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THE FUNDAMENTAL THEOREM OF ALGEBRA MADE EFFECTIVE:
AN ELEMENTARY REAL-ALGEBRAIC PROOF VIA STURM CHAINS

MICHAEL EISERMANN

ABSTRACT. Sturm’s theorem (1829/35) provides an elegant algorithm to count and locate
the real roots of any real polynomial. In his residue calculus (1831/37) Cauchy extended
Sturm’s method to count and locate the complex roots of any complex polynomial. For
holomorphic functions Cauchy’s index is based on contour integration, but in the special
case of polynomials it can effectively be calculated via Sturm chains using euclidean di-
vision as in the real case. In this way we provide an algebraic proof of Cauchy’s theorem
for polynomials over any real closed field. As our main tool, we formalize Gauss’ geomet-
ric notion of winding number (1799) in the real-algebraic setting, from which we derive
a real-algebraic proof of the Fundamental Theorem of Algebra. The proof is elementary
inasmuch as it uses only the intermediate value theorem and arithmetic of real polynomi-
als. It can thus be formulated in the first-order language of real closed fields. Moreover,
the proof is constructive and immediately translates to an algebraic root-finding algorithm.

L’algèbre est généreuse, elle donne souvent plus qu’on lui demande. (Jean le Rond d’Alembert)1

Carl Friedrich Gauß
(1777–1855)

Augustin Louis Cauchy
(1789–1857)

Charles-François Sturm
(1803–1855)

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. Historical origins. Sturm’s theorem [54, 55], announced in 1829 and published in
1835, provides an elegant and ingeniously simple algorithm to determine for each real
polynomial P∈R[X ] the number of its real roots in any given interval [x0,x1]⊂R. Sturm’s
breakthrough solved an outstanding problem of his time and earned him instant fame.

In his residue calculus, outlined in 1831 and fully developed in 1837, Cauchy [8, 9] ex-
tended Sturm’s method to determine for each complex polynomial F ∈C[Z] the number of
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in the Encyclopédie (1751–1765, tome 5, p. 850): “[L’algèbre] répond non seulement à ce qu’on lui demande,
mais encore à ce qu’on ne lui demandoit pas, et qu’on ne songeoit pas à lui demander.” The portraits of Gauss
and Cauchy are taken from Wikimedia Commons, the portrait of Sturm is from Loria’s biography [33].
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its complex roots in a given domain, say in any rectangle of the form [x0,x1]× [y0,y1]⊂C,
where we identify C with R2 in the usual way. For holomorphic functions Cauchy’s index
is based on contour integration, but in the special case of polynomials it can effectively be
calculated via Sturm chains using euclidean division as in the real case.

Combining Sturm’s real algorithm and Cauchy’s complex approach, we provide an al-
gebraic proof of Cauchy’s theorem for polynomials over any real closed field. As our main
tool, we formalize Gauss’ geometric notion of winding number in real-algebraic language.
This leads to a real-algebraic proof of the Fundamental Theorem of Algebra, assuring that
every nonconstant complex polynomial has at least one complex zero. Since zeros split off
as linear factors, this is equivalent to the following extensive formulation.

Theorem 1.1 (Fundamental Theorem of Algebra, existence only). For every polynomial

F = Zn + c1Zn−1 + · · ·+ cn−1Z + cn

with complex coefficients c1, . . . ,cn−1,cn ∈ C there exist z1,z2, . . . ,zn ∈ C such that

F = (Z− z1)(Z− z2) · · ·(Z− zn).

Numerous proofs of this important theorem have been published over the last two cen-
turies. According to the tools used, they can be grouped into three families (§7):

(1) Analysis, using compactness, integration, transcendental functions, etc.;
(2) Algebra, using polynomials and the intermediate value theorem;
(3) Algebraic topology, using some form of the winding number.

There are proofs for every taste and each has its merits. From a more ambitious, con-
structive viewpoint, however, a mere existence proof only “announces the presence of a
treasure, without divulging its location”, as Hermann Weyl put it. “It is not the existence
theorem that is valuable, but the construction carried out in its proof.”2

The real-algebraic approach presented here is situated between (2) and (3). It combines
algebraic computation (Cauchy’s index and Sturm’s algorithm) with geometric reasoning
(Gauss’ notion of winding number) and therefore enjoys some remarkable features.

• It uses only the intermediate value theorem and arithmetic of real polynomials.
• It is elementary, in the colloquial as well as the formal sense of first-order logic.
• All arguments and constructions hold verbatim over every real closed field.
• The proof is constructive and immediately translates to a root-finding algorithm.
• The algorithm is easy to implement, and reasonably efficient in moderate degree.
• It can be formalized to a computer-verifiable proof (of theorem and algorithm).

The logical structure of such a proof was already outlined by Sturm [56] in 1836, but his
article lacks the elegance and perfection of his famous 1835 mémoire. This may explain
why his sketch found little resonance, was not further worked out, and became forgotten
by the end of the 19th century. The aim of the present article is to save the real-algebraic
proof from oblivion and to develop Sturm’s idea in due rigour. The presentation is intended
for non-experts and thus contains much introductory and expository material.

1.2. The algebraic winding number. Our arguments work over every ordered field R
that satisfies the intermediate value property for polynomials, i.e., a real closed field (§2).
We choose this starting point as the axiomatic foundation of Sturm’s theorem (§3). We
then deduce that the field C = R[i] with i2 = −1 is algebraically closed, which was first
proven by Artin and Schreier [3, 4]. Moreover, we construct the algebraic winding number
and establish an algorithm to locate the zeros of any given polynomial F ∈ C[Z]∗. (Here
for every ring A, we denote by A∗ = Ar{0} the set of its nonzero elements.)

2 “Bezeichne ich Erkenntnis als einen wertvollen Schatz, so ist das Urteilsabstrakt ein Papier, welches das
Vorhandensein eines Schatzes anzeigt, ohne jedoch zu verraten, an welchem Ort.” [66, p. 54] “Nicht das Existenz-
theorem ist das Wertvolle, sondern die im Beweise geführte Konstruktion.” [66, p. 55]
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The geometric idea is very intuitive: the winding number w(γ) counts the number of
turns that a loop γ : [0,1]→ C∗ performs around 0. Theorem 1.2 turns the geometric idea
into a rigorous algebraic construction and provides an effective computation.
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FIGURE 1. The winding number w(F |∂Γ) of a polynomial F ∈ C[Z]
along the boundary of a rectangle Γ⊂ C. In this example w(F |∂Γ) = 2.

In order to work algebraically, a loop γ will be understood to be a piecewise polyno-
mial map from the interval [0,1] = {x ∈ R | 0 ≤ x ≤ 1} to C∗ such that γ(0) = γ(1); see
§4.3. Likewise, a homotopy between loops will be required to be piecewise polynomial, as
explained in §5.2. We can now formulate our main result.

Theorem 1.2 (algebraic winding number). Consider an ordered field R and its extension
C = R[i] where i2 = −1. Let Ω be the set of piecewise polynomial loops γ : [0,1]→ C∗.
We define the algebraic winding number w : Ω→ Z by the following algebraic property:

(W0) Computation: w(γ) equals half the Cauchy index of reγ

imγ
, recalled in §3, and can

thus be calculated by Sturm’s algorithm via iterated euclidean division.

If R is real closed, then w enjoys the following geometric properties:

(W1) Normalization: Let Γ ⊂ C be a rectangle of the form Γ = [x0,x1]× [y0,y1]. If γ

parametrizes the boundary ∂Γ⊂C∗, positively oriented as in Figure 1 (left), then

w(γ) =

{
1 if 0 ∈ IntΓ,
0 if 0 ∈ CrΓ,

(W2) Multiplicativity: For all γ1,γ2 ∈Ω we have

w(γ1 · γ2) = w(γ1)+w(γ2),

(W3) Homotopy invariance: For all γ0,γ1 ∈Ω we have

w(γ0) = w(γ1) whenever γ0 and γ1 are homotopic in C∗.

Conversely, if over some ordered field R there exists a map w : Ω→Z satisfying properties
(W1), (W2), (W3), then R is real closed and w can be calculated as in (W0)

Remark 1.3. Since polynomials form the simplest function algebra and can immediately be
used for computations, Theorem 1.2 has both practical and theoretical relevance. Over the
real numbers R, the Stone-Weierstrass theorem can be used to extend the winding number
to continuous loops and homotopies, such that the geometric properties (W1), (W2), (W3)
continue to hold. Several alternative constructions over R lead to this result:

(1) Fundamental group, w : π1(C∗,1) ∼−→ Z via the Seifert–van Kampen theorem,
(2) Covering theory, exp: C→→ C∗ with monodromy w : π1(C∗,1) ∼−→ Z,
(3) Homology, w : H1(C∗) ∼−→ Z via the Eilenberg–Steenrod axioms,
(4) Complex analysis, analytic winding number w(γ) = 1

2πi
∫

γ
dz
z via integration.
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Each of these approaches relies on some characteristic property of the field R of real
numbers, such as metric completeness or some equivalent, and therefore does not extend
to any other real closed field. In this article we develop an independent algebraic proof
using only polynomial arithmetic, avoiding compactness, integrals, covering spaces, etc.

We remark that constructions (1) and (2) are dual via Galois correspondence, while their
abelian counterparts (3) and (4) are dual via the homology-cohomology pairing. The real-
algebraic approach appears to be self-dual, as expressed in Theorem 1.2 by the equivalence
of the algebraic computation (W0) with the geometric properties (W1), (W2), and (W3).
This dual nature conjugates real-algebraic geometry and effective algebraic topology.

Remark 1.4. The algebraic winding number turns out to be slightly more general than
stated in the theorem. The algebraic definition (W0) of w(γ) also applies to loops γ that
pass through 0. Normalization (W1) extends to w(γ) = 1/2 if 0 lies in an edge of Γ, and
w(γ) = 1/4 if 0 is one of the vertices of Γ. Multiplicativity (W2) continues to hold provided
that 0 is not a vertex of γ1 or γ2. Homotopy invariance (W3) applies only to loops in C∗.

1.3. Counting complex roots. For the rest of this introduction, R denotes a real closed
field and C = R[i] its complex extension. From Theorem 1.2 we can deduce the Funda-
mental Theorem of Algebra using the geometric properties (W1), (W2), (W3) as follows.

As the first step (§4) we obtain the following algebraic version of Cauchy’s theorem.
We write w(F |∂Γ) as a short-hand for w(F ◦ γ) where γ parametrizes ∂Γ as in Figure 1.

Theorem 1.5 (local winding number). If F ∈ C[Z] does not vanish at any of the four
vertices of the rectangle Γ ⊂ C, then the algebraic winding number w(F |∂Γ) equals the
number of roots of F in Γ. Here each root in the interior of Γ is counted with its multiplicity,
whereas each root in an edge of Γ is counted with half its multiplicity.

To prove this, consider F = (Z−z1) · · ·(Z−zm)G with z1, . . . ,zm ∈ Γ such that G has no
zeros in Γ. For a ∈ Γ the homotopy Gt = G(a+ t(Z−a)) deforms G1 = G to G0 = G(a),
whence homotopy invariance (W3) implies that w(G1|∂Γ) = w(G0|∂Γ) = 0. The theorem
then follows from multiplicativity (W2) and normalization (W1) as in Remark 1.4.

Example 1.6. Figure 1 displays the situation for F = Z5−5Z4−2Z3−2Z2−3Z−12 and
Γ = [−1,+1]2. Here the winding number is w(F |∂Γ) = 2. This is in accordance with the
approximate location of zeros: Γ contains z1,2 ≈−0.9±0.76i whereas z3,4 ≈ 0.67±1.06i
and z5 ≈ 5.46 lie outside of Γ.

The hypothesis that F does not vanish at any of the vertices of Γ is very mild and easy
to check in every concrete application. Unlike Cauchy’s integral formula w(γ) = 1

2πi
∫

γ
dz
z ,

the algebraic winding number behaves well if zeros lie on (or close to) the boundary, and
the uniform treatment of all configurations of roots simplifies theoretical arguments and
practical implementations alike. This is yet another manifestation of the oft-quoted wisdom
of d’Alembert that Algebra is generous, she often gives more than we ask of her.1

As the second step (§5) we formalize Gauss’ geometric argument (1799) saying that
F ≈ Zn outside of a sufficiently big rectangle Γ⊂C, whence F |∂Γ has winding number n.

Theorem 1.7 (global winding number). For each polynomial F = Zn + c1Zn−1 + · · ·+ cn
in C[Z], we define its Cauchy radius to be ρF := 1+max{|c1|, . . . , |cn|}. Then F satisfies
w(F |∂Γ) = n on every rectangle Γ containing the Cauchy disk B(ρF) = {z∈C | |z|< ρF }.

The proof uses the homotopy Ft = Zn+t(c1Zn−1+ · · ·+cn) to deform F1 =F to F0 = Zn.
All zeros of Ft lie in B(ρF). The hypothesis Γ⊃ B(ρF) ensures that Ft has no zeros on ∂Γ,
so homotopy invariance (W3) allows us to conclude that w(F1|∂Γ) = w(F0|∂Γ) = n.

Theorems 1.5 and 1.7 imply that C is algebraically closed. Each polynomial F ∈ C[Z]
of degree n has n roots in C, more precisely in the square Γ = [−ρF ,ρF ]

2 ⊂ C. (The latter
is only a coarse estimate and can be improved for practical purposes; see Remark 5.10.)
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1.4. The Fundamental Theorem of Algebra made effective. The winding number proves
more than mere existence of roots: it also establishes a root-finding algorithm (§6.2). Here
we have to assume that the ordered field R is archimedean, which amounts to R⊂ R.

Theorem 1.8 (Fundamental Theorem of Algebra, effective version). For every complex
polynomial F = Zn+c1Zn−1+ · · ·+cn in C[Z] there exist complex roots z1, . . . ,zn ∈C such
that F = (Z− z1) · · ·(Z− zn) and the algebraic winding number provides an algorithm to
locate them. Starting from some rectangle containing all n roots, as in Theorem 1.7, we
can subdivide and keep only those rectangles that actually contain roots, using Theorem
1.5. All computations can be carried out using Sturm chains according to Theorem 1.2. By
iterated bisection we can thus approximate all roots to any desired precision.

Remark 1.9 (computability). In the real-algebraic setting of this article we consider the
field operations (a,b) 7→ a+b, a 7→ −a, (a,b) 7→ a ·b, a 7→ a−1 and the comparisons a = b,
a < b as primitive operations. Over the real numbers R, this point of view was advanced
by Blum–Cucker–Shub–Smale [6] by postulating a hypothetical real number machine.

In order to implement the required real-algebraic operations on a Turing machine, how-
ever, a more careful analysis is necessary (§6.1). Given F = c0Zn + c1Zn−1 + · · ·+ cn we
have to assume that the operations of the ordered field Q(re(c0), im(c0), . . . , re(cn), im(cn))
are computable in the Turing sense (§6.2). This is the case for the field Q of rational num-
bers, for example, or every real-algebraic number field Q(α)⊂ R.

Remark 1.10 (complexity). On a Turing machine we can compare time requirements
by measuring bit-complexity. The above Sturm–Cauchy method requires Õ(n4b2) bit-
operations to approximate all n roots to a precision of b bits (§6.4). Further improvement
is necessary to reach the nearly optimal bit-complexity Õ(n3b) of Schönhage [50] (§6.5).

Nevertheless, the Sturm–Cauchy method can be useful in hybrid algorithms, in order to
verify numerical approximations and to improve them as necessary [48]. Once sufficient
approximations of the roots have been obtained, one can switch to Newton’s method, which
converges much faster but vitally depends on good starting values (§6.3).

1.5. How this article is organized. Section 2 briefly recalls the notion of real closed
fields, on which we build Sturm’s theorem and the theory of Cauchy’s index.

Section 3 presents Sturm’s theorem [55] counting real roots of real polynomials. The
only novelty is the extension to boundary points, which is needed in Section 4.

Section 4 proves Cauchy’s theorem [9] counting complex roots of complex polynomials,
by establishing multiplicativity (W2) of the algebraic winding number.

Section 5 establishes homotopy invariance (W3), and proves the Fundamental Theorem
of Algebra by Gauss’ winding number argument.

Section 6 discusses algorithmic aspects, such as Turing computability, the efficient com-
putation of Cauchy indices, and the crossover to Newton’s local method.

Section 7, finally, provides historical comments in order to put the real-algebraic ap-
proach into a wider perspective.

I have tried to keep the exposition elementary yet detailed. I hope that the interest of the
subject justifies the resulting length of this article.

Annotation 1.1. (Annotated version) In this annotated version, several complementary remarks are included
that will not appear in the published version. They are set in small font, as this one, and numbered separately in
order to ensure consistent references.

CONTENTS

1. Introduction and statement of results. 1.1. Historical origins. 1.2. The algebraic
winding number. 1.3. Counting complex roots. 1.4. The Fundamental Theorem of Algebra
made effective. 1.5. How this article is organized.

2. Real closed fields. 2.1. Real numbers. 2.2. Real closed fields. 2.3. Elementary theory of
ordered fields.
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3. Sturm’s theorem for real polynomials. 3.1. Counting sign changes. 3.2. The Cauchy
index. 3.3. Counting real roots. 3.4. The inversion formula. 3.5. Sturm chains. 3.6. Eu-
clidean chains. 3.7. Sturm’s theorem. 3.8. Pseudo-euclidean division.

4. Cauchy’s theorem for complex polynomials. 4.1. Real and complex fields. 4.2. Real and
complex variables. 4.3. The algebraic winding number. 4.4. Normalization. 4.5. The
product formula.

5. The Fundamental Theorem of Algebra. 5.1. Counting complex roots. 5.2. Homotopy
invariance. 5.3. The global winding number. 5.4. Geometric characterization of the
winding number.

6. Algorithmic aspects. 6.1. Turing computability. 6.2. The Sturm–Cauchy root-finding
algorithm. 6.3. Crossover to Newton’s local method. 6.4. Fast Cauchy index computation.
6.5. What remains to be improved? 6.6. Formal proofs.

7. Historical remarks. 7.1. Polynomial equations. 7.2. Gauss’ geometric proof. 7.3. Cauchy,
Sturm, Liouville. 7.4. Sturm’s algebraic vision. 7.5. Further development in the 19th cen-
tury. 7.6. Survey of proof strategies. 7.7. Constructive and algorithmic aspects.

