ λkRk

vtγ , x). (2)

Since vkγv−k(0, x) = (λkRk
vtγ , x) −→

k→+∞
(0, x), the orbit of (0, x) by π1(M) admits an accumu-

lation point, which contradicts the fact that π1(M) acts properly on M̃ . □

2.2. Number theory. We will need a few notions coming from number theory in order to give
examples of locally conformally product manifolds having arbitrary high rank.

First, we recall that an algebraic number field K, or number field for short, is an extension of Q
of finite dimension. The degree [K : Q] of such an extension is its dimension as Q-vector space.
If α is an algebraic number, we will denote by Q[α] the smallest extension of Q containing α. In
this case, the degree of α is the degree of its (monic) minimal polynomial. The conjugates of an
algebraic number α are the roots of its minimal polynomial.

Definition 2.11. An algebraic number field is called totally real if all its embeddings in C lie in
R.

Equivalently, a number field K := Q[α] is totally real if and only if the minimal polynomial of
α has only real roots, i.e. all the conjugates of α are real.

We recall that an extension K/L is a Galois extension if it is normal, meaning that all the
conjugates of an element α ∈ K lie in K, and separable, i.e. the minimal polynomial of any
α ∈ K has simple roots in an algebraic closure of K. In this case, the Galois group of K/L is
the set of automorphisms of K which fixes L. When L = Q, all the algebraic extensions are
separable, so for an extension Q[α], to be a Galois extension means that all the conjugates of α
lie in Q[α]. These considerations lead us to introduce the following definition:

Definition 2.12. An extension K/L is called cyclic if it is a Galois extension and its Galois
group is cyclic.

One object of interest for our analysis will be the ring of integers of an extension K, and more
specifically its group of units.

Definition 2.13. An element β of an algebraic number field K is an algebraic integer if its
monic minimal polynomial is in Z[X]. The set of all algebraic integer is called the ring of
integers and is denoted by OK .
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One basic result is that the set OK of the algebraic integers in K is a ring. In addition, it is
easily seen that for any x ∈ K there exists p ∈ Z such that px ∈ OK , implying the equality
dimQK = rk(OK ,+).

Definition 2.14. The group O×
K of invertible algebraic integers in K is called the group of units

of K and its elements are called units.

Remark 2.15. A useful characterization of units is the following: an algebraic integer of K is
a unit if and only if the constant coefficient of its minimal polynomial in Z[X] is equal to ±1.

A fundamental result on the structure of the group of unit is the Dirichlet’s units theorem (for
a proof, see [10, Theorem 5.1]):

Theorem 2.16 (Dirichlet’s units theorem). The group of units in a number field K is finitely
generated with rank equal to s+ t− 1, where s is the number of real embeddings of K, and 2t is
the number of nonreal complex embeddings of K (so s+ 2t = [K : Q]).

In particular, O×
K ≃ T ⊕ Zs+t−1, where T is the subgroup of torsion elements in O×

K . When K

is totally real, there is no torsion element different from ±1, and then O×
K ≃ {±1} ⊕ Zs−1.

The last notion that we need concerns the bases of an algebraic number field K. More precisely,
we are interested in the case where K admits a basis which is adapted to the ring of integers.

Definition 2.17. An algebraic number field K is called monogenic if there exists a power integral
basis in K, i.e. there is an element α ∈ K such that OK = Z[α].

We also recall that the n-th cyclotomic extension is the extension of Q generated by a primitive
n-th root of unity. The degree of this extension is the value of the Euler’s totient function at n.

We now have the tools to construct the so-called OT-manifolds, which were introduced by
Oeljeklaus and Toma in [12]. Before giving the construction, we emphasize that throughout this
article, a lattice in an Abelian Lie group G will be a discrete subgroup H of G. If the quotient
G/H is compact, then H will be called a full lattice.

Example 2.18 (OT-manifolds). Let K by a number field with s > 0 real embeddings σ1, . . . , σs
and 2t > 0 complex embeddings σs+1, . . . , σs+2t such that σs+i and σs+t+i are conjugated for
any 1 ≤ i ≤ t (such a field always exists, see [12, Remark 1.1]). We define the geometric
representation of K

σ : K → Cs+t, a 7→ (σ1(a), . . . , σs+t(a)).

The image of the ring of integers OK of K by σ is a lattice of rank s+2t in Cs+t. Moreover, we
consider

O
×,+
K := {a ∈ O×

K , σi(a) > 0, 1 ≤ i ≤ s},
and we define an action of this set on Cs+t by az := (σ1(a)z1, . . . , σs+t(a)zs+t) for any a ∈ O

×,+
K .

Let U be a subgroup of O
×,+
K such that the image of U by the composition pRs ◦ ℓ of the

logarithmic representation

ℓ : O×,+
K → Rs+t,

ℓ(u) := (ln |σ1(u)|, . . . , ln |σs(u)|, 2 ln |σs+1(u)|, . . . , 2 ln |σs+t(u)|)
(3)

and the projection pRs : Rs+t → Rs on the first s coordinates is a full lattice. We remark that
ker(pRs ◦ ℓ) ⊂ {±1}, thus U has rank s.

Let H := {z ∈ C, Im(z) > 0}. Combining the additive action of OK and the multiplicative
action of U , the group U ⋉ OK acts freely, cocompactly and properly on Hs × Ct. Thus, the
quotient X(K,U) := (Hs × Ct)/(U ⋉ OK) is a compact manifold.

When t = 1, the manifold X(K,U) admits an LCK structure, which is determined by a Kähler
potential

F (z) :=

s∏
k=1

i

zk − z̄k
+ |zs+1|2



LOCALLY CONFORMALLY PRODUCT STRUCTURES 8

on its universal cover [12]. This induces in turn a similarity structure on X(K,U). If this struc-
ture was Riemannian, the Kähler metric i

2∂∂̄F would descend to X(K,U). This is impossible
because an OT-manifold admits no Kähler metric [12, Proposition 2.5]. In addition, from the
form of the Kähler potential, the second factor Ct(= C) of the universal cover of X(K,U) is a
Riemannian factor. Thus, by Remark 2.6, X(K,U) admits an LCP structure when t = 1.

Remark 2.19. In Example 2.18, when s = t = 1, the Kähler potential of the lift of the LCK
metric to the universal cover is [12]

F : H × C → R, F (z) :=
i

z1 − z̄1
+ |z2|2. (4)

Writing the Kähler form as i
2

∑
k ̸=l

ωkldzk ∧ dz̄l, one has:

ω11 = ∂z1 ∂̄z1

(
i

z1 − z̄1
+ |z2|2

)
=

1

4

(
∂

∂x1
− i

∂

∂y1

)(
∂

∂x1
+ i

∂

∂y1

)
1

2y1
=

1

4

1

y31

ω22 = 1 ω12 = 0.

Then, the metric can be rewritten as g := 1
4y3

1
(dx21 + dy21) + (dx22 + dy22). We make the change

of variable v1 := x1/2, w1 := 1√
y1

and the metric becomes

g = (w6
1dv

2
1 + dw2

1) + (dx22 + dy22). (5)

Moreover, the group U is generated by a single unit u ∈ O
×,+
K which satisfies σ1(u) = |σ2(u)|−2.

