
TORSION-FREE CONNECTIONS ON G-STRUCTURES

BRICE FLAMENCOURT

Abstract. We prove that for a Lie group SOn(R) ⊂ G ⊂ GLn(R), any G-

structure on a smooth manifold can be endowed with a torsion free connection

which is locally the Levi-Civita connection of a Riemannian metric in a given
conformal class. In this process, we classify the admissible groups.

1. Introduction

Let M be a smooth manifold of dimension n and G a closed subgroup of GLn(R).
A G-structure on M is a reduction of the frame bundle of M to G [2, Chapter 4].

We recall the following well-known result (see for example [3]):

Proposition 1. Let G be a closed subgroup of GLn(R) containing SOn(R) and let
P be a G-structure on M . Then, there exists a torsion-free connection on P .

Proposition 1 was stated as an exercise in [2, Section 17.4, exercise (1)]. However,
the author of this exercise believed that a more precise result occurs if we consider
the following strategy of proof: we take a reduction of P to On(R) or SOn(R),
which defines a Riemannian metric g, and then the Levi-Civita connection of g
is the desired torsion-free connection. This implies the stronger result that the
connection on P can be taken to be the Levi-Civita connection of a metric on
M . However, such a reduction fails to exist in general, as shown by the following
example:

Example 2. We consider the circle S1 ⊂ C, parametrized by the map ψ : [0, 2π) ∋
θ → eiθ. Its tangent bundle is given by TS1 ≃ S1 × R, and its frame bundle is
Fr(S1) ≃ S1 ×R∗. Let G be the closed subgroup of R∗ generated by 2, and let P be

the G-structure of S1 given by Pψ(θ) = {ψ(θ)}× 2
θ
2πG for any θ ∈ [0, 2π). There is

no reduction of P to G ∩O1(R) = {1} because P is a non-trivial principal bundle.
Note that the bundle P is an embedding of the universal cover of S1 into its frame
bundle.

Nevertheless, we can prove that the torsion-free connection in the setting of Propo-
sition 1 is locally induced by a Riemannian metric, and this is the object of this
note. This can be described more precisely using conformal geometry. A discussion
about the following definitions can be found in [1, Section 2.2.2].

We recall that the conformal group COn(R) is the group of all matrices λS for
(λ, S) ∈ R∗ × On(R). Given a Riemannian metric g on M , the conformal class
[g] of g is the set of all the metrics g′ such that there exists a function f : M →
R satisfying e2fg′ = g. There is a one-to-one correspondence between COn(R)-
structures and conformal classes [g], since any restriction of a COn(R)-structure to
On(R) defines a Riemannian metric g. We can then define the Weyl structures,
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which are the analogue in conformal geometry of the Levi-Civita connection in
Riemannian geometry:

Definition 3. A Weyl connection (or structure) on a conformal manifold (M, [g])
is a torsion-free connection ∇ such that there exists a 1-form θ, called the Lee form
of ∇ with respect to g, satisfying ∇g = −2θ ⊗ g.

Equivalently, if P is the COn(R)-structure associated to the conformal class [g], a
Weyl structure is a torsion-free connection on P .

In Definition 3, when the Lee form θ is closed, -which does not depend on the choice
of the metric in the conformal class,- then the Weyl structure ∇ is called closed.
This is equivalent to the fact that around any point in M , ∇ is the Levi-Civita
connection of a metric in [g].

With this definition, we state the result we will prove in this note:

Theorem 4. Let M be a smooth n-dimensional manifold. Let G be a closed sub-
group of GLn(R) containing SOn(R) and let P be a G-structure on M . Then, there
is a reduction Q of P to G ∩ COn(R) and a torsion-free connection on Q such
that the connection induced on the COn(R)-structure given by the extension of Q
to COn(R) is a closed Weyl structure.

