A REFINED JONES POLYNOMIAL FOR SYMMETRIC UNIONS
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ABSTRACT. Motivated by the study of ribbon knots we explore symmetrions, a beau-

tiful construction introduced by Kinoshita and Terasakd9%7. For symmetric diagrams
D we develop a two-variable refinement (s,t) of the Jones polynomial that is invari-
ant under symmetric Reidemeister moves. Here the two variatdeslt are associated
to the two types of crossings, respectively on and off the symmnexis. From sample

calculations we deduce that a ribbon knot can have esdgrdiatinct symmetric union

presentations even if the partial knots are the same.

If D is a symmetric union diagram representing a ribbon KQpthen the polyno-
mial Wh(s,t) nicely reflects the geometric properties Kf In particular it elucidates
the connection between the Jones polynomialK @ind its partial knot«, : we obtain
Wh(t,t) = Vk(t) andWb(—1,t) = Vk_(t) - k. (t), which has the form of a symmetric
productf (t) - f(t~1) reminiscent of the Alexander polynomial of ribbon knots.

1. INTRODUCTION AND OUTLINE OF RESULTS

A knot diagramD is said to be aymmetric uniorif it is obtained from a connected
sum of a knoK,. and its mirror imagé<_ by inserting an arbitrary number of crossings on
the symmetry axis. Figurgdisplays two examples witk. = 5,. (We shall give detailed
definitions in§2.) Reversing this construction, the kndts can be recovered by cutting
along the axis; they are called tpartial knotsof D.

AR AT

FIGURE 1. Two symmetric union presentations of the ribbon kngt 9
(left and right) obtained from the connected sum of the phknhots
K+ =5, (middle) by inserting crossings on the symmetry axis

The two outer diagrams of Fi@.both represent the knop9 which means that they are
equivalent via the usual Reidemeister moves, 8e€if. 8]. Are they equivalent through
symmetric diagrams? In the sequel we construct a two-Verigfinementp (s,t) of the
Jones polynomial, tailor-made for symmetric union diags@vand invariant under sym-
metric Reidemeister moves. This allows us to show that tban@ot exist any symmetric
transformation between the above diagrams, in other wasry transformation must
break the symmetry in some intermediate stages.
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1.1. Motivation and background. Symmetric unions were introduced by Kinoshita and
Terasaka§] in 1957. Apart from their striking aesthetic appeal, thppear naturally in the
study of ribbon knots, initiated at the same time by Fox anthi[4, 3, 5]. While ribbon
and slice knots have received much attention over the lage&fs 2], the literature on
symmetric unions remains scarce. We believe, howeverthleasubject is worthwhile in
its own right, and also leads to productive questions alibbbn knots.

It is an old wisdom thatalgebraically, a ribbon knotk resembles a connected sum
K #K_ of some knotK, with its mirror imageK_. This is geometricallymodelled by
symmetric unions: it is easy to see that every symmetricrunépresents a ribbon knot
(82.2). The converse question is still open; some affirmativeigiaahswers are knowr2].
For example, all ribbon knots up to 10 crossings and all twidge ribbon knots can be
represented as symmetric unions.

Besides the problem da#xistencat is natural to consider the question whiqueness
of symmetric union representations. Motivated by the tdgkloulating symmetric union
diagrams for ribbon knots, we were led to ask when two suadfrdias should be regarded
as equivalent. A suitable notion of symmetric Reidemeisteves has been developed
in [2, §2]. Empirical evidence suggested that ribbon knots can leagentially distinct
symmetric union representations, even if the partial kKatsre the same. With the tools
developed in the present article we can solve this probletharaffirmative for the knot
9,7 as in Fig.1, and indeed for an infinite family of two-bridge ribbon kn¢$6.4).

1.2. A refined Kauffman bracket. As our main tool we develop a two-variable refine-
ment of the Jones polynomial that nicely reflects the gedamptoperties of symmetric
unions. Since skein relations are local and do not respebagjsymmetry conditions, we
are led to consider arbitrary diagrams for the following stonction.

Definition1.1 (refined bracket polynomialConsider the plan&? with vertical axis{0} x
R and letZ be the set of planar link diagrams that are transverse tadbe Bhe Kauffman
bracket [F] can be refined to a two-variable invariazit— Z(A, B), D — (D), according to
the following skein relations:

e For every crossing off the axis we have the usual skein cglati

® O =A1)+A70 -

e For every crossing on the axis we have an independent sketiore

(X)-8%(<)+500)

(B)
j -1 ; 1 ;
(X)=8(X)+8 ()
e If Cis a collection ofn circles (i.e., a diagram without any crossings) having 2
intersections with the axis, then we have the followingleievaluation formula:
B2 +B2\™*
— —A2 _A72 n—-1
© ©) = (e

_ (*AZ o A—Z)n—m(iBZ o B—Z)m—l.

Remarkl.2 While the skein relationsX) and @) are a natural ansatz, the circle evaluation
formula (C) could seem somewhat arbitrary. We should thus point ot} ifhae want to
achieve invariance, thei\j and @) imply (C) up to a constant factor. We choose our
normalization such that the unkn@t (wheren = m= 1) is mapped t4dO) = 1.

There is a natural family of Reidemeister moves respeclin@kis, as recalled i§2.3.
The crucial observation is that the refined bracket is indeegtiant:
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Lemma 1.3(regular invariance) The two-variable brackefD) € Z(A,B) is invariant un-
der regular Reidemeister moves respecting the axis. REesoff the axis contribute a
factor —A*3, whereas S1-moves on the axis contribute a factBtS.

Remarkl.4. Of course, in every construction of link invariants one céifiaially intro-
duce new variables. Usually the invariance under Reiddgereisoves enforces certain
relations and eliminates superfluous variables. It is thuite gemarkable that the variables
A andB remain free, and moreover, carry geometric information ashall see.

1.3. Arefined Jones polynomial. In order to obtain full invariance we normalize the two-
variable bracket polynomigD) with respect to the writhe. To this end we consider the set
2 of oriented diagrams and define thewrithe a (D) and theB-writhe 8(D) to be the sum

of crossing signs off and on the axis, respectively. Thisiggssfull invariance:

Theorem 1.5(refined Jones polynomial)Tlhe map W % — Z(A,B) defined by
W(D) := (D) - (~A~%)%®). (-B%)P()
is invariant under all Reidemeister moves respecting the @hksplayed irg2.3).

Notation. We shall adopt the common notatiéA =t ~*2 andB? = s~ ¥2. Instead oiN(D)
we also writeMy or Wh (s,t) if we wish to emphasize or specialize the variables.

The following properties generalize those of the Jonesrotyial:

Proposition 1.6. The invariant W 2 — 7,(sY2,t"2) enjoys the following properties:
(1) Wp is insensitive to reversing the orientation of all compasesf D.
(2) Wp is invariant under mutation, flypes, and rotation about tésa
(3) If DD’ is a connected sum along the axis, thegyWW=Wp -W.
(4) If D* is the mirror image of D, then W(s,t) = Wp(s~1,t71).
(5) If D is a symmetric diagram, thenik, t) is symmetric in -t =1,
(6) If D is a symmetric union link diagram, thenps insensitive to reversing the
orientation of any of the components of D.

1.4. Symmetric unions. In the special case of symmetric union diagrams, the pictic
calculation ofW-polynomials is most easily carried out via the followingadithm:

Proposition 1.7 (recursive calculation via skein relationgfonsider a symmetric union
diagram D with n components. If D has no crossings on the &eis t

Sl/z+ 12 n-1
® \A/D<s,t>=(tl/2+f1/2> VL (D),

where Y (t) is the Jones-polynomial of the link L represented by D.
If D has crossings on the axis, then we can apply the followagegrsion formulae:

g W(x) - (x) - W)
3) w(X) = -sw(3X) -sw()().

These rules allow for a recursive calculationwfD) for every symmetric unioiD.
Notice thatW/(D) is independent of orientations according to PropositidX6).

We emphasize th&¥ (D) of an arbitrary diagrar® will in generalnotbe a polynomial:
by constructionV (D) € Z(s”2,t%?) is usually a fraction and cannot be expected to lie in
the subringZ[sil/z,til/z]. This miracle happens, however, for symmetric union diaxgra

Proposition 1.8(integrality). If D is a symmetric union knot diagram, therp\i¢ a Lau-
rent polynomial in s and t. More generally, if D is a symmetiiwon diagram with n
components, thenWe Z[s*1 t+1]. (s¥2 4 s ¥2)1-1,
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Remark1.9. The integrality of\\p is a truly remarkable property of symmetric unions.
The fact that the denominator disappears for symmetricnsnigas rather unexpected, and
sparked off an independent investigation, whose reswétpr@sented inl]]. The integrality

of Wp(s,t) now follows from a more general integrality theorein Theorem 1], which is
interesting in its own right: for everng-component ribbon link the Jones polynomglL)

is divisible by the Jones polynomigl((O") of the trivial link.

The following special values incorrespond to those of the Jones polynomial:

Proposition 1.10(special values ih). If D is a symmetric union link diagram with n com-
ponents, thenW(s, &) = (—s¥2 —s~¥2)" for eaché € {1, +i, &"27/3}, and 240 (s,1) =
0. In other words, W — (—s72 — s 72" 1 s divisible by(t — 1)2(t? + 1) (t> +t + 1).

