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THE NUMBER OF KNOT GROUP REPRESENTATIONS
IS NOT A VASSILIEV INVARIANT

MICHAEL EISERMANN

Abstract. For a finite group G and a knot K in the 3-sphere, let FG(K)
be the number of representations of the knot group into G. In answer to a

question of D.Altschuler we show that FG is either constant or not of finite

type. Moreover, FG is constant if and only if G is nilpotent.
We prove the following, more general boundedness theorem: If a knot in-

variant F is bounded by some function of the braid index, the genus, or the
unknotting number, then F is either constant or not of finite type.

Introduction

For a knot K in the 3-sphere S3, we denote by π(K) the fundamental group of
the knot complement S3 \K. Since π(K) itself is very difficult to deal with, we may
look at simpler invariants, for example, the set Hom(π(K), G) of representations in
some finite group G or the numerical invariant FG(K) = |Hom(π(K), G) |.

In recent years, invariants of finite type, also called Vassiliev invariants, have
attracted much attention (cf. [2]). D. Altschuler [1] has shown that FG is not of
finite type for certain groups G. He raised the question whether, for an arbitrary
finite group G, the invariant FG is either constant or not of finite type. We answer
this by proving the following theorems:

Theorem 1. For any finite group G, the knot invariant FG is either constant or
not of finite type.

Theorem 2. The invariant FG is constant if and only if the group G is nilpotent.

For example, every group G of prime power order is nilpotent and, consequently,
FG has constant value |G|. On the other hand, if G contains a non-abelian simple
group or a dihedral group of order 2p, with p being odd, then the invariant FG is not
of finite type. In particular, the number of p-colorings defined by R.H. Fox is not an
invariant of finite type, because p-colorings correspond to dihedral representations.

We prove Theorems 1 and 2 in Section 2. Section 1 is devoted to a more general
boundedness result. Let K be the set of isotopy classes of knots in S3.

Theorem 3. Let ν be either the braid index, the genus, or the unknotting number.
If a knot invariant F : K → C satisfies |F (K)| ≤ φ(ν(K)) for all knots K and
some function φ : N → N, then F is either constant or not of finite type.

For example, braid index, genus and unknotting number are themselves not of
finite type. Nor is the signature, because it is bounded by twice the unknotting
number. The theorem also holds for the bridge number, because every invariant
bounded by some function of the bridge number is also bounded by some function
of the braid index.
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The situation is completely different for the crossing number: D.Bar-Natan
proved in [3] that every knot invariant of type m is bounded by some polynomial
of degree m in the crossing number.

Theorem 3 does not fully generalize to links. As an example, consider the linking
number lk: this is a Vassiliev invariant of type 1 satisfying the inequality |lk| ≤ u,
where u is the unknotting number. If we restrict ourselves to the braid index or
the genus, however, the theorem does extend to links (cf. Corollary 10).

1. Boundedness arguments

In this section we prove Theorem 3, using twist sequences as introduced by
J.Dean [6] and R. Trapp [12]. There are two types of twist sequences, according
to the orientation of the strands involved: A vertical twist sequence is a family of
knots Kz, indexed by z ∈ Z, that looks locally like fig. 1 and is identical outside
that region. A horizontal twist sequence is depicted in fig. 2.

K-1 K 0 K 1 K 2 K 3

... ...

Figure 1. local picture of a vertical twist sequence

K -1 K 0 K 1 K 2 K 3

... ...

Figure 2. local picture of a horizontal twist sequence

The only property of Vassiliev invariants needed in this article is the following:

Lemma 4 ([6, 12]). Let {Kz | z ∈ Z } be a twist sequence. If F : K → C is a
Vassiliev invariant of type ≤ m, then F (Kz) is a polynomial in z of degree ≤ m. �

Corollary 5. If a Vassiliev invariant F is bounded on every vertical (resp. hori-
zontal) twist sequence, then F is constant.