After the change of variable, the multiplicative action of u is given, for any (v1, w1, x2 + iy2) ∈
R× R∗

+ × C, by

u · (v1, w1, x2 + iy2) = (σ1(u)v1, σ1(u)
− 1

2w1, σ2(u)(x2 + iy2))

= (σ1(u)v1, |σ2(u)|w1, σ2(u)(x2 + iy2)).

If we look at the restriction of this action to R×C by dropping the variable w1, we remark that
the matrix of the transformation in a basis of the lattice σ(OK) belongs to SL3(Z) (see the proof
of Corollary 4.6 below for more details). Then, we recognize the example 2.8 in the case q = 2.

2.3. Foliations and LCP manifolds. A foliation of dimension p of an n-dimensional manifold
M is a maximal atlas (Ui, ϕi)i∈I on M such that for each i, j ∈ I the transition map Φi,j :=

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) satisfies

∂Φl
i,j

∂xk
= 0 for all p+ 1 ≤ l ≤ n, and 1 ≤ k ≤ p (6)

where xk is the k-th coordinate of Rn.

A foliation induces a p-dimensional integrable distribution on M , taking at each point x ∈ Ui

the subspace of TxM given by dϕ−1
i (ϕi(x))(Rp × {0}). From this, one can define the leaves of

the foliation as follows: if x ∈M , the leaf passing through x is the set of all the points that can
be reached from x by continuous, piecewise differentiable paths whose tangent vector at each
smooth point is in the distribution previously defined. For more details, see [11].

When the manifold M is compact, one can extract a finite covering (Ui)i∈J , J ⊂ I such that for
any i ∈ J the open set Ui is diffeomorphic to a product Vi × Ti where Vi and Ti are open cubes
of Rp and Rn−p respectively. This induces maps fi : Ui → Ti in a natural way, and we define the
transition maps γij : fi(Ui ∩ Uj) → fj(Ui ∩ Uj) by fj = γij ◦ fi. The disjoint union T :=

⊔
i∈J

Ti

is called the transversal of the foliation. The foliation is said to be Riemannian if there exists a
metric on the transversal such that the transition maps are isometries.

In [5, Theorem 1.9], it was shown that an LCP manifold carries a Riemannian foliation. More
precisely, one has the following theorem:
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Theorem 2.20. Let (M, c,D) be a LCP manifold, and let (M̃, hD) = Rq × (N, gN ) be its uni-
versal cover endowed with the metric hD induced by D. Here, (N, gN ) is the non-flat, irreducible

factor of the de Rham decomposition. The foliation F̃ tangent to Rq induces by projection a
foliation F on M . Then F is a Riemannian foliation on M , and the closures of the leaves
form a singular Riemannian foliation F on M , such that each leaf of F is a smooth manifold of
dimension d, depending of the leaf, with q < d < q + n, where n = dim(N).

Moreover, on each leaf of F, there is a flat Riemannian metric which is compatible with the
similarity structure of M .

Definition 2.21. In Theorem 2.20, we call the distribution tangent to the leaves of F the flat
distribution on M , and the orthogonal distribution is called the non-flat distribution.

Again, we recall several results and observations from [5]. In the setting of Theorem 2.20, we can

describe the leaves of F using the canonical surjection π : M̃ →M , and the group P previously
defined. The leaf of F passing through π(a, x) for (a, x) ∈ Rq ×N is equal to π(Rq × Px), and

its closure is Fx := π(Rq × P
0
x) [5, Lemma 4.11]. By Theorem 2.20, the metric hD restricted

to Rq × P
0
x descends to a metric gx on Fx. Thus, the metric hD induces a Riemannian metric,

up to a multiplicative factor, on the closure of the leaves of F.

Since P
0
is abelian and acts by isometries, for any x ∈ N , the closed leaf Fx is the product of

an Euclidean space and a flat torus. In particular, it is a complete space, which implies that an

element of π1(M) with similarity ratio ̸= 1 acts freely on N/P
0
.

We consider the subgroup of π1(M) defined by Γ0 := π1(M) ∩ (Sim(Rq) × P
0
). From [5,

Lemma 4.18], we know that this group is a full lattice in Rq × P
0
where Rq is identified with

its translations. In Example 2.8 for instance, Γ0 is the group of translations Zq+1 acting on
Rq+1. This observation explains why we will always consider such lattices in order to construct
examples.

3. Properties of LCP manifolds

Let (M, c,D) be an LCP manifold and (M̃, hD) = Rq × (N, gN ) be its universal cover, endowed

with the similarity structure hD induced by D. We denote by π : M̃ → M the canonical
surjection.

3.1. Adapted metrics. In this subsection, we prove that there exists a metric g ∈ c such that
the Lee form θg of D with respect to g vanishes on the flat distribution (Definition 2.21) of D
on M . This is equivalent to the existence of a function of N having the same equivariance (the
term same automorphy is also often used in the litterature) as hD with respect to π1(M). For
this reason, we introduce the following definition:

Definition 3.1. Let G be a group acting on a Riemannian manifold (Z, gZ) by similarities. A
smooth function f : Z → R is said to be G-equivariant if for every γ ∈ G, one has γ∗e2f = λ2γe

2f

where λγ is the similarity ratio of γ. Equivalently, a function f is G-equivariant if G consists
of isometries of e−2fgZ.

We now give an important property of the equivariant functions on the universal cover Rq×N of
LCP manifolds: they are bounded on sets of the form Rq×K where K is a compact subset of N .
In order to prove this result, we recall that the Cauchy boundary ∂Z of a Riemannian manifold
Z is the set CZ \ Z where CZ is the metric completion of Z. The Riemannian distance dZ on
Z, is extended to CZ in the following natural way: if (xn), (yn) are representatives of elements
x, y ∈ CZ (which consists of equivalence classes of Cauchy sequences in Z), (dZ(xn, yn))n∈N
is a Cauchy sequence, and dZ(x, y) is defined as the limit of this sequence. We first state the
following easy lemma:
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Lemma 3.2. Let A be a subset of a Riemannian manifold Z. Assume that ∂Z is non-empty.
We define α := inf

x∈A
dZ(x, ∂Z) and β := sup

x∈A
dZ(x, ∂Z). Then, if γ is a similarity of Z of ratio

λ ∈ R∗
+, it extends uniquely to CZ as a uniformly continuous function on a dense subset of CZ

and one has the property
∀x ∈ A, dZ(γx, ∂Z) ∈ [λα, λβ].

Proof. Let x ∈ A and γ a similarity of Z of ratio λ ∈ R∗
+. One has, α ≤ dZ(x, ∂Z) ≤ β. It is

easy to see from the definition that γ(∂Z) = ∂Z, thus λα ≤ dZ(γx, ∂Z) ≤ λβ. □

Corollary 3.3. In the setting of Lemma 3.2, for any compact subsets K1,K2 ⊂ Z, the similarity
ratios of the elements of Γ = {γ ∈ Sim(Z), (γK1) ∩K2 ̸= ∅} are included in a compact subset of
R∗

+.