The following special values ianicely reflect the symmetry:

Proposition 1.11(special values irs). Suppose that a knot K can be represented by a
symmetric union diagram D with partial knots.KThen the following properties hold:

(1) Mapping s— t yields W (t,t) = Vk (t), the Jones polynomial of K

(2) Mapping s— —1yields a symmetric producty¥—1,t) = Vi (t) - Vk_ (t).
In particular, both specialization together implyy/-1, —1) = det K) = det K_ ) -det(K,.).

Remarkl.12 Finding a symmetric union representatiorfor a ribbon knot introduces
precious extra structure that can be used to refine the Jahgsomial Vk (t) to a two-
variable polynomialAb (s,t). In this sense we can interpidb (s,t) as a “lifting” of Vk (t)

to this richer structure. The specializatisn- t forgets the extra information and projects
back to the initial Jones polynomial.

The product formuld\b (—1,t) = Vi_(t) -Vk, (t) is particularly intriguing. Recall that
for every ribbon (or slice) kndt, the Alexander-Conway polynomial is a symmetric prod-
uctAg (t) = f(t)- f(t1) for some polynomiaf € Z[t*1]. The preceding theorem says that
such a symmetric product also appears for the Jones polwahdgit), albeit indirectly via
the lifted two-variable polynomiahi (s,t).

Remark1.13 We use the letteW as a typographical reminder of the symmetry that we
wish to captureW is the symmetric union of two letteks, just as theN-polynomial is
the combination of twd/-polynomials. (This analogy is even more complete in French
whereV is pronounced “@”, while W is pronounced “doubleé’.)

1.5. Applications and examples.In [2] we motivated the question whether the two sym-
metric unions of Figl could be symmetrically equivalent. (In fact79s the first example

in an infinite family of two-bridge ribbon knots, s¢é.4.) Having thewW-polynomial at
hand, we can now answer this question in the negative:

Examplel.14 The symmetric union diagrani3 (left) andD’ (right) of Fig.1 both rep-
resent the knot£. The partial knot i,. = 5, in both cases, so this is no obstruction to
symmetric equivalence (s€2.5). Calculation of theilV-polynomials yields:

Wo(st) = 1+ sgu(t)— s> f(b),
Wor(st)=1- gu(t)+s *-f(t),
with
o) =t 5 =3t 446t 39t 2+ 111 — 12411t — 9% 4 6t3 — 3t* +t5,
ft)=t 42034324t 1 +4—4t+3t2— 23 +1t%,

This proves thab andD’ are not equivalent by symmetric Reidemeister moves.
As an illustration, for both diagrams the specializatisas—1 ands =t yield

W(=1t) = (t—t?+ 283 —t* 45 —t&)(t -t 24 23—t 44t 5 —t7F),
W(t,t) =t -3t 3452 -7t 1498t +7t2 — 53+ 3t* — 5.
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Notice thatW(s,t) captures the symmetry, which is lost when we pass to the Jones
polynomialV (t) = W(t,t). The latter does not seem to feature any special properties.

Remarkl.15 Symmetric Reidemeister moves do not change the ribboncgyréee Re-
mark2.11below. Possibly the more profound difference between tlvesyimmetric union
presentation® andD’ of the knot 37 is that they define essentially distinct ribbon surfaces
SandS bounding the same knot2 To study this problem we would like to concoct an
invariantS+— Ws(s,t) of (not necessarily symmetric) ribbon surfa@s R3. Ideally this
would generalize ouV-polynomial\Wp (s,t) and likewise specialize to the Jones polyno-
mial Vk (t). In any case Figuré& will provide a good test case to illustrate the strength of
this extended invariant yet to be constructed.

1.6. Open questions. Our construction works fine for symmetric unions, and we are ¢
vinced that this case is sufficiently important to merit ishigation. Ultimately, however,
we are interested in ribbon knots. Two possible paths argimahle:

Questionl.16 Can every ribbon knot be presented as a symmetric union?
Although this would be a very attractive presentation, &mss rather unlikely.
Questionl.17. Is there a natural extension of té-polynomial to ribbon knots?

This seems more plausible, but again such a constructi@n fsoim obvious.
The right setting to formulate these questions is the fdlgwnstance of “knots with
extra structure”, where the vertical arrows are the obvfotgetful maps:

symmetric ribbon knots slice knots
unions specific ribbo specific slic

{S%g]brgﬁtﬂrz]gg? —— {ribbonknot§ —— {slice knotg

Some natural questions are then: Which ribbon knots are syrzatde? Which rib-
bons can be presented as symmetric unions? Under whichtiomsdis such a presenta-
tion unique? (The analogous questions for the passage fioets ribbon have already
attracted much attention over the last 50 years.)

Question1.18 Can we construct an analogue of #vepolynomial for ribbon knots with
a specified ribbon? Does it extend Mepolynomial of symmetric unions, or do we have
to pass to a suitable quotient?

Question1.19 Can one obtain in this way an obstruction for a knot to be nittbcOr
an obstruction to being a symmetric union? (Although igolynomial captures the
symmetry condition, it does not yet seem to provide such atrottion.)

Questionl.20 Are there similarly refined versions of thedFLYPT and Kauffman poly-
nomials? Do we obtain equally nice properties?

1.7. How this article is organized. The article follows the program laid out in the intro-
duction. Sectior? expounds the necessary facts about symmetric diagrg2r® énd in
particular symmetric uniong2.2). We then recall symmetric Reidemeister mov&s 3
and sketch a symmetric Reidemeister theorg2¥dj. This is completed by a brief discus-
sion of partial knots§2.5) and Reidemeister moves respecting the &asy.

Section3 is devoted to the construction of the two-variable brack8dtlj and its nor-
malized version, th&/-polynomial §3.2). In Sectiord we establish some general proper-
ties analogous to those of the Jones polynomial. Se&ifmtuses on properties that are
specific for symmetric union diagramg5(2), in particular integrality §5.1) and special
values int ands (§5.3-55.4).
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Section6 discusses examples and applications: we compile a listrafrsstric union
diagrams and theiV-polynomials for all ribbon knots up to 10 crossing6.Q) and study
two infinite families of symmetric union diagrams of two-tgie ribbon knots§6.4).

1.8. Acknowledgements. The authors would like to thank Adam Sikora for helpful dis-
cussions in Warsaw 2007. This work was begun in the winten @2006/2007 when the
first author was on a sabbatical funded by a research couigldgiation aupés du CNRS
whose support is gratefully acknowledged.

2. SYMMETRIC DIAGRAMS AND SYMMETRIC EQUIVALENCE

In this section we discuss symmetric diagrams and symmBgidemeister moves.
Since we will use them in the next section to define our twoalde refinement of the
Jones polynomial, we wish to prepare the stage in sufficietatild It will turn out that our
construction of th&V-polynomial applies not only to symmetric unions but moreegally
to diagrams that are transverse to some fixed axis. In faetskkin relations that we
employ will destroy the symmetry and thus make this geneatiin necessary.

2.1. Symmetric diagrams. We consider the plan&? with the reflectionp: RZ — R?
defined by(x,y) — (—x,y). The mapp reverses the orientation &? and its fixed-point
set is the vertical axi§0} x R.

Definition 2.1 A link diagramD c R? is symmetridif it satisfiesp(D) = D except for
crossings on the axis, which are necessarily reversed. Byeotion we consider two dia-
gramsD andD’ as identical if they differ only by an orientation presexyififfeomorphism
h: R? = R? respecting the symmetry, in the sense ti{@) = D’ with hop = poh.

B0 @

(a) the knot 6 (b) the trefoil knot (c) the Hopf link

FIGURE 2. Three types of symmetric diagrams

Remark2.2. Each componer@ of a symmetric diagram is of one of three types:

(a) The reflectiorp mapsC to itself reversing the orientation, as in F&a.
(b) The reflectiorp mapsC to itself preserving the orientation, as in Fay.
(c) The reflectiorp mapsC to another componet(C) # C, as in Fig2c.

Each component can traverse the axis in an arbitrary number of crossingsases
(a) and (b) these are pure crossings where the comp@naosses itself, while in case (c)
they are mixed crossings between the compo@eantd its symmetric partngr(C).

Moreover, the componeir@ can traverse the axis without crossing any other strand;
assuming smoothness this is necessarily a perpendicaigrsal. In case (a) there are
precisely two traversals of this kind, while in cases (b) ér)dhere are none.
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2.2. Symmetric unions. In view of the preceding discussion of symmetric diagrams, w
single out the case of interest to us here:

Definition2.3. We say that a link diagrai is asymmetric unioiif it is symmetric,p(D) =
D, and each component is of type (a). This means that each campperpendicularly
traverses the axis in exactly two points that are not crgssiand upon reflection it is
mapped to itself reversing the orientation.

While symmetric diagrams in general are already interestimgmetric unions feature
even more remarkable properties. Most notably they areriliibks:

Definition2.4. Let X be a compact surface, not necessarily connected nor dilenta
ribbon surfaceis a smooth immersiori : > - R3 whose only singularities are ribbon
singularities according to the local model shown in Bay. the surface intersects itself in
an intervalA, whose preimagé ~(A) consists of one interval in the interior @fand a
second, properly embedded interval, running from bountaboundary.