In order to illustrate this theorem and to give an idea of its proof, we come back to
Example 2. Here, even if there is no reduction of the structure group to SO1(R) =
{1}, we can observe that G seats inside CO1(R) and is a discrete group. Hence, the
pull-back of the bundle P to the universal cover R of S1 is a trivial bundle, whose
total space is equal to {(x, 2 x

2π+k) | x ∈ R, k ∈ Z}, and the projection onto the
basis is the first projection. The metric on R given by 2−

x
π ⟨·, ·⟩ (where ⟨·, ·⟩ stands

for the standard metric) then induces a covariant derivative ∇̃ on R. Seeing the
smooth sections of TR as smooth maps from R to R, one has

∇̃XY = X · d
dx
Y − ln 2

2π
X · Y

for any vector fields X, Y on R. This connection descends to a connection ∇ on S1

because the translation x 7→ x + 2π is an affine map. Moreover, ∇ is torsion-free
and compatible with P , so it is the connection given by Theorem 4 (which is here
unique since G is discrete).

We quickly outline the proof of Proposition 1, using the analysis of [3, Chapter 4].
Denote by g the Lie algebra of G and by adP the adjoint bundle of P (which is a
vector subbundle of the bundle of endomorphisms of TM). The set of connections
on TM compatible with P is an affine space modeled on Ω1(M, adP ). For any
ξ ∈ Ω1(M, adP ), we define (∂ξ)(X,Y ) := ξ(X)(Y ) − ξ(Y )(X) where X,Y ∈ TM
and we consider the set

TP :=
Ω2(M,TM)

∂(Ω1(M, adP ))
. (1)

The intrinsic torsion T int
P of P is the equivalence class [T∇] ∈ TP where T∇ is the

torsion of any connection ∇ compatible with P . This is well-defined because if ∇′

is another connection, there is ξ ∈ Ω1(M, adP ) such that ∇′ = ∇+ ξ, and an easy
computation leads to T∇′ = T∇+∂(ξ). Then, there exists a torsion-free connection
on P if and only if T int

P = 0.

For any x ∈ M , fix a frame u ∈ Px (which identifies Rn with TxM). For any
ϕ ∈ Λ2(Rn)∗ ⊗ Rn, let ξ ∈ (Rn)∗ ⊗ End(Rn) be given by

2ξ(X)(Y ) := ϕ(X,Y )− ϕ(X, ·)∗(Y )− ϕ(Y, ·)∗(X) X,Y ∈ Rn, (2)
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where ”∗” denotes the adjoint with respect to the standard metric on Rn. By
construction, one has ∂ξ = ϕ and ξ(X) is skew-symmetric for every X ∈ Rn. Since
on(R) ⊂ g, we have ξ ∈ (Rn)∗ ⊗ g. We deduce that ∂(Ω1(M, adP )) = Ω2(M,TM),
implying TP = 0, thus T int

P = 0, which gives the result.

2. Proof of Theorem 4

The proof of Theorem 4 relies on the classification of the subgroups of GLn(R)
containing SOn(R).
In all this text, we will denote by Diag(a1, . . . , an) the diagonal matrix with diagonal
coefficients a1, . . . , an (we will also use this notation for any block diagonal matrix)
and we will denote by sgn : R → {−1, 0, 1} the sign function. We first show the
maximality of SOn(R) in SLn(R), which is a known result, but we recall a proof
for the reader’s convenance following partly an answer given by Yves Cornulier on
the forum MathStackExchange.

Lemma 5. Let G be a subgroup of SLn(R) containing SOn(R). Then, G = SLn(R)
or G = SOn(R).

Proof. For n = 1 there is nothing to prove. For n = 2, suppose that there exists
A ∈ G \ SO2(R). Using the singular value decomposition, one can assume that
A = Diag(a, 1a ) with a > 1. For θ ∈ R let Rθ be the rotation of angle θ. Let ψ
be the map which associates to an element of SLn(R) the largest eigenvalue of the
symmetric part of its polar decomposition. This map is continuous and one has
ψ(AR0A) = a2 and ψ(ARπ/2A) = 1. Thus, by the intermediate value theorem, for

any x ∈ [1, a2], the matrix Diag(x, 1x ) is in G, and this is true for any k ∈ N and

x ∈ [1, ak] by induction, so it is true for any x > 1, which gives the result.

