TORSION-FREE CONNECTIONS ON G-STRUCTURES

BRICE FLAMENCOURT

ABSTRACT. We prove that for a Lie group SO, (R) C G C GL,(R), any G-
structure on a smooth manifold can be endowed with a torsion free connection
which is locally the Levi-Civita connection of a Riemannian metric in a given
conformal class. In this process, we classify the admissible groups.

1. INTRODUCTION

Let M be a smooth manifold of dimension n and G a closed subgroup of GL,(R).
A G-structure on M is a reduction of the frame bundle of M to G [2, Chapter 4].

We recall the following well-known result (see for example [3]):

Proposition 1. Let G be a closed subgroup of GL,(R) containing SO, (R) and let
P be a G-structure on M. Then, there exists a torsion-free connection on P.

Proposition [1| was stated as an exercise in |2, Section 17.4, exercise (1)]. However,
the author of this exercise believed that a more precise result occurs if we consider
the following strategy of proof: we take a reduction of P to O,(R) or SO, (R),
which defines a Riemannian metric g, and then the Levi-Civita connection of g
is the desired torsion-free connection. This implies the stronger result that the
connection on P can be taken to be the Levi-Civita connection of a metric on
M. However, such a reduction fails to exist in general, as shown by the following
example:

Example 2. We consider the circle S C C, parametrized by the map v : [0,27) >
0 — e?. Its tangent bundle is given by TS' ~ S' x R, and its frame bundle is
Fr(S1) ~ S' x R*. Let G be the closed subgroup of R* generated by 2, and let P be
the G-structure of S* given by Py = {v(0)} x 237 G for any 0 € [0,27). There is
no reduction of P to GNO1(R) = {1} because P is a non-trivial principal bundle.
Note that the bundle P is an embedding of the universal cover of S* into its frame
bundle.

Nevertheless, we can prove that the torsion-free connection in the setting of Propo-
sition [1] is locally induced by a Riemannian metric, and this is the object of this
note. This can be described more precisely using conformal geometry. A discussion
about the following definitions can be found in [1, Section 2.2.2].

We recall that the conformal group CO,(R) is the group of all matrices AS for
(A, S) € R* x O,(R). Given a Riemannian metric ¢ on M, the conformal class
[g] of g is the set of all the metrics ¢’ such that there exists a function f : M —
R satisfying e?fg’ = g. There is a one-to-one correspondence between CO,,(R)-
structures and conformal classes [g], since any restriction of a CO,,(R)-structure to
0, (R) defines a Riemannian metric g. We can then define the Weyl structures,

2020 Mathematics Subject Classification. 53C05, 53C10, 53C18.
Key words and phrases. G-structures, Connections, Conformal geometry, Weyl structures.

1



TORSION-FREE CONNECTIONS ON G-STRUCTURES 2

which are the analogue in conformal geometry of the Levi-Civita connection in
Riemannian geometry:

Definition 3. A Weyl connection (or structure) on a conformal manifold (M, [g])
is a torsion-free connection V such that there exists a 1-form 6, called the Lee form
of V with respect to g, satisfying Vg = —20 ® g.
Equivalently, if P is the CO,(R)-structure associated to the conformal class [g], a
Weyl structure is a torsion-free connection on P.

In Definition [3] when the Lee form 6 is closed, -which does not depend on the choice
of the metric in the conformal class,- then the Weyl structure V is called closed.
This is equivalent to the fact that around any point in M, V is the Levi-Civita
connection of a metric in [g].

With this definition, we state the result we will prove in this note:

Theorem 4. Let M be a smooth n-dimensional manifold. Let G be a closed sub-
group of GL,(R) containing SO, (R) and let P be a G-structure on M. Then, there
is a reduction Q of P to G N CO,(R) and a torsion-free connection on @ such
that the connection induced on the CO,(R)-structure given by the extension of Q
to CO,(R) is a closed Weyl structure.

In order to illustrate this theorem and to give an idea of its proof, we come back to
Example 2| Here, even if there is no reduction of the structure group to SO;(R) =
{1}, we can observe that G seats inside CO;(R) and is a discrete group. Hence, the
pull-back of the bundle P to the universal cover R of S is a trivial bundle, whose
total space is equal to {(z,237 %) | # € R, k € Z}, and the projection onto the
basis is the first projection. The metric on R given by 27 = (-, -) (where (-,-) stands

for the standard metric) then induces a covariant derivative V on R. Seeing the
smooth sections of TR as smooth maps from R to R, one has

iy —x- Ly D2y y
dz 2m
for any vector fields X, Y on R. This connection descends to a connection V on S!
because the translation z +— = + 27 is an affine map. Moreover, V is torsion-free
and compatible with P, so it is the connection given by Theorem 4| (which is here
unique since G is discrete).