A. The Routh–Hurwitz stability theorem.
B. Brouwer’s fixed point theorem over real closed fields.

Annotation 1.2. (Why should we care for yet another proof?) There are several lines of proof leading to the
Fundamental Theorem of Algebra, and literally hundreds of variants have been published over the last 200 years
(see §7). The motivations for the present work are threefold:

• First, on a philosophical level, it is satisfying to minimize the hypotheses and simultaneously maximize
the conclusion.

• Second, from a practical point of view, it is desirable to have a constructive proof, even more so if it
directly translates to a practical algorithm.

• Third, when teaching mathematics, it is advantageous to have different proofs to choose from, adapted
to the course’s level and context.

Annotation 1.3. (Sturm’s forgotten proof) Attracted by the aforementioned features, I worked out the real-
algebraic approach for a computer algebra course at the University of Grenoble in 2008. The idea seems natural,
and so I was surprised not to find any such proof in the literature. Retracing its history (§7), I was even more
surprised when I finally unearthed the key ideas in the works of Cauchy and Sturm (§7.3). Why have they been
lost? The real-algebraic proof is, of course, based on classical ideas. The geometric idea goes back to Gauss in
1799; Sturm’s algebraic method and Cauchy’s analytic techniques have been developed in the 1830s. Since then
they have evolved in very different directions:

Sturm’s theorem has become a cornerstone of real algebra. Cauchy’s integral is the starting point of complex
analysis. Their algebraic method for counting complex roots, however, has transited from algebra to applications,
where its conceptual and algorithmic simplicity are much appreciated. Algebra textbooks published since the
end of the 19th century do not present it; by now it is known almost exclusively to specialists as as a tool for
computation, for example in the Routh–Hurwitz theorem on the stability of motion. After Sturm’s outline of
1836, this algebraic tool seems to have never been employed to prove the existence of roots.

In retrospect, the proof presented here is a fortunate rediscovery of Sturm’s algebraic vision (§7.4). The
present article gives a modern, rigorous, and complete presentation, which means to set up the right definitions
and to provide elementary, real-algebraic proofs.

2. REAL CLOSED FIELDS

This section sets the scene by recalling the notion of a real closed field, on which we
build Sturm’s theorem in §3, and also sketches its mathematical context.

Annotation 2.1. (Fields) We assume that the reader is familiar with the algebraic notion of a field. In order to
highlight the field axioms formulated in first-order logic, we recall that a field (R,+, ·) is a set R equipped with
two binary operations + : R×R→ R and · : R×R→ R satisfying the following three sets of axioms:

First, addition enjoys the following four properties, saying that (R,+) is an abelian group:
(A1) associativity: For all a,b,c ∈ R we have (a+b)+ c = a+(b+ c).
(A2) commutativity: For all a,b ∈ R we have a+b = b+a.
(A3) neutral element: There exists 0 ∈ R such that for all a ∈ R we have a+0 = a.
(A4) opposite elements: For each a ∈ R there exists b ∈ R such that a+b = 0.

The neutral element 0 ∈R whose existence is required by axiom (A3) is unique by (A2). This ensures that axiom
(A4) is unambiguous. The opposite element of a ∈ R required by axiom (A4) is unique and denoted by −a.

Second, multiplication enjoys the following four properties, saying that (R∗, ·) is an abelian group:
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(M1) associativity: For all a,b,c ∈ R we have (a ·b) · c = a · (b · c).
(M2) commutativity: For all a,b ∈ R we have a ·b = b ·a.
(M3) neutral element: There exists 1 ∈ R, 1 6= 0, such that for all a ∈ R we have a ·1 = a.
(M4) inverse elements: For each a ∈ R, a 6= 0, there exists b ∈ R such that a ·b = 1.

The neutral element 1∈R whose existence is required by axiom (M3) is unique by (M2). This ensures that axiom
(M4) is unambiguous. The inverse element of a ∈ R required by axiom (M4) is unique and denoted by a−1.

Third, multiplication is distributive over addition:
(D) distributivity: For all a,b,c ∈ R we have a · (b+ c) = (a ·b)+(a · c).

Annotation 2.2. (Ordered fields) An ordered field is a field R with a distinguished subset R>0 ⊂ R of positive
elements, denoted x > 0, that is compatible with the field operations in the following sense:

(O1) trichotomy: For each x ∈ R we have either x > 0 or x = 0 or −x > 0.
(O2) compatibility: For all x,y ∈ R the conditions x > 0 and y > 0 imply x+ y > 0 and xy > 0.
We define the ordering x > y by x− y > 0. The weak ordering x ≥ y means x > y or x = y. The inverse

ordering x < y is defined by y > x, and likewise x ≤ y is defined by y ≥ x. From the above axioms follow the
usual properties; see Jacobson [25, §5.1], Cohn [11, §8.6], or Lang [29, §XI.1]. Intervals in R will be denoted, as
usual, by

[a,b] = {x ∈ R | a≤ x≤ b}, ]a,b] = {x ∈ R | a < x≤ b},
]a,b[ = {x ∈ R | a < x < b}, [a,b[ = {x ∈ R | a≤ x < b}.

Every ordered field R inherits a natural topology generated by open intervals: a subset U ⊂ R is open if for
each x ∈U there exists δ > 0 such that ]x− δ ,x+ δ [ ⊂U . We can thus apply the usual notions of topological
spaces and continuous functions. Addition and multiplication are continuous, and so are polynomial functions.

For x ∈ R we define the absolute value to be |x| := x if x≥ 0 and |x| :=−x if x≤ 0. We record the following
properties, which hold for all x,y ∈ R:

(1) |x| ≥ 0, and |x|= 0 if and only if x = 0.
(2) |x+ y| ≤ |x|+ |y| for all x,y ∈ R.
(3) |x · y|= |x| · |y| for all x,y ∈ R.

For every x ∈R we have x2 ≥ 0 with equality if and only if x = 0. The polynomial X2−a can thus have a root
x ∈ R only for a ≥ 0; if it has a root, then X2−a = (X − x)(X + x) and among the two roots ±x we can choose
signs such that x ≥ 0, denoted

√
a := x. This implies that

√
x2 = |x|. In §4.1 we will extend the absolute value

| | : R→ R≥0 to a norm | | : C→ R≥0 on the complex field C = R[i].

Annotation 2.3. (Rings) A ring (R,+, ·) is only required to satisfy axioms (A1-A4), (M1-M3), and (D) but not
necessarily (M4). This is sometimes called a commutative ring with unit, for emphasis, but we will have no need
for this distinction. A ring R is called integral if for all a,b ∈ R∗ we have ab ∈ R∗. Every integral ring R can
be embedded into a field; the smallest such field is unique and thus called the field of fractions of R. If a ring
ist ordered (in the sense of Annotation 2.2), then it is integral and the ordering uniquely extends to its field of
fractions. For example, the ring Z of integers thus yields the field Q of rational numbers. In this article we will
study the ring R[X ] polynomials over some ordered field R, as explained below, which has as field of fractions
the field of rational functions R(X).

2.1. Real numbers. As usual we denote by R the field of real numbers, that is, an ordered
field (R,+, ·,<) such that every nonempty bounded subset A⊂ R has a least upper bound
in R. This is a very strong property, and in fact it characterizes R.

Theorem 2.1. Let R be an ordered field, with the order-topology generated by the open
intervals. Then the following conditions are equivalent:

(1) The ordered set (R,<) satisfies the least upper bound property,
(2) Each interval [a,b]⊂ R is compact as a topological space,
(3) Each interval [a,b]⊂ R is connected as a topological space,
(4) The intermediate value property holds for all continuous functions f : R→ R.

Any two ordered fields satisfying these properties are isomorphic by a unique field iso-
morphism, and this isomorphism preserves order. Any construction of the real numbers
shows that one such field exists. �

Annotation 2.4. (Sketch of proof) Existence and uniqueness of the field R of real numbers form the foundation
of any analysis course. Many analysis books prove (1)⇒ (2)⇒ (4), while (3)⇔ (4) is essentially the definition
of connectedness. Here we only show (4)⇒ (1), in the form ¬(1)⇒¬(4).

Let A ⊂ R be nonempty and bounded above. Define f : R→ {±1} by f (x) = 1 if a ≤ x for all a ∈ A, and
f (x) =−1 if x < a for some a ∈ A. In other words, we have f (x) = 1 if and only if x is an upper bound of A. If
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f is discontinuous at x, then f (x) = +1 but f (y) =−1 for all y < x, whence x = supA. If A does not have a least
upper bound in R, then f is continuous but does not satisfy the intermediate value property.

2.2. Real closed fields. The field R of real numbers provides the foundation of analysis.
In the present article it appears as the most prominent example of the much wider class of
real closed fields. The reader who wishes to concentrate on the classical case may skip the
rest of this section and assume R = R throughout.

Annotation 2.5. (Polynomials) In the sequel we shall assume that the reader is familiar with the polynomial
ring K[X ] over some ground ring K, see Jacobson [25, §2.9–2.12] or Lang [29, §II.2, §IV.1]. We briefly recall
some notation. Let K be a ring, that is, satisfying axioms (A1-A4), (M1-M3), and (D) of Annotation 2.2, but not
necessarily (M4). There exists a ring K[X ] characterized by the following two properties: First, K[X ] contains K
as a subring and X as an element. Second, every nonzero element P ∈K[X ] can be uniquely written as

P = c0 + c1X + · · ·+ cnXn where n ∈ N and c0,c1, . . . ,cn ∈K,cn 6= 0.

In this situation K[X ] is called the ring of polynomials over K in the variable X , and each element P ∈ K[X ]

is called a polynomial over K in X . In the above notation we call degP := n the degree and lcP := cn the leading
coefficient of P. The zero polynomial is special: we set deg0 :=−∞ and lc0 := 0.

Annotation 2.6. (Polynomial functions) The ring K[X ] has the following universal property: for every ring K′
containing K as a subring and every element x ∈ K′ there exists a unique ring homomorphism Φ : K[X ]→ K′
such that Φ|K = idK and Φ(X) = x. Explicitly, Φ sends P = c0 +c1X + · · ·+cnXn to P(x) = c0 +c1x+ · · ·+cnxn.
In particular, each polynomial P ∈K[X ] defines a polynomial function fP : K→K, x 7→ P(x). If K is an infinite
integral ring, for example an ordered ring or field, then the map P 7→ fP is injective, and we can thus identify each
polynomial P ∈K[X ] with the associated function fP : K→K. Traditionally equations have roots and functions
have zeros. In this article we use both words “roots” and “zeros” synonymously.

Definition 2.2. An ordered field (R,+, ·,<) is real closed if it satisfies the intermediate
value property for polynomials: whenever P ∈R[X ] satisfies P(a)P(b)< 0 for some a < b
in R, then there exists x ∈ R with a < x < b such that P(x) = 0.

Example 2.3. The field R of real numbers is real closed by Theorem 2.1 above. The field
Q of rational numbers is not real closed, as shown by the example P = X2− 2 on [1,2].
The algebraic closure Qc of Q in R is a real closed field. In fact, Qc is the smallest real
closed field, in the sense that Qc is contained in any real closed field. Notice that Qc is
much smaller than R, in fact Qc is countable whereas R is uncountable.

The theory of real closed fields originated in the work of Artin and Schreier [3, 4] in the
1920s, culminating in Artin’s solution [1] of Hilbert’s 17th problem. Excellent textbook
references include Jacobson [25, chap. I.5 and II.11] and Bochnak–Coste–Roy [7, chap. 1
and 6]. For the present article, Definition 2.2 above is the natural starting point because it
captures the essential geometric feature. It deviates from the algebraic definition of Artin–
Schreier [3], saying that an ordered field is real closed if no proper algebraic extension can
be ordered. For a proof of their equivalence see [11, Prop. 8.8.9] or [7, §1.2].

Remark 2.4. In a real closed field R every positive element has a square root, and so the
ordering on R can be characterized in algebraic terms: For every a ∈ R we have a ≥ 0 if
and only if there exists b ∈R such that b2 = a. In particular, if a field is real closed, then it
admits precisely one ordering that is compatible with the field structure.

Every archimedean ordered field can be embedded into R; see [11, §8.7]. The field
R(X) of rational functions can be ordered (in many different ways; see [7, §1.1]) but does
not embed into R. Nevertheless it can be embedded into its real closure.

Theorem 2.5 (Artin–Schreier [3, Satz 8]). Every ordered field K admits a real closure,
i.e., a real closed field that is algebraic over K and whose unique ordering extends that of
K. Any two real closures of K are isomorphic via a unique isomorphism fixing K. �

The real closure is thus completely rigid, in contrast to the algebraic closure.
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Remark 2.6. Artin and Schreier [3, Satz 3] proved that if a field R is real closed, then
C = R[i] is algebraically closed, recasting the classical algebraic proof of the Fundamen-
tal Theorem of Algebra (§7.6.2). Conversely [4], if a field C is algebraically closed and
contains a subfield R such that 1 < dimR(C)< ∞, then R is real closed and C = R[i].

Annotation 2.7. (Finiteness conditions) In the sequel we will not appeal to the least upper bound property,
nor compactness nor connectedness. The intermediate value property for polynomials is a sufficiently strong
hypothesis. In order to avoid compactness, a sufficient finiteness condition will be the fact that a polynomial of
degree n over a field K can have at most n roots in K.

In general P can have less than n roots, of course, as illustrated by the polynomial X2 + 1 over R. The fact
that P cannot have more than n roots relies on commutativity (M2) and invertibility (M4). For example X2− 1
has four roots in the nonintegral ring Z/8Z of integers modulo 8, namely ±1 and ±3. On the other hand, X2 +1
has infinitely many roots in the skew field H=R+Ri+R j+Rk of Hamilton’s quaternions [14, chap. 7], namely
every combination ai+b j+ ck with a,b,c ∈ R such that a2 +b2 + c2 = 1. The limitation on the number of roots
makes the theory of fields very special. We will repeatedly use it as a crucial finiteness condition.

2.3. Elementary theory of ordered fields. The axioms of an ordered field (R,+, ·,<)
are formulated in first-order logic, which means that we quantify over elements of R, but
not over subsets, functions, etc. By way of contrast, the characterization of the field R of
real numbers (Theorem 2.1) is of a different nature: here we have to quantify over subsets
of R, or functions R→ R, and such a formulation uses second-order logic.

The algebraic condition for an ordered field R to be real closed is of first order. It is
given by an axiom scheme where for each degree n ∈ N we have the axiom

(2.1) ∀a,b,c0,c1, . . . ,cn ∈ R
[
(c0 + c1a+ · · ·+ cnan)(c0 + c1b+ · · ·+ cnbn)< 0

⇒∃x ∈ R
(
(x−a)(x−b)< 0 ∧ c0 + c1x+ · · ·+ cnxn = 0

)]
.

First-order formulae are customarily called elementary. The collection of all first-order
formulae that are true over a given ordered field R is called its elementary theory.

Tarski’s theorem [25, 7] says that all real closed fields share the same elementary theory:
if an assertion in the first-order language of ordered fields is true over one real closed field,
for example the real numbers, then it is true over every real closed field. (This no longer
holds for second-order assertions, where R is singled out as in Theorem 2.1.)

Tarski’s theorem implies that euclidean geometry, seen as cartesian geometry modeled
on the vector space Rn, remains unchanged if the field R of real numbers is replaced by
any other real closed field R. This is true as far as its first-order properties are concerned,
and these comprise the core of classical geometry. In this vein we encode the geometric
notion of winding number in the first-order theory of real closed fields.

Remark 2.7. Tarski’s theorem is a vast generalization of Sturm’s technique, and so is its
effective formulation, called quantifier elimination, which provides explicit decision pro-
cedures. In principle such procedures could be used to generate a proof of the Fundamental
Theorem of Algebra in every fixed degree. We will not use Tarski’s theorem, however, and
we only mention it in order to situate our approach in its logical context.

Annotation 2.8. (Categoricity) An axiom system is called categorical if any two of its models are isomorphic,
or stated differently, if it has only one model up to isomorphism. For example, this is the case for the axioms
characterizing the natural numbers (where the axiom of induction is of second order) or the axioms characterizing
the real numbers (where the least upper bound axiom is of second order). The first-order axioms of real closed
fields are not categorical, because there are many nonisomorphic models, besides R for example Qc.

Annotation 2.9. (Decidability) The elementary theory of real closed fields can be recursively axiomatized, as
seen above. By Tarski’s theorem it is complete in the sense that any two models of it share the same elementary
theory. This implies decidability, that is, the true formulae can be determined effectively. Effective decision
procedures are provided by quantifier elimination, and the quest for efficient quantifier elimination algorithms, at
least for certain families of formulae, is an active area of research.
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3. STURM’S THEOREM FOR REAL POLYNOMIALS

This section recalls Sturm’s theorem for polynomials over a real closed field – a gem of
19th century algebra and one of the greatest discoveries in the theory of polynomials.

It seems impossible to surpass the elegance of the original mémoires by Sturm [55] and
Cauchy [9]. One technical improvement of our presentation, however, seems noteworthy:
The inclusion of boundary points streamlines the arguments so that they will apply seam-
lessly to the complex setting in §4. The necessary amendments render the development
hardly any longer or more complicated. They pervade, however, all statements and proofs,
so that it seems worthwhile to review the classical arguments in full detail.

3.1. Counting sign changes. For every ordered field R, we define sign: R→{−1,0,+1}
by sign(x) = +1 if x > 0, sign(x) =−1 if x < 0, and sign(0) = 0. Given a finite sequence
s = (s0, . . . ,sn) in R, we say that the pair (sk−1,sk) presents a sign change if sk−1sk < 0.
The pair presents half a sign change if one element is zero while the other is nonzero. In
the remaining cases there is no sign change. All cases can be subsumed by the formula

(3.1) V (sk−1,sk) := 1
2

∣∣sign(sk−1)− sign(sk)
∣∣.

Definition 3.1. For a finite sequence s = (s0, . . . ,sn) in R the number of sign changes is

(3.2) V (s) :=
n

∑
k=1

V (sk−1,sk) =
n

∑
k=1

1
2

∣∣sign(sk−1)− sign(sk)
∣∣.