Proof. Given a knot K, we represent it as a diagram. Around a crossing p we
construct a vertical (resp. horizontal) twist sequence {Kz | z ∈Z }. Since the map
z 7→ F (Kz) is a polynomial and bounded, it must be constant. In particular we
have F (K0) = F (K1), which means that we can switch the crossing p without
changing the value of F . Since we may always switch crossings to connect K to the
unknot, this proves that F is constant. �
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Proof of Theorem 3. Let ν be the braid index (or the genus, or the unknotting
number, respectively). We assume that F : K → C is a Vassiliev invariant which
satisfies the inequality |F (K)| ≤ φ(ν(K)) for all knots K.

We will prove in the three lemmas following below, that ν is bounded on any
vertical (resp. horizontal) twist sequence. This implies that F is bounded on any
vertical (resp. horizontal) twist sequence. By Corollary 5, F is constant. �

Lemma 6. The braid index is bounded on any vertical twist sequence.

Proof. Given a vertical twist sequence Kz, we can represent it as a sequence of
diagrams as in fig. 1. By a slight generalization of Alexander’s Theorem (cf. [4, 10]),
we can put these diagrams in braid form without moving the part where the twisting
takes place. In this way we find a braid β on n strands such that each knot Kz

is represented by the braid βσ2z
i . (Here σi is the standard generator of the braid

group Bn intertwining strands i and i+1 by a half twist.) This yields an upper
bound for the braid index, s(Kz) ≤ n for all z. �

Alternative proof. For a vertical twist sequence of diagrams as in fig. 1, the number
of Seifert circles is constant. By a theorem of S.Yamada [13], this number is an
upper bound for the braid index. �

Lemma 7. The genus is bounded on any horizontal twist sequence.

Proof. Given a horizontal twist sequence Kz, we can represent it as a sequence of
diagrams as in fig. 2. To these we apply Seifert’s algorithm (cf. [5]) to construct
a Seifert surface from each of the diagrams. All these surfaces have the same
Euler characteristic and hence the same genus g0. This implies an upper bound
g(Kz) ≤ g0 for all z. �

Lemma 8. The unknotting number is bounded on any horizontal twist sequence of
knots.

Proof. We will show that any horizontal twist sequence Kz can be uniformly un-
knotted in the following way: We start with a diagram D0 for the knot K0 such that
the sequence Kz arises by horizontally twisting around the crossing p as in fig. 2.
Travelling along the diagram D0, starting and ending at the upper strand of the
crossing p, we call a crossing ascending if the first visit is on the lower strand and
the second visit on the upper one. We denote by A the set of ascending crossings
of D0, and by DA

z the diagram Dz with all crossings of A switched.
We claim that for each z, the diagram DA

z represents the trivial knot. Thus we
conclude u(Kz) ≤ |A| for all z.

A proof that the diagrams DA
z are trivial can be supplied as follows: Any knot

diagram D can be parametrized by an immersion f : S1 → D ⊂ R2. A height
function corresponding to the parametrized diagram (D, f) is a continuous map
h : S1 → R such that at each crossing, the overcrossing strand has a greater
height than the undercrossing strand. This is the same as to say that the map
(f, h) : S1 → R2 × R is a parametrized knot which projects to the diagram D.

For any diagram DA
z as above, one can construct a height function having only

one maximum, which means that the resulting knot is trivial. Such a height function
is given in fig. 3 for the case z ≥ 1. For some points on the diagram, their height
is indicated. Between these points, let the height function be strictly decreasing
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while travelling from P to Q, and strictly increasing from Q to P . By definition of
DA

z , this is indeed a height function. �
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Figure 3. a height function for the diagram DA
z

Remark 9. The choice of twist sequence in the preceding lemmas is not arbitrary:
The braid index is bounded on any vertical twist sequence, but in the horizontal
case we only have s(Kz) ≤ s0 + |z|. Twist knots (i.e. twisted Whitehead doubles of
the unknot) show that the linear bound cannot be improved.