Proof. Let ρ : Sim(Z) → R∗
+ be the group morphism which associates to an element of Sim(Z)

its similarity ratio. We also introduce

α1 := inf
x∈K1

dZ(x, ∂Z) β1 := sup
x∈K1

dZ(x, ∂Z)

and
α2 := inf

x∈K2

dZ(x, ∂Z) β2 := sup
x∈K2

dZ(x, ∂Z).

Let γ ∈ Γ. By definition, there exists x ∈ K1 such that γx ∈ K2 so in particular we have

α2 ≤ dZ(γx, ∂Z) ≤ β2.

Moreover by Lemma 3.2 one has

ρ(γ)α1 ≤ dZ(γx, ∂Z) ≤ ρ(γ)β1,

which implies

ρ(γ)α1 ≤ β2 α2 ≤ ρ(γ)β1,

so we conclude
α2/β1 ≤ ρ(γ) ≤ β2/α1.

Thus, ρ(Γ) is included in the compact set [α2/β1, β2/α1]. □

We have now all the tools to prove the boundedness property for equivariant functions:

Lemma 3.4. Let f : M̃ → R be a smooth π1(M)-equivariant function. Then, for any compact
subset K of N , f is bounded on Rq ×K.

Proof. Let K ⊂ N be a compact set. Since π1(M) acts cocompactly on M̃ , there is a compact

set C ⊂ M̃ such that π1(M)C = M̃ . Moreover C can be assumed to be equal to CE ×CN where
CE is a compact of Rq and CN is a compact of N . Let

Γ := {γ ∈ π1(M), (γC) ∩ (Rq ×K) ̸= ∅} = {γ ∈ π1(M), (γNCN ) ∩K ̸= ∅}.
Let ρ : π1(M) → R∗

+ be the group morphism which associates to an element of π1(M) its
similarity ratio. Then we can apply Corollary 3.3 with the setting Z := N , Γ := ΓN (the
subgroup of Γ consisting of the projection of Γ on the factor N), and we obtain that ρ(Γ) is
included in a compact set [α, β], with α, β > 0. We know that f is bounded on C, meaning there
are α′, β′ ∈ R such that α′ ≤ f ≤ β′ on C. In addition, for any x ∈ Rq ×K, there is γ ∈ Γ and
y ∈ C such that γy = x. Thus, the equivariance property of e2f yields α′+lnα ≤ f(x) ≤ β′+lnβ,
which gives the desired result. □

For x ∈ N , let Sx := {γ ∈ π1(M)|γN ·x ∈ P
0
x} (P

0
was defined in Definition 2.9). We recall that

in Section 2.3 we defined the closed leaf Fx ⊂M , and showed that the metric hD descends to a
metric gx on it. We give here a short proof of a result partially stated in the proof of [5, Lemma
4.18].
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Lemma 3.5. Let x ∈ N . Then, Fx is isomorphic to (Rq × P
0
x)/Sx and Sx acts on (M̃, hD)

by isometries. Moreover, if γ ∈ π1(M) with similarity ratio λ > 0, there is a similarity γ :

(Fx, gx) → (Fγx, gγx) of ratio λ for which the following diagram is commutative:

Rq × P
0
x Rq × P

0
γNx

Fx FγNx

γ

π π

γ

(7)

Proof. The proof of [5, Proposition 4.16] shows that the elements of π1(M) with ratio different

from 1 act freely on N/P
0
. Since the set Sx stabilizes P

0
x in N/P

0
, it contains only isometries.

Let (a, y) and (a′, y′) in Rq×P 0
x. Assume there is γ ∈ Sx such that γ(a, y) = (a′, y′). By defini-

tion, π(a, x) = π(a′, y′), thus, the application π induces a surjective map ϕ : (Rq×P 0
x)/Sx → Fx.

We will show that ϕ is injective. Assume ϕ(Sx(a, y)) = ϕ(Sx(a
′, y′)). Thus, one has

π(a, y) = π(a′, y′), meaning there is γ ∈ π1(M) such that γ(a, y) = (a′, y′), implying γNy = y′.

By definition, there are p, p′ ∈ P
0
such that y = p ·x and y′ = p′ ·x, so we obtain γNp ·x = p′ ·x,

whence γNpγ
−1
N γN · x ∈ P

0
x. Using that P

0
is normal in P , because it is the connected com-

ponent of the identity, one gets γN · x ∈ γNp
−1γ−1

N P
0
x = P

0
x. We conclude that γ ∈ Sx and

Sx(a, y) = Sx(a
′, y′), providing that ϕ is injective.

Now, let γ ∈ π1(M) with similarity ratio λ. One has

γ(Rq × P
0
x) = Rq × γNP

0
x = Rq × γNP

0
γ−1
N γNx = Rq × P

0
γNx,

justifying the first line of the diagram. On the other hand, if (a, y), (a′, y′) are elements of

Rq × P
0
x such that there is γ′ ∈ Sx with γ′(a, y) = (a′, y′), one has

π ◦ γ(a, y) = π(a, y) = π(γ′(a, y)) = π(a′, y′).

Thus, π ◦ γ induces a surjective map from (Rq × P
0
x)/Sx to (Rq × P

0
γNx)/SγNx. To prove

that γ descends to an isomorphism γ, it is then sufficient to prove that this map is injective,
or equivalently that Sx(a, y) = Sx(a

′, y′) implies SγNxγ(a, y) = SγNxγ(a
′, y′). It is sufficient to

show that γ−1Sγxγ = Sx, which follows from

γ−1SγNxγ = {γ−1γ′γ, γ′ ∈ SγNx}

= {γ−1γ′γ, γ′NγN · x ∈ P
0
γNx}

= {γ−1γ′γ, γ−1
N γ′NγN · x ∈ P

0
x}

⊂ Sx,

using again that P
0
is a normal subgroup of P . The same proof shows that γSxγ

−1 ⊂ SγNx, so
we conclude that Sx = γ−1SγNxγ, which shows the existence of γ.

We easily see that γ is a similarity of ratio λ using the commutative diagram and the fact that
hD descends to the closure of the leaves. □

Proposition 3.6. Let (M, c,D) be an LCP manifold and (M̃, hD) = Rq×(N, gN ) be its universal
cover, endowed with the similarity structure hD induced by D. Then, there exists a smooth P -
equivariant function φ : N → R (P was defined in Definition 2.9). In particular, if we denote

by πN : M̃ → N the second projection, π∗
Nφ is a π1(M)-equivariant function on M̃ depends only

on the non-flat factor N .

Proof. We first prove that there always exists a π1(M)-equivariant function on M̃ . Let g be any

Riemannian metric onM in the conformal class c. The pull-back g̃ of g to M̃ satisfies e2f g̃ = hD
for a function f : M̃ → R, which is clearly π1(M)-equivariant.
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By Lemma 3.5, Fx ≃ (Rq×P 0
x)/Sx and Sx acts by isometries, so the function f |Rq×P

0
x
descends

to a function f̄x on Fx. The manifold Fx being compact, we can define

e2w(x) :=

(∫
Fx

dµx

)−1(∫
Fx

e2f̄xdµx

)
, (8)

where dµx is the measure induced by the metric gx. Doing this for any x ∈ N gives a function
w : N → R. We claim that this function is bounded on any compact subset of N . Indeed, if
K ⊂ N is compact, by Lemma 3.4 there is a constant βK > 0 such that f(a, x) ≤ βK for any

(a, x) ∈ Rq ×K. Since P
0
acts by isometries, f(a, x) ≤ βK for any (a, x) ∈ Rq × (P ∩ P 0

)K,

and by density this still holds for (a, x) ∈ Rq ×P
0
K. Thus, for any x ∈ K one has f̄x ≤ βK and

consequently w(x) ≤ βK .