For a finite sequence (S0, . . . ,Sn) of polynomials in R[X ] and a ∈ R we set

(3.3) Va
(
S0, . . . ,Sn

)
:=V

(
S0(a), . . . ,Sn(a)

)
.

For the difference at two points a,b ∈ R we use the notation V b
a :=Va−Vb.

Annotation 3.1. The number V (s0, . . . ,sn) does not change if we multiply all s0, . . . ,sn by some constant q∈R∗.
Likewise, V b

a (S0, . . . ,Sn) remains unchanged if we multiply all S0, . . . ,Sn by some polynomial Q ∈ R[X ]∗ that
does not vanish in {a,b}. Such operations will be used repeatedly later on.

There is no universal agreement how to count sign changes because each application
requires its specific conventions. While there is no ambiguity for sk−1sk < 0 and sk−1sk > 0,
some arbitration is needed to take care of possible zeros. Our definition (3.1) has been
chosen to account for boundary points in Sturm’s theorem, as explained below.

The traditional way of counting sign changes, following Descartes, is to extract the
subsequence ŝ by discarding all zeros of s and to define V̂ (s) := V (ŝ). (This counting
rule is nonlocal whereas in (3.2) only neighbours interact.) As an illustration we recall
Descartes’ rule of signs and its generalization due to Budan and Fourier [42, chap. 10].

Theorem 3.2. For every nonzero polynomial P = c0 + c1X + · · ·+ cnXn over an ordered
field R, the number of positive roots counted with multiplicity satisfies the inequality

(3.4) #
mult

{
x ∈ R>0

∣∣ P(x) = 0
}
≤ V̂ (c0,c1, . . . ,cn).

More generally, the number of roots in any interval ]a,b]⊂ R satisfies the inequality

(3.5) #
mult

{
x ∈ ]a,b]

∣∣ P(x) = 0
}
≤ V̂ b

a (P,P
′, . . . ,P(n)).

Equality holds for every interval ]a,b]⊂ R if and only if P has n roots in R.
The excess (r.h.s.− l.h.s.) is even for all P,a,b if and only if R is real closed. �

Annotation 3.2. (Sketch of proof) Descartes’ rule (3.4) is a special case of the Budan–Fourier bound (3.5) for
a = 0 and b→ +∞, so we concentrate on the latter. The number V̂a counts the sign variations at a, and the
difference V̂ b

a tells us how many sign variations we lose when going from a to b. We assume that P is of degree
n, which means cn 6= 0, so that the polynomials P,P′, . . . ,P(n) have only finitely many zeros.
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(i) Passing a simple zero of P, where P(x)= 0 but P′(x) 6= 0, we lose one sign variation: either (−,+, . . .)→
(0,+, . . .)→ (+,+, . . .) or (+,−, . . .)→ (0,−, . . .)→ (−,−, . . .). At a zero of P of multiplicity 2,
where P(x)=P′(x)= 0 but P′′(x) 6= 0, we lose two sign variations: either (+,−,+, . . .)→ (0,0,+, . . .)→
(+,+,+, . . .) or (−,+,−, . . .)→ (0,0,−, . . .)→ (−,−,−, . . .). In general, at every zero of P of mul-
tiplicity m, where P(x) = P′(x) = . . .P(m−1)(x) = 0 but P(m)(x) 6= 0, we lose m sign variations.

(ii) At a zero x of some derivative, where P(k)(x) = 0 for 0 < k < n but P(k−1)(x) 6= 0, we always lose an
even number of sign variations, for example (. . . ,+,+,−, . . .)→ (. . . ,+,0,−, . . .)→ (. . . ,+,−,−, . . .)
or (. . . ,+,−,+, . . .)→ (. . . ,+,0,+, . . .)→ (. . . ,+,+,+, . . .). (The details are left to the reader.)

If we assume the field R to be real closed, then (i) and (ii) cover all sign changes. Counting all zeros of P
on one hand and adding up all sign variations of P,P′, . . . ,P(n) on the other hand thus yields the Budan–Fourier
inequality (3.5) by (i), and the excess (r.h.s.− l.h.s.) is always an even integer by (ii). If R is not real closed,
we may lose additional sign variations without intermediate zeros, so the inequality (3.5) still holds. The excess,
however, can now be odd: this happens whenever P(a)P(b)< 0 without any intermediate zero of P.

For a→−∞ and b→ +∞ we find V̂ b
a (P,P

′, . . . ,P(n)) = n, because only the highest term counts and yields
V̂a = n and V̂b = 0. If equality in (3.5) holds, then P has n zeros in R. Conversely, if P has n zeros in R, then case
(i) shows that we lose n sign variations according to the zeros of P. Since V̂ b

a = n, we cannot lose any further sign
variations in case (ii), so equality in (3.5) holds for all intervals.

Example 3.3 (signature). For a self-adjoint matrix A∈Cn×n, where AT =A, all eigenvalues
are real. Its signature is defined as the difference p− q where p resp. q is the number of
positive resp. negative eigenvalues. These can be read from the characteristic polynomial
P = c0 + c1X + · · ·+ cnXn as p = V̂ (c0,c1, . . . ,cn) and q = V̂ (c0,−c1, . . . ,(−1)ncn).

Remark 3.4. The Budan–Fourier bound is not restricted to polynomials. Over the real
numbers R the inequality (3.5) holds for every n-times differentiable function P 6= 0 such
that P(n) is of constant sign on [a,b]. This extends to every ordered field R, provided that
differentiability of f : [a,b]→R means that there exists f ′ : [a,b]→R and C > 0 such that
| f (x)− f (x0)− f ′(x0)(x− x0)| ≤C|x− x0|2 for all x,x0 ∈ [a,b].
Annotation 3.3. (Sketch of proof) First one shows that f ′ ≥ 0 (resp. f ′ > 0) implies that f is (strictly) increas-
ing, and symmetrically, f ′ ≤ 0 (resp. f ′ < 0) implies that f is (strictly) decreasing. Over the reals this is a familiar
result for differentiable functions; over an arbitrary ordered field, Lipschitz differentiability is a convenient sub-
stitute. (As a counterexample where the usual differentiability fails over an ordered field, consider f : Q→ Q
defined by f (x) = 0 for x2 > 2 and f (x) = 1 for x2 < 2. This function is differentiable, with f ′ = 0, but f is not
constant. Likewise g(x) = f (x)+ x is differentiable, with g′ = 1, but g is not increasing.)

We can assume f (n) 6= 0. By hypothesis, f (n) is of constant sign, so f (n−1) is strictly monotonic: it thus has at
most one zero and is of constant sign on each of two complementary subintervals. Likewise, f (n−2) has at most
two zeros and is of constant sign on each of three complementary subintervals. Iterating this argument, f has at
most n zeros and is of constant sign on each of n+1 complementary subintervals.

Cases (i) and (ii) work as before. If f , f ′, . . . , f (n−1) satisfy the intermediate value property (over R, for
example, because they are continuous), then (i) and (ii) cover all sign changes; otherwise we may lose the same
sign variations without intermediate zeros. Counting all zeros of f on one hand and adding up all sign variations
of f , f ′, . . . , f (n) on the other hand thus yields the Budan–Fourier inequality (3.5). If f satisfies the intermediate
value property, then the excess (r.h.s.− l.h.s.) is always an even integer; otherwise f may change signs without
intermediate zero, and the excess need no longer be even.

We also notice that 0≤ V̂ b
a ≤ n. If f happens to have n zeros in ]a,b], then equality holds in (3.5). Conversely,

if equality holds, then case (i) shows that we lose sign variations only according to the zeros of f and cannot lose
any further sign variations in case (ii). In this situation equality in (3.5) holds for all subintervals.

The upper bounds (3.4) and (3.5) are easy to compute but often overestimate the number
of roots. This was the state of knowledge before Sturm’s ground-breaking discovery in
1829. Sturm’s theorem (Corollary 3.16 below) gives the precise number of roots.

3.2. The Cauchy index. The Cauchy index judiciously counts roots with a sign ±1 en-
coding the passage from negative to positive or from positive to negative. Instead of zeros
of P, it is customary to count poles of f = 1

P , which is of course equivalent.
Informally, as illustrated in Figure 2, we set Inda( f ) = +1 if f jumps from −∞ to +∞,

and Inda( f ) =−1 if f jumps from +∞ to −∞, and Inda( f ) = 0 in all other cases.
Formally, we define the right limit lim+

a f and the left limit lim−a f of f ∈R(X)∗ at a∈R
by factoring f = (X−a)mg with m ∈ Z and g ∈R(X)∗ such that g(a) ∈R∗. If m≥ 0, then
limε

a f = f (a) ∈R for both ε ∈ {±}; if m < 0, then limε
a f = εm · signg(a) · (+∞) ∈ {±∞}.
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FIGURE 2. A pole a and its Cauchy index Inda( f ) = Ind+a ( f )− Ind−a ( f )

Definition 3.5. The Cauchy index of a rational function f ∈ R(X)∗ at a point a ∈ R is

(3.6) Inda( f ) := Ind+a ( f )− Ind−a ( f ) where Indε
a( f ) :=


+ 1

2 if limε
a f =+∞,

− 1
2 if limε

a f =−∞,
0 otherwise.

For a < b in R we define the Cauchy index of f ∈ R(X)∗ on the interval [a,b] by

(3.7) Indb
a( f ) := Ind+a ( f )+ ∑

x∈]a,b[
Indx( f )− Ind−b ( f ).

The sum is well-defined because only finitely many points x ∈ ]a,b[ contribute.
For b < a we define Indb

a( f ) :=− Inda
b( f ), and for a = b we set Inda

a( f ) := 0.
Finally, we set Indb

a(
R
S ) := 0 in the degenerate case where R = 0 or S = 0.

Here we opt for a more comprehensive definition (3.7) than usual, in order to take care
of boundary points. We will frequently subdivide intervals, and this technique works best
with a uniform definition that avoids case distinctions. Moreover, we will have reason to
consider piecewise rational functions in §4.

Proposition 3.6. The Cauchy index enjoys the following properties.
(a) Subdivision: Indb

a( f )+ Indc
b( f ) = Indc

a( f ) for all a,b,c ∈ R.
(b) Invariance: Indb

a( f ◦ τ) = Indτ(b)
τ(a)( f ) for every linear fractional transformation

τ : [a,b]→ R, τ(x) = px+q
rx+s where p,q,r,s ∈ R, without poles on [a,b].

(c) Scaling: Indb
a(g f ) = sign(g) Indb

a( f ) if g is of constant sign on [a,b].
(d) Addition: Indb

a( f +g) = Indb
a( f )+ Indb

a(g) if f ,g have no common poles. �

Annotation 3.4. (Rational functions as maps) In view of Definition 3.5 we wish to interpret rational functions
f ∈ R(X) as maps. The right way to do this is to extend the affine line R to the projective line PR = R∪{∞}.

We construct PR = (R2 r{0})/∼ as the quotient of R2 r{0} by the quivalence (p,q)∼ (s, t) defined by the
condition that there exists u ∈ R∗ such that (p,q) = (ur,us). The equivalence class of (p,q) is denoted by [p : q]
and represents the line passing through the origin (0,0) and (p,q) in R2. The affine line R can be identified with
{ [p : 1] | p ∈ R}; this covers all points of PR except one: the point at infinity, ∞ = [1 : 0].

Likewise we construct PR(X) = (R(X)2 r{0})/∼ as the quotient of R(X)2 r{0} by the quivalence (P,Q)∼
(R,S) defined by the condition that there exists U ∈ R(X)∗ such that (P,Q) = (UR,US). The equivalence class
of (P,Q) is denoted by [P : Q]. Here R(X) can be identified with { [P : Q] | P,Q ∈ R[X ],Q 6= 0} using only
polynomials. Again this covers all points of PR(X) except one: the point at infinity, ∞ = [1 : 0].

Consider f = [P : Q]∈PR(X) with P,Q∈R[X ]. We can assume gcd(P,Q)= 1 and set m=: max{degP,degQ}.
We then construct homogenous polynomials P̂, Q̂∈R[X ,Y ] by Xk 7→ XkY m−k . We have (P̂(x,y), Q̂(x,y)) 6= (0,0)
for all (x,y) 6= (0,0) in R2, and the map f̂ : PR→ PR given by f̂ ([x : y]) = [P̂(x,y), Q̂(x,y)] is well-defined.

This construction allows us to interpret every f ∈ PR(X) and in particular every rational fraction f ∈ R(X)

as a map f̂ : PR→ PR. In the sequel most constructions for P/Q resp. [P : Q] are slightly easier in the generic
case where P,Q ∈ R[X ]∗, but can easily be extended to the exceptional cases where P = 0 or Q = 0.

Annotation 3.5. (Winding number) We can present the ordered field R as an oriented line, the two ends being
denoted by −∞ and +∞. It is sometimes convenient to formally adjoin two further elements ±∞ and to extend
the order of R to R̄ := R∪{±∞} such that −∞ < x <+∞ for all x ∈ R. This turns R̄ into a closed interval.

We can think of the projective line PR = R∪{∞} as an oriented circle. In the above picture this is obtained
by identifying +∞ and −∞ in R̄. Even though we cannot extend the ordering of R to PR, we can nevertheless
define a sign function PR→{−1,0,+1} by sign([p : q]) = sign(pq), which simply means that sign(∞) = 0.
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The intermediate value property now takes the following form: if f ∈ PR(X) satisfies f (a) f (b)< 0 for some
a < b in R, then there exists x ∈ ]a,b[ such that sign f (x) = 0, that is f (x) = 0 or f (x) = ∞. In other words, a
rational function does not change sign without passing through 0 or ∞.

The Cauchy index Indb
a( f ) counts the number of times that f crosses ∞ from − to + (clockwise in the figure

above) minus the number of times that f crosses ∞ from + to − (counter-clockwise in the above figure). This
geometric interpretation anticipates the winding number of loops in the plane constructed in §4.

3.3. Counting real roots. The ring R[X ] is equipped with a derivation P 7→ P′ sending
each polynomial P = ∑

n
k=0 pkXk to its formal derivative P′ = ∑

n
k=1 kpkXk−1. This extends

in a unique way to a derivation on the field R(X) sending f = R
S to f ′ = R′S−RS′

S2 . This is an
R-linear map satisfying Leibniz’ rule ( f g)′ = f ′g+ f g′. For f ∈ R(X)∗ the quotient f ′/ f
is called the logarithmic derivative of f ; it enjoys the following property.

Proposition 3.7. For every f ∈ R(X)∗ we have Inda( f ′/ f ) = +1 if a is a zero of f ,
Inda( f ′/ f ) =−1 if a is a pole of f , and Inda( f ′/ f ) = 0 in all other cases.

Proof. We have f =(X−a)mg with m∈Z and g∈R(X)∗ such that g(a)∈R∗. By Leibniz’
rule we obtain f ′

f = m
X−a +

g′
g . The fraction g′

g does not contribute to the index because it
does not have a pole at a. We conclude that Inda( f ′/ f ) = sign(m). �

Corollary 3.8. For every f ∈ R(X)∗ and a < b in R the index Indb
a( f ′/ f ) equals the

number of roots minus the number of poles of f in [a,b], counted without multiplicity.
Roots and poles on the boundary count for one half. �

The corollary remains true for f = R
S when R = 0 or S = 0, with the convention that

we count only isolated roots and poles. Polynomials P ∈ R[X ]∗ have no poles, whence
Indb

a(P
′/P) simply counts the number of roots of P in [a,b].

3.4. The inversion formula. While the Cauchy index can be defined over any ordered
field R, the following results require R to be real closed. They will allow us to calculate
the Cauchy index by Sturm chains (§3.5) via iterated Euclidean division (§3.6).

The starting point is the observation that the intermediate value property of polynomials
P ∈ R[X ] can then be reformulated quantitatively as Indb

a(
1
P ) = V b

a (1,P). More generally,
we have the following inversion formula of Cauchy [9, §I, Thm. I].

Theorem 3.9. Let R be a real closed field. For all P,Q ∈ R[X ] and a,b ∈ R we have

(3.8) Indb
a

(Q
P

)
+ Indb

a

(P
Q

)
=V b

a

(
1,

P
Q

)
=V b

a

(
1,

Q
P

)
.

If P and Q do not have common zeros at a or b, then this simplifies to

(3.9) Indb
a

(Q
P

)
+ Indb

a

(P
Q

)
=V b

a
(
P,Q

)
.

If a or b is a pole of P
Q or Q

P , then the signs in (3.8) are evaluated using the convention
sign(∞) = 0. The inversion formula will follow as a special case from the product formula
(4.3), but its proof is short enough to be given separately here.

Proof. We can assume a < b and P,Q ∈ R[X ]∗ and gcd(P,Q) = 1, so each pole is a zero
of either P or Q, and Equations (3.8) and (3.9) become equivalent. They are additive with
respect to subdivision of [a,b], by Proposition 3.6(a), so it suffices to treat the case where
[a,b] contains at most one pole.
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Global analysis away from poles: Suppose that [a,b] does not contain zeros of P or Q.
Then both indices Indb

a
(Q

P

)
and Indb

a
( P

Q

)
vanish in the absence of poles, and the intermedi-

ate value property ensures that P and Q are of constant sign on [a,b], whence V b
a (P,Q) = 0.

Local analysis at a pole: Suppose that [a,b] contains a pole. Subdividing, if necessary,
we can assume that this pole is either a or b. Applying the symmetry X 7→ a+ b−X , if
necessary, we can assume that the pole is a. Since Equation (3.9) is symmetric in P and
Q, we can assume that P(a) = 0. We then have Q(a) 6= 0, whence Q has constant sign on
[a,b] and Indb

a
( P

Q

)
= 0. Likewise, P has constant sign on ]a,b] and Indb

a
(Q

P

)
= Ind+a

(Q
P

)
.

On the right hand side we find Va(P,Q) = 1/2, and for Vb(P,Q) two cases occur:

• if Vb(P,Q) = 0, then Q
P > 0 on ]a,b], whence lim+

a
(Q

P

)
=+∞,

• if Vb(P,Q) = 1, then Q
P < 0 on ]a,b], whence lim+

a
(Q

P

)
=−∞.