K

(a) Local model of a ribbon singularity (b) The knot 8g bounding a disk with two
ribbon singularities (dotted lines)

FIGURE 3. An immersed disk with ribbon singularities

Definition 2.5. A link L ¢ R® is said to be aibbon link if it bounds a ribbon surface
consisting of disks. (Fig8b shows an example.)

Proposition 2.6. Every symmetric union diagram D represents a ribbon link.

Proof. The essential idea can be seen in Bl.the following proof simply formalizes
this construction. We equip the di§k’> = {z € R? | |z < 1} with the induced action
of the reflectiono: (x,y) — (—x,y), and extend this action t6 = {1,...,n} x D?. The
symmetric diagranD can be parametrized by an equivariant plane cgvé> — R?,
satisfyinggo p = pog. We realize the associated link by a suitable liftgqngds — R3
that projects taqy = po g via p: R — R?, (x,y,2) — (x,y). We denote byd: R — R3
the reflectionp: (x,y,z) — (—x,Y,2). We can achievgdp = p o § except in an arbitrarily
small neighbourhood of the reflection plaf@} x R? to allow for twists. The mayg an
be extended to a mafx: = — R3 by connecting symmetric points by a straight line:

f((1-1)-s+t-p(s)) = (1-1)-§(s) +t-G(p(s))
for eachs € 0% andt € [0,1]. If we choose the liftingy of g generically, therf will be the
desired ribbon immersion. O

An analogous construction can be carried out for an arpisgmmetric diagram:

Proposition 2.7. Every symmetric diagram D represents a link L together witibaon
surface f. X 9» R3 of the following type:

(a) Each component of type (a) bounds an immersed disk.
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(b) Each component of type (b) bounds an immersébilvs band.
(c) Each pair of components of type (c) bounds an immersed asnulu O

Let us add a remark that will be useful §8.1 Each disk contributes an Euler char-
acteristic 1 whereas annuli anddldius bands contribute 0. We conclude thdiounds a
ribbon surface of Euler characterisi¢Z) = n, wheren is the number of components of
type (a). Moreover, sincb is symmetric, it perpendicularly traverses the axis pedgian
times, twice for each component of type (a).

2.3. Symmetric Reidemeister moves.Symmetric diagrams naturally lead to the follow-
ing notion of symmetric Reidemeister moves:

Definition2.8. We consider a knot or link diagram that is symmetric with extfo the
reflectionp along the axi§0} x R.

A symmetric Reidemeister move off the agian ordinary Reidemeister move as de-
picted in Fig4 carried out simultaneously with its mirror-symmetric ctenpart.

A symmetric Reidemeister move on the asisither an ordinary Reidemeister move
(S1-S3) or a generalized Reidemeister move{82S4) as depicted in Fi§.

Subsuming both casessgmmetric Reidemeister magene of the previous two types,
either on or off the axis.

Qe T KA

/N

FIGURE 4. The classical Reidemeister moves (off the axis)

FIGURES. Symmetric Reidemeister moves on the axis

Remark2.9. We usually try to take advantage of symmetries in order tacedhe number
of local moves. By convention the axis is not oriented, whiodans that we can turn all
local pictures in Figs upside-down. This adds one variant for each S1-, S2-, anu &4
shown here; the four S3-moves are each invariant underdtation. We can also reflect
each local picture along the axis, which exchanges the |§dits S2+, S3ot, S3ut.
Finally, we can rotate about the axis, which exchanges S8&8n. The S4-move, finally,
comes in four variants, obtained by changing the over- amérorossings on the axis.
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Remark2.10. The S1 and S2v moves are special cases of a flype move alongishas
depicted in Fig6. The introduction of such flypes provides a strict geneadilim, because
complex flypes along the axis can in general not be genergtéioebabove Reidemeister
moves, as observed in Rem&K.6below. In particular, a half-turn of the entire diagram
around the axis can be realized by flypes, but not by symme&idemeister moves.

N, O U
R |- A R |- A
Ao [ <l

FIGURE 6. A vertical flype along the axis

Remark2.11 Symmetric Reidemeister moves as well as flypes preservéth@rsurface
constructed in PropositioB.7: every such move extends to an isotopy of the surface,
perhaps creating or deleting redundant ribbon singugariti

2.4. A symmetric Reidemeister theorem.In this article we shall consider the symmetric
moves above adefiningsymmetric equivalence. Two natural questions are in orQer.
the one hand one might wonder whether our list could be shedteThis is not the case,
in particular the somewhat unexpected moves @2d S4 are necessary in the sense that
they cannot be generated by the other mo2e3hm. 2.3].

On the other hand one may ask whether our list is completerderdo make sense of
this question and to derive a symmetric Reidemeister tineonee wish to set up a corre-
spondence between symmetric Reidemeister moves of symmigigrams and symmetric
isotopy of symmetric links ifRS.

The nave formulation, however, will not work because crossingstloe axis inhibit
strict symmetry: links realizing symmetric union diagraare mirror-symmetric off the
axis but rotationally symmetric close to the axis.

One way to circumvent this difficulty is to represent eachssiog on the axis by a
singularity X together with a sign that specifies its resolutic)k[:i» X resp.x — X.
This reformulation ensures that the (singular) link iscslyi mirror-symmetric. The signs
can be chosen arbitrarily and encode the symmetry defeatrafsolution.

More formally, a singular link is an immersiof: {1,...,n} x S* < R3 whose only
multiple points are non-degenerate double points. We siwltistinguish between dif-
ferent parametrizations and thus identify the immersicemd its imagd.. We can then
consider singular links c R? satisfying the following conditions:

Transversality: L is transverse t& = {0} x R?, and each double point lies &
Symmetry: L is symmetric with respect to reflection alokg

For such links we have the obvious notion of isotopy, thagismooth family(L )0,y
such that each; satisfies the above transversality and symmetry requireanelf the
singularities are equipped with signs, then these signsaréd along the isotopy in the
obvious way.

Theorem 2.12. Consider two symmetric diagramg@nd D; and the associated symmet-
ric (singular) links Ly and Ly. If the links Ly and Ly are symmetrically isotopic then the
diagrams I and D, are symmetrically equivalent.

Sketch of proofWe can put the isotopylL )ic(o,y) iNto generic position such that for all
but a finite number of parameters<t; < --- < tx < 1 the linkL; projects to a symmetric
diagram. In particular, the diagrams between two succegsvameterg andt; 1 differ
only by an isotopy of the plane and are essentially the sanoeed¥er we can arrange that
at each exceptional parametethe modification is of the simplest possible type:
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Events off the axis:

e The projection of a tangent line degenerates to a point: Riemo
e Two tangent lines dacide in projection: R2 move.
e The projection produces a triple point: R3 move.
Events on the axis:
e Two tangent lines dacide in projection: S2h move.
e The tangent lines of a singular point become collinear ifguotion: S2- move.
e A strand crosses a singular point: S3 move.
e Two singular points cross: S4 move.

The details of this case distinction shall be omitted. O

Remark2.13 We emphasize that, in the above setting of symmetric isotopyes of type
S1 and S2v cannot occur. Such isotopies can be realized grilgniporarily breaking
the symmetry. Instead of further enlarging the notion ofdpy in order to allow for the
creation and deletion of singularities, we simply introel&1 and S2v as additional moves.
We usually even allow the more general flype moves depict&iiré.

2.5. Partial knots. We are particularly interested saymmetric union knot diagramshere
we require the symmetric union diagram to represent a Knahat is, a one-component
link. As mentioned in the introduction, a symmetric unioagtiam ofK looks like the
connected sunk, fK_ of a knotK, and its mirror image<_, with additional crossings
inserted on the symmetry axis. The following constructicakes this observation precise:

Definition2.14 For every symmetric union knot diagradwe can define partial diagrams
D_ andD, as follows: first, we resolve each crossing on the axis byirguit open
according toxX +— Hi( or X +— Hi(. The result is a connected sum, which can then be
split by a final cut{ — )(. We thus obtain two disjoint diagram®_ in the halfspace
H_ = {(x,y) | x< 0}, andD. in the halfspacél. = {(x,y) | x> 0}. The knotsK_ and

K, represented b andD,, respectively, are called thpartial knotsof D.

Proposition 2.15. For every union diagram D the partial knots Kand K, are invariant
under symmetric Reidemeister moves.

Proof. This is easily seen by a straightforward case-by-case eatiidin. O

Remark2.16 Notice that the partial knots are in general not invariardarrflypes along
the axis, depicted in Fi§. Such moves can change the partial knots fiéntL _ and
Kifl, toK_fL, andK fL_.

Remark2.17. The above construction can be used to define the notigrauial link for
symmetric diagrams that have components of type (b) andifd)at most one component
of type (a). If there are two or more components of type (a@ntthere does not seem to
be a natural notion of partial knot or link. (Bartial tanglecan, however, be defined as
above, up to a certain equivalence relation induced by ingithe ends; we will not make
use of this generalization in the present article.)

2.6. Reidemeister moves respecting the axisAs an unintentional side-effect, most of
our arguments will work also forsymmetriaddiagrams. Our construction of the bracket
polynomial in§3 evenrequiresasymmetric diagrams in intermediate computations, be-
cause the resolution of crossings breaks the symmetry.r@&sfating the construction and
the invariance theorem for our bracket polynomial, we thagerthe underlying diagrams
and their Reidemeister moves explicit.