The genus und the unknotting number, however, are bounded on any horizontal
twist sequence, but in the vertical case we only have g(Kz) ≤ g0 + |z| and u(Kz) ≤
u0 + |z|. Linear growth occurs, for example, for the (2, n)-torus knots.

For the boundedness of the unknotting number it is essential that we are dealing
with a knot. Lemma 8 is false for links: Whenever two different components are
twisted, their linking number satisfies lk(Lz) = lk(L0) + z. The inequality u ≥ |lk|
implies that the unknotting number is unbounded.

It is, however, very easy to prove a restricted version of Theorem 3 for links. Let
Lµ be the set of isotopy classes of links with µ components. Clearly, Lemmas 6
and 7 also hold for the braid index and the genus of links. Thus we have:

Corollary 10. Let ν : Lµ → N be either the braid index or the genus. If a link
invariant F : Lµ → C satisfies |F (L)| ≤ φ(ν(L)) for all links L and some function
φ : N → N, then F is either constant or not of finite type. �

2. Application to knot group representations

In this section we apply the boundedness result of Theorem 3 to the number of
knot group representations. Theorem 1 is an immediate consequence whereas the
proof of Theorem 2 requires a little bit of group theory.

Proof of Theorem 1. We want to show that for any finite group G, the knot invari-
ant FG(K) = |Hom(π(K), G) | is either constant or not of finite type.

Let s be the braid index of the knot K. The Wirtinger presentation, obtained
from a closed s-braid representing K, shows that the knot group π(K) can be
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presented with s generators. (For an alternative argument using braid technique
see [4], Theorem 2.2.) This implies the inequality FG(K) ≤ |G|s(K). By Theorem 3
we conclude that FG is either constant or not of finite type. �

Remark 11. The same argument works if only a subset of representations or repre-
sentations up to some equivalence are counted — in all these cases the boundedness
theorem still applies.

2.1. Homomorphic images of knot groups. We will characterize the groups G
for which FG is constant. This leads to the question which groups appear as ho-
momorphic images of knot groups. This question was raised by L. P.Neuwirth [11]
and first answered by F.Gonzalez-Acuña [7]:

Theorem 12 ([7, 9]). A finite group G is a homomorphic image of some knot
group if and only if it is generated by the conjugates of some element x ∈ G. �

We denote by xG the orbit of x under conjugation of the group G. The condition
of the theorem can then be abbreviated as G = 〈xG〉. The necessity of this condition
follows from the Wirtinger presentation, because π(K) is generated by conjugates
of a meridian. To prove sufficiency, D. Johnson [9] has found an elegant way to
construct a knot together with an epimorphism π(K) →→ G, sending a meridian to
the element x ∈ G. Theorem 12 has the following corollary:

Corollary 13. The invariant FG is not of finite type if and only if G contains a
non-abelian subgroup H ≤ G such that H = 〈xH〉 for some element x ∈ H.

Equivalently, the invariant FG is constant if and only if all subgroups H ≤ G
satisfying H = 〈xH〉 are abelian and hence cyclic.

Proof. For any knot K there are exactly |G| representations which factor through
the abelianization π(K)ab

∼= Z. This implies FG(K) ≥ FG(©) = |G|.
If there exists a knot K with FG(K) > |G|, then there must be a homomorphism

ϕ : π(K) → G which does not factor through the abelianization. The image
H = Im(ϕ) is necessarily non-abelian and satisfies H = 〈xH〉, where x is the image
of a meridian.

Conversely, suppose that G contains a non-abelian subgroup H = 〈xH〉. By
Theorem 12 there exists a knot K and a homomorphism π(K) →→ H ↪→ G. This
means FG(K) > FG(©) and the knot invariant FG cannot be of finite type. �

2.2. Nilpotent groups. We rephrase the preceding criterion in more group-theoretic
terms. For subgroups S, H ≤ G, we define 〈SH〉 to be the subgroup generated by
the elements sh, where s ∈ S and h ∈ H. For a cyclic subgroup S = 〈x〉 we have
〈SH〉 = 〈xH〉.