In both cases we find Ind+a
(Q

P

)
=V b

a (P,Q), whence Equation (3.9) holds. �

Annotation 3.6. (Local and global arguments) The previous proof relies on a local argument around a pole a,
in the neighbourhoods [a,a+ ε] and [a− ε,a] for some chosen ε > 0, and a global argument, for a given interval
[a,b] without poles. The local argument only uses continuity and is valid for polynomials over any ordered field.
It is in the global argument that we need the intermediate value property. This interplay of local and global
arguments is a recurrent theme in the proofs of §4.5 and §5.1.

3.5. Sturm chains. In the rest of this section we exploit the inversion formula (3.9), and
we will therefore continue to assume R to be real closed. We can then calculate the Cauchy
index Indb

a(
R
S ) by iterated euclidean division (§3.6). The crucial condition is the following.

Definition 3.10. A sequence of polynomials (S0, . . . ,Sn) in R[X ] is a Sturm chain with
respect to an interval I ⊂ R if it satisfies Sturm’s condition:

(3.10) If Sk(x) = 0 for some x ∈ I and 0 < k < n, then Sk−1(x)Sk+1(x)< 0.

We will usually not explicitly mention the interval if it is understood from the context,
or if (S0, . . . ,Sn) is a Sturm chain on all of R. For n = 1 Condition (3.10) is void and should
be replaced by the requirement that S0 and S1 have no common zeros.

Theorem 3.11. If (S0,S1, . . . ,Sn−1,Sn) is a Sturm chain in R[X ] with respect to [a,b], then

(3.11) Indb
a

(S1

S0

)
+ Indb

a

(Sn−1

Sn

)
=V b

a
(
S0,S1, . . . ,Sn−1,Sn

)
.

Proof. For n= 1 this is the inversion formula (3.9). For n= 2 the inversion formula implies

Indb
a

(S1

S0

)
+ Indb

a

(S0

S1

)
+ Indb

a

(S2

S1

)
+ Indb

a

(S1

S2

)
=V b

a
(
S0,S1,S2

)
.

This is a telescopic sum. Contributions to the middle indices arise at zeros of S1, but at
each zero of S1 its neighbours S0 and S2 have opposite signs, which means that these terms
cancel each other. Iterating this argument, we obtain (3.11) by induction on n. �

The following algebraic criterion for Sturm chains will be useful in §3.6 and §5.1:

Proposition 3.12. Consider a sequence (S0, . . . ,Sn) in R[X ] such that

(3.12) AkSk+1 +BkSk +CkSk−1 = 0 for 0 < k < n,

with Ak,Bk,Ck ∈R[X ] satisfying Ak > 0 and Ck≥ 0 on some interval I⊂R. Then (S0, . . . ,Sn)
is a Sturm chain on I if and only if the terminal pair (Sn−1,Sn) has no common zeros in I.

Proof. We assume that n ≥ 2. If (Sn−1,Sn) has a common zero, then the Sturm condi-
tion (3.10) is obviously violated. Suppose that (Sn−1,Sn) has no common zeros in I. If
Sk(x) = 0 for x ∈ I and 0 < k < n, then Sk+1(x) 6= 0. Otherwise Equation (3.12) would
imply that Sk, . . . ,Sn vanish at x, which is excluded by our hypothesis. Now, the equation
Ak(x)Sk+1(x)+Ck(x)Sk−1(x) = 0 with Ak(x)Sk+1(x) 6= 0 implies Ck(x)Sk−1(x) 6= 0. Using
Ak(x)> 0 and Ck(x)> 0 we conclude that Sk−1(x)Sk+1(x)< 0. �
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For many calulcations Ak = Ck = 1 suffices, as in §3.6, but the general setting is more
flexible because Ak and Ck can absorb positive factors and thus purge Sk+1 and Sk−1 of
irrelevancy. Sturm chains as in (3.12) also occur naturally for orthogonal polynomials.

Annotation 3.7. (A historical example) The following example is taken from Kronecker (1872) citing Gauss
(1849) in his course Theorie der algebraischen Gleichungen. [Notes written by Kurt Hensel, archived at the
University of Strasbourg, available at num-scd-ulp.u-strasbg.fr/429, page 165.]

Example. We consider P0 = X7−28X4 +480 and its derivative P1 = P′0 = 7X2(X4−16X). We set S0 = P0 and
S1 = X4− 16X , neglecting the positive factor 7X2. We wish to calculate Indb

a(
P1
P0
) = Indb

a(
S1
S0
) by constructing

a suitable Sturm chain. Euclidean division yields P2 = (X3 − 12)S1 − S0 = 192X − 480, which we reduce to
S2 = 2X − 5. Likewise P3 = 1

16 (8X3 + 20X2 + 50X − 3)S2− S1 = 15
16 is reduced to S3 = 1. We thus obtain a

judiciously reduced Sturm chain (S0,S1,S2,S3) of the form AkSk+1 +BkSk +CkSk−1 = 0 with Ak,Ck > 0.

Annotation 3.8. (Orthogonal polynomials) The Legendre polynomials P0,P1,P2, . . . in R[X ] are recursively
defined by P0 = 1, P1 = X , and (k + 1)Pk+1 + kPk−1 = (2k + 1)XPk . They satisfy the orthogonality relation∫+1
−1 Pm(x)Pn(x)dx = 2

2n+1 δmn with respect to the inner product 〈 f ,g〉=
∫+1
−1 f (x)g(x)dx.

More generally, one can fix a measure µ on the real line R, say with compact support, and consider the inner
product 〈 f ,g〉=

∫
f (x)g(x)dµ . Orthogonality of P0,P1,P2, . . . means that 〈Pk, P̀ 〉= 0 if k 6= `, and > 0 if k = `.

If we further assume that P0,P1,P2, . . . are polynomials in R[X ] with degPk = k, then orthogonality entails a
three-term recurrence relation AkPk+1 +BkPk +CkPk−1 = 0 with constants Ak,Ck > 0 and some polynomial Bk of
degree 1, depending on k and µ . Orthogonal polynomials thus form a Sturm chain.

3.6. Euclidean chains. The definition of Sturm chains is fairly general and could be used
for more general functions than polynomials. The crucial observation for polynomials is
that the euclidean algorithm can be used to construct Sturm chains as follows.

Consider a rational function f = R
S ∈ R(X)∗ represented by polynomials R,S ∈ R[X ]∗.

Iterated euclidean division produces a sequence of polynomials starting with P0 = S and
P1 = R, such that Pk−1 = QkPk−Pk+1 and degPk+1 < degPk for all k = 1,2,3, . . . . This
process eventually stops when we reach Pn+1 = 0, in which case Pn ∼ gcd(P0,P1).

Stated differently, this construction is the expansion of f into the continued fraction

f =
P1

P0
=

P1

Q1P1−P2
=

1

Q1−
P2

P1

=
1

Q1−
1

Q2−
P3

P2

= · · ·=
1

Q1−
1

Q2−
. . .

Qn−1−
1

Qn

.

Definition 3.13. In this euclidean remainder sequence, the last polynomial Pn 6= 0 divides
all preceding polynomials P0,P1, . . . ,Pn−1. The euclidean chain (S0,S1, . . . ,Sn) associated
to the fraction R

S ∈ R(X)∗ is defined by Sk := Pk/Pn for k = 0, . . . ,n.

We thus obtain R
S = S1

S0
with gcd(S0,S1) = Sn = 1, and by construction (S0,S1, . . . ,Sn)

depends only on the fraction R
S and not on the polynomials R,S representing it. By Propo-

sition 3.12 the equations Sk−1 +Sk+1 = QkSk ensure that (S0,S1, . . . ,Sn) is a Sturm chain.

Annotation 3.9. (The euclidean cochain) The polynomials (Q1, . . . ,Qn) suffice to reconstruct the fraction f .
This presentation is quite economic because they usually have low degree; generically we expect deg(Qk) = 1.

We recover (S0,S1, . . . ,Sn) working backwards from Sn+1 = 0 and Sn = 1 by calculating Sk−1 = QkSk−Sk+1
for all k = n−1, . . . ,0. This procedure also provides an economic way to evaluate (S0,S1, . . . ,Sn) at a ∈ R.

This indicates that, from an algorithmic point of view, the cochain (Q1, . . . ,Qn) is of primary interest. From
a mathematical point of view it is often more convenient to use the chain (S0,S1, . . . ,Sn).

3.7. Sturm’s theorem. We can now fix the following convenient notation.

Definition 3.14. For R
S ∈ R(X) and a,b ∈ R we define the Sturm index to be

Sturmb
a

(R
S

)
:=V b

a
(
S0,S1, . . . ,Sn

)
,

http://num-scd-ulp.u-strasbg.fr/429
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where (S0,S1, . . . ,Sn) is the euclidean chain associated to R
S . We include two exceptional

cases. If S = 0 and R 6= 0, the euclidean chain is (0,1) of length n = 1. If R = 0, we take
the chain (1) of length n = 0. In both cases we obtain Sturmb

a
(R

S

)
= 0.

This definition is effective in the sense that Sturmb
a
(R

S

)
can immediately be calculated.

Definition 3.5 of the Cauchy index Indb
a
(R

S

)
, however, assumes knowledge of all roots

of S in [a,b]. This difficulty is overcome by Sturm’s celebrated theorem, generalized by
Cauchy, equating the Cauchy index with the Sturm index over a real closed field.

Theorem 3.15 (Sturm 1829/35, Cauchy 1831/37). For every pair R,S ∈ R[X ] of polyno-
mials over a real closed field R we have

(3.13) Indb
a

(R
S

)
= Sturmb

a

(R
S

)
.

Proof. Equation (3.13) is trivially true if R = 0 or S = 0, according to our definitions. We
can thus assume R,S ∈ R[X ]∗. Let (S0,S1, . . . ,Sn) be the euclidean chain associated to the
fraction R

S . Since R
S = S1

S0
and Sn = 1, Theorem 3.11 implies that

Indb
a

(R
S

)
= Indb

a

(S1

S0

)
+ Indb

a

(Sn−1

Sn

)
=V b

a
(
S0,S1, . . . ,Sn

)
= Sturmb

a

(R
S

)
. �

This theorem is usually stated under the additional hypotheses that gcd(R,S) = 1 and
S(a)S(b) 6= 0. Our formulation of Theorem 3.15 does not require either of these conditions,
because they are absorbed into our slightly refined definitions: gcd(R,S) = 1 becomes
superfluous by formulating Definitions 3.5 and 3.14 such that both indices become well-
defined on R(X). The exception S(a)S(b) = 0 is anticipated in Definitions 3.1 and 3.5
by counting boundary points correctly. Arranging these details is not only an aesthetic
preoccupation: it clears the way for a uniform treatment of the complex case in §4.

As an immediate consequence of §3.3 we obtain Sturm’s classical theorem [55, §2].

Corollary 3.16 (Sturm 1829/35). For every polynomial P ∈ R[X ]∗ we have

(3.14) #
{

x ∈ [a,b]
∣∣ P(x) = 0

}
= Sturmb

a

(P′

P

)
,

where roots on the boundary count for one half. �

By the usual bisection method, Formula (3.14) provides an algorithm to locate all real
roots of any given real polynomial. Once the roots are well separated, one can switch to
Newton’s method (§6.3), which is simpler to apply and converges much faster.

Remark 3.17. Formula (3.14) counts real roots of P without multiplicity. Multiplicities
can be counted by observing that x is a root of P of multiplicity m≥ 2 if and only if x is a
root of gcd(P,P′) of multiplicity m−1. See Rahman–Schmeisser [42, Thm. 10.5.6].

Remark 3.18. The intermediate value property is essential for (3.13) and (3.14). Over Q,
for example, the function f (x) = 2x/(x2−2) has no poles, whence Ind2

1( f ) = 0. A Sturm
chain is given by S0 = X2− 2 and S1 = 2X and S2 = 2, whence V 2

1 (S0,S1,S2) = 1. Here
the Sturm index does not count zeros and poles in Q but in the real closure Qc.

Remark 3.19. Sturm’s theorem can be seen as an algebraic analogue of the fundamental
theorem of calculus. It reduces a 1–dimensional counting problem on the interval [a,b] to
a 0–dimensional counting problem on the boundary {a,b}. In §4 we will generalize this
to the complex realm, reducing a 2–dimensional counting problem on a rectangle Γ to a
1–dimensional counting problem on the boundary ∂Γ.

Annotation 3.10. (Invariance) Over a real closed field R we can strengthen Proposition 3.6(b): the Cauchy
index satisfies Indb

a
(

f ◦g
)
= Indg(b)

g(a)

(
f
)

for all f ,g ∈ R(X) where g has no poles in [a,b].
Assume f = R/S and g = P/Q with P,Q,R,S ∈ R[X ] such that gcd(P,Q) = 1 and gcd(R,S) = 1. Since g

has no poles, Q has no roots in [a,b]. If (S0,S1, . . . ,Sn) in R[X ] is a Sturm chain for f = R/S on [a,b] with Sn
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constant, then (P0,P1, . . . ,Pn) defined by Pk = QmSk(P/Q) with m = max{degS0, . . . ,degSn} is a Sturm chain for
f ◦g = R(P/Q)/S(P/Q) with Pn constant. As in Theorem 3.15 we thus find

Indb
a
(

f ◦ g
)
= V b

a
(
P0,P1, . . . ,Pn

)
= V b

a
(
S0 ◦ g,S1 ◦ g, . . . ,Sn ◦ g

)
= V g(b)

g(a)

(
S0,S1, . . . ,Sn

)
= Indg(b)

g(a)

(
f
)
.

Contrary to the fractional linear transformations of Proposition 3.6(b), the intermediate value property is essential.
Consider for example f (x) = 1

x−2 and g(x) = x2 over Q. Then Ind2
1( f ◦g) = 0 differs from Indg(2)

g(1)( f ) = 1.

3.8. Pseudo-euclidean division. Euclidean division works for polynomials over a field.
In §5.1 we consider polynomials S,P ∈ R[Y,X ] = K[X ] over K = R[Y ]. To this end we
introduce pseudo-euclidean division over an integral ring K: for all S,P ∈K[X ] with P 6= 0
there exists a unique pair Q∗,R∗ ∈ K[X ] such that cdS = PQ∗−R∗ and degR∗ < degP,
where c ∈K is the leading coefficient of P and d = max{0,1+degS−degP}.

When working over a field F⊃K, the leading coefficient c 6= 0 is invertible in F, and we
can divide cdS = PQ∗−R∗ by cd to recover S = PQ−R, where Q = Q∗/cd and R = R∗/cd .
Pseudo-euclidean division may nevertheless be more convenient. For polynomials in Q[X ],
for example, it is often more efficient to clear denominators and to work in Z[X ] in order
to avoid coefficient swell; see [17, §6.12].

For Sturm chains it is advantageous to have cdS = PQ∗−R∗ with d even. In a typical
Sturm chain we would expect degS = degP+1 and thus d = 2. If d happens to be odd, we
can multiply Q∗ and R∗ by c and augment d by 1. Starting from S0,S1 ∈K[X ] we can thus
construct a chain S0,S1, . . . ,Sn ∈K[X ] with Sk+1 = BkSk− c2

kSk−1 as in Proposition 3.12.

Annotation 3.11. (Pseudo-euclidean division) For every ring K, the degree deg: K[X ]→ N∪{−∞} satisfies:

(1) deg(P+Q)≤ sup{degP,degQ}, with equality iff degP 6= degQ or lc(P)+ lc(Q) 6= 0.
(2) deg(PQ)≤ degP+degQ, with equality iff P = 0 or Q = 0 or lc(P) · lc(Q) 6= 0.

If K is integral, then deg(PQ) = degP + degQ and lc(PQ) = lc(P) · lc(Q) for all P,Q ∈ K[X ]∗, and the
polynomial ring K[X ] is again integral. Moreover, for every S ∈ K[X ] and P ∈ K[X ]∗ there exists a unique pair
Q,R ∈K[X ] such that cdS = PQ−R and degR < degP, where c = lc(P) and d = max{0,1+degS−degP}.

Existence: We proceed by induction on d. If d = 0, then degS < degP and Q = 0 and R = S suffice. If
d ≥ 1, then we set M := lc(S) ·XdegS−degP and S̃ := cS−PM. We see that deg(S) = deg(cS) = deg(PM) and
lc(cS) = lc(PM), whence deg S̃ < degS. By hypothesis, there exists Q̃,R ∈ A[X ] such that cd−1S̃ = PQ̃+R. We
conclude that cdS = cd−1S̃+ cd−1PM = PQ+R with Q = Q̃+ cd−1M.

Uniqueness: For PQ+R = PQ′+R′ with degR < degP and degR′ < degP, we find P(Q−Q′) = R′−R,
whence degP+deg(Q−Q′) = deg[P(Q−Q′)] = deg(R−R′)< degP. This is only possible for deg(Q−Q′)< 0,
which means Q−Q′ = 0. We conclude that Q = Q′ and R = R′.

Annotation 3.12. (Cauchy functions) Sturm’s theorem 3.16 works miraculously well for polynomials, but like
the Budan–Fourier Theorem 3.2 it is not restricted to polynomials. Continuing Remark 3.4, if f : [a,b]→ R is
n-times differentiable, f (n) is of constant sign and each f (k) has the maximal number of n− k distinct zeros, then
f , f ′, . . . , f (n) is a Sturm chain in the sense of (3.10), whence the zeros of f can then be counted on subintervals
and located using (3.14).

More generally, we call f : [a,b]→ R a Cauchy function if f does not change sign without passing through
zero and on every interval Ik = [tk−1, tk] of some subdivision a = t0 < t1 < · · · < tm = b the restriction fk =

f |Ik is nk-times differentiable with f (nk)
k of constant sign. For example, over R every real-analytic function

f : [a,b]→R is a Cauchy function; in fact, quasi-analytic functions suffice, i.e., C∞ functions such that f (n)(x0) =

0 for some x0 and all n ≥ 0 implies f = 0. Over a real closed field R one can consider piecewise polynomial
functions f : [a,b]→ R, or more generally Nash functions [7, chap. 8], i.e., C∞ functions that are semi-algebraic,
for example f (x) =

√
1+ x2.