We now check that the function w still has the desired equivariance. Let p ∈ P , and let λ > 0 be
its similarity ratio with respect to the metric gN . By Lemma 2.10, there is a unique γ ∈ π1(M)

such that p = γN . Denoting y := p · x, Lemma 3.5 allows us to define γ : Fx → Fy, which is a
similarity of ratio λ. Thus, one has

e2w(y) =

(∫
Fy

dµy

)−1(∫
Fy

e2f̄ydµy

)

=

(∫
Fx

γ∗(dµy)

)−1(∫
Fx

γ∗(e2f̄y )γ∗(dµy)

)
=

(∫
Fx

λndµx)

)−1(∫
Fx

λ2e2f̄xλndµx

)
= λ2e2w(x).

However, the function w is not necessarily smooth. We will use a convolution process to obtain
the desired smooth equivariant function. Since the foliation F is Riemannian, one can define a
complete Riemannian metric g̃N on N with respect to which P acts by isometries (see [5, Lemma
4.9] for further details).

As P acts cocompactly by isometries on (N, g̃N ), the injectivity radius r0 of (N, g̃N ) is positive
i.e. for any x ∈ N the Riemannian exponential expx defined by g̃N is a diffeomorphism on
Bx(r0), the open ball of radius r0 and center 0 in TxN . Let 0 < 3r < r0 and let χ : R+ → R+

be a smooth plateau function in a neighbourhood of 0, compactly supported in [0, r]. For every
x ∈ N , let dVx be the measure induced on TxN by the metric g̃N . Consider the function
φ : N → R given by

e2φ(x) :=

∫
TxN

e2w ◦ expx(v)χ(∥v∥)dVx(v), (9)

which is well-defined because the function e2w is bounded on any compact subset of N .

We claim that the function φ is smooth. To prove this fact, we first remark that for any x, if
one denotes by BN (y, a) := expy(By(a)) the ball of radius 0 < a < r0 and center y in (N, g̃N ),
for any y ∈ BN (x, r) the Riemannian exponential is a diffeomorphism from By(2r) to BN (y, 2r)
because r < r0/3. In particular, BN (x, 2r) does not meet the cut-locus of y, and the square of
the distance function dg̃N induced by g̃N is smooth on BN (x, 2r). Consequently, we can apply
a differentiation under integral argument if we remark that for y := expx(v0) ∈ BN (x, r) (with
v0 ∈ TxN), one has

e2φ(y) =

∫
TyN

e2w ◦ expy(v)χ(∥v∥)dVy(v)

=

∫
TyN

e2w ◦ expx ◦ exp−1
x ◦ expy(v)χ(dg̃N (expx ◦ exp−1

x ◦ expy(v), 0))dVy(v)
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=

∫
TxN

e2w ◦ expx(v)χ(dg̃N (expx(v), expx(v0)))(exp
−1
y ◦ expx)∗(dVy)(v)

=

∫
TxN

e2w ◦ expx(v)χ(dg̃N (expx(v), y))vol(y, v)dVx(v)

where vol is a smooth function giving the change of volume element.

It remains to check the equivariance property. Let p ∈ P , and let λ > 0 be its similarity ratio for
the metric hD. One has, denoting y := p · x, and using the fact that p is an isometry of (N, g̃N ):

e2φ(y) =

∫
TyN

e2w ◦ expy(v)χ(∥v∥)dVy(v)

=

∫
TxN

(p∗e2w) ◦ expx(v)χ(∥v∥)p∗(dVy)(v)

=

∫
TxN

λ2e2w ◦ expx(v)χ(∥v∥)dVx(v)

= λ2e2φ.

Then, φ is a P -equivariant function. □

Remark 3.7. It is easy to show that the P -equivariant function φ given by Proposition 3.6 is

in fact P -equivariant. Indeed, for any p ∈ P ∩ P 0
one has p∗φ = φ since P

0
acts by isometries.

As P ∩ P
0
is dense in P

0
, we actually have φ = p∗φ for all p ∈ P

0
. Our claim thus follows

from [5, Lemma 4.10], which states that P = PP
0
.

We define a particular class of metric on M :

Definition 3.8. A metric g on M with lift g̃ on M̃ is said to be adapted if there exists a smooth
function f : N → R such that e2f g̃ = hD.

With this definition, Proposition 3.6 just states that there exist adapted metrics.

As a direct application of Proposition 3.6, we show that given a compact manifold K with

universal cover K̃, it is possible to construct an LCP manifold with universal cover M̃ × K̃.
Indeed, let φ : N → R be the smooth equivariant function given by Proposition 3.6. Let gK be

a metric on K and g̃K its pull-back to K̃. The metric

hM,K := hD + e2φg̃K (10)

on M̃×K̃ defines a similarity structure onM×K, and thus an LCP structure (M×K, cK , DK),
which proves our claim.

We give a name to the previous construction

Definition 3.9. The LCP structure (M × K, cK , DK) is called an extension of (M, c,D) (by
K).

Proposition 3.10. Let (M ×K, cK , DK) be an extension by K of (M, c,D). Then, the non-flat

part of (M̃ × K̃, hM,K) (hM,K is defined in Equation (10)) is N × K̃.

Proof. It is easy to see that the non-flat distribution (Definition 2.21) of (M̃ × K̃, hM,K) is

a subdistribution of T (N × K̃) since it has to be orthogonal to the flat distribution, and then
orthogonal to Rq. From the definition of LCP manifold (see Theorem 2.5 and the definition

below), (N × K̃, gN + e2φg̃K) has a de Rham decomposition of the form Rq′ × (N ′, gN ′), where
q′ migth be 0 and (N ′, gN ′) is an incomplete non-flat manifold.

We introduce the notations g := gN + e2φg̃K and g′ := e−2φgN + g̃K , so that g = e2φg′, and let

∇′ be the Levi-Civita covariant derivative of g′. We recall that the restriction of D̃K to N × K̃
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is the Levi-Civita of the metric g. Let k ∈ K̃, and X,Y ∈ T (N ×{k}). Now, we use the formula
for the Levi-Civita connection under conformal change [2, Theorem 1.159, a)] and we obtain:

∇′
XY = (D̃K)XY − dφ(X)Y − dφ(Y )X + g(X,Y )D̃Kφ.

We identify N × {k} with N in the canonical way, and using again the formula of conformal
change for the metric g′|N = e−2φgN , one obtains:

∇′
XY = D̃XY − dφ(X)Y − dφ(Y )X + gN (X,Y )D̃φ.

Combining these two equations and remarking that g(X,Y )D̃Kφ = gN (X,Y )D̃φ we obtain

(D̃K)XY = D̃XY , which means that N × {k} is totally geodesic in N × K̃.