We quickly outline the proof of Proposition |1} using the analysis of [3, Chapter 4].
Denote by g the Lie algebra of G and by adP the adjoint bundle of P (which is a
vector subbundle of the bundle of endomorphisms of TM). The set of connections
on TM compatible with P is an affine space modeled on Q!(M,adP). For any
¢ € QY (M,adP), we define (9¢)(X,Y) := £(X)(Y) — &(Y)(X) where X,Y € TM
and we consider the set ,

oo SPOLTI) "

(QL(M, adP))

The intrinsic torsion T of P is the equivalence class [T%] € Tp where Ty is the
torsion of any connection V compatible with P. This is well-defined because if V'
is another connection, there is £ € Q'(M, adP) such that V' = V + ¢, and an easy
computation leads to Ty, = Ty + 9(£). Then, there exists a torsion-free connection
on P if and only if TH"* = 0.
For any « € M, fix a frame u € P, (which identifies R” with T,M). For any
¢ € A2(R")* @ R", let £ € (R")* ® End(R") be given by

2§(X)(Y) = ¢(X7 Y) - ¢(X’ )*(Y) - (b(Y7 )*(X) XY e R", (2)
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where ”*” denotes the adjoint with respect to the standard metric on R". By
construction, one has 9 = ¢ and £(X) is skew-symmetric for every X € R™. Since
0, (R) C g, we have £ € (R")* ® g. We deduce that d(Q(M,adP)) = Q*(M,TM),
implying Tp = 0, thus 7% = 0, which gives the result.

2. PROOF OoF THEOREM []

The proof of Theorem [ relies on the classification of the subgroups of GL,(R)
containing SO, (R).

In all this text, we will denote by Diag(ay, ..., a,) the diagonal matrix with diagonal
coefficients ay, . . ., a, (we will also use this notation for any block diagonal matrix)
and we will denote by sgn : R — {—1,0,1} the sign function. We first show the
maximality of SO, (R) in SL,(R), which is a known result, but we recall a proof
for the reader’s convenance following partly an answer given by Yves Cornulier on
the forum MathStackExchange.

Lemma 5. Let G be a subgroup of SL,,(R) containing SO, (R). Then, G = SL,(R)
or G =50,(R).

Proof. For n = 1 there is nothing to prove. For n = 2, suppose that there exists
A € G\ SOz(R). Using the singular value decomposition, one can assume that
A = Diag(a, 1) with a > 1. For § € R let Ry be the rotation of angle 6. Let v
be the map which associates to an element of SL,,(R) the largest eigenvalue of the
symmetric part of its polar decomposition. This map is continuous and one has
PY(ARpA) = a? and Y(ARy/3A) = 1. Thus, by the intermediate value theorem, for
any x € [1,a%), the matrix Diag(z, 1) is in G, and this is true for any k¥ € N and
€ [1,a*] by induction, so it is true for any = > 1, which gives the result.

It remains to treat the case where n > 3 using the case n = 2. Assume that there is
A€ G\SO,(R). We can assume that A is diagonal with positive coefficients using
the singular value decomposition, thus A = Diag(ay,as,...,a,), and conjugating
by a suitable matrix in SO, (R) we can assume that a1 # as. Let B € SL,,(R). We
want to prove that B € G. By another use of the singular value decomposition,
we can assume that B = Diag(by,ba,...,b,) where the coefficients are positive.
Moreover, one has

Diag(b1,ba, ..., b,) = Diag(bs, l, 1,...,1) - Diag(1, b1 b, L7 1,...,1)

b1 b1bo

1
’ bl - bn—l
thus it is sufficient to prove that each of the factors appearing in the right-hand
side are in G. By conjugating by a suitable element of SO, (R), it is sufficient to
prove that for any z > 0 the matrix Diag(z,z~%,1,...,1) is in G. We now consider
the matrix R = Diag(R;/2, In—2) € SO,(R), and we remark that

Dlag(l,,l,(blbn_l) :bn),

AT'RAR™! = Diag(%2, % 1,...,1).
ap a2
Since Z—f # 1, the case n = 2 implies that G contains all the matrices
Diag(x,2~%,1,...,1) for # > 0, which gives that B € G and concludes the
proof. O

The following lemma will also be important in the description of the groups con-
taining SO, (R).