Sturm’s theory extends smoothly: Given Cauchy functions f ,g : [a,b]→ R, we assume their quotient f/g to
be reduced, which means that f and g have no common zeros. The Cauchy index Indb

a( f/g) can then be defined
as above, the inversion formula holds verbatim, and there exists a Sturm chain S0 = g,S1 = f ,S2, . . . ,Sn of Cauchy
functions with Sk−1 + Sk+1 = QkSk for 0 < k < n such that Sn is of constant sign on [a,b]. One can explicitly
construct such a chain if one knows the zeros of f and g in [a,b]. This underlines that the remarkable fact about
polynomials is not so much the existence of Sturm chains but their construction from the euclidean algorithm,
without prior knowledge of any zeros.

Annotation 3.13. (Sketch of proof) Every Cauchy function has only a finite number of zeros, see Remark 3.4,
or perhaps intervals of zeros. We can assume that only S0 has zeros in U1 = [a,a1]∪ [b1,b], with S0(a1) 6= 0
and S0(b1) 6= 0. We choose u1,v1 ∈ R and define Q1 : [a,b]→ R by Q1(x) = 0 for x ∈ [a1,b1], and Q1(x) =
u1(a1− x) for x ∈ [a,a1], and Q1(x) = v1(x− b1) for x ∈ [b1,b], such that S2 = Q1S1− S0 has no zeros in U1.
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To this end it suffices to choose u1,v1 large enough and to arrange their signs such that u1S1(a1)S0(a1) < 0 and
v1S1(b1)S0(b1)< 0. On [a1,b1] we have Q1 = 0 and thus S2 =−S0, in particular S1(t) = 0 implies S0(t)S2(t)< 0.
By construction, S2 is again a Cauchy function. Continuing like this we can eliminate zeros of S1 that are not
bounded by zeros of S2 to obtain S3 = Q2S2−S1. By induction on the number of (intervals of) zeros we finally
reach Sn without zeros.

Annotation 3.14. (Is there a natural construction?) In the proof sketched above we choose Qk piecewise
linear, which is allowed in our definition of Cauchy functions but remains somewhat artificial. It would be nice to
have a more natural construction, for example for real-analytic functions where Qk should again be real-analytic.
Moreover, our construction assumes knowledge of the zeros of S0,S1, . . . , which is contrary to the envisaged
application of finding the zeros! The ideal model is, of course, euclidean division of polynomials.

4. CAUCHY’S THEOREM FOR COMPLEX POLYNOMIALS

We continue to work over a real closed field R and now consider its complex extension
C = R[i] where i2 = −1. In this section we define the algebraic winding number and use
it to prove Cauchy’s theorem (Corollary 4.9). To this end we establish the product formula
(4.3), which seems to be new. It ensures, for example, that the algebraic winding number
can cope with roots on the boundary, as already emphasized in Theorem 1.5.

4.1. Real and complex fields. Let R be an ordered field. For every x ∈R we have x2 ≥ 0,
whence x2 + 1 > 0. The polynomial X2 + 1 is thus irreducible in R[X ], and the quotient
C = R[X ]/(X2 +1) is a field. It is denoted by C = R[i] with i2 =−1. Each element z ∈ C
can be uniquely written as z = x+ yi with x,y ∈ R. We can thus identify C with R2 via the
map R2→ C, (x,y) 7→ z = x+ yi, and define re(z) := x and im(z) := y.

Using this notation, addition and multiplication in C are given by

(x+ yi)+(x′+ y′i) = (x+ x′)+(y+ y′)i,

(x+ yi) · (x′+ y′i) = (xx′− yy′)+(xy′+ x′y)i.

The ring automorphism R[X ]→ R[X ], X 7→ −X , fixes X2 + 1 and thus descends to a
field automorphism C→ C that maps each z = x+ yi to its conjugate z̄ = x− yi. We have
re(z) = 1

2 (z+ z̄) and im(z) = 1
2i (z− z̄). The product zz̄ = x2 + y2 ≥ 0 vanishes if and only

if z = 0. For z 6= 0 we thus find

z−1 =
z̄
zz̄

=
x

x2 + y2 −
y

x2 + y2 i.

If R is real closed, then every x ∈ R≥0 has a square root
√

x ∈ R≥0. For z ∈ C we can
thus define |z| :=

√
zz̄, which extends the absolute value of R. For all u,v ∈ C we have:

(0) |re(u)| ≤ |u| and |im(u)| ≤ |u|,
(1) |u| ≥ 0, and |u|= 0 if and only if u = 0,
(2) |u · v|= |u| · |v| and |ū|= |u|,
(3) |u+ v| ≤ |u|+ |v|.

All verifications are straightforward. The triangle inequality (3) can be derived from the
preceding properties as follows. If u+ v = 0, then (3) follows from (1). If u+ v 6= 0, then
1 = u

u+v +
v

u+v , and applying (0) and (2) we find

1 = re
( u

u+ v

)
+ re

( v
u+ v

)
≤
∣∣∣ u
u+ v

∣∣∣+ ∣∣∣ v
u+ v

∣∣∣= |u|
|u+ v|

+
|v|
|u+ v|

.

4.2. Real and complex variables. Just as we identify (x,y) ∈ R2 with z = x+ iy ∈ C, we
consider C[Z] as a subring of C[X ,Y ] with Z = X + iY . The conjugation on C extends to
a ring automorphism of C[X ,Y ] fixing X and Y , so that the conjugate of Z = X + iY is
Z = X− iY . In this sense, X and Y are real variables, whereas Z is a complex variable.

Every polynomial F ∈ C[X ,Y ] can be uniquely decomposed as F = R+ iS with R,S ∈
R[X ,Y ], namely R = reF := 1

2 (F +F) and S = imF := 1
2i (F −F). In particular, we thus

recover the familiar formulae X = reZ and Y = imZ.
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For F,G ∈ C[X ,Y ] we set F ◦G := F(reG, imG). The map F 7→ F ◦G is the unique
ring endomorphism C[X ,Y ]→C[X ,Y ] that maps Z 7→G and is equivariant with respect to
conjugation, because Z 7→ G and Z 7→ G are equivalent to X 7→ reG and Y 7→ imG.

4.3. The algebraic winding number. Given a polynomial P ∈ C[X ] and two parameters
t0 < t1 in R, the map γ : [t0, t1]→ C defined by γ(t) = P(t) describes a polynomial path in
C. We define its winding number w(γ) to be half the Cauchy index of reP

imP on [t0, t1]:

w(P|[t0, t1]) := 1
2 Indt1

t0

( reP
imP

)
.

This definition is geometrically motivated as follows. Assuming that γ(t) 6= 0 for all
t ∈ [t0, t1], the winding number w(γ) counts the number of turns that γ performs around 0.
It changes by + 1

2 each time γ crosses the real axis in counter-clockwise direction, and by
− 1

2 if the passage is clockwise. Our algebraic definition is slightly more comprehensive
than the geometric one since it does not exclude zeros of γ .

Definition 4.1. Consider a subdivision 0 = t0 < t1 < · · · < tn = 1 in R and polynomials
P1, . . . ,Pn ∈C[X ] that satisfy Pk(tk) = Pk+1(tk) for k = 1, . . . ,n−1. This defines a piecewise
polynomial path γ : [0,1]→ C by γ(t) := Pk(t) for t ∈ [tk−1, tk]. If γ(a) = γ(b), then γ is
called a closed path or loop. Its winding number is defined as

(4.1) w(γ) :=
n

∑
k=1

w(Pk|[tk−1, tk]).

This is well-defined according to Proposition 3.6(a), because it depends only on the path
γ : [0,1]→ R and not on the chosen subdivision of the interval [0,1].

4.4. Normalization. The following notation will be convenient. Given a,b ∈ C, the map
γ : [0,1]→ C defined by γ(x) = a+ x(b−a) joins γ(0) = a and γ(1) = b by a straight line
segment. Its image will be denoted by [a,b] := γ([0,1]). For a 6= b we set ]a,b[ := γ(]0,1[).

For F ∈C[X ,Y ], we set w(F |[a,b]) := w(F ◦ γ). This is the winding number of the path
traced by F(z) as z runs from a straight to b. According to Proposition 3.6(b), the reverse
orientation yields w(F |[b,a]) =−w(F |[a,b]).

A rectangle (with sides parallel to the axes) is a subset Γ = [x0,x1]× [y0,y1] in C = R2

with x0 < x1 and y0 < y1 in R. Its interior is IntΓ = ]x0,x1[× ]y0,y1[. Its boundary ∂Γ

consists of the four vertices a = (x0,y0), b = (x1,y0), c = (x1,y1), d = (x0,y1), and the four
edges ]a,b[, ]b,c[, ]c,d[, ]d,a[ between them (see Figure 1).

Definition 4.2. Given a polynomial F ∈ C[X ,Y ] and a rectangle Γ⊂ C as above, we set

(4.2) w(F |∂Γ) := w(F |[a,b])+w(F |[b,c])+w(F |[c,d])+w(F |[d,a]).

Stated differently, we have w(F |∂Γ) = w(F ◦ γ) where the path γ : [0,1] → C linearly
interpolates between the vertices γ(0) = a, γ(1/4) = b, γ(1/2) = c, γ(3/4) = d, and γ(1) = a.

Lemma 4.3 (subdivision). Suppose that we subdivide Γ = [x0,x2]× [y0,y2]

• horizontally into Γ′ = [x0,x1]× [y0,y2] and Γ′′ = [x1,x2]× [y0,y2],
• or vertically into Γ′ = [x0,x2]× [y0,y1] and Γ′′ = [x0,x2]× [y1,y2],

where x0 < x1 < x2 and y0 < y1 < y2. Then w(F |∂Γ) = w(F |∂Γ′)+w(F |∂Γ′′).

Proof. This follows from Definition 4.2 by one-dimensional subdivision (Proposition 3.6)
and cancellation of the two internal edges having opposite orientations. �

We will frequently use subdivision in the sequel. As a first application we use it to
establish the normalization (W1) of the algebraic winding number stated in Theorem 1.2.
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Proposition 4.4. For a linear polynomial F = Z− z0 with z0 ∈ C we find

w(F |∂Γ) =


1 if z0 is in the interior of Γ,
1/2 if z0 is in one of the edges of Γ,
1/4 if z0 is in one of the vertices of Γ,
0 if z0 is in the exterior of Γ.

Proof. By subdivision, all configurations can be reduced to the case where z0 is a vertex
of Γ. By symmetry, translation, and homothety we can assume that z0 = a = 0, b = 1,
c = 1+ i, d = i. Here an easy explicit calculation shows that w(F |∂Γ) = 1/4 by adding

w(F |[a,b]) = w(X |[0,1]) = 1
2 Ind1

0(
X
0 ) = 0,

w(F |[b,c]) = w(1+ iX |[0,1]) = 1
2 Ind1

0(
1
X ) =

1
4 ,

w(F |[c,d]) = w(1+ i−X |[0,1]) = 1
2 Ind1

0(
1−X

1 ) = 0,and

w(F |[d,a]) = w(i− iX |[0,1]) = 1
2 Ind1

0(
0

1−X ) = 0. �

Annotation 4.1. (Normalization) The factor 1
2 in the definition of the winding number compared to the Cauchy

index is chosen so as to achieve the normalization of Proposition 4.4. It also has a natural geometric interpretation.
Compare the circle S = {z ∈ C : |z| = 1} with the projective line PR of Annotation 3.5. The winding number
w(γ) of a path γ : [0,1]→ C∗ is defined using the map q : C∗ → PR, (x,y) 7→ [x : y]. The quotient map q is
the composition of the deformation retraction r : C∗ → S, z 7→ z/|z|, and the two-fold covering p : S→ PR,
(x,y) 7→ [x : y]. This means that one full circle in C∗ maps to two full circles in PR.

Annotation 4.2. (Angles) Proposition 4.4 generalizes from rectangles to convex polygons, and then to arbitrary
polygons by subdivision. The only subtlety occurs when z0 is a vertex of the boundary ∂Γ: in general, we find
w(Z|∂Γ) ∈ {0,1/4,1/2,3/4,1}, and one can easily construct examples showing that all possibilities are realized:

w=0 w=1/4 w=1/2 w=3/4 w=1

These examples illustrate how the result depends on the angle at 0 and its incidence with the real axis. The
reference to the real axis breaks the rotational symmetry, and so w(γ) may differ from w(cγ) for some c ∈ C∗.
Over C the average value w(γ) =

∫ 1
0 w(e2πit γ) dt ∈ [0,1] measures the angle at 0. For C = R[i] over a real closed

field R we can likewise define w(γ) := limN→∞
1
N ∑

N−1
k=0 w(e2πi/Nγ) ∈ R for every piecewise polynomial loop

γ : [0,1]→ C. Measuring angles in this way does not follow the paradigm of effective calculation emphasized
here, but the definition of w(γ) may still be useful in some other context. For the purpose of this article, however,
it is only an amusing curiosity and will not be further developed.

4.5. The product formula. The product of two polynomials F = P+ iQ and G = R+ iS
with P,Q,R,S ∈ R[X ] is given by FG = (PR−QS)+ i(PS+QR). The following result
relates the Cauchy indices of P

Q and R
S to that of PR−QS

PS+QR .

Theorem 4.5 (product formula). For all P,Q,R,S ∈ R[X ] and a,b ∈ R we have

(4.3) Indb
a

(PR−QS
PS+QR

)
= Indb

a

(P
Q

)
+ Indb

a

(R
S

)
−V b

a

(
1,

P
Q
+

R
S

)
.

We remark that in the last term we have P
Q + R

S = PS+QR
QS = im(FG)

im(F) im(G) , whence

(4.4) V b
a
(
1, P

Q + R
S

)
= 1

2

[
sign

(PS+QR
QS | X 7→ b

)
− sign

(PS+QR
QS | X 7→ a

)]
.

If a or b is a pole, this is evaluated using the convention sign(∞) = 0.
For (P= 0,Q= 1) or (R= 0,S= 1) or (P= S,Q=R), the product formula (4.3) reduces

to the inversion formula (3.8). The proof of the general case follows the same lines.
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Proof. Equation (4.3) trivially holds in the degenerate cases where Q = 0, S = 0, or
PS+QR = 0; we can thus concentrate on the generic case where Q,S,PS+QR ∈ R[X ]∗.
We can further assume gcd(P,Q) = gcd(R,S) = 1. Since (4.3) is additive with respect to
subdivision of the interval [a,b], we can assume that [a,b] contains at most one pole.

Global analysis away from poles: Suppose that [a,b] does not contain zeros of Q, S, or
PS+QR. Then all three indices in (4.3) vanish in the absence of poles, and the interme-
diate value property ensures that Q, S, and PS+QR are of constant sign on [a,b], whence
V b

a
(
1, PS+QR

QS

)
= 0 and Equation (4.3) holds.

Local analysis at a pole: Suppose that [a,b] contains a pole. Subdividing, if necessary,
we can assume that this pole is either a or b. Applying the symmetry X 7→ a+ b−X , if
necessary, we can assume that the pole is a. We thus have V b

a = 1
2 sign( P

Q + R
S | X 7→ b)

and Q, S, PS+QR are of constant sign on ]a,b]. Applying the symmetry (P,Q,R,S) 7→
(P,−Q,R,−S), if necessary, we can assume that P

Q + R
S > 0 on ]a,b], whence V b

a = + 1
2 .

Based on these preparations we distinguish three cases.
First case. Suppose first that either Q(a) = 0 or S(a) = 0. Applying the symmetry

(P,Q,R,S) 7→ (R,S,P,Q), if necessary, we can assume that Q(a) = 0 and S(a) 6= 0. Then
PS+QR does not vanish at a, whence Indb

a
(PR−QS

PS+QR

)
= Indb

a
(R

S

)
= 0. Since P

Q + R
S > 0 on

]a,b] we have lim+
a

P
Q =+∞, whence Indb

a
( P

Q

)
=+ 1

2 and Equation (4.3) holds.
Second case. Suppose that PS+QR vanishes at a, but Q(a) 6= 0 and S(a) 6= 0. Then

Indb
a
( P

Q

)
= Indb

a
(R

S

)
= 0, and we only have to study the pole of

(4.5)
PR−QS
PS+QR

=

P
Q ·

R
S −1

P
Q + R

S

.

At a the denominator vanishes and the numerator is negative:
P(a)
Q(a) +

R(a)
S(a) = 0, whence P(a)

Q(a) ·
R(a)
S(a) −1 =− P2(a)

Q2(a) −1 < 0.

This implies lim+
a

PR−QS
PS+QR =−∞, whence Indb

a
(PR−QS

PS+QR

)
=− 1

2 and Equation (4.3) holds.

Third case. Suppose that a is a common pole of P
Q and R

S , whence also of PR−QS
PS+QR . Since

P
Q + R

S > 0 on ]a,b], we have lim+
a

P
Q = +∞ or lim+

a
R
S = +∞. Equation (4.5) implies that

lim+
a
(PR−QS

PS+QR

)
= lim+

a
( P

Q

)
· lim+

a
(R

S

)
, whence Equation (4.3) holds. �

The product formula (4.3) entails the multiplicativity (W2) stated in Theorem 1.2.

Corollary 4.6 (multiplicativity of winding numbers). We have w(γ1 · γ2) = w(γ1)+w(γ2)
for all piecewise polynomial loops γ1,γ2 : [0,1]→ C whose vertices are not mapped to 0.

Proof. On a common subdivision 0 = t0 < t1 < · · · < tn = 1, both γ1,γ2 are polynomials
on each interval. There exist Fk = Pk + iQk and Gk = Rk + iSk with Pk,Qk,Rk,Sk ∈ R[X ]
such that γ1(t) = Fk(t) and γ2(t) = Gk(t) for all t ∈ [tk−1, tk]. By excluding zeros of γ1,γ2

on the vertices t0, t1, . . . , tn, we ensure that Pk
Qk
(tk) =

Pk+1
Qk+1

(tk) and Rk
Sk
(tk) =

Rk+1
Sk+1

(tk) for
all k = 1, . . . ,n− 1. Since both paths γ1,γ2 are closed, this also holds for k = n with the
understanding that Fn+1 = F1 and Gn+1 = G1. The desired result w(γ1 ·γ2) = w(γ1)+w(γ2)
now follows from the product formula (4.3), because at each vertex tk the incoming and
the outgoing boundary term from (4.4) cancel each other. �

Corollary 4.7. Let γ : [0,1]→ R2 be a piecewise polynomial loop. If F,G ∈ C[X ,Y ] do
not vanish at any of the vertices of γ , then w(F ·G|γ) = w(F |γ)+w(G|γ). �

More specifically, if F,G do not vanish at any of the vertices of the rectangle Γ ⊂ R2,
then w(F ·G|∂Γ) = w(F |∂Γ)+w(G|∂Γ).