As before we equip the plar®? with the axis{0} x R, but unlike the symmetric case,
the reflectionp will play no rdle here. We consider link diagrams that are transverse to
the axis, that is, wherever a strand intersects the axisei$ do transversally. For such a
diagram we can then distinguish crossingghe axis and crossingsf the axis.
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Definition2.18 We denote by the set of planar link diagrams that are transverse to the
axis{0} x R, but not necessarily symmetric. We do not distinguish betwdiagrams that
differ by an orientation-preserving diffeomorphismR? = R? fixing the axis setwise. A
Reidemeister move respecting the agia move of the following type:

e A Reidemeister move (R1, R2, R3) off the axis as depictedgn4=i
e A Reidemeister move (S1, S2, S3, S4) on the axis, as depicted 5.

The advantage of this formulation is that it applies to afigitams, symmetric or not.
For symmetric diagrams, both notions of equivalendaacde:

Proposition 2.19. Two symmetric diagrams are equivalent under symmetriceRagister
moves if and only if they are equivalent under Reidemeisteesirespecting the axis.

Proof. “=-" Each symmetric R-move is the composition of two asymmeRrimoves.

“<" Suppose that we can transform a symmetric diagEanmto another symmetric
diagramD’ by a sequence of R-moves and S-moves. Since R-moves may ries caut
asymmetrically, the symmetry of intermediate diagramess.| Nevertheless, the isotopy
types of the tangles left and right of the axis remain muyualirror-symmetric, since S-
moves preserve this symmetry. We can thus forget the giveroiRes on the left-hand side
of the axis, say. Each time we carry out an R-move on the tightd side, we simultane-
ously perform its mirror image on the left-hand side. Thirdes a symmetric equivalence
fromDtoD'. O

Remark2.20 As before we can define the partial diagraihs andD_. of a diagranD,
provided thaD perpendicularly traverses the axis in either two pointsapaints at all.
The partial linksL_ andL_. are invariant under Reidemeister moves respecting the axis

3. CONSTRUCTING THE TWGVARIABLE W-POLYNOMIAL

3.1. Constructing the two-variable bracket polynomial. We consider the se¥ of un-
oriented planar link diagrams that are transverse to the {#4i x R but not necessarily
symmetric. We can then define the brackeét 2 — Z(A,B) as in Definitionl.1

Lemma 3.1. The polynomiakD) associated to a link diagram D is invariant under R2-
and R3-moves off the axis as well as S2-, S3-, and S4-movis aris. It is not invariant
under R1- nor S1-moves, but its behaviour is well-conttblige have

@ (R)=eA() e (Q)=AN( )
® (=) am (Q)=ceI()

Proof. The proof consists of a case-by-case verification of thedt®&eidemeister moves.
It parallels Kauffman’s proof for his bracket polynomiahdais only somewhat compli-
cated here by a greater number of moves.
Let us begin by noting two consequences of the circle evialnérmula C):
e A circle off the axis contributes a factor-A2 — A=2).
e Acircle onthe axis contributes a fact¢r-B?> — B~2).

As a consequence, for Reidemeister moves of typeHR e find

©) (R)=A(Q)+a(S)=-( )

The two summands contribute a facifr-A2 — A=) + A-1 = — A3, as claimed. The same
calculation works for R(-), leading to a facto~A~3. For S1-moves the calculation
applies verbatim, replacirgy by B:

) (R)=e(2)+e ()= ( )
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Invariance under R2-moves is proven as usual, via the sk&tion @A):

@ (300 =A () i)+ o) (X) = (=)

Here the first two summands cancel with the third, becausele oiff the axis contributes
a factor(—A? — A~2).
Analogously, invariance under S2v-moves is proven via keénsrelation B):

o (=) (8)00-00

Here the first two summands cancel with the third, becauselke oin the axis contributes
a factor(—B? —B?).
Invariance under S2h-moves is proven as follows:

10 (>X)=A20O)+A2H)+O0 )+ () = (=)

Here the first two summands cancel with the third, thankseduticious coupling of the
variablesA andB, as formulated in the circle evaluatioB)(

‘“) (20=0)=kkab O

Invariance under the remaining moves will now be an easyamprence. To begin with,
S2h-invariance implies invariance under the slightly mmmplicated move Sg:

2 (100() =B(0cX) +8 (00K
=8(>0)+8 (D ) =(>C)

Here the twdB-summands are equal using S2h-invariance. FoBtHesummand we carry
out two opposite R1-moves, so the factosA®) and(—A~2) cancel each other.
Invariance under R3-moves is proven as usual, via the skk&ition A):

o (R ()
A (-3

Here the middle equality follows from R2-invariance, etiited above. Notice also that

this R3-move comes in another variant: if the middle cragsnchanged to its opposite,

then the coefficients andA~* are exchanged, and the desired equality is again verified.
Analogously, invariance under S3-moves is proven via tlegnsielation B):

o (R)-CKp )
=8 )8 ()= ()

Here the middle equality follows from S2h-invariance, bithed above. This proves
invariance under any R2v-move in the variant (0+). For théava (0-) the middle cross-
ing is changed to its opposite: in the preceding equatiorctedficientsB andB~* are
exchanged, and the desired equality is still verified. Fervriants (u+) and (u-) the
horizontal strand passes under the two other strands, arghthe argument still holds.
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Finally, invariance under S4-moves is again proven via ketnsrelation B):

w9 (YESK) -5(3E3K) = (DEK)
e R G W G
O — = — =
The middle equality follows from S3- and R2-invariance,abished above. There are

three more variants of S4-moves, obtained by changing obethrof the middle crossings
to their opposite. In each case the desired equality cantifeeden the same way. O

3.2. Normalizing with respect to the writhe. Given an oriented link diagrai, we can
associate a sign to each crossing, according to the coovexti— +1 and>{ — —1. Let
a (D) be the sum of crossing signs off the axis (calfedrithe), and le{3(D) be the sum
of crossing signs on the axis (callBdwrithe).

&0

FIGURE 7. A diagramD with a(D) =4 andB(D) = -1

Definition3.2 We define the normalized polynomial: 2 — Z(A,B) to be

W(D) := (D) - (~A% 9. (-B3)FO),
This is called thé&V -polynomialof the diagranD with respect to the given axis.
Theorem 3.3. W(D) is invariant under Reidemeister moves respecting the axis.

Proof. The A-writhe a (D) does not change under regular Reidemeister moves. @bjce
is also invariant under such moves, soAN$D). An R1-move fromD=Q to D' = _
changes thé-writhe toa (D’) = a(D) — 1, so that the factors W compensate according
to Lemma3.1 The same argument holds for S1-moves an®Btheithe. O

Remark3.4. Consider a symmetric diagrab At first sight one would expeat (D) = 0,
so that no normalization has to be carried out for the vagiAblndeed, in almost all cases
crossing signs cancel each other in symmetric pairs, kaifafis where components of type
(a) cross components of type (b) or (¢): according to Rer@id@khe reflectionp reverses
the orientation of the former, but preserves the orientatibthe latter. The signs in such
a symmetric pair of crossings are thus not opposite butiicEniThe simplest example of
this kind is displayed in FidZ, showing in particular that (D) can be non-zero.

3.3. Generalization to arbitrary surfaces. Our invariance arguments are local in nature,
and thus immediately extend to any oriented connectede¥f@&quipped with a reflec-
tion, that is, an orientation-reversing diffeomorphipmZ — > of order 2. Even though
we do not have an immediate application for it, this geneadilbn seems natural and in-
teresting enough to warrant a brief sketch. As before, wéaail p the reflection its
fix-point set is a 1-dimensional submanifold which will béled theaxis

Example3.5. Such an objectZ, p) naturally arises for every complex manifdlcbf com-
plex dimension 1 (and real dimension 2) equipped with a reattire, that is, an anti-
holomorphic involutionp: ¥ — . This includes the basic situation of the complex plane
C or the Riemann sphef@P!, with p being complex conjugation. More generally, one
can consider the zero-setC C2 of a non-degenerate real polynomiak R[z, 2], or the
zero-setz C CP? of a non-degenerate homogeneous polynomial R[z;, 2, z3], where
the reflectiorp is again given by complex conjugation.
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FIGURE 8. A surfaceX with orientation-reversing involutiop. The
fixed axis is depicted as a dashed line.

Remarlk3.6. Asin§2.1, a link diagranD on the surfac& is symmetridf p(D) = D except
for crossings on the axis, which are necessarily reversadsymmetric diagrams we can
consider symmetric Reidemeister moves aii8and establish a symmetric Reidemeister
theorem as i§2.4. Partial tangles can be constructed ag2rband are again invariant; this
is essentially a local property. In the absence of a convextsire, however, we cannot
construct ribbon surfaces as§8.2 by joining opposite points. More generally, a surface
boundingL in X x R exists if and only if the obvious obstructigD] € H1(X) vanishes.

Remark3.7. As before we can weaken the symmetry condition and considgrtans-
verse diagrams under Reidemeister moves respecting the ldgre we assume a Morse
functionh: X — R for which 0 is a regular value, so that the akis- h~1(0) decomposes
Z into two half-surfaceg_ = {x € Z | h(x) < 0} andZ; = {x € Z | h(x) > 0}.