Lemma 6. Let G be a subgroup of GL,,(R) containing SO, (R), and let x € det(G).
Then, |z|= Diag(sgn(z),1,...,1) € G.
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Proof. Let z € det(G). There is a matrix A € G such that det(4) = z, and
using the singular value decomposition of A, there is a diagonal matrix D € G with
det(D) = z. If D is of the form |z|= Diag(41, ..., +1) we have the conclusion of the
lemma after multiplying by an element of SO,,(R) of the form Diag(+1,...,41), so
we assume that D? ¢ Span(I,,). There is a matrix S € SO, (R) with SD? # D?S.
Let B:= D~ 'STDS € SL,(R). One has

BB = D 'ST"DSSTDSD™! = D7'STD?SD~! = (D7'SD)"Y(DSD™1),
then
BBT =1, D7'SD =DSD™! & DS = SD?,
and this last assertion is false, thus BBT # I, and B ¢ SO,(R). By

Lemma we conclude that G N SL,(R) = SL,(R), and in particular
|z|= Diag(sgn(x),1,...,1)D~! € @, so |z|=Diag(sgn(z),1,...,1) € G after mul-
tiplication by D on the right. O

One writes GL,,(R) = SL,,(R) xR* with the identification {Id} xR* — GL,(R),z —
|z| = Diag(sgn(x),1,...,1). We finally give the classification result:

Proposition 7. Let G be a subgroup of GL,(R) containing SO, (R). There exists
a subgroup H of (R*, X) such that G is equal to either SO, (R) x H or SL,(R) x H.
Moreover, if G is closed, so is H.

Proof. One has the following short exact sequence:
0— SL,(R) NG — G % det(G) — 1. (3)

Now, let ¢ : H := det(G) — G given by ¢(x) = |z|= Diag(sgn(z),1,...,1), which
is well-defined by Proposition [ It is clear that ¢ is a morphism and det o¢ = id,
thus one has G = (SL,(R)NG) x H. Moreover, by Lemma 5| one has SL,(R)NG =
SL,(R) or SL,,(R) NG = SO, (R) because G contains SO, (R).

It remains to show that H is closed when G is closed. But if H is non-discrete,
H NR% has to be dense in R, so, G being closed, it contains all the matrices of

TlL]n,xeR and then H = det G =R} or R™. O

the form |z

Remark 8. Note that in Proposition [7] the semi-direct product is actually direct
when H C R% or when n is odd.

Finally, we give the proof of the main theorem, for which we recall the following
definition:

Definition 9. Let (N1,91), (Na,g2) be two Riemannian manifolds. A similarity
between N1 and Na is a diffeomorphism ¢ : Ny — No such that there exists A € R}
with \2g1 = ¢*ga. In this case, A is called the ratio of the similarity.

Proof of Theorem [} According to Lemma [7} there is a closed subgroup H of R*
such that G ~ SO,,(R) x H or SL,,(R) x H. From the classification of the subgroups
of R*, H is either R*, R% or discrete.

First case: H = R* or H = R. In this case, G is either GL,(R) or CO,(R) or
GL;(R) or CO;'(R). In all these cases, there is a metric g compatible with the G-
structure, i.e. a reduction P’ of P to GNO,(R). Then, the Levi-Civita connection
of g is torsion-free, so it induces a torsion-free connection on P’, and thus a torsion-
free connection on the extension @ of P’ to GNCO,(R). The resulting connection
on the extension of @ to CO,,(R) is a closed (actually exact) Weyl structure because
it is induced by the Levi-Civita connection of a metric on M.
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Second case: H is discrete. Let M be the universal cover of M and let P be
the pull-back of P to M.

We first study the case G = SO,,(R) x H. Then, the H-principal bundle P/SO,,(R)
is a covering of M so it is trivial. Every element a € H thus defines an SO, (R)-
structure on M i.e. a metric §. Since m (M) acts on P/SO,,(R) by multiplication
by an element of H, we deduce that w1 (M) acts by similarities on (]TJ/,@ Con-
sequently, the Levi-Civita connection of ¢ induces a torsion-free connection on P
which descends to a torsion-free connection on P. We can take () := P in the
statement of the theorem since G C CO,(R). Finally, the resulting connection on
the extension of P to CO,(R) is a closed Weyl structure because it is locally given
by the Levi-Civita covariant derivative of a Riemannian metric defined by a local
reduction of P to G N O, (R).

We consider now the case G = SL,,(R) x H. Just as before, the H-principal bundle
P/SL,(R) is trivial. Choosing an element a € H defines a SL,(R)-structure Q
on M ie. a volume form v, and in particular an orientation on M. Let h be a
Riemannian metric on M, and let h be its pull back to M. Let vy, be the volume
with respect to ¥ of a h-orthonormal frame of TM (note that v} does not depend on
the choice of the frame). We define g := (v h) #h. Then, any oriented g-orthonormal
frame has volume 1 with respect to v. This implies that g defines a reduction of @
to SO, (R). As in the previous case, 1 (M) acts on P/SL, (R) by multiplication by
an element of H, so for v € m (M), v*v is a multiple of ¥. Since, m (M) acts by
isometries on (M h), it acts by similarities on (M ,g). We finally conclude in the
same way as for the case G = SO, (R) x H. O

From the proof we see that the principal bundle @ defined in Theorem [ has
SO, (R) » H' as structure group, where H' is a discrete subgroup of R% (just
take H' := {1} when H = R* or RY, and H' := H otherwise).

Acknowledgments. The author thanks his advisor Andrei Moroianu for his help
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