Suppose now that q′ ̸= 0. Let X ∈ TRq′ be a parallel vector field of norm 1. It induces
canonically a parallel vector field of norm 1, still denoted by X, on the Riemannian manifold

(N × K̃, gN + e2φg̃K). We claim that X is tangent to K̃. Indeed, for any k ∈ K̃, the projection
of X onto T (N × {k}) is parallel because N × {k} is totally geodesic. However, (N, gN ) is
irreducible and of dimension greater than 2, so it does not admit a non-zero parallel vector field,

thus this projection is equal to zero. Now we remark that g′ is a product metric, so ∇′
XX ∈ TK̃

and another use of the formula for the Levi-Civita connection under conformal change gives:

0 = (D̃K)XX = ∇′
XX + 2dφ(X)X − g′(X,X)∇φ = ∇′

XX − g′(X,X)∇φ

because φ is a function of N . Thus TK̃ ∋ ∇′
XX = g′(X,X)∇φ, and g′(X,X) ̸= 0 so ∇φ ∈

TK̃ and ∇φ ∈ TN , again because φ is a function of N , which implies ∇φ = 0 and φ is
constant. This is absurd because of the π1(M)-equivariance of φ, so q′ = 0 and we conclude

that (N × K̃, gN + e2φg̃K) is irreducible, thus it is the non-flat part of the LCP manifold. □

In particular, the dimension of the non-flat part of the universal cover of an LCP manifold can
be of any integer higher or equal to 2.

These observations lead to the definition of reducible LCP manifolds:

Definition 3.11. A LCP manifold is called reducible if it arises from the previous construction,
up to a finite covering. A non-reducible LCP manifold is called irreducible.

3.2. Similarity ratios of π1(M). In the known examples of LCP manifolds, the similarity ratios
are always algebraic numbers because they are roots of characteristic polynomials of matrices
with coefficients in Z. We will prove that this property is always true.

Proposition 3.12. Let (M, c,D) be an LCP manifold. For any γ ∈ π1(M), the ratio of γ

viewed as a similarity of (M̃, hD) is a unit of an algebraic number field.

Proof. Let γ ∈ π1(M) and let λ be its similarity ratio. For any a ∈ Rq we will denote by
τa the translation by a in Rq, so Rq is naturally identified with the space of translations. The
restriction of γ to Rq can be written as γE =: τα ◦ λι where ι is an isometry of Rq endowed with
the metric induced by hD, and α ∈ Rq.

Since P
0
is an abelian Lie group, the group Rq × P

0
is abelian too. We define the group

automorphism ϕ : Rq × P
0 → Rq × P

0
by

ϕ(τa, p) := γ(τa, p)γ
−1 = (τλιa, γNpγ

−1
N ). (11)

Our proof relies on the crucial fact that the group Γ0 := π1(M) ∩ (Sim(Rq) × P
0
) defined in

Section 2.3 is a full lattice in Rq × P
0
by [5, Lemma 4.18].

The preimage of Γ0 by the Lie group exponential map is a full lattice Γ′
0 of the Lie algebra of

Rq × P
0
, which is canonically identified with Rq+t, for some t ≥ 1. The differential of ϕ at e

is a linear map satisfying deϕ(Γ
′
0) ⊂ Γ′

0 because ϕ(Γ0) ⊂ Γ0. Moreover, ϕ is invertible and the
symmetry between γ and γ−1 in the previous discussion gives that deϕ

−1(Γ′
0) ⊂ Γ′

0. Thus, if we
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take a basis B of the lattice Γ′
0, the matrix A := MatB(deϕ) is in GLq+t(Z). But ϕ stabilizes Rq

and its restriction to this space coincides with λι. It means that there exists a complex number
z of modulus 1 such that λz and λz̄ are roots of the characteristic polynomial χA of A. Since
A ∈ GLq+t(Z), λz and λz̄ are units of the algebraic field K generated by the roots of χA. Thus,
λ2 = (λz)(λz̄) is a unit of K, and therefore λ is a unit in a quadratic extension of K. □

4. Examples of LCP manifolds

We begin this section by stating a well-known result which will be useful for constructing LCP
manifolds:

Proposition 4.1. Let G be a discrete topological group acting on a manifold M . Let D ⊴ G be
a normal subgroup. Then, G/D acts on M/D, and (M/D)/(G/D) is in bijection with M/G.

If moreover D and G/D act freely and properly discontinuously on M and M/D respectively,
then so does G on M . In particular, (M/D)/(G/D) and M/G are diffeomorphic manifolds.

Proof. The action of G/D on M/D is given by gD ·Dx := Dgx for any (g, x) ∈ G×M .

We define ϕ : (M/D)/(G/D) → M/G by ϕ(G/D · Dx) := Gx for any x ∈ M . This map is
clearly surjective. In addition, if there are (x, y) ∈ M2 such that Gx = Gy, there exists g ∈ G
such that gx = y, implying gD ·Dx = Dy and then G/D ·Dx = G/D ·Dy, so ϕ is one-to-one.

Now, assume that D and G/D act freely and properly discontinuously on M and M/D respec-
tively. Let g ∈ G and x ∈ M such that gx = x. Then, gD ·Dx = Dx, so gD = 1G/D because
G/D acts freely on M/D, implying g ∈ D, and g = 1G because D acts freely on M . Thus G
acts freely on M .

To see that G acts properly discontinuously on M , we pick a compact K ⊂ M . Let g ∈ G
satisfying (gK) ∩K ̸= ∅. Since DK is a compact subset of the manifold M/D, the set {g′D ∈
G/D | g′D · (DK) ∩ (DK) ̸= ∅} is finite: let (gjD)j∈J be the family of its elements, where J
is a finite set. Now, since (gK) ∩ K ̸= ∅, we also have gD · DK ∩ DK ̸= ∅, so there is j ∈ J
such that gjD = gD. This show that we can find d ∈ D with dgj = g because D is normal.
Then, (dgjK)∩K ̸= ∅. But there are only finitely many elements d ∈ D satisfying this property
because D acts properly discontinuously on M . Let (dj,i)i∈Ij be the family of these elements,
where Ij is a finite set for every j ∈ J . Consequently, there exist j ∈ J and i ∈ Ij such that
g = dj,igj , and conversely any element of this form satisfy (gK) ∩K ̸= ∅. Thus,

|{g ∈ G | (gK) ∩K ̸= ∅}| =
∑
j∈J

|Ij | < +∞,

so G acts properly discontinuously on M .

Finally, denote by πD : M → M/D, πG/D : M/D → (M/D)/(G/D) and by πG : M → M/G
the canonical projections. One has the following commutative diagram:

M

(M/D)/(G/D) M/G

ϕ◦πG/D◦πD=πG
πG/D◦πD

ϕ

(12)

and [6, Theorem 4.29] implies that ϕ is smooth. □

4.1. General construction. Inspired by the known examples, we will now make a more general
construction which includes all the models of LCP manifolds previously described.