We can then consider the set(Z) of link diagrams onx that are transverse to the
axis. The skein relationg\) and B) together with the circle evaluation formul@)(define
an invariantZ () — Z(A,B) as before. This can be further refined in two ways. Firstly,
instead of one variabld we can introduce separate varialgs. . ., B, for each connected
component of the axis. Secondly, we can evaluate circlelsasurfac& according to their
isotopy type. The generalized construction essentiallskeras before.

4. GENERAL PROPERTIES OF THEV-POLYNOMIAL

4.1. Symmetries, connected sums, and mutationsAs before, we adopt the notation
A2 =t~"2 andB? = s %2, and instead diV(D) we also writeé\b (s, t).

Proposition 4.1. Wy is insensitive to reversing the orientation of all compasesf D.

Proof. The bracket polynomial is independent of orientations, #relwrithe does not
change either: crossing signs are invariant if we chaigerientations. O

Proposition 4.2. The W -polynomial enjoys the following properties:
(1) Wp is invariant under mutation, flypes, and rotation about thésa
(2) If DD’ is a connected sum along the axis, thegyW=Wp -Wp.
(3) If D* is the mirror image of D, then W(s,t) =Wp (s 1,t71).
(4) If D is symmetric, then ¥\(s,t) is symmetric in t-t 2.

Proof. In each case the proof is by induction on the number of crgsfD: the assertion
is clear wherD has no crossings and is propagated by the skein relations. O

Flypes and mutations along the axis are depicted in Figérasd 9b. Such moves
leave theW-polynomial invariant but can change the partial knots, elgnfrom K_gL_
andK, gL, to K_fL, andK fL_. For a discussion of connected sums sHethere are
different ways of forming a connected sum, but they are edlaty mutations.
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N ? o
o oy JE( ™)
sz L& 2

>, | : !
(a) connected sum (b) mutation

FIGURE 9. Connected sum and mutation along the axis

There are two variants of mutation (F&), namely rotation and flipping. (Their com-
position yields a flip along a perpendicular axis and is ngicted here.) All variants are
equivalent in the sense that we can deduce a flip from a rotatidl vice versa, as indi-
cated in Figured0 and11l In our setting of diagrams with respect to a fixed axis, this
equivalence also holds for mutations on the axis.

R =¥ —~>Cdal—_-= a
FIGURE 10. Deducing a flip from a rotation
A flip L )

R =B P -2 [T = d

FIGURE 11. Deducing a rotation from a flip

According to the preceding proposition, tAepolynomial is invariant under mutations
on and off the axis. Here is a famous example:

Example4.3 The Kinoshita-Terasaka knot can be presented as a symratdo (with
trivial partial knots) as in Figl2 on the left. On the right you see a mutation, the Conway
knot, where the right half has been flipped. Both knots thasesthe sam#é/-polynomial.

F\@”\ (\?\(\
>Q/ / Q
Y X

FIGURE 12. The Kinoshita-Terasaka knot (left) and the Conway knot
(right) are mutations of one another.
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4.2. Oriented skein relations. The following observation can be useful to simplify cal-
culations, by relatin§\p to the Jones polynomial in an important special case:

Proposition 4.4. Let D be a diagram representing a link L. If D has no crossinggdie
axis and perpendicularly traverses the axim points, then

—1
V25 z\"
VVD(S7t) = <t1/2+t_1/2 VL(t)
Proof. The claim follows by induction on the numbenof crossings off the axis. i€ =0
then we simply have the circle evaluation formu@).(If ¢ > 1 then we can resolve one

crossing off the axis and apply the skein relatiéf) 6n both sides of the equation. [

Remarka.5. The invarianW: & — Z(s2,t"2) satisfies some familiar skein relations:

(16) t‘lw(X) ft“W(\/\') (tY2 — Y2 W( )
(17) S*1W(><) —SHW(X) — (252 W( )
(18) W(>) - rw(>)
(19) w(@) —1

We do not claim that these oriented skein relations sufficdetermine the majVv
uniquely; this is probably false, and further relations rmeeessary to achieve uniqueness.
In particular the oriented skein relations do not lead tonapse algorithm that calculates
W(D) for every diagranD. This is in contrast to the Jones polynomial, for which the
oriented skein relation is equivalent to the constructienkauffman’s bracket.

These difficulties suggest that the bracket polynomial diritéon 1.1 and its defining
skein relations 4), (B), and C) are the more natural construction in our context. For
symmetric unions we describe a practical algorithm in Pstjmm 5.6 below.

5. THEW-POLYNOMIAL OF SYMMETRIC UNIONS

Having constructed thé&/-polynomial on arbitrary diagrams, we now return to symmet-
ric diagrams, and in particular symmetric unions. lItis iis getting that th&/-polynomial
reveals its true beauty: integralityy.1), simple recursion formula&$.2), and special val-
ues int ands (§5.3-55.4). We continue to use the notatiéd =t~ %2 andB? = s 2.

5.1. Integrality. Our first goal is to control the denominator that appeakstnand then
to show that this denominator disappear® is a symmetric union.

Exampleb.1 For the three symmetric diagrams of Fegwve find
Wo(st) =14+st—s ittt 3t +3-t%),
1 —1/2\2
G s SR I

VVb(S t) 31/2+S_1/2 S )
242
WC(S,t) == —Sm_ /2+S/2.

The symmetry oD implies thatWp is symmetric int < t~1. By specializings — t we
recover, of course, the Jones polynomials of the kapthé trefoil knot 3, and the Hopf
link L2al, respectively. Here we orient the Hopf link (c) such that téflection along the
axis preserves orientations.
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We shall see that the symmetry@falso entails that\p has no denominator, apart from
s/2+s7%2, The difficulty in proving this integrality of\b is to find a suitable induction
argument: resolving a symmetric diagrddnwill lead to asymmetric diagrams, and for
asymmetric diagrams the desired integrality does not hotgeheral.

The right setting seems to be the study of ribbon surfaceaceSihis approach in-
troduces its own ideas and techniques we refer to the aftitlevhose key result is a
surprising integrality property of the Jones polynomial:

Theorem 5.2([1]). Ifalink L c R3 bounds a ribbon surface of Euler characteristicnd,
then its Jones polynomial(¥) is divisible by V\O™) = (—t¥2 —t~%2)m-1, g

This is precisely what we need to ensure the integralitef

Corollary 5.3 (integrality). Let D be a symmetric diagram that perpendicularly traverses
the axis in2m points. Then the bracket polynomial satisfies

(20) (D) € Z|A™, B*Y]. (B2 +B~2)™ !
and, equivalently, the W -polynomial satisfies
(21) Wh € Z[Si1/27ti1/z] ) (31/2+S—1/2)m_1’

Proof. We first consider the case whdbdehas no crossings on the axis. By Proposidofh

we then know that )
s s 2\
Wob(s,t) = <t1/2+t—1/2 ViL(t)

whereV, € Z[til/z] is the Jones polynomial of the link represented byp. Using the
notation of§2.1, the diagramD hasm components of type (a), ho components of type
(b), and all components of type (c) come in pairs separatethéyaxis. According to
Proposition2.7, the link L bounds a ribbon surface of Euler characteristicTheoremnb.2
thus ensures that(L) is divisible by (t"/2+t~%2)™1, so 1) holds.

Both assertions20) and @1) are equivalent becaugP) andWp differ only by a writhe
normalization of the fornWp = (D) - (—A~3)2(®) . (—B=3)B(®) We can now proceed by
induction on the number of crossings on the axis using slsation B):

(X)=8(%) 48200 () =8(<)+80)
The right hand sides involve only symmetric diagrams, so ae apply our induction

hypothesis 20). The skein relation thus express@3) as a linear combination of two
polynomials inZ[A*%, B*1] . (B2 4 B?)™1, so Q0) holds. O

Notice that fom = 0 the denominatas2+s~*2is in general unavoidable, as illustrated
by Example5.1 If the diagramD is symmetric and perpendicularly traverses the axis at
least oncerp > 1), thenWp always is an honest Laurent polynomials? andt*?, that
is, Wp € Z[s™/2,t*¥2]. This integrality property will be re-proven and strengtae for
symmetric unions in Corollarg.7 below.

5.2. Symmetric unions. We will now specialize to symmetric union diagrams, thawis,
assume that each component is of type (a) as explaingzi2n

Proposition 5.4. Let D be a symmetric union link diagram with n components.

(1) Each crossing on the axis involves two strands of the same@oent.
For every orientation X is a positive crossing angX is a negative crossing.

(2) The resolution) — Hi( yields a symmetric union diagram with n components,
while X — X yields a symmetric union diagram withtnl components.

(3) Each crossing off the axis and its mirror image involve theeaomponents.
Their signs are opposite so tha{D) = 0.
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Proof. The assertions follow from our hypothesis that for a symioetnion the reflection
p maps each component to itself reversing the orientatiom§2&). In particular, each
crossing on the axis involves two strands of the same conmp@mel both strands point to
the same halfspace. This means tiats necessarily a positive crossing((or >X), while
X is necessarily a negative crossing ©r ><). The restis clear. O

In particular, the pairwise linking numbers of the compdsesf a symmetric union
D vanish. This also follows from the more geometric constamcof ribbon surfaces in
Proposition2.6. In general, even for symmetric diagrams, the linking nunmzed not
vanish (see Remaik4).