Remark 4.8. The corollary allows zeros of F or G on γ but excludes zeros on the vertices.
This is not an artefact of our proof, but inherent to the algebraic winding number. As
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an illustration consider Γ = [0,1]× [0,1] and Hs = Z · (Z− 2− is). The root z1 = 0 lies
on a vertex of Γ while the other root z2 = 2+ is is outside of Γ. In particular, we have
w(Z|∂Γ) = 1/4 and w(Z−2− is|∂Γ) = 0. A little calculation shows that w(H1|∂Γ) = 0
and w(H0|∂Γ) = 1/4 and w(H−1|∂Γ) = 1/2, whence w(Hs|∂Γ) is not multiplicative.

Annotation 4.3. (Roots on vertices) Roots on vertices are special because our arbitrary reference to the real
axis breaks the rotational symmetry, as illustrated in Annotation 4.2. The average winding number w(γ) of a
piecewise polynomial path γ : [0,1]→C repairs this defect by restoring rotational symmetry, such that w(γ1γ2) =
w(γ1) +w(γ2) even if zeros happen to lie on vertices. For every polynomial F ∈ C[Z]∗ and every polygonal
domain Γ ⊂ C, the average winding number w(F |∂Γ) thus counts the number of roots of F in Γ. Here each
root is counted with α times its multiplicity, where α ∈ [0,1] measures the angle of Γ at this root. For example,
α ∈ {1,1/2,1/4,0} if Γ is a rectangle and the zero lies, respectively, in IntΓ, an edge, a vertex, or outside of Γ.

Corollary 4.9. Consider a split polynomial F = (Z− z1) · · ·(Z− zn) in C[Z]. If F does not
vanish at any vertex of γ , then w(F ◦ γ) = ∑

n
k=1 w(γ− zk). �

More specifically, if F does not vanish at any vertex of the rectangle Γ ⊂ C, then
w(F |∂Γ) counts the number of zeros in Γ. Each zero in the interior of Γ is counted with its
multiplicity, whereas each zero in an edge of ∂Γ is counted with half its multiplicity.

Annotation 4.4. (Hypotheses) In this section we have barely used the hypothesis that R be real closed. The
intermediate value property is essential only for the product formula (4.3), where we use it for the denominators
Q,S,PS+QR ∈R[X ]∗. One might suspect that if the polynomials F,G ∈C[X ] split, then the product formula can
be applied and Corollaries 4.7 and 4.9 hold independently of any further hypothesis on R. This independence
could be forced if we changed our definition of the winding number in §4.3 from the Cauchy index w(P|[t0, t1]) :=
1
2 Indt1

t0

( reP
imP

)
to the Sturm index w(P|[t0, t1]) := 1

2 Sturmt1
t0

( reP
imP

)
. Both coincide over a real closed field, but the

latter depends only on the given coefficients and is independent of the ambient field R.

Remark 4.10. If we assume that C is algebraically closed, then every polynomial F ∈C[Z]∗

splits into linear factors as required in Corollary 4.9. So if you prefer some other existence
proof for the roots, then you may skip the next section and still benefit from root location
(Theorem 1.8). This seems to be the point of view adopted by Cauchy [8, 9] in 1831/37,
which may explain why he did not attempt to use his index for a constructive proof of the
Fundamental Theorem of Algebra. (In 1820 he had already given a non-constructive proof;
see §7.6.1.) In 1836 Sturm and Liouville [58, 56] proposed to extend Cauchy’s approach
so as to obtain an algebraic existence proof. This is our aim in the next section.

5. THE FUNDAMENTAL THEOREM OF ALGEBRA

In the preceding section we have constructed the algebraic winding number and derived
its multiplicativity. We will now show its homotopy invariance and thus complete the real-
algebraic proof of the Fundamental Theorem of Algebra. The geometric idea goes back to
Gauss’ doctoral dissertation (see §7.2), but the algebraic proof seems to be new.

5.1. Counting complex roots. The following algebraic method for counting complex
roots is the counterpart of Sturm’s theorem for counting real roots (§3.3).

Theorem 5.1 (root counting). Consider a polynomial F ∈ C[Z]∗ and a rectangle Γ ⊂ C
such that F does not vanish at any of the vertices of Γ. Then the algebraic winding number
w(F |∂Γ) counts the number of zeros of F in Γ: each zero in the interior of Γ is counted
with its multiplicity, whereas each zero in an edge of ∂Γ is counted with half its multiplicity.

Proof. We factor F = (Z−z1) · · ·(Z−zm)G with z1, . . . ,zm ∈ Γ such that G ∈C[Z]∗ has no
zeros in Γ. Then w(G|∂Γ) = 0 according to Lemma 5.3 below. The assertion now follows
from normalization (Proposition 4.4) and the product formula (Corollary 4.7). �

Annotation 5.1. (Hypotheses) As in Sturm’s theorem, Corollary 3.16, the intermediate value property of R is
essential. As a counterexample consider R = Q and C = Q[i]. The winding number of F = Z2− i in C[Z] with
respect to Γ = [0,1]× [0,1] ⊂ C is w(F |∂Γ) = 1. This corresponds to the zero 1

2

√
2+ i

2

√
2. Here the winding

number does not count zeros in Q[i] but in Qc[i].



THE FUNDAMENTAL THEOREM OF ALGEBRA: A REAL-ALGEBRAIC PROOF 23

The crucial point is to show that w(F |∂Γ) = 0 whenever F has no zeros in Γ, or by
contraposition, that w(F |∂Γ) 6= 0 implies that F vanishes at some point in Γ.

Lemma 5.2 (local version). If F ∈C[X ,Y ] satisfies F(x,y) 6= 0 for some point (x,y) ∈R2,
then there exists δ > 0 such that w(F |∂Γ) = 0 for every Γ⊂ [x−δ ,x+δ ]× [y−δ ,y+δ ].

Annotation 5.2. A proof could be improvised as follows. Suppose first that imF(x,y)> 0. By continuity there
exists δ > 0 such that imF > 0 on the rectangle U = [x− δ ,x+ δ ]× [y− δ ,y+ δ ]. For every Γ ⊂U we then
have w(F |∂Γ) = 0. The case imF(x,y) < 0 is analogous. If imF(x,y) = 0, then our hypothesis ensures that
reF(x,y) 6= 0. Again there exists δ > 0 such that reF 6= 0 on the rectangle U = [x− δ ,x+ δ ]× [y− δ ,y+ δ ].
Now Corollary 4.7 shows that w(F |∂Γ) = w(iF |∂Γ) = 0 as in the first case. The following detailed proof makes
the choice of δ explicit and thus avoids case distinctions.

Proof. Let us make the standard continuity argument explicit. For all s, t ∈ R we have
F(x+ s,y+ t) = a+∑ j+k≥1 a jks jtk with a = F(x,y) 6= 0 and certain coefficients a jk ∈ C.
We set M := max j+k

√
|a jk/a|, so that |a jk| ≤ |a| ·M j+k. For δ := 1

4M and |s|, |t| ≤ δ we find

(5.1)
∣∣∣ ∑

j+k≥1
a jks jtk

∣∣∣≤ ∑
n≥1

∑
j+k=n

|a| ·M j+k · |s| j · |t|k ≤ |a|∑
n≥1

(n+1)
( 1

4

)n
= 7

9 |a|.

This shows that F does not vanish in U := [x− δ ,x+ δ ]× [y− δ ,y+ δ ]. Corollary 4.7
ensures that w(F |∂Γ) = w(cF |∂Γ) for every rectangle Γ ⊂U and every constant c ∈ C∗.
Choosing c = i/a we can assume that F(x,y) = i. The estimate (5.1) then shows that
imF > 0 on U , whence w(F |∂Γ) = 0 for every rectangle Γ⊂U . �

While the preceding local lemma uses only continuity of polynomials and thus holds
over every ordered field, the following global version requires the field R to be real closed.

Lemma 5.3 (global version). Let Γ = [x0,x1]× [y0,y1] be a rectangle in R2. If the polyno-
mial F ∈ C[X ,Y ] satisfies F(x,y) 6= 0 for all (x,y) ∈ Γ, then w(F |∂Γ) = 0.

We remark that over the real numbers R, a short proof can be given as follows:

Proof of Lemma 5.3 for the case R = R, using compactness. The rectangle Γ is covered by
open sets U(x,y) = ]x−δ ,x+δ [× ]y−δ ,y+δ [ as in Lemma 5.2, where (x,y) ranges over
Γ and δ > 0 depends on (x,y). Compactness of Γ ensures that there exists λ > 0, called
a Lebesgue number of the cover, such that every rectangle Γ′ ⊂ Γ of diameter < λ is
contained in U(x,y) for some (x,y) ∈ Γ.

For all subdivisions x0 = s0 < s1 < · · ·< sm = x1 and y0 = t0 < t1 < · · ·< tn = y1, Lemma
4.3 ensures that w(F |∂Γ) = ∑

m
j=1 ∑

n
k=1 w(F |∂Γ jk) where Γ jk = [s j−1,s j]× [tk−1, tk]. For

s j = x0 + j x1−x0
m and tk = y0 + k y1−y0

n with m,n sufficiently large, each Γ jk has diameter
< λ , so Lemma 5.2 implies that w(F |∂Γ jk) = 0 for all j,k, whence w(F |∂Γ) = 0. �

The preceding compactness argument applies only to C = R[i] over the field R of real
numbers (§2.1) and not to an arbitrary real closed field (§2.2). In particular, it is no longer
elementary in the sense that it uses a second-order property (§2.3). We therefore provide
an elementary real-algebraic proof using Sturm chains:

Algebraic proof of Lemma 5.3, using Sturm chains. Each F ∈ C[X ,Y ] can be written as
F = ∑

m
k=0 fkXk with fk ∈ C[Y ]. In this way we consider R[X ,Y ] = R[Y ][X ] as a polyno-

mial ring in one variable X over R[Y ]. We can reduce reF
imF = S1

S0
such that S0,S1 ∈ R[X ,Y ]

satisfy gcd(S0,S1) = 1 in R(Y )[X ]. Pseudo-euclidean division in R[Y ][X ], as explained in
§3.8, produces a chain (S0, . . . ,Sn) with Sk+1 = QkSk− c2

kSk−1 for some Qk ∈ R[Y ][X ] and
ck ∈ R[Y ]∗ such that degX Sk+1 < degX Sk. After n iterations we end up with Sn+1 = 0 and
Sn ∈ R[Y ]∗. (If degX Sn > 0, then gcd(S0,S1) in R(Y )[X ] would be of positive degree.)

Regular case. Assume first that Sn ∈ R[Y ]∗ does not vanish at any point y ∈ [y0,y1].
Proposition 3.12 ensures that for each y ∈ [y0,y1] specializing (S0, . . . ,Sn) in Y 7→ y yields
a Sturm chain in R[X ]. Likewise, for each x ∈ [x0,x1], specializing (S0, . . . ,Sn) in X 7→ x
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yields a Sturm chain in R[Y ] with respect to the interval [y0,y1]. In the sum over all four
edges of Γ, all contributions cancel each other in pairs:

2w(F |∂Γ) =+ Indx1
x0

( reF
imF

∣∣ Y 7→ y0
)
+ Indy1

y0

( reF
imF

∣∣ X 7→ x1
)

+ Indx0
x1

( reF
imF

∣∣ Y 7→ y1
)
+ Indy0

y1

( reF
imF

∣∣ X 7→ x0
)

=+V x1
x0

(
S0, . . . ,Sn

∣∣ Y 7→ y0
)
+V y1

y0

(
S0, . . . ,Sn

∣∣ X 7→ x1
)

+V x0
x1

(
S0, . . . ,Sn

∣∣ Y 7→ y1
)
+V y0

y1

(
S0, . . . ,Sn

∣∣ X 7→ x0
)
= 0.

Singular case. In general we have to cope with a finite set Y ⊂ [y0,y1] of zeros of Sn.
We can change the roles of X and Y and apply pseudo-euclidean division in R[X ][Y ]; this
leads to a finite set of zeros X ⊂ [x0,x1]. We obtain a finite set Z = X ×Y of singular
points in Γ, where both chains fail. (These points are potential zeros of F .)

Γ

ΓΓ1

Γ2

3

4

0

x0 x1

1y

y

FIGURE 3. Isolating a singular point (x0,y0) within Γ = [x0,x1]× [y0,y1]

By subdivision and symmetry we can assume that (x0,y0) is the only singular point
in our rectangle Γ = [x0,x1]× [y0,y1]. By hypothesis, F does not vanish in (x0,y0), so
we can apply Lemma 5.2 to Γ1 = [x0,x0 + δ ]× [y0,y0 + δ ] with δ > 0 sufficiently small
such that w(F |∂Γ1) = 0. The remaining three rectangles Γ2 = [x0,x0 + δ ]× [y0 + δ ,y1],
Γ3 = [x0+δ ,x1]×[y0,y0+δ ], and Γ4 = [x0+δ ,x1]×[y0+δ ,y1] do not contain any singular
points, so that w(F |∂Γ j) = 0 by appealing to the regular case.

Summing over all sub-rectangles we conclude that w(F |∂Γ) = 0. �

Annotation 5.3. (Resultant) The construction of the chain (S0,S1, . . . ,Sn) in R[Y ][X ] carried out in the proof
decreases the degree in X but usually increases the degree in Y . The final term Sn is a crude form of the resultant
of S0 and S1. We are rather careless about degrees here, and the usual approach via (sub)resultants would give
much better control (§6.4). The crucial point in the proof, however, is that we can specialize (S0,S1, . . . ,Sn)

in either X or Y and obtain a Sturm chain in the remaining variable, by appealing to Proposition 3.12. For
subresultants a similar double specialization argument is less obvious and deserves further study.

Annotation 5.4. (Counting zeros and poles of rational functions) We have focused on polynomials F ∈ C[Z],
but Definition 4.2 of the algebraic winding number and the product formula of Corollary 4.7 immediately extend
to rational functions F ∈ C(Z). It is then an easy matter to establish the following generalization:

Theorem. Consider a rational function F ∈C(Z) and a domain Γ⊂C with piecewise rational boundary ∂Γ. If
F has neither zeros nor poles at the vertices of ∂Γ, then w(F |∂Γ) counts, with multiplicity, the number of zeros
minus the number of poles of F in Γ. Boundary points count for one half. �

5.2. Homotopy invariance. We consider piecewise polynomial loops γ0,γ1 : [0,1]→C∗.
A homotopy between γ0 and γ1 is a map F : [0,1]× [0,1]→ C∗ with F(0, t) = γ0(t) and
F(1, t) = γ1(t) as well as F(s,0) = F(s,1) for all s, t ∈ [0,1]. We also require that F be
piecewise polynomial, which means that for some subdivision 0 = s0 < s1 < · · ·< sm = 1
and 0 = t0 < t1 < · · ·< tn = 1, the map F is polynomial on each Γ jk = [s j−1,s j]× [tk−1, tk].
We can now prove the homotopy invariance (W3) stated in Theorem 1.2.

Theorem 5.4. We have w(γ0) = w(γ1) whenever the loops γ0,γ1 are homotopic in C∗.

Proof. On Γ = [0,1]× [0,1] we have w(F |∂Γ) = w(γ0)−w(γ1). This follows from our
hypothesis that F(s,0) = F(s,1) for all s ∈ [0,1], so these two opposite edges cancel each
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other. Subdivision as above yields w(F |∂Γ) = ∑ jk w(F |∂Γ jk) according to Lemma 4.3.
Since F has no zero, Lemma 5.3 ensures that w(F |∂Γ jk) = 0 for all j,k. �

As a consequence, the winding number w(Ft |∂Γ) does not change if we deform F0 to
F1 avoiding zeros on ∂Γ. To make this precise, we consider F ∈C[Z,T ]; for each t ∈ [0,1]
we denote by Ft the polynomial in C[Z] obtained by specializing T 7→ t.

Corollary 5.5. Suppose that F ∈ C[Z,T ] is such that for each t ∈ [0,1] the polynomial
Ft ∈ C[Z] has no zeros on ∂Γ. Then w(F0|∂Γ) = w(F1|∂Γ). �

Remark 5.6. We have deduced homotopy invariance from the crucial Lemma 5.3 saying
that w(F |∂Γ) = 0 whenever F has no zeros in Γ. Both statements are in fact equivalent.
After translation we can assume (0,0) ∈ Γ. The homotopy Ft(X ,Y ) = F(tX , tY ) deforms
F1 = F to the constant F0 = F(0,0). If F has no zeros in Γ, then Ft has no zeros on the
boundary ∂Γ, and homotopy invariance implies w(F1|∂Γ) = w(F0|∂Γ) = 0.

Homotopy invariance implies that small perturbations do not change the winding num-
ber and hence not the number of zeros. Rouché’s theorem makes this explicit.

Corollary 5.7 (Rouché’s theorem). Let F,G ∈C[Z] be two complex polynomials such that
|F(z)|> |G(z)| for all z ∈ ∂Γ. Then F and F +G have the same number of zeros in Γ.

Proof. For Ft = F + tG we find |Ft | ≥ |F |− t|G|> 0 on ∂Γ for all t ∈ [0,1]. By homotopy
invariance (Corollary 5.5) F0 = F and F1 = F +G have the same winding number along
∂Γ, whence the same number of zeros in Γ (Theorem 5.1). �

5.3. The global winding number. We can now prove Theorem 1.7, stating that w(F |∂Γ)=
degF for every polynomial F ∈ C[Z]∗ and every sufficiently big rectangle Γ.

Proposition 5.8. Given F = Zn + c1Zn−1 + · · ·+ cn in C[Z] we define its Cauchy radius to
be ρF := 1+max{|c1|, . . . , |cn|}. This implies that |F(z)| ≥ 1 for every z∈C with |z| ≥ ρF .
Hence all zeros of F in C lie in the Cauchy disk B(ρF) = {z ∈ C | |z|< ρF }.