Let N be a compact manifold. We will denote by N its universal cover and by Γ its fundamental
group, so N ≃ N/Γ. Let p ∈ N and let ϕ : Γ → Affp(Z) be a group morphism, where Affp(Z) :=
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Rp ⋊ GLp(Z) is the set of affine transformations of Rp with linear part in GLp(Z). We denote
by ϕL : Γ → GLp(Z) the group morphism associating to γ ∈ Γ the linear part of ϕ(γ).

We consider the simply connected manifold M̃ := Rp × N. Let D ≃ Zp be the group of

translations M̃ ∋ (a, x) 7→ (a+z, x) for z ∈ Zp. Let H be the group defined by H := (ϕ, id)(Γ) =

{(ϕ(γ), γ)|γ ∈ Γ} ⊂ Affp(Z) × Γ ⊂ Diff(M̃). Let G be the subgroup of Diff(M̃) generated by
D and H. It is clear that D is a normal subgroup of G and G := D ⋊ H. We claim that G

acts freely, properly discontinuously and cocompactly on M̃ . Indeed, one has M̃/D ≃ (S1)p×N

and H acts freely on this quotient because Γ acts freely on N. Moreover, H also acts properly
discontinuously because the map (S1)p × N → N being proper and H acting separately on Rp

and N, it is sufficient to observe that Γ acts properly on N. In addition, this action is cocompact
because Γ acts cocompactly on N and (S1)p is compact. Altogether, by Proposition 4.1 the

quotient M̃/G is a compact manifold which we denote by Q(N, ϕ), and whose fundamental
group is G.

We now wish to construct an LCP structure on Q(N, ϕ). To do so, we assume that the following
conditions hold:

(J1) there exist δ ∈ N, a decomposition Rp =: E1⊕ . . .⊕Eδ stabilized by the action of ϕL(Γ),
and a positive definite bilinear form b on Rp such that the previous decomposition is
orthogonal with respect to b and for any 1 ≤ k ≤ δ, the restriction of ϕL(Γ) to (Ek, b|Ek

)
consists of similarities;

(J2) O(E1, b|E1) does not contain ϕL(Γ)|E1 .

Remark 4.2. In particular, condition (J1) allows us to define a group morphism Λ : Γ → (R∗
+)

δ

which associates to any γ ∈ Γ the δ-tuple given by the similarity ratios of ϕL(γ)|E1
, . . . , ϕL(γ)|Eδ

.
For any 1 ≤ k ≤ δ, Λk will denote the k-th coordinate of Λ. Condition (J2) implies that
2 ≤ p. Indeed, if p = 1, ϕL(Γ) ⊂ {±1} = O(Rp, b). In addition, from (J2) we also deduce
that 2 ≤ δ, because otherwise Rp = E1 and there would exist an element γ ∈ Γ such that
±1 ̸= Λ1(γ)

p = detϕL(γ) = ±1, which is absurd. In particular, Q(N, ϕ) has dimension at least
3.

We will need the following standard lemma:

Lemma 4.3. Let Z be a smooth manifold on which a group Γ′ acts freely and properly discon-
tinuously, so in particular Z/Γ′ is a smooth manifold. Let ρ : Γ′ → R∗

+ be a group morphism.

Then, there exists a function f ∈ C∞(Z,R) such that for any γ ∈ Γ′, γ∗e2f = ρ(γ)2e2f .

Proof. Let πZ : Z → Z/Γ′ be the canonical submersion. We define the oriented line bundle
L := Z ×ρ−1 R. Since any orientable line bundle is trivial, there exists s : Z/Γ′ → L a nowhere
vanishing smooth section of L. Then, after replacing s by −s if necessary, there is a function
f : Z → R such that for all x ∈ Z one has s(πZ(x)) = [x, ef(x)]. Moreover, for any γ ∈ Γ′, we
have

[x, ef(x)] = s(πZ(x)) = s(πZ(γx)) = [γx, ef(γx)] = [x, ρ(γ)−1ef(γx)],

which implies ρ(γ)ef(x) = ef(γx), so the function f has the desired equivariance property. □

We are now in position to construct an LCP structure on Q(N, ϕ).

Proposition 4.4. Under the assumptions (J1), (J2) there exists an LCP structure on Q(N, ϕ).
The LCP manifold obtained in this way has rank equal to rk(Λ1(Γ)) and the flat part of its
universal cover contains E1.

Proof. Let ḡ be any Riemannian metric on N and let g̃ be its lift to N. Let f ∈ C∞(N,R) be
the function given by Lemma 4.3 applied to the morphism ρ := Λ1. By definition, an element
γ ∈ Γ acts as a similarity of ratio Λ1(γ) on (N, g := e2f g̃).
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For any 2 ≤ k ≤ δ, we define the morphism

ρk : Γ → R∗
+, γ 7→ Λ1(γ)/Λk(γ). (13)

By Lemma 4.3, we know that the set

Feq(k) := {f ∈ C∞(N,R) | ∀γ ∈ Γ, γ∗e2f = ρk(γ)
2e2f}. (14)

is non-empty.

We identify the tangent bundle TRp with Rp ×Rp in the canonical way, and the bilinear form b

thus defines a Riemannian metric on Rp. Then, we define a metric h on M̃ = Rp ×N by

h := b|E1
+

δ∑
k=2

e2fkb|Ek
+ g, (15)

where for all 2 ≤ k ≤ δ, fk ∈ Feq(k).

One clearly has for any T ∈ D that T ∗h = h. For any γ ∈ Γ, one has

(ϕ(γ), γ)∗h =Λ1(γ)
2b|E1

+

δ∑
k=2

γ∗e2fkΛk(γ)
2b|Ek

+ γ∗g

=Λ1(γ)
2b|E1

+

δ∑
k=2

(
Λ1(γ)

Λk(γ)

)2

e2fkΛk(γ)
2b|Ek

+ Λ1(γ)
2g

=Λ1(γ)
2h.

Since G = D⋊H, the elements of G act as similarities, and g̃ is a similarity structure on Q(N, ϕ)
which is not Riemannian because of condition (J2).

It remains to prove that (M̃, h) is non-flat with reducible holonomy. But E1 is a Riemannian

factor of M̃ , so the claim follows from Remark 2.6, because the Cauchy border contains the set
E1 × ∂N which is infinite. □

Example 4.5. We consider the matrix

B :=

(
1 1
1 2

)
∈ SL2(Z). (16)

Let q ≥ 1. Let A ∈ SL2q(Z) which is the matrix diagonal by blocks with q times the block
B. We consider a bilinear symmetric form b0 on R2 for which the two eigenspaces of B are

orthogonal, and we define the symmetric bilinear form b :=
q⊕

k=1

b0 on R2q. We consider N := S1,

whose fundamental group is Γ := Z, and the group morphism ϕ : Γ → SL2q(Z), n 7→ An.
By Proposition 4.4, Q(S1, ϕ) admits an LCP structure whose universal cover has a flat part of
dimension q. Thus the dimension of the flat part can be any integer.

As an application of Proposition 4.4, we will show that on any OT-manifold (recall that they
were defined in Example 2.18) carries an LCP structure. The proof of this fact just relies on the
remark that an OT-manifold is a particular case of the construction above.

Corollary 4.6. Any OT-manifold X(K,U) can be endowed with an LCP structure.