Lemma 14. For a finite group G and a subgroup S ≤ G the following two condi-
tions are equivalent:

(1) The only subgroup H ≤ G satisfying H = 〈SH〉 is the group S itself.
(2) The group S is subnormal in G, or more explicitly, there exists a subnormal

sequence G = G0 � G1 � . . . � Gn−1 � Gn = S.

Proof. (1⇒2) We can construct a subnormal sequence starting with G0 = G by
inductively setting Gk+1 := 〈SGk〉. Since G is finite, this sequence must stabilize,
which means Gn+1 = Gn for some n. Hence, Gn = 〈SGn〉 and by hypothesis (1)
we can conclude that Gn = S.
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(2⇒1) Suppose we have a subnormal sequence as stated in (2) and a subgroup
H = 〈SH〉. Since H ≤ G0, we see that H = 〈SH〉 ≤ 〈SG0〉 ≤ G1. The last
inclusion holds because G1 contains S and is normal in G0. Now we can reiterate
this argument: Since H ≤ G1, we obtain H = 〈SH〉 ≤ 〈SG1〉 ≤ G2. Continuing
like this, we arrive at H ≤ Gn = S, which proves H = S. �

Lemma 15. For a finite group G, the following conditions are equivalent:

(1) The group G is nilpotent.
(2) Every subgroup is subnormal in G.
(3) Every cyclic subgroup is subnormal in G. (Baer condition)
(4) For any pair of elements x, y ∈ G, the iterated commutators defined by

x0 = x and xk+1 = [xk, y] vanish for sufficiently large k. (Engel condition)

Proof. The equivalence (1⇔2) is one of the characterizations of nilpotent groups
and may be found, for example, in [8, ch. III, §2,§7]. The step (2⇒3) is trivial. To
prove (3⇒4), let G = G0 � . . . � Gn = 〈y〉 be a subnormal sequence. We have
x0 ∈ G0 and by induction xk+1 = xkyx−1

k y−1 ∈ 〈yGk〉 ≤ Gk+1. Thus we arrive
at xn ∈ Gn = 〈y〉 and hence xn+1 = [xn, y] = 1. The implication (4⇒1) was first
observed by M.Zorn [14], and a proof may be found in [8, ch. III, §6]. �

Proof of Theorem 2. By Corollary 13, the knot invariant FG is constant if and only
if every subgroup H = 〈xH〉 is abelian, which means H = 〈x〉. By Lemma 14, this
happens if and only if every cyclic subgroup is subnormal in G. By Lemma 15, this
is equivalent to G being nilpotent. �

2.3. Application to link group representations. If we consider links instead
of knots, then a simpler version of Theorem 2 holds. Let FG : Lµ → N be the link
invariant defined by FG(L) = |Hom(π(L), G) |.

Theorem 16. Suppose µ ≥ 2. The link invariant FG : Lµ → N is constant if G is
abelian and not of finite type if G is non-abelian.

Proof. Let s be the braid index of the link L. The Wirtinger presentation shows
that the link group π(L) can be presented with s generators. This implies the
inequality FG(L) ≤ |G|s(L), exactly as in the case of knots. By Corollary 10 we
conclude that FG is either constant or not of finite type.

For an abelian group G, every representation factors through the abelianization
π(L)ab

∼= Zµ, which means that FG ≡ |G|µ is constant.
If G is non-abelian, however, then FG is not constant. We explain this in the

case of two-component links. For the trivial link ©2, the link group is free on two
generators, whereas the group of the Hopf-link H is free abelian on two generators.
This means FG(H) < FG(©2) for every non-abelian group G. �
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