Corollary 5.5. For every symmetric union link diagram D the polynomia(DV is in-
variant under orientation reversal of any of the components other words, WD) is
well-defined for unoriented symmetric union diagrams. O

When working withunorientedsymmetric union diagrams, Propositiérd allows us
to determine th&-writhe and thus to anticipate tiiienormalization. This observation can
be reformulated in the following normalized skein relapwhich allow for a recursive
calculation ofwW(D) for every symmetric union diagrab:

Proposition 5.6. Consider a symmetric union diagram D representing a link thwi
components. If D has no crossings on the axis then

&2 g2 n-1
22) %(at)—(@) VL (D),

where Y (t) is the Jones-polynomial of the link L.
If D has crossings on the axis, then we can apply the followaegrsion formulae:

e W) -5 W() - w(30).
e W(33) =5 () - ()0).

Proof. Equation @2) follows from Propositior.4: sinceD is a symmetric union, we know
thatm=n. If D has crossings on the axis, then we apply the skein relaBdsitably
normalized according to Propositi&. This proves Equation28) and @4). d

For symmetric unions we can strengthen CorolBgin the following form:

Corollary 5.7 (strong integrality) If D is a symmetric union knot diagram, therm\Wé a
Laurent polynomial in s and t. More generally, if D is a symmneatnion diagram with n
components, then\e Z[s*1 t+1]. (s¥2 4 s ¥2)0-1,

Proof. Every symmetric union diagrai represents a ribbon link. If D has no crossings
on the axis, then the assertion follows from Equati@g) @nd the divisibility is ensured
by Theorem5.2 We can then proceed by induction on the number of crossinghe
axis, using Equations2@) and @4). Notice that)(, >, )i( have the same number of
components, wheregg has one more component. O

5.3. Special values int. A few evaluations of the Jones polynomial have been idedtifie
with geometric data, and some of these can be recovereddwVpolynomial:

Proposition 5.8. Let D by a symmetric union diagram with n components. We have
Wh(s, &) = (—s¥2—s7¥2)"L for every& € {1,+i,e*27/3}, and 24P (s, 1) = 0.

Proof. We proceed by induction on the number of crossings on the ati® has no
crossings on the axis, then we can use Equa@hdnd calculat&\p (s,t) from the Jones
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polynomialV_(t). For the latter we know that
V(1) =(-2"*
VL(e:I:ZiTl'/3) -1

VL(H) = (—v2)" (-1
dv
(U =3kD)(-2"*
(See [L1] or [10, Table 16.3].) Here afLt) is the Arf invariant ofL, and Ik D) is the total
linking number ofL, i.e., the sun® ;. Ik(L;, L) of all pairwise linking numbers between
the componentks, ..., L, of L. Both arfL) and IkL) vanish becausk is a ribbon link.
The above values &4 (&) thus show thaiib (s, &) = (—s¥? —s¥2)" L and 240 (s,1) = 0.

If D has at least one crossing on the axis, then we can resolveoitcicg to the skein
relation @3) or (24). More explicitly, consider a positive crossing on the axis

w(x) = -#w() -u()()
Notice that>{ and)i( are symmetric union diagrams with 1 andn components, respec-
tively. We can thus apply the induction hypothesis:tfer & we find

W(X) _ _51/2(_51/2 - 571/2)n o S(_Sl/z _ S71/2) n-1 _ (_51/2 _ S71/2) n-1

Likewise,
0 Y\ 1/2 0
W (X) = 5w(X) 55w ()
and fort = 1 all three derivatives vanish. Analogous arguments holdnulie resolve a
negative crossing< instead of a positive crossing . This concludes the induction. [

5.4. Special values ins. The following specializations i are noteworthy:

Proposition 5.9. For every diagram D the specialization-st yields the Jones polynomial
of the link L represented by the diagram D, that ig (Vt) = VL (t).

Proof. For s+t we no longer distinguish the crossings on the axis, and tbeeabkein
relations become the well-known axioms for the Jones pathiab thusWp (t,t) = Vk (t).
Another way to see this is to start from our two-variable kea@olynomial. FoB — A
this becomes Kauffman’s bracket polynomial in one variablé&uitably normalized and
reparametrized with= A~* it yields the Jones polynomial, as desired. O

Proposition 5.10. If D is the symmetric union knot diagram with partial knots knd
K., then the specialization-s: —1yields Wy (—1,t) = Vi_(t) -k, (t). If D is a symmetric
union link diagram with n> 2 components, theny{—1,t) = 0.

Proof. The specializatiors — —1 means thas’2+s %2 = 0. We can now proceed by
induction on the numbet of crossings on the axis. = 0 then the assertion follows
from Equation22. If ¢ > 1 then the skein relatior&3 and24, specialized as= —1, show
thatW(>X) =W(X) =W(i(). This operation reducesbut preserves the numberof
components. Fan = 1 it also preserves the partial kndts. O

Corollary 5.11. Suppose that D is the symmetric union knot diagram of twdgddmots
K_and K;. Fors=t = —1we obtain W§(—1,—1) = detK) = det K_) - det K ).

Proof. The evaluations are subsumed in the following commutatizgreim:

Wo(st) e Z[stL ) L 7t 5 v (1)

(25) 9—»—1i J,tH_l
Vi (1) -V, (1) € Z[tH] — Z > det(K)



20 MICHAEL EISERMANN AND CHRISTOPH LAMM

On the one hand, substituting first= —1 and thert = —1 yields detK_) - detK).
On the other hand, substituting first=t and thent = —1 yields detK). The equality
detK) = det(K_)det K, ) now follows fromWp € Z[s*,t*1], the integrality property of
Corollary5.7, which ensures the commutativity of Diagragb). O

The product formula déK) = detK_) - det K, ) was first proven by Kinoshita and
Terasakad] in the special case that they considered; the general @asleden established
by Lamm P]. We derive it here as a consequence of the more general grfmmula for
the Jones polynomial established in Proposigati

Example5.12 The symmetric union diagram of Fify3a represents the knog@with par-
tial knots 3 and 3. Here we find

W(st) =1-s24s2(t+3—tht 1 +t3-t%),
W(t,t) =V (8) = —t >+t 4 —t3+2a2 -t 1421,
W(-1,t) =V(31)-V(3}) = t+ B —tht 1+t 3 —t7%).

In particularW has no denominator and is thus an honest Laurent polynomsédundt.
As it must be, fot = —1 the last two polynomials both evaluatewt—1,—1) = 9.

0ofoo]  (ooboof

(a) &p as symmetric union (b) 8 as asymmetric union

FIGURE 13. Symmetric vs asymmetric union diagrams

Example5.13 We should point out that the integrality @i (s,t) is a crucial ingredient:
The asymmetric union depicted in FIBb represents the knot 8vith partial knots 3 and
31. The lack of symmetry is reflected by a non-trivial denormnan theW-polynomial:
t97t8 t7*t6 t5 t3 —2 *2t7*t5 2t4 t2
W(s,t) = + + T+ 57 +2t"+ )'
t+1
From this we can recover the Jones polynomial

W(t,t) =V (8s) =1—t+3t2—3t3+ 3t — 4>+ 3® — 27 48

and the determinant d&) = 21. If we first sets= —1, however, we find the product
W(-1,t) =V(31)-V(31), and fort = —1 this evaluates to d;) - det(3;) = 9.

This example shows that the evaluationf—1, —1) is in general not independent of
the order of specializations. In other words, Diagr&®b) doesnot necessarily commute
when we consider rational fractio¥, € Z(s,t). For every diagranD both specializa-
tionsWo (t,t) andWp (—1,t) are Laurent polynomials if&[t*1]. In (—1,—1) the rational
functionR? — R defined by(s,t) — Wp(s,t) thus has limits

tileVD(Lt):def(K) and tErfnl\/\lp(—l,t):det(KJF)det(K_).

If Wp is continuous in(—1,—1) then these two limits dacide; otherwise they may
differ, in which case déK) # detK_) - det K. ) as in the preceding example.
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6. EXAMPLES AND APPLICATIONS

In this final section we present the computation of sdMgolynomials. We begin
with preliminaries on alternating knot§6.1) and a computational lemmég€.2). We then
calculate thaN-polynomials of symmetric union diagrams for all ribbon knop to 10
crossings §6.3) and analyze two infinite families of symmetric union diagsafor two-
bridge ribbon knots§6.4).

Notation. Certain polynomials occur repeatedly in the following cédtions. In order to
save space we will use the abbreviatioa- —s"2 —s~%2 and the auxiliary polynomials
e(t), f(t),... defined in Table on page25.

6.1. Alternating knots. A non-trivial symmetric union knot diagram is never altding.
To see this, start from a point where the knot perpendicutaalverses the axis and then
travel symmetrically in both directions: the first crossipajr is mirror-symmetric and thus
non-alternating.

If a knotK admits a reduced alternating diagram wétbrossings thei is the minimal
crossing number and every minimal diagram represeitingth ¢ crossings is necessarily
reduced and alternatind,[13, 14, 15]. This implies the following observation:

Proposition 6.1. Let K be a prime alternating knot with c crossings. If K can bpre-
sented by a symmetric union diagram, then at leastlcrossings are necessary. [

This explains why in most of our examples the symmetric unéggresentations require
slightly more crossings then the (more familiar) minimabdssing representations. This
argument no longer holds for non-alternating knots: thergta &g in Fig.3 shows that a
symmetric union diagram can realize the minimal crossingimer.