Proof. The assertion is true for ρF = 1, since then F = Zn. We can thus assume ρF > 1.
For all z ∈ C satisfying |z| ≥ ρF we find

|F(z)− zn|= |c1zn−1 + · · ·+ cn−1z+ cn| ≤ |c1||zn−1|+ · · ·+ |cn−1||z|+ |cn|

≤max{|c1|, . . . , |cn−1|, |cn|}
(
|z|n−1 + · · ·+ |z|+1

)
= (ρF −1)

|z|n−1
|z|−1

≤ |z|n−1.

We conclude that |F(z)| ≥ |zn|− |F(z)− zn| ≥ 1. �

This proposition holds over any ordered field R and its complex extension C = R[i]
because it uses only the general properties |a+b| ≤ |a|+ |b| and |a ·b| ≤ |a| · |b|. It is not
an existence result, but only an a priori bound. Over a real closed field R, the algebraic
winding number counts the number of zeros, and we arrive at the following conclusion.

Theorem 5.9. For every polynomial F ∈ C[Z]∗ and every rectangle Γ⊂ C containing the
Cauchy disk B(ρF), we have w(F |∂Γ) = degF.

Proof. The assertion is clear for F ∈ C∗ of degree 0. Consider F = Zn + c1Zn−1 + · · ·+ cn
with n≥ 1 and set M = max{|c1|, . . . , |cn|}. The homotopy Ft = Zn + t(c1Zn−1 + · · ·+ cn)
deforms F1 = F to F0 = Zn. The Cauchy radius of Ft is ρt = 1+ tM, which shrinks from
ρ1 = ρF to ρ0 = 1. By the previous proposition, the polynomial Ft ∈ C[Z] has no zeros on
∂Γ. We conclude that w(F1|∂Γ) = w(F0|∂Γ) = n, using Corollaries 5.5 and 4.9. �

This completes the proof of the Fundamental Theorem of Algebra. On the one hand
Theorem 5.9 says that w(F |∂Γ) = degF provided that Γ ⊃ B(ρF), and on the other hand
Theorem 5.1 says that w(F |∂Γ) equals the number of zeros of F in Γ⊂ C.
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Remark 5.10. The Cauchy radius of Proposition 5.8 is the simplest of an extensive family
of root bounds, see Henrici [22, §6.4] and Rahman–Schmeisser [42, chap. 8]. We mention
a nice and useful improvement: to each polynomial F = c0Zn + c1Zn−1 + · · ·+ cn in C[Z]
we associate its Cauchy polynomial F◦ = |c0|Xn − |c1|Xn−1 − ·· · − |cn| in R[X ]. This
implies |F(z)| ≥ F◦(|z|) for all z ∈ C. We assume c0 6= 0 and cn 6= 0, such that F◦(0)< 0
and F◦(x) > 0 for large x ∈ R. According to Descartes’ rule of signs (Theorem 3.2), the
polynomial F◦ has a unique positive root ρ , whence F◦(x)> 0 for all x > ρ , and F◦(x)< 0
for all 0 ≤ x < ρ . Given some r > 0 with F◦(r) > 0, we have |F(z)| > 0 for all |z| ≥ r,
whence all zeros of F in C lie in the disk B(r). (Again this holds over any ordered field R.)

Annotation 5.5. (Degree bounds) The Fundamental Theorem of Algebra, in the form that we have just proven,
states that if the field R is real closed, i.e., every polynomial P ∈ R[X ] satisfies the intermediate value property
over R, then the field C = R[i] is algebraically closed, i.e., every polynomial F ∈ C[Z] splits into linear factors
over C. Since we are working exclusively with polynomials, it is natural to study degree bounds.

We call an ordered field R real d-closed if every polynomial P∈R[X ] of degree≤ d satisfies the intermediate
value property over R. Likewise, we call a field C algebraically d-closed if every polynomial F ∈C[Z] of degree
≤ d splits into linear factors over C. As in Theorem 5.13 it is easy to establish the following implication: if R is
an ordered field such that R[i] is algebraically d-closed, then R is real d-closed. The converse seems to be open:

Question. If R is real d-closed, does this imply that R[i] is algebraically d-closed?

This is trivally true for d = 1. The answer is also affirmative for d = 2,3,4 because quadratic, cubic, and
quartic equations can be solved by radicals of degree n≤ d, i.e., roots of Zn−a with a ∈ C, and these roots can
be constructed in R[i] if R is real n-closed. Notice that quartic equations can be reduced to auxialiary equations
of degree ≤ 3, so if R is real 3-closed, then R[i] is algebraically 4-closed and R is in fact real 4-closed!

What happens in degree 5 and higher? An affirmative answer would be surprising. . . but a Galois-type
obstruction seems unlikely, too. All of the arguments presented in this article immediately extend to refined
versions with the desired degree bounds – the only exception is our algebraic proof of Lemma 5.3, where we
construct a Sturm chain in R[X ,Y ] with little control on the degrees. It seems to be an interesting research project
to investigate this phenomenon in full depth and to prove optimal degree bounds.

5.4. Geometric characterization of the winding number. We have constructed the alge-
braic winding number via Cauchy indices (W0) and then derived its geometric properties:
normalization (W1), multiplicativity (W2), and homotopy invariance (W3). We now com-
plete the circle by showing that (W1), (W2), (W3) characterize the winding number and
imply (W0). We begin with two fundamental examples.

Example 5.11 (stars). Every loop γ in U = CrR≤0 is homotopic in U to the constant loop
γ0 = 1 via γs = 1+ s(γ − 1), whence (W1) and (W3) imply w(γ) = 0. The same holds in
Cr cR≤0 for any c ∈ C∗. Using (W2) we obtain w(cγ) = w(γ) for all loops γ and c ∈ C∗.
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FIGURE 4. The winding number w(δ ) of a diamond-shaped loop δ .

Example 5.12 (diamonds). For 0 < t0− ε < t0 < t0 + ε < 1 let δ : [0,1]→ C be the loop
that linearly interpolates between δ (0) = δ (t0 − ε) = 1, δ (t0 − ε/2) = ±i, δ (t0) = −1,
δ (t0 + ε/2) =±i, and δ (t0 + ε) = δ (1) = 1. Then w(δ ) = 1

2i

[
δ (t0− ε/2)−δ (t0 + ε/2)

]
can

be deduced from (W1), (W2), (W3) alone. The proof is left as an exercise.

Theorem 5.13. Consider an ordered field R and its complex extension C = R[i] where
i2 =−1. Let Ω be the set of piecewise polynomial loops γ : [0,1]→ C∗.
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(1) If some map w : Ω→Z satisfies (W1), (W2), (W3), then C is algebraically closed.
(2) If the field C = R[i] is algebraically closed, then the ordered field R is real closed.
(3) If two maps w, w̃ : Ω→ Z satisfy (W1), (W2), (W3), then w = w̃.

Proof. The result (1) has been deduced in §1.3. Regarding (2), every P ∈ R[X ] factors as
P = c0(X − z1) . . .(X − zn) with z1, . . . ,zn ∈ C. Since P(zk) = P(zk) = 0, each zk ∈ CrR
comes with its conjugate. Pairing these we have P = c0(X−x1) · · ·(X−xr)Q1 · · ·Qs where
x1, . . . ,xr ∈ R and Q j = (X −w j)(X −w j) with w1, . . . ,ws ∈ CrR. The minimum of
Q j = X2−2re(w j)X + |w j|2 is Q j(rew j) = |w j|2− re(w j)

2 > 0, whence Q j(x)> 0 for all
x ∈ R. If P(a)P(b)< 0 for some a < b in R, then a < xk < b for some zero xk of P.

It remains to prove unicity (3) of the winding number. Let γ : [0,1]→ C∗ be a piece-
wise polynomial loop. If γ lies in CrR≤0, then we know w(γ) = 0 from Example 5.11.
In general, γ will cross the negative real axis R<0. Since imγ : [0,1]→ R is piecewise
polynomial and R is real closed by (1) and (2), we can use the intermediate value prop-
erty. We can assume that γ intersects R only a finite number of times t1, . . . , tk, where
0 < t1 < · · · < tn < 1; if not, then cγ will do for some c ∈ C∗. We separate t1, . . . , tk in
disjoint intervals Ik = [tk− ε, tk + ε] for some sufficiently small ε > 0. If γ(tk)> 0, we set
δk = 1. If γ(tk) < 0, then we define δk to be the loop of Example 5.12 with support Ik:
since imγ|Ik changes sign at most at tk, the signs δk(tk± ε/2) ∈ {±i} can be so chosen that
imγ · imδk ≤ 0. Multiplication by δk changes γ only on Ik and ensures that γδk|Ik inter-
sects R only in R>0. We thus obtain γδ1 · · ·δn in CrR≤0. From Example 5.11, we know
w(γδ1 · · ·δn) = 0, whence −w(γ) = w(δ1)+ · · ·+w(δn) by (W2), and the right hand side
is determined by (W1), (W2), (W3) as in Example 5.12. �

Annotation 5.6. (Detailed calculations) For t = tk the assertion (γδk)(t) ∈ R>0 is clear by construction. For
t ≤ tk− ε and for t ≥ tk + ε there is nothing to prove. For t ∈ ]tk− ε, tk + ε[r{tk} we have imγ · imδk < 0. For
γδk we find re(γδk) = reγ · reδk− imγ · imδk and im(γδk) = imγ · reδk + reγ · imδk , whence

im(γδk) · reγ · imδk = (imγ · imδk)(reγ · reδk)+(reγ · imδk)
2.

If im(γδk) vanishes in some t ∈ Ik , then (reγ · reδk)(t)≥ 0, whence re(γδk)(t)> 0.

6. ALGORITHMIC ASPECTS

The preceding sections §4 and §5 show how to construct the algebraic winding number
over a real closed field R. We have used it for proving existence and locating the roots
of polynomials over C = R[i]. This section discusses algorithmic questions. To this end
we have to narrow the scope: in order to work with convergence of sequences in R, we
additionally assume the ordered field R to be archimedean, which amounts to R⊂ R.

The algorithm described here is often attributed to Wilf [70] in 1978, but it was already
explicitly described by Sturm [56] and Cauchy [9] in the 1830s. It can also be found in
Runge’s Encyklopädie article [36, Kap. IB3, §a6] in 1898. Numerical variants are known
as Weyl’s quadtree method (1924) or Lehmer’s method (1961); see §7.7. I propose to
call it the Sturm–Cauchy method, or Cauchy’s algebraic method if emphasis is needed to
differentiate it from Cauchy’s analytic method using integration. For a thorough study of
complex polynomials see Marden [35], Henrici [22], and Rahman–Schmeisser [42]; the
latter contains extensive historical notes and a guide to the literature.

6.1. Turing computability. The theory of ordered or orderable fields, nowadays called
real algebra, was initiated by Artin and Schreier [3, 4] in the 1920s; a spectacular early
success was Artin’s solution [1] of Hilbert’s 17th problem. Since the 1970s real-algebraic
geometry is flourishing anew [7] and, with the advent of computers, algorithmic aspects
have gained importance [5]. We shall focus here on basic questions of computability.

Definition 6.1. We say that an ordered field (R,+, ·,<) can be implemented on a Turing
machine if each element a ∈ R can be coded as input/output for such a machine and each
of the field operations (a,b) 7→ a + b, a 7→ −a, (a,b) 7→ a · b, a 7→ a−1 as well as the
comparisons a = b, a < b can be carried out by a uniform algorithm.
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Example 6.2. The field (R,+, ·,<) of real numbers cannot be implemented on a Turing
machine because the set R is uncountable: it is impossible to code each real number by a
finite string over a finite alphabet, as required for input/output. This argument is indepen-
dent of the chosen representation. If we insist on representing each and every real number,
then this fundamental obstacle can only be circumvented by postulating a hypothetical real
number machine [6], which transcends the traditional setting of Turing machines.

Example 6.3. The subset Rcomp ⊂ R of computable real numbers, as defined by Turing
[61] in his famous 1936 article, forms a countable, real closed subfield of R. Each com-
putable number a can be represented as input/output for a universal Turing machine by
an algorithm that approximates a to any desired precision. This overcomes the obsta-
cle of the previous example by restriction to Rcomp. Unfortunately, not all operations of
(Rcomp,+, ·,<) can be implemented. There exists no algorithm that for each computable
real number a, given in form of an algorithm, determines whether a = 0, or more generally
determines the sign of a. (This is an instance of the notorious Entscheidungsproblem.)

Example 6.4. The algebraic closure Qc of Q in R is a real closed field. Unlike the field of
computable real numbers, the much smaller subfield (Qc,+, ·,<) can be implemented on
a Turing machine [46, 45]. More specifically, consider a polynomial F = c0Zn +c1Zn−1 +
· · ·+ cn whose coefficients ck ∈ C are algebraic over Q. Then re(ck) and im(ck) are also
algebraic, and the field R =Q(re(c0), im(c0), . . . , re(cn), im(cn))⊂Qc is a finite extension
over Q. It can be generated by one element, which means R =Q(α) for some α ∈ R, and
such a presentation makes it convenient for implementation.

6.2. The Sturm–Cauchy root-finding algorithm. We consider a complex polynomial

F = c0Zn + c1Zn−1 + · · ·+ cn−1Z + cn in C[Z]

that we assume to be Turing implementable, that is, we require the ordered field

Q(re(c0), im(c0), . . . , re(cn), im(cn))⊂ R

to be implementable in the preceding sense. We begin with the following preparations.
• We divide F by gcd(F,F ′) to ensure that all roots of F are simple.
• As in Remark 5.10 we determine r ∈ N such that all roots of F lie in B(r).

The following terminology will be convenient: a 0-cell is a singleton {a} with a ∈ C;
a 1-cell is an open line segment, either vertical {x0}× ]y0,y1[ or horizontal ]x0,x1[×{y0}
with x0 < x1 and y0 < y1 in R; a 2-cell is an open rectangle ]x0,x1[× ]y0,y1[ in C.

It is immediate to check whether a 0-cell contains a root of F . Sturm’s theorem (Corol-
lary 3.16) allows us to count the roots of F in a 1-cell ]a,b[: for G = F(a+X(b− a))
in C[X ] calculate P = gcd(reG, imG) in R[X ] and count roots of P in ]0,1[. Cauchy’s
theorem (Theorem 5.1) allows us to count the roots in a 2-cell. In both cases the crucial
subalgorithm is the computation of Sturm chains which we will discuss in §6.4 below.

Building on these methods, the root-finding algorithm successively for t = 0,1,2,3 . . .
constructs a list Lt = {Γ1, . . . ,Γnt} of disjoint cells, which behaves as follows.

• Each root of F is contained in exactly one cell Γ ∈ Lt .
• Each cell Γ ∈ Lt contains at least one root of F .
• Each cell Γ ∈ Lt has diameter ≤ 3r ·2−t .

The algorithm proceeds as follows: To begin, we initialize L0 = {Γ} with the square
Γ = ]−r,+r[× ]−r,+r[. Given Lt we construct Lt+1 by treating each cell in Lt as follows.

(0) Retain all 0-cells unchanged.
(1) Bisect each 1-cell into two 1-cells of equal length as in Figure 5, which also creates

one interior 0-cell. Retain each new cell that contains a root of F .
(2) Quadrisect each 2-cell into four 2-cells of equal size as in Figure 5, which creates

four interior 1-cells and one 0-cell. Retain each new cell that contains a root of F .
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FIGURE 5. Bisecting a 1-cell and quadrisecting a 2-cell

Collecting all retained cells we obtain the new list Lt+1. After some initial iterations
(§6.4) all roots will lie in disjoint cells Γ1, . . . ,Γn, each containing precisely one root. Tak-
ing the midpoint uk ∈ Γk, this can be seen as n approximate roots u1, . . . ,un, each with an
error bound δk ≤

√
2r/2t such that each uk is δk-close to a root of F .

6.3. Crossover to Newton’s local method. For F ∈ C[Z], Newton’s method consists in
iterating the map Φ(z) = z− F(z)/F ′(z) defined on {z ∈ C | F ′(z) 6= 0}. This simple
technique is very powerful because of its local behaviour around zeros.

Theorem 6.5. The fixed points of Newton’s map Φ(z) = z−F(z)/F ′(z) are the simple
zeros of F, that is, the points z0 ∈ C such that F(z0) = 0 and F ′(z0) 6= 0. For each fixed
point z0 there exists δ > 0 such that every initial value u0 ∈ B(z0,δ ) satisfies

(6.1) |Φt(u0)− z0| ≤ 21−2t · |u0− z0| for all t ∈ N.

The convergence to z0 is thus very fast but requires a good initial approximation u0≈ z0;
otherwise Newton’s iteration may be slow at first or not converge at all. On a practical level
this raises two problems: first, how to find approximate zeros, and second, how to deter-
mine whether a given approximation is sufficiently good to guarantee fast convergence as
in (6.1)? The global root-finding algorithm of §6.2 approximates all roots simultaneously,
and the following criterion exploits this information for launching Newton’s method:

Theorem 6.6. Let F ∈ C[Z] be a separable polynomial of degree n≥ 2. Suppose we have
separated the roots z1, . . . ,zn of F in closed disks B̄(u1,δ1), . . . , B̄(un,δn) such that

(6.2) 3nδk ≤ |uk−u j| for all j 6= k.

Then Newton’s iteration satisfies |Φt(uk)− zk| ≤ 21−2t ·δk for all t ∈ N.

Proof. For F = (Z− z1) · · ·(Z− zn) we have F ′/F = ∑
n
j=1(Z− z j)

−1. This implies that
Φ(z) = z−1/∑

n
j=1(z− z j)

−1, provided that F(z) 6= 0 and F ′(z) 6= 0, whence

Φ(z)− zk

z− zk
= 1− 1

∑
n
j=1

z−zk
z−z j

=
∑ j 6=k

z−zk
z−z j

1+∑ j 6=k
z−zk
z−z j

.

By hypothesis, we have approximate roots u1, . . . ,un such that |uk− zk| ≤ δk. Consider
an arbitrary point z ∈ B̄(zk,δk), which entails |z−uk| ≤ 2δk. For all j 6= k we find

|z− z j| ≥ |uk−u j|− |z−uk|− |z j−u j| ≥ |uk−u j|−2δk−δ j ≥ (3n−3)δk,

where the last inequality (3n−1)δk+δ j ≤ |uk−u j| is a convex linear combination of (6.2).
This ensures that

∣∣∑ j 6=k
z−zk
z−z j

∣∣≤ ∑ j 6=k
∣∣ z−zk

z−z j

∣∣≤ |z−zk|
3δk
≤ 1

3 . For z 6= zk this implies

∣∣∣∣Φ(z)− zk

z− zk

∣∣∣∣≤
∣∣∣∑ j 6=k

z−zk
z−z j

∣∣∣
1−
∣∣∣∑ j 6=k

z−zk
z−z j

∣∣∣ ≤
1

3δk
|z− zk|

1− 1
3

=
|z− zk|

2δk
.