Proof. We use the notations of Example 2.18. By definition one has

X(K,U) = (Hs × Ct)/(OK ⋊ U)

so its universal cover is naturally isomorphic to (R∗
+)

s×Rs×R2t ≃ Rs×Rs+2t using the logarithm
map. By construction, the group Γ := pRs ◦ ℓ(U) acts freely, properly discontinuously and
cocompactly on N := Rs because it is a full lattice. Moreover, U is of rank s, so ψ := (pRs ◦ ℓ)−1

is a group isomorphism between Γ and U .
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Let B = (e1, . . . , es+2t) be the canonical basis of Rs+2t. Let B′ be a basis of the lattice σ(OK),
so in particular another basis of Rs+2t. With respect to the basis B′, the action of U restricted
to Rs+2t consists of multiplication by matrices of GLs+2t(Z) because U preserves σ(OK). This
induces a group morphism U → GLs+2t(Z) and then a group morphism ϕ : Γ → GLs+2t(Z)
using the isomorphism ψ between Γ and U . Consequently, X(K,U) ≃ Q(N/Γ, ϕ).

It is now sufficient to check that conditions (J1), (J2) hold, so we can apply Proposition 4.4 to
conclude. Let b be the Euclidean metric on Rs+2t for which B is orthonormal. By construction,
for any γ ∈ Γ, the matrix of ϕ(γ) in the basis B is of the form

σ1(u)
. . .

σs(u)
|σs+1(u)|O1(u)

. . .

|σs+t(u)|Ot(u)


(17)

where u ∈ O
×,+
K and O1(u), . . . , Ot(u) ∈ SO2(R) are the rotations induced by the multiplications

by the complex numbers σs+1(u)/|σs+1(u)| on C. Then, the spaces

Ej := Span(ej)

for 1 ≤ j ≤ s and

Es+j := Span(es+2j−1, es+2j)

for 1 ≤ j ≤ t give a decomposition of Rs+2t in orthogonal subspaces stable by the action of
ϕ(Γ), so (J1) is verified because of the form of the matrix (17). Finally, σ1 is injective so for any
u ∈ U , σ1(u) = 1 implies u = 1. Thus there exists u ∈ U such that σ1(u) ∈ (0, 1) (because we
recall that σ1(u) > 0 by construction) so (J2) holds. □

It is important to notice that the LCP metrics constructed by using the proof of Proposition 4.4
on OT-manifolds with the approach of Corollary 4.6 do not contain the LCK structures intro-
duced in [12] when t = 1. However, we can extend the family of LCP metrics defined in the
proof of Proposition 4.4. For any 2 ≤ k, k′ ≤ δ with k ̸= k′, consider the morphism

ρk,k′ : Γ → R∗
+, γ 7→ Λ1(γ)/

√
ΛkΛk′(γ), (18)

and let bk,k′ : Ek × Ek′ → R be a bilinear form satisfying ϕ(γ)∗bk,k′ =
√
ΛkΛk′(γ)bk,k′ for any

γ ∈ Γ (such forms always exist, since we can take bk,k′ = 0), and let fk,k′ be an element of the
set

Feq(k, k
′) := {f ∈ C∞(N,R) | ∀γ ∈ Γ, γ∗e2f = ρk,k′(γ)2e2f}. (19)

Then, we consider the metric h on Rp ×N defined by

h := b|E1 +

δ∑
k=2

e2fkb|Ek
+

δ∑
k=2

δ∑
k′=2

e2fk,k′ bk,k′ + g. (20)

If the functions fk,k′ are taken small enough on a relatively compact fundamental domain of N,
h is positive definite, and an argument similar to the one used in Proposition 4.4 shows that the
elements of the group G act as h-similarities.

On an OT-manifold with t = 1, the LCK metric on its universal cover Hs ×C defined in [12] is
of the form

h :=

 s∏
j=1

1

2yj

 s∑
k,k′=1

1 + δk
′

k

4ykyk′
(dxk ⊗ dxk′ + dyk ⊗ dyk′)

+ dx2s+1 + dy2s+1, (21)
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where zk := xk + iyk, 1 ≤ k ≤ s + 1 are the canonical complex coordinates and δk
′

k is the
Kronecker symbol. This falls on the construction above by taking E1 := Span(es+1, es+2) (with
the basis introduced in Corollary 4.6), together with the functions

fk,k′ :=

 s∏
j=1

1

2yj

 1

ykyk′

and the bilinear forms bk,k′ := dxk ⊗ dxk′ .

4.2. Rank of an LCP manifold. Our next goal is to construct LCP manifolds of arbitrary
rank using again Proposition 4.4 again. For this purpose, we need a special family of commuting
matrices, which will be constructed by means of number theory. This makes the object of the
two following two lemmas:

Lemma 4.7. For any n ∈ N there exists a cyclic, totally real and monogenic algebraic number
field of degree p ≥ n+ 1.

Proof. Let n ∈ N, and let m ≥ 2n+ 3 be a prime number. Let K be the maximal real subfield
of the m-th cyclotomic extension. Then K is an extension of Q of degree p := (m−1)/2 ≥ n+1,
which is totally real, monogenic by [13, Proposition 2.16], and cyclic. □

Lemma 4.8. Let n ≥ 2. There exists an integer p ≥ n + 1 and diagonalizable matrices
A1, . . . , An ∈ GLp(Z) with the following properties:

• The matrices A1, . . . , An commute, so their are codiagonalizable.
• Let (e1, . . . , ep) be a common basis of diagonalization for A1, . . . , An. For any 1 ≤ k ≤ p,
let Ek = Span(ek), and denote by λk(Al) the eigenvalue of Al associated to the eigenspace
Ek. Then, the subgroup ⟨|λ1(A1)|, . . . , |λ1(An)|⟩ of R∗

+ has rank n.

Proof. Let K be a cyclic, totally real and monogenic algebraic number field of degree p ≥ n+1,
which exists by Lemma 4.7. There is an algebraic integer α such that α generates a power
basis of K, in particular K = Q[α]. By Dirichlet’s units theorem, the group of units of Q[α]
has rank p − 1. Since p − 1 ≥ n, we can take n independent fundamental units u1, . . . , un in
Q[α]. By monogeneity, there are polynomials P1, . . . , Pn ∈ Zp−1[X] such that Pl(α) = ul for any
1 ≤ l ≤ n.

Now, let A ∈ GLp(Z) be the companion matrix of the minimal polynomial of α and let
Al := Pl(A) ∈ GLp(Z) for 1 ≤ l ≤ n. Since the minimal polynomial of α is irreducible
over Q, it is separable and A is diagonalizable in R, with eigenvalues equal to the conjugates
of α, namely α, σ(α), . . . , σp−1(α), where σ is a generator of the (cyclic) Galois group of Q[α].
Then, the matrices Al are diagonalizable with eigenvalues ul, σ(ul), . . . , σ

p−1(ul). Moreover,

their determinants are Πp−1
k=0σ

k(ul) = ±1 because ul is a unit.