In the context of alternating diagrams, the span of the JpoBsomial turned out to
be a fundamental tool and has thus been intensively studied.

Proposition 6.2. Let D be a symmetric union diagram with n components haRingyoss-
ings off the axis. Then the t-span of\g at mos2c+ 1 —n. Itis equal to2c if and only if
n =1 and the partial diagrams D are alternating so thasparV/ (K.) = c.

Proof. The assertion follows from Propositicné and the known property of the span of
the Jones polynomiall[ 13, 14, 15]. O

Proposition 6.3. Suppose that D is a symmetric union diagram with n comporrevisag
C. positive crossings and cnegative crossings on the axis. Then the degree in s ranges
(at most) from-"5 —c_ to %51 +c;.

Proof. If c. = c_ = 0 then the assertion follows from Equatio22]. We conclude by
induction using Equation28) and @4). O

6.2. A computational lemma. As an auxiliary result, we study the effect ¥(D) of
insertingk consecutive crossings andecklaces on the axis: the resulting diagiag is
shown in Fig14. A positive twist numbek stands for crossings of typ& and a negative
k for crossings of typé< because both orientations either point from left to righboth
point from right to left.

We assume thdd = Do is a symmetric union diagram withcomponents. By Propo-
sition 1.8we can writaV(D) = u"*(1+d(s,t)) for some polynomiati(s,t) € Z[s**,t*1].

Lemma 6.4. If D, is the trivial (n+ 1)-component link then
W (sit) =u™ 14 (—9)F (t— 1+t - d(s1)].

Proof. Insertion of necklaceg=or arbitrary link diagram® = Dg o, Do,1 andD., related
as in Fig.14 by insertion of one necklace, thé-polynomials satisfy the relationship

\/\/071: (_31/2—3_1/2)'(t—1+t_1)~WD N (t—2+t_1)'Woo.
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D Dk7r Doo
FIGURE 14. The insertion ok crossings and af necklaces

If Do is the trivial (n+ 1)-component link, then for = 1 we obtain
Woi(st) =u"- (t— 1+t (1+d(st)) — (t—2+t71) "
=u™ 1+t -1+t - d(s ).

The general case fornecklaces follows by induction.

Insertion of crossingsWe first assume thdt > 0 and use induction. Fdec= 0 the
assertion is valid for all > 0 andn > 1. For the induction step we assume that the assertion
holds fork — 1 for allr > 0 andn > 1. Then, by Propositiob.6 we have

W (S,t) = —s"2u™" —sW,_1,(st)
= -2 s (14 (—9)F Lt -1+t d(s 1))
=u"T 14 (—gt -1+t h d(s )]
Fork > 0 this completes the proof by induction. Hox 0 the calculation is analogous[]

As an illustration we calculate th&-polynomials of two families of symmetric union
diagrams. They will also be used for the two-bridge knot exain§6.4 below.

Example6.5. The diagram®, andD; depicted in Figl5represent the symmetric unions
31437 and 441, respectively, withr necklaces. TheW-polynomials are:

VVDr (Sat) =u [1_ (t - 1+t71)r : e(t)]7
W, (st) = u [T+ (t—1+tH" f(t)].
This follows from Lemma6.4andWp, (st) = 1 - e(t) andWp, (s,t) = 1+ f(t).

e e
) (&
qm, J_0

g

(@) Dy (b) D;

FIGURE 15. Insertion of necklaces in diagrams of 8] and 4 14;
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6.3. Ribbon knots with at most 10 crossings. We first study the gtype family and the
Kinoshita-Terasaka family of symmetric union knot diagsaand then turn to the remain-
ing ribbon knots with at most 10 crossings.

Example6.6. The family of symmetric union diagrani®¥ depicted in Figl6a represents
the knots 3437, 61, 820, 96, 10140, .. . with partial knotK_ = 3; andK_ = 3]. We have
Wo(s,t) = 1+ (Vk, (t)Vk_(t) — 1), and thus by Lemmé.4 theW-polynomial ofDy is

(26) Vk(s.t) = 1+ (=) (Vi (t) -Vic_(t) = 1)

whereVk, (t) =t 1 +t3—t~*andV (t) =t+t3 -t

(a) The @-type family (b) The Kinoshita-Terasaka family
FIGURE 16. Two families of symmetric union diagrams

Example6.7. The family of symmetric union diagrani3 depicted in Figléb has trivial
partial knots;Dg represents the trivial knoD; represents 1@3, andD, represents the
Kinoshita-Terasaka knot. For this family of diagrams Lentnss not applicable because
D., is non-trivial. A small calculation shows thg(s,t) = 1+ ((—s)<—1) - f(t).

L/J\J
(a) &: an asymmetrically amphi- (b) 8&: a symmetrically amphi-
chiral diagram chiral diagram

FIGURE 17. Two symmetric union diagrams fog 8

Example6.8. Figure17 displays two symmetric union diagrams for the ribbon kngt 8
This knot is amphichiral, and so both diagrams are Reiddpratguivalent to their mirror
images. But the first diagram (Fij7a) cannot be symmetrically amphichiral because its
W-polynomial is not symmetric is:

Wi(s,t) =1+ s@p(t) — s f(t).

For the second diagram (Fibj7b) we findWs(s,t) = 1+ f(t), so that the previous obstruc-
tion disappears. This diagram is indeed symmetrically aomtal, as shown in Fidl8:
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(1) We start out with a diagram isotopic to Figh,

(2) we slide the upper twist inside-out,

(3) we perform a half-turn of each of the partial knots alasgrertical axis,

(4) we slide the lower twist outside-in,

(5) we turn the entire diagram upside-down.
Each of these steps is easily seen to be composed of symiReidemeister moves; the
last step is realized by a half-turn around the horizonta &ealizable by symmetric
Reidemeister moves) followed by a half-turn around theie@raxis (flype).

b 88 (590 (5 7

FIGURE 18. Symmetric equivalence between mirror images

L

=S

Table1 completes our list of ribbon knots with at most 10 crossingsorder to save
space we have used the auxiliary polynomials listed in Tajlehich appear repeatedly.

Diagrams for 6, 820, 946, 10140 are discussed in Exampbe6within the 6 -type family,
further diagrams are discussed fari Example6.8, for 9,7 in Examplel.14 and for
10:53in Example6.7. We remark that th@/-polynomial of 1Qgis the same as that 08
and thew-polynomial of 1Qss is the same as that of 14, in accordance with results of
Kanenobu 6] who studied an infinite family containing these knots. Leatfird was used
for the diagrams of f§ 820, 946, 10140 in Example6.6 and again for 8, 103, 102, 1035,
10:37in Tablel.

6.4. Two-bridge ribbon knots. In this final paragraph we establish symmetric inequiv-
alence in the family of two-bridge ribbon knots that we statlin [2]. We consider the
symmetric union diagrani3, andD;, shown in Fig19. They are defined fan > 2 and we
write n = 2k+1 in the odd case and= 2k in the even case.

Q) XX O %X
AL o Il s
T L TTE &,
KN > ,qgj \/\ ) A f‘g:
LA A o XU
Dodd odd Deven Diven

FIGURE 19. The family of knot diagramB,, andD}, of Theorem6.10
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diagram| knot det partial knot diagram | knot det partial knot
W(s,t) W(s,t)
8 25 4 TR 9 49 5

@QQ 1iis~f(t) Cﬁ?j 14—lsz-g1(t)+53-f(t)

SN\ |10, 25 5 QYR 1045 49 5

@ 1-5.g5(0) @/ﬁ 1 gt

TR 10, 49 5 T |10, 81 6

%@ 1-s-0a(t) &\@ 1-st-gi(t) +ha(t) —s-ga(t)

N | 105 49 5 8 105 81 6

@ 1—55'92(t) [@ 1+5~°72-91(t)—Sfl-hl(t)+93(t)
1037 25 4 AN 105, 81 6

@ 1+3S72-f(t) @éj l+791(t)—5'h1(t)+52-93(t)

G0V |1020 25 4 o |10 81 6

g{i\@ 1-s-f(t) C@J)D 1-s 1 f(t) +hyt) —s- f(t)

)| 1085 25 4 (0 |10 121 &

@ RN () | 150ty + o)+ 5-gatt)

TABLE 1. W-polynomials of ribbon knots with at most 10 crossings

e(t) =t 3(t?+1) (t—1)2%(t>+t+1)

f(t) =t*({t?+1) (t—1)2(2+t+1) (t2—t+1)

gut) =t 5(t2+1) (t—1)2(tP+t+1) (t2—t+1)?

g2(t) =t 5(t2+1)2(t—1)2(t2+t+1) (tP—t+1)

g3(t) =t (2 +1)2(t—-1)*(t°+t+1)

au(t) =t 5(t2+1) t—1D*(t2+t+1) (t2—t+1)

gs(t) =t 5(t2+1) (t—1)2(t2+t4+1)2(t2—t+1)

hi(t) =t ®t?4+1) t—1)2t2+t+1) t2—t+1)°

hot) =t6(t2+1) (t—1)*(t?>+t+1) (4 —t3 432 -t +1)
ha(t) =t 8(t2+1) (t—1)?(t2+t+1) (t2—t+1)(t*—3t3+52 -3t +1)

TABLE 2. Auxiliary polynomials used in the description\&f-polynomials

25
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Remark6.9. The symmetric union diagrani3, andD}, represent two-bridge knots of the
form K(a,b) = C(2a,2,2b, -2, —2a,2b) with b = +-1. These knots have genus 3 and their
crossing number is6 n. The first members can be identified as follows=8K (-1, —1)
forn=2, %7=K(-1,1)forn=3, 102 =K(1,1) forn=4, 11a96 =K(1,—-1) forn=5
12a715=K(-2,—1) forn=6, 1332836=K(—2,1) forn=7

The diagram®, andD/, are the two mirror-symmetric diagrams efshown in Fig 17b.
They have been shown to be symmetrically equivalent inTg.