It remains to treat the case where n ≥ 3 using the case n = 2. Assume that there is
A ∈ G \ SOn(R). We can assume that A is diagonal with positive coefficients using
the singular value decomposition, thus A = Diag(a1, a2, . . . , an), and conjugating
by a suitable matrix in SOn(R) we can assume that a1 ̸= a2. Let B ∈ SLn(R). We
want to prove that B ∈ G. By another use of the singular value decomposition,
we can assume that B = Diag(b1, b2, . . . , bn) where the coefficients are positive.
Moreover, one has

Diag(b1, b2, . . . , bn) = Diag(b1,
1

b1
, 1, . . . , 1) ·Diag(1, b1b2,

1

b1b2
, 1, . . . , 1)

. . .Diag(1, . . . , 1, (b1 . . . bn−1),
1

b1 . . . bn−1
= bn),

thus it is sufficient to prove that each of the factors appearing in the right-hand
side are in G. By conjugating by a suitable element of SOn(R), it is sufficient to
prove that for any x > 0 the matrix Diag(x, x−1, 1, . . . , 1) is in G. We now consider
the matrix R = Diag(Rπ/2, In−2) ∈ SOn(R), and we remark that

A−1RAR−1 = Diag(
a2
a1
,
a1
a2
, 1, . . . , 1).

Since a2
a1

̸= 1, the case n = 2 implies that G contains all the matrices

Diag(x, x−1, 1, . . . , 1) for x > 0, which gives that B ∈ G and concludes the
proof. □

The following lemma will also be important in the description of the groups con-
taining SOn(R).
Lemma 6. Let G be a subgroup of GLn(R) containing SOn(R), and let x ∈ det(G).

Then, |x| 1
nDiag(sgn(x), 1, . . . , 1) ∈ G.
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Proof. Let x ∈ det(G). There is a matrix A ∈ G such that det(A) = x, and
using the singular value decomposition of A, there is a diagonal matrix D ∈ G with
det(D) = x. If D is of the form |x| 1

nDiag(±1, . . . ,±1) we have the conclusion of the
lemma after multiplying by an element of SOn(R) of the form Diag(±1, . . . ,±1), so
we assume that D2 /∈ Span(In). There is a matrix S ∈ SOn(R) with SD2 ̸= D2S.
Let B := D−1STDS ∈ SLn(R). One has

BBT = D−1STDSSTDSD−1 = D−1STD2SD−1 = (D−1SD)−1(DSD−1),

then

BBT = In ⇔ D−1SD = DSD−1 ⇔ D2S = SD2,

and this last assertion is false, thus BBT ̸= In and B /∈ SOn(R). By
Lemma 5, we conclude that G ∩ SLn(R) = SLn(R), and in particular

|x| 1
nDiag(sgn(x), 1, . . . , 1)D−1 ∈ G, so |x| 1

nDiag(sgn(x), 1, . . . , 1) ∈ G after mul-
tiplication by D on the right. □

One writes GLn(R) = SLn(R)⋊R∗ with the identification {Id}⋊R∗ → GLn(R), x 7→
|x| 1

nDiag(sgn(x), 1, . . . , 1). We finally give the classification result:

Proposition 7. Let G be a subgroup of GLn(R) containing SOn(R). There exists
a subgroup H of (R∗,×) such that G is equal to either SOn(R)⋊H or SLn(R)⋊H.
Moreover, if G is closed, so is H.