Finally, let e1 be an eigenvector of A for the eigenvalue α. Then, E1 := Span(e1) is a one-
dimensional eigenspace of any Al for the eigenvalue ul, and ⟨u1, . . . , un⟩ is of rank n. We can
complete (e1) in a basis of diagonalization of A to obtain the last property of the lemma. □

The matrices defined in Lemma 4.8 will be used to define the morphism ϕ needed for the
construction of Proposition 4.4, so we prove the following:

Proposition 4.9. Let n ≥ 1. Let p ≥ n + 1 and A1, . . . , An ∈ GLp(Z) be the matrices given
by Lemma 4.8. The group H := ⟨A1, . . . , An⟩ is canonically isomorphic to Zn, defining a group
isomorphism ϕ : Zn → H. Then, there exists a LCP structure on Q((S1)n, ϕ) of rank n.

In particular, the rank of an LCP manifold can be any positive integer.

Proof. We keep the notations of Lemma 4.8 in this proof. Let B be a basis adapted to the
decomposition E1 ⊕ . . . ⊕ Ep and let b be the symmetric, positive definite bilinear form for
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which B is orthonormal. Then, the conditions (J1) and (J2) are satisfied, so by Proposition 4.4
Q((S1)n, ϕ) carries an LCP structure of rank n. □

Example 4.10. We can make an explicit computation of the matrices given by Lemma 4.8 in
the case n = 2 by following the constructive approach of the proof. Taking m = 7 in the proof
of Lemma 4.7 shows that K := Q[2 cos( 2π7 )] is a totally real, monogenic, cyclic extension of Q
of degree p = 3. From now on, we denote by α := 2 cos( 2π7 ). From [13, Proposition 2.16], one

has OK = Z[α]. The minimal polynomial of α is X3 + X2 − 2X − 1, and its conjugates are
2 cos( 4π7 ) and 2 cos(6π7 ). Let σ be the automorphism of K such that σ(α) = 2 cos( 4π7 ). Then

σ2(α) = 2 cos( 6π7 ) and σ3 = idK .

We claim that the (multiplicative) group ⟨α, σ(α)⟩ has rank 2. Indeed, if there were a, b ∈ Z
such that αa = σ(α)b,then the two vectors of R3 given by

X1 := (ln |α|, ln |σ(α)|, ln |σ2(α)|), X2 := (ln |σ(α)|, ln |σ2(α)|, ln |α|)

would be collinear. But X1 and X2 have the same norm for the standard Euclidean metric in
R3 because the coefficients of X2 are a permutation of the ones of X1, so they are collinear if
and only if X1 = ±X2. But this is false because cos( 2π7 ) ̸= cos( 4π7 )±1.

Now, we have the equality σ(α) = α2 − 2. Thus, we consider the companion matrix of the
minimal polynomial of α:

A1 :=

0 0 1
1 0 2
0 1 −1

 , (22)

and the matrix

A2 := A2
1 − 2I3 =

−2 1 −1
0 0 −1
1 −1 1

 . (23)

One easily checks that eigenvectors corresponding to the eigenvalues α, σ(α), σ2(α) of A1 can be
taken respectively as

x1 =

 1
α+ α2

α

 , x2 =

 1
σ(α) + σ(α)2

σ(α)

 , x3 =

 1
σ2(α) + σ2(α)2

σ2(α)

 , (24)

and they are eigenvectors of A2 for the eigenvalues σ(α), σ2(α), α respectively.

Using these matrices, we can now give the explicit construction of an LCP manifold of rank 2

following Proposition 4.9 and Proposition 4.4. On the manifold M̃ := R3 × (R∗
+)

2, the group

G := D ⋊ ⟨(A1, (|α|, 1)), (A2, (1, |σ(α)|))⟩ (25)

acts freely, properly discontinuously and cocompactly (here the group D is defined as in Sec-
tion 4.1, as the group of translations Z3 acting on R3). Let (t1, t2) be the canonical coordinates
of (R∗

+)
2. We define the metric

hx,t := dx21 + ϕ2(t1, t2)
2dx22 + ϕ3(t1, t2)

2dx23 + t22dt
2
1 + t21dt

2
2. (26)

where

ϕ2(t1, t2) :=

∣∣∣∣ α

σ(α)

∣∣∣∣ln(t1)/ ln(|α|) ∣∣∣∣ σ(α)σ2(α)

∣∣∣∣ln(t2)/ ln(|σ(α)|)

(27)

ϕ3(t1, t2) :=

∣∣∣∣ α

σ2(α)

∣∣∣∣ln(t1)/ ln(|α|) ∣∣∣∣σ(α)α

∣∣∣∣ln(t2)/ ln(|σ(α)|)

. (28)

The manifold M := M̃/G admits a non-Riemannian similarity structure given by h, which in
turn defines an LCP structure of rank 2 on M .
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5. Some open questions

Some questions arise naturally from the analysis and the discussions done in the previous sec-
tions. We make here a non-exhaustive list of such ones, whose answers would lead to a better
understanding of LCP manifolds. Throughout this section, we will use the notations of Sec-
tion 2.3.

First of all, it was noticed by Kourganoff [5, Theorem 1.9] that the dimension of the closures of

the leaves, which are the elements of F in the setting of Theorem 2.20, may vary. However, in
all the examples given in this article, this dimension is constant, so we ask the following:

• In the setting of Theorem 2.20, do all the elements of F have the same dimension?

We can propose a strategy to answer this first question. Indeed, assume that P
0
is simply

connected, i.e. it is isomorphic to the group Rt for some t ∈ N. Then, since the group Γ0 is a

full lattice in Rq × P
0 ≃ Rq+t, the group Γ0 is of rank q + t. In addition, for any x ∈ N (the

non-flat part), the closed leaf Fx = π(Rq × P
0
x) has the same dimension as Rq × P

0
x. As we

already saw, this last manifold is isomorphic to the product of an Euclidean space with a flat
torus so it is a Lie group, and Γ0 acts freely and properly discontinuously on it. Consequently,

Γ0({(0, x)}) is a lattice of Rq × P
0
x with rank equal to q + t. Thus

q + t = rank(Γ0) ≤ dim(Rq × P
0
x) ≤ q + t, (29)

and these inequalities turn out to be equalities, so Fx has dimension q + t. This leads to the
following question, whose answer is positive in all the examples:

• Is the group P
0
simply connected, or equivalently is it isomorphic to Rt for some t ∈ N?

In order to have a better understanding of the group P , we should specify how it acts on N .
In [5, Lemma 4.17], it was shown that P acts freely on N , but the proof proposed seems incorrect,
even if it does not modify the correctness of the rest of the article. The only result we can obtain
is the one of Lemma 2.10, stated previously. We thus ask:

• Does P acts freely on N? If this is true, does P acts freely on N?

In Section 4.1, we have given a general construction to obtain LCP manifolds. Nevertheless,
some points remain imprecise:

• What are the acceptable choices for the morphism ϕ, given a compact manifold N (even
without asking for conditions (J1) and (J2))?

• Can we weaken conditions (J1) and (J2)?

Finally, we remark that the only known LCK manifolds which are also LCP are the OT-manifolds
for t = 1. A natural way to construct new examples would be to take extensions of OT-manifolds
(see Definition 3.9).

• Can an extension of an LCP manifold which is also LCK be an LCK manifold?
• Are the OT-manifolds with t = 1 the only LCP manifolds which are also LCK?
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