The diagram®3 and D} are the two symmetric union representations gf @picted
in Fig.1. They have already been proven to be distinct in Exarhid

We do not know if the diagrani3, andD/,, representing 14, are symmetrically equiv-
alent: theilW-polynomials cincide but no symmetric transformation has yet been found.

We have proved ing], Theorem 3.2, that for each the symmetric union diagrams
D andDj, are asymmetrically equivalent. One of the motivations fevedoping then/-
polynomial was to show th&, andDj, are, in general, not symmetrically equivalent:

Theorem 6.10. The symmetric union diagramsynd O}, depicted in Figl9 are not
symmetrically equivalent if & 3orn> 5.

Proof. We show that th&V-polynomials of the two diagranis,, andD}, are different for
n= 3 andn > 5. By Propositior6.3the degree irs of the W-polynomial ofD;, ranges at
most from—1 to 1. It is enough to show that the maximal or minimal degregaf the
W-polynomial of Dy, is bigger than 1, or smaller thanl, respectively. For brevity, we
only analyze the maximal degree.

Odd caseForn = 2k+ 1 we claim that maxde§V (D) = k+1.

The diagranDy, containsk negative and+ 1 positive crossings on the axis, therefore
the maximal degree is is less or equal t&+ 1. We resolve alk negative crossings
X on the axis tax{. Only this resolution contributes by Propositibré to the maximal
degrees“t! and we obtain a factor af-s7?)k. The resulting diagram is illustrated in
Fig.20a: it hask necklaces andl+ 1 consecutive positive crossings on the axis, for which
the horizontal resolution is a trivial link witk+ 2 components. Let*(ay(t) + 1) be the
W-polynomial of the latter diagram without the crossings ba axis, then by Lemma
6.4 the W-polynomial of the diagram with + 1 crossings i§—s~72)kuk((—s)* a(t) +

), including the factor — S_l/z)k from the resolution step. By Exampte5 we find that
a(t) # 0, proving that in the odd case the maxirsalegree oD, is k+ 1. Note that the
maximals-degree of —s~2)kuX is zero. For oddh > 3 the maximak-degree is therefore
greater than 1.

o oo

I8 G

(a) Odd case (b) Even case

FIGURE 20. Diagrams occuring in the proof of Theor&0(for k = 2)

Even caseForn = 2k we claim that maxdeyV(D,) = k—1.

We observe that the diagraBy, obtained fromDy by deleting the first and the last
crossing on the axis has the sawvepolynomial asD,,. This requires a short calculation
using the fact that thed -resolutions for these crossings are diagrams of the Liivia
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As an illustration, let us make the first three cases explfitr n = 2 the diagranD;
is 41841. Forn = 4 the diagranD} coincides withD/,, showing thatD4 and D}, cannot
be distinguished by theW-polynomials. Fom = 6 the two diagram®e and Dy are
illustrated in Fig21; they represent the knots 4215 and 133, respectively?

KR KK
5

FIGURE 21. Two symmetric union diagrams sharing the s&mpolynomial

By Proposition6.3the exponents afin W(D,,) lie between-k and+k. In the diagram
Dy, however, onlyk — 1 negative andk — 1 positive crossings on the axis remain, so in
W(Dp) =W(Dy,) the bounds-k and-+k are not attained, whence maxdé§(Dp) <k—1.

In Dy, we resolve alk — 1 negative crossing¥ on the axis to>{. As in the previous
case, only this resolution contributes to the maximal degfe! and we obtain a factor
of (—s%2)k=1. The resulting diagram is illustrated in FRpb: it hask — 1 necklaces
andk — 1 consecutive positive crossings on the axis, for which thrézbntal resolution
is a trivial link with k+ 1 components. The process of adding necklaces and twigis is t
same as in the odd case: for t¥epolynomial of the diagram witk— 1 crossings we have
(—s ¥2)k-1uk=1((—g)k~py(t) + 1) if the W-polynomial of the respective diagram without
the twists is(—s 2 1u~1(by(t) + 1), both already including the factdqr-s¥2)k1.
Using again Examplé.5 we find thatby(t) # 0. This proves that in the even case the
maximal s-degree ofW(Dy) = W(Dy,) is k— 1. Hence, for evem > 6 the maximals-
degree is greater than 1, which proves the theorem. O

REFERENCES

[1] M. Eisermann. The Jones polynomial of ribbon linkgeometry & Topologyl13:623-660, 2009.
[2] M. Eisermann and C. Lamm. Equivalence of symmetric union diagrJ. Knot Theory Ramifications
16(7):879-898, 2007.
[3] R. H. Fox. A quick trip through knot theory. fopology of 3-manifolds and related topics (Proc. The Univ.
of Georgia Institute, 1961pages 120-167. Prentice-Hall, Englewood Cliffs, N.J§219
[4] R. H. Fox and J. W. Milnor. Singularities of 2-spheres wsglace and equivalence of knoBull. Amer.
Math. Soc,.63:406, 1957.
[5] R. H. Fox and J. W. Milnor. Singularities of 2-spheres isplace and cobordism of knot3saka J. Math.
3:257-267, 1966.
[6] T. Kanenobu. Examples on polynomial invariants of knots kmks. Math. Ann, 275(4):555-572, 1986.
[7] L. H. Kauffman. State models and the Jones polynonighology 26(3):395-407, 1987.
[8] S. Kinoshita and H. Terasaka. On unions of kn@saka Math. J.9:131-153, 1957.
[9] C. Lamm. Symmetric unions and ribbon knoBsaka J. Math.37(3):537-550, 2000.
[10] W. B. R. Lickorish.An introduction to knot theorywolume 175 ofGraduate Texts in MathematicSpringer-
Verlag, New York, 1997.
[11] W. B. R. Lickorish and K. C. Millett. Some evaluations dfik polynomials.Comment. Math. Hely.
61(3):349-359, 1986.
[12] C. Livingston. A survey of classical knot concordance-Handbook of knot theorpages 319-347. Elsevier
B. V., Amsterdam, 2005.

Iwe seize the occasion to correct an unfortunate mispringlinthe caption of Fig. 7 showing a similar
diagram states wrong partial knots. The partial knots oftimvn diagrams of &3 areC(3,4) andC(2,6).



28 MICHAEL EISERMANN AND CHRISTOPH LAMM

[13] K. Murasugi. Jones polynomials and classical conjestim knot theoryTopology 26(2):187-194, 1987.

[14] M. B. Thistlethwaite. A spanning tree expansion of tbaek polynomialTopology 26(3):297-309, 1987.

[15] V. G. Turaev. A simple proof of the Murasugi and Kauffmaedhems on alternating linkEnseign. Math.
(2), 33(3-4):203-225, 1987.

INSTITUT FUR GEOMETRIE UND TOPOLOGIE, UNIVERSITAT STUTTGART, GERMANY
E-mail addressM chael . Ei ser mrann@rat henat i k. uni -stuttgart. de
URL: www\. i gt . uni -stuttgart. de/eiserm

RUCKERTSTRASSE3, 65187 WESBADEN, GERMANY
E-mail addressChr i st oph. Lamm@web. de



	1. Introduction and outline of results
	1.1. Motivation and background
	1.2. A refined Kauffman bracket
	1.3. A refined Jones polynomial
	1.4. Symmetric unions
	1.5. Applications and examples
	1.6. Open questions
	1.7. How this article is organized
	1.8. Acknowledgements

	2. Symmetric diagrams and symmetric equivalence
	2.1. Symmetric diagrams
	2.2. Symmetric unions
	2.3. Symmetric Reidemeister moves
	2.4. A symmetric Reidemeister theorem
	2.5. Partial knots
	2.6. Reidemeister moves respecting the axis

	3. Constructing the two-variable W-polynomial
	3.1. Constructing the two-variable bracket polynomial
	3.2. Normalizing with respect to the writhe
	3.3. Generalization to arbitrary surfaces

	4. General properties of the W-polynomial
	4.1. Symmetries, connected sums, and mutations
	4.2. Oriented skein relations

	5. The W-polynomial of symmetric unions
	5.1. Integrality
	5.2. Symmetric unions
	5.3. Special values in t
	5.4. Special values in s

	6. Examples and applications
	6.1. Alternating knots
	6.2. A computational lemma
	6.3. Ribbon knots with at most 10 crossings
	6.4. Two-bridge ribbon knots

	References