Proof. One has the following short exact sequence:

0 → SLn(R) ∩G→ G
det→ det(G) → 1. (3)

Now, let ϕ : H := det(G) → G given by ϕ(x) = |x| 1
nDiag(sgn(x), 1, . . . , 1), which

is well-defined by Proposition 6. It is clear that ϕ is a morphism and det ◦ϕ = idH ,
thus one has G = (SLn(R)∩G)⋊H. Moreover, by Lemma 5 one has SLn(R)∩G =
SLn(R) or SLn(R) ∩G = SOn(R) because G contains SOn(R).
It remains to show that H is closed when G is closed. But if H is non-discrete,
H ∩ R∗

+ has to be dense in R∗
+, so, G being closed, it contains all the matrices of

the form |x| 1
n In, x ∈ R, and then H = detG = R∗

+ or R∗. □

Remark 8. Note that in Proposition 7, the semi-direct product is actually direct
when H ⊂ R∗

+ or when n is odd.

Finally, we give the proof of the main theorem, for which we recall the following
definition:

Definition 9. Let (N1, g1), (N2, g2) be two Riemannian manifolds. A similarity
between N1 and N2 is a diffeomorphism ϕ : N1 → N2 such that there exists λ ∈ R+

∗
with λ2g1 = ϕ∗g2. In this case, λ is called the ratio of the similarity.

Proof of Theorem 4. According to Lemma 7, there is a closed subgroup H of R∗

such that G ≃ SOn(R)⋊H or SLn(R)⋊H. From the classification of the subgroups
of R∗, H is either R∗, R∗

+ or discrete.

First case: H = R∗ or H = R∗
+. In this case, G is either GLn(R) or COn(R) or

GL+
n (R) or CO

+
n (R). In all these cases, there is a metric g compatible with the G-

structure, i.e. a reduction P ′ of P to G∩On(R). Then, the Levi-Civita connection
of g is torsion-free, so it induces a torsion-free connection on P ′, and thus a torsion-
free connection on the extension Q of P ′ to G∩COn(R). The resulting connection
on the extension of Q to COn(R) is a closed (actually exact) Weyl structure because
it is induced by the Levi-Civita connection of a metric on M .
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Second case: H is discrete. Let M̃ be the universal cover of M and let P̃ be
the pull-back of P to M̃ .

We first study the case G = SOn(R)⋊H. Then, the H-principal bundle P̃ /SOn(R)
is a covering of M̃ so it is trivial. Every element a ∈ H thus defines an SOn(R)-
structure on M̃ i.e. a metric g̃. Since π1(M) acts on P/SOn(R) by multiplication

by an element of H, we deduce that π1(M) acts by similarities on (M̃, g̃). Con-

sequently, the Levi-Civita connection of g̃ induces a torsion-free connection on P̃
which descends to a torsion-free connection on P . We can take Q := P in the
statement of the theorem since G ⊂ COn(R). Finally, the resulting connection on
the extension of P to COn(R) is a closed Weyl structure because it is locally given
by the Levi-Civita covariant derivative of a Riemannian metric defined by a local
reduction of P to G ∩On(R).
We consider now the case G = SLn(R)⋊H. Just as before, the H-principal bundle

P̃ /SLn(R) is trivial. Choosing an element a ∈ H defines a SLn(R)-structure Q̃
on M̃ i.e. a volume form ṽ, and in particular an orientation on M̃ . Let h be a

Riemannian metric on M , and let h̃ be its pull-back to M̃ . Let vh be the volume

with respect to ṽ of a h̃-orthonormal frame of TM̃ (note that v2h does not depend on

the choice of the frame). We define g̃ := (v2h)
1
n h̃. Then, any oriented g̃-orthonormal

frame has volume 1 with respect to ṽ. This implies that g̃ defines a reduction of Q̃
to SOn(R). As in the previous case, π1(M) acts on P/SLn(R) by multiplication by
an element of H, so for γ ∈ π1(M), γ∗ṽ is a multiple of ṽ. Since, π1(M) acts by

isometries on (M̃, h̃), it acts by similarities on (M̃, g̃). We finally conclude in the
same way as for the case G = SOn(R)⋊H. □

From the proof we see that the principal bundle Q defined in Theorem 4 has
SOn(R) ⋊ H ′ as structure group, where H ′ is a discrete subgroup of R∗

+ (just
take H ′ := {1} when H = R∗ or R∗

+, and H
′ := H otherwise).
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