For all z ∈ B̄(zk,δk) we conclude that |Φ(z)− zk| ≤ 1
2δk
|z− zk|2, whence |Φt(z)− zk| ≤

21−2t · |z− zk| by induction on t ∈ N. In particular this holds for z = uk. �
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Annotation 6.1. (Isolating a single root) The proof of Theorem 6.6 also applies when we isolate only one root.
The only requirement is that all other roots must be sufficiently far away:

Theorem. Let F ∈ C[Z] be of degree n ≥ 2. Suppose that B̄(u1,δ ) contains exactly one root z1 of F, and
B̄(u1,(3n−1)δ ) contains no further root. Then Newton’s iteration satisfies |Φt(u1)− z1| ≤ 21−2t ·δ for all t ∈N.

Proof. For z ∈ B̄(z1,δ ) we have |z− u1| ≤ 2δ , whence |z− z j| ≥ |u1− z j|− |z− u1| ≥ 3(n− 1)δ . This ensures
that

∣∣∑ j>1
z−z1
z−z j

∣∣≤ ∑ j>1
∣∣ z−z1

z−z j

∣∣≤ |z−z1|
3δ
≤ 1

3 . As above, we conclude that |Φ(z)− z0| ≤ 1
2δ
|z− z0|2. �

Annotation 6.2. (Better convergence) We want to approximate the root zk starting from uk . But we also have
approximations to the other roots, so we should try to exploit this extra information. Instead of F we may apply
Newton’s method to Gk(z) = F(z)/∏ j 6=k(z− u j). On B̄(zk,δk) both F and Gk have the same root zk , but Gk
yields better convergence properties. This is obvious in the special case where u j = z j for all j 6= k, which leads
to the deflated polynomial Gk(z) = z− zk . In general we only have u j ≈ z j , so that Gk is more complicated than
F . Nevertheless it is advantageous for Newton’s iteration because the basin of attraction around zk is bigger.

Theorem. Let F ∈ C[Z] be a separable polynomial of degree n ≥ 4. Suppose we have separated the roots
z1, . . . ,zn of F in closed disks B̄(u1,δ1), . . . , B̄(un,δn) such that

(6.3) 4
√

n−1 ·δk ≤ |uk−u j| for all j 6= k.

Then Newton’s iteration applied to Gk satisfies |Φt(uk)− zk| ≤ 21−2t ·δk for all t ∈ N.

Proof. We follow the lines of the previous proof. First we see that

G′k(z)
Gk(z)

=
1

z− zk
+ ∑

j 6=k

1
z− z j

− 1
z−u j

=
1

z− zk
+ ∑

j 6=k

z j−u j

(z− z j)(z−u j)
.

For z ∈ B̄(zk,δk) we iterate the map Φ(z) = z−Gk(z)/G′k(z). For z 6= zk the relative error is

Φ(z)− zk

z− zk
=

H(z)
1+H(z)

where H(z) = ∑
j 6=k

(z− zk)(z j−u j)

(z− z j)(z−u j)
.

For the factors in the denominator we find |z− z j| ≥ |uk − u j| − |z− uk| − |z j − u j| ≥ |uk − u j| − 2δk − δ j and
|z−u j| ≥ |uk−u j|− |z−uk| ≥ |uk−u j|−2δk , whence

|z− z j| · |z−u j| ≥ |uk−u j|2− (4δk +δ j)|uk−u j| ≥ |uk−u j|2(1−5/(4
√

n−1)).

Here we have used the hypothesis δk ≤ |uk−u j|/(4
√

n−1). A small calculation leads to the estimate

δkδ j

|z− z j| · |z−u j|
≤ 1/[16(n−1)]

1−5/[4
√

n−1]
≤ 1

3(n−1)
.

We thus obtain

|H(z)| ≤ |z− zk|
δk

∑
j 6=k

δkδ j

|z− z j| · |z−u j|
≤ |z− zk|

δk
· 1

3
≤ 1

3
.

For the relative error this implies∣∣∣∣Φ(z)− z
z− zk

∣∣∣∣≤ |H(z)|
1−|H(z)|

≤
1

3δk
|z− zk|

1− 1
3

≤ |z− zk|
2δk

.

For all z∈ B̄(zk,δk) we conclude that |Φ(z)−zk| ≤ 1
2δk
|z−zk|2, whence |Φt(z)−zk| ≤ 21−2t · |z−zk| by induction

on t ∈ N. In particular this holds for z = uk . �

As an alternative to the tailor-made criterion of Theorem 6.6, the following theorem of
Smale [6, chap. 8] provides a far more general convergence criterion in terms of local data.
It applies in particular to polynomials, where it is most easily implemented.

Theorem 6.7 (Smale 1986). Let f : U →C be an analytic function on some open set U ⊂
C. Consider u0 ∈U satisfying f (u0) 6= 0 and f ′(u0) 6= 0, so that η = | f (u0)/ f ′(u0)|> 0 is
the initial displacement in Newton’s iteration. Suppose further that B(u0,2η)⊂U and the
expansion f (z) = ∑

∞
k=0 ak(z−u0)

k satisfies |ak| ≤ (8η)1−k|a1| for all k ≥ 2. Then f has a
unique zero z0 in B(u0,2η) and Newton’s iteration converges as in (6.1).
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6.4. Fast Cauchy index computation. To complete the picture we briefly consider the
bit-complexity of the Sturm–Cauchy algorithm described in §6.2. In order to simplify we
will work over the rational numbers. The fundamental problem is, for given R/S ∈Q(X),
to compute Ind1

0(
R
S ). To this end we wish to construct some chain S0,S1, . . . ,Sn ∈ Q[X ]∗

starting with S1/S0 = R/S and ending with Sn ∈Q∗ such that

(6.4) AkSk+1 +BkSk +CkSk−1 = 0 with Ak ∈Q∗, Bk ∈Q[X ], Ck ∈Q

for all k = 1, . . . ,n−1. The signs can then easily be arranged such that Ak > 0 and Ck ≥ 0,
which ensures that we have a Sturm chain according to Proposition 3.12.

The euclidean algorithm for polynomials of degree ≤ n takes O(n3) operations in Q.
A suitable divide-and-conquer algorithm [17, chap. 11] reduces this to Õ(n2) operations in
Q; here the asymptotic complexity Õ(nα) neglects logarithmic factors log(n)β . A closer
look reveals that we only need the data Ak,Bk,Ck for k = 1, . . . ,n− 1, and these can be
calculated with only Õ(n) operations in Q. Given S0,S1 and Ak,Bk,Ck for all k, we can
evaluate S0(x),S1(x), . . . ,Sn(x) at any given x ∈ Q using the recursion (6.4) with O(n)
operations in Q. Finally, we have to control the size of the coefficients that appear during
the computation. According to Lickteig–Roy [32], the result is the following.

Theorem 6.8. Given polynomials R,S ∈ Z[X ] of degree ≤ n and coefficients bounded by
2a, the Cauchy index Ind1

0(
R
S ) can be computed using Õ(n2a) bit-operations. �

This can be applied to locating complex roots. Let F = c0Zn + c1Zn−1 + · · ·+ cn be a
polynomial with Gaussian integer coefficients c0,c1, . . . ,cn ∈ Z[i] bounded by |reck| < 2a

and |imck| < 2a for all k = 0, . . . ,n. For simplicity we further assume that n < 2a and
a≤ nb, where b is the desired bit-precision for approximating the roots.

Corollary 6.9. Suppose that all roots of F lie in the disk B(r). The Sturm–Cauchy algo-
rithm determines all roots of F to a precision

√
2r/2b using Õ(n4b2) bit-operations.

Proof. According to Theorem 6.8, we can compute Ind1
0(

reF
imF ) using Õ(n2a) bit-operations.

We can reparametrize F to calulcate the index along any line segment, and thus along the
boundary of any rectangle. In the Sturm–Cauchy algorithm (§6.2), this has to be iterated b
times in order to achieve the desired precision, and the coefficients are bounded by 2a+nb.
Since we assume all roots of F to be distinct, they ultimately become separated so that the
algorithm has to follow n approximations in parallel. This multiplies the previous bound
by a factor nb, so we arrive at Õ(n3b(a+nb)) bit-operations. �

Annotation 6.3. (Data structures) The construction of the Sturm chain is the most expensive step in the above
root-finding algorithm. In the real case we have to construct this chain only once because we can reuse it in all
subsequent iterations. In the complex case, each segment requires a separate computation: it is thus advantageous
to store each segment with its corresponding Sturm chain, and each square with the four Sturm chains along the
boundary, so as to reuse precious data as much as possible.

Annotation 6.4. (Algorithms) The algebraic algorithm is straightforward to implement except for two standard
subalgorithms, namely fast integer arithmetic and fast subresultant computation for integer polynomials. These
subalgorithms are theoretically well-understood, and their complexity is known and nearly optimal. Their imple-
mentation is laborious, but is available in general-purpose libraries for integer and polynomial arithmetic.

The algebraic algorithm uses exact arithmetic. This means that during its execution we do not have to worry
about error propagation, which simplifies (formal) correctness proofs.

Annotation 6.5. (Parallelization) We can adapt the algorithm to find only one root of F , and according to the
preceding proof its complexity is Õ(n3b2), again neglecting terms of order log(n). This approach is paralleliz-
able: whenever bisection separates the roots into nonempty clusters, these can then be processed by independent
computers working in parallel. The parallel complexity thus drops to Õ(n3b2).

To which bit-precision b should we apply this algorithm? Here is an a priori estimate.

Corollary 6.10. We can switch to Newton’s method after at most b = 3na iterations in the
Sturm–Cauchy algorithm . This amounts to Õ(n6a2) bit-operations.
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Proof. Given F = c0Zn + c1Zn−1 + · · ·+ cn = c0(Z− z1) · · ·(Z− zn) as above with c0 6= 0,
its discriminant disc(F) = c2n−2

0 ∏ j<k(z j− zk)
2 is an integer polynomial in the coefficients

c0,c1, . . . ,cn. Here c0,c1, . . . ,cn ∈ Z[i], so disc(F) ∈ Z[i]. Since we assume z1, . . . ,zn to be
pairwise distinct, we have disc(F) 6= 0, whence |disc(F)| ≥ 1. According to Mahler [34],
the minimal root distance ∆(F) := min j 6=k|z j− zk| is bounded below by

∆(F)>
√

3 |disc(F)|/nn+2 |F |1−n,

where |F | = |c0|+ |c1|+ · · ·+ |cn|. Our hypothesis |reck| ≤ 2a− 1 and |imck| ≤ 2a− 1
implies |ck| ≤

√
2(2a− 1) for all k = 0,1, . . . ,n. By Proposition 5.8, the zeros z1, . . . ,zn

lie in the disk B(r) of radius r = 3
2 ·2

a. After b quadrisections of the square [−r,+r]2, we
have approximate roots uk ∈ B̄(zk,δk) with δk ≤

√
2r/2b. Assuming b = 3na and 2a > n

we find, after some calculation, that 3nδk < ∆(F), so we can apply Theorem 6.6. �

Annotation 6.6. (Detailed calculations) We have |F | ≤ (n+1)
√

2 · (2a−1) and (n+1)≤ 2a.

3nδk ≤ 3n
√

2r/2b =
9
2

√
2n2a−3na =

9
2

√
2n2−na/2 · (2a)−3n/2 · (2a)1−n

≤ 9
2

√
2n2−na/2 · (n+1)−3n/2 · (n+1)n−1|F |1−n

≤ 9
2

√
2n2−na/2

( n
n+1

)n/2+1
·n−n/2−1 · |F |1−n

≤
√

3 ·n−n/2−1 · |F |1−n < ∆(F).

We should point out that the pessimistic bound |disc(F)| ≥ 1 ensures root separation even in the worst case; for
most polynomials the algorithm will separate the roots somewhat faster.

6.5. What remains to be improved? Root-finding algorithms of bit-complexity Õ(n3b)
are state-of-the-art since the ground-breaking work of Schönhage [50, Thm. 19.2] in the
1980s. The Sturm–Cauchy algorithm is of complexity Õ(n4b2) and thus comes close, but
in its current form remains two orders of magnitude more expensive. Schönhage remarks:

“It is not clear whether methods based on Sturm sequences can possibly
become superior. Lehmer [30, 31] and Wilf [70] both do not solve the
extra problems which arise, if there is a zero on the test contour (circle or
rectangle) or very close to it.” [50, p. 5]

Our algebraic development neatly solves the problem of roots on the boundary. Re-
garding complexity, we have applied the divide-and-conquer paradigm in the arithmetic
subalgorithms (§6.4) but not yet in the root-finding method itself. In Schönhage’s method
this is achieved by approximately factoring F of degree n into two polynomials F1,F2 of
degrees close to n

2 . Perhaps an analogous strategy can be put into practice in the algebraic
setting; some clever idea and a more detailed investigation are needed here.

Annotation 6.7. (Root isolation) Schönhage’s algorithm is extremely well-crafted: it achieves root isolation
using only Õ(n3a) bit operations for any (square-free) polynomial of degree n with integer coefficients bounded
by 2a [50, Thm. 20.1]. This satisfactorily solves the problem of root finding: as explained above in Theorem 6.6,
one can then switch to Newton’s method and increase the precision to any desired accuracy with little extra cost.

Besides complexity there is still another problem: approximating the roots of a polyno-
mial F ∈ C[Z] can only be as good as the initial data, and we therefore assume that F is
known exactly. This is important because root-finding can be ill-conditioned [71]. Even if
exact arithmetic can avoid this problem during the computation, it comes back into focus
when the initial data is itself only an approximation. In this situation the real-algebraic
approach requires a detailed error analysis, ideally in the setting of interval arithmetic.

6.6. Formal proofs. In recent years the theory and practice of formal proofs and computer-
verified theorems have become a full fledged enterprise. Prominent examples include the
Jordan Curve Theorem [21] and the Four Colour Theorem [20]. (For an overview of some
“top 100” theorems see [69].) Driven by these achievements, the computer-verified proof
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community envisages much more ambitious goals, such as the classification of finite simple
groups. Such gigantic projects make results like the Fundamental Theorem of Algebra look
like toy examples, but their formalization is by no means a trivial task. The real-algebraic
approach offers certain inherent advantages, mainly its simplicity and algorithmic nature.
The latter is an important virtue: Theorem 1.8 is not only an existence statement but pro-
vides an algorithm. A formal proof of the theorem can thus serve as a formal correctness
proof of an implementation.

Annotation 6.8. (Ongoing debate) Computer-assisted proofs have been intensely debated and their scope and
mathematical reliability have been questioned. The approach is still in its infancy compared to traditional view-
points and its long-ranging impact on mathematics remains to be seen, but its achievements are already promising.

We should emphasize that the formalization of mathematical theorems and proofs and their computer verifi-
cation may be motivated by several factors. Some theorems, of varying difficulty, have been formalized in order
to show that this is possible in principle and to gain practical experience. While pedagogically important for proof
formalization itself, the traditional mathematician will find no added value in such examples.

More complicated theorems, such as the examples above, raise the intrinsic motivation for formalization and
computer-verified proofs, because there is an enormous number of cases to be solved and verified. Whenever
human fallibility becomes a serious practical problem, as in these cases, a well established and trustworthy verifi-
cation tool clearly has its merit. This is particularly true if the mathematical model is implemented on a computer
for practical applications, and a high level of security is required. It is in this realm that computer-assisted cor-
rectness proofs are most widely appreciated.

7. HISTORICAL REMARKS

The Fundamental Theorem of Algebra is a crowning achievement in the history of math-
ematics. In order to place the real-algebraic approach into perspective, this section sketches
its historical context. For the history of the Fundamental Theorem of Algebra we refer to
Remmert [43], Dieudonné [13, chap. II, §III], and van der Waerden [64, chap. 5]. The
history of Sturm’s theorem has been examined in great depth by Sinaceur [52].

7.1. Polynomial equations. The method to solve quadratic equations was already known
to the Babylonians. Not much progress was made until the 16th century, when del Ferro
(around 1520) and Tartaglia (1535) discovered a solution for cubic equations by radicals.
Cardano’s student Ferrari extended this to a solution of quartic equations by radicals. Both
formulae were published in Cardano’s Ars Magna in 1545. Despite considerable efforts
during the following centuries, no such formulae could be found for degree 5 and higher.
They were finally shown not to exist by Ruffini (1805), Abel (1825), and Galois (1831).
This solved one of the outstanding problems of algebra, alas in the negative.

The lack of general formulae provoked the question whether solutions exist at all. The
existence of n roots for each real polynomial of degree n was mentioned by Roth (1608)
and explicitly conjectured by Girard (1629) and Descartes (1637). They postulated these
roots in some extension of R but did not claim that all roots are contained in the field
C = R[i] of complex numbers. Leibniz (1702) even speculated that this is in general not
possible. The first attempts to prove the Fundamental Theorem of Algebra were made by
d’Alembert (1746), Euler (1749), Lagrange (1772), and Laplace (1795).

7.2. Gauss’ geometric proof. In his doctoral thesis (1799) Gauss criticized the shortcom-
ings of all previous tentatives and presented a geometric argument, which is commonly
considered the first satisfactory proof of the Fundamental Theorem of Algebra.

In summary, Gauss considers a polynomial F = Zn + c1Zn−1 + · · ·+ cn−1Z + cn and
upon substitution of Z = X + iY obtains F = R+ iS with R,S ∈R[X ,Y ]. The zeros of F are
precisely the intersections of the two curves R = 0 and S = 0 in the plane. Consider a disk
Γ centered in 0 with sufficiently large radius. Near the circle ∂Γ these curves resemble
the zero sets of the real and imaginary parts of Zn. The latter are 2n straight lines passing
through the origin. Thus ∂Γ intersects the curves R = 0 and S = 0 in two sets of 2n points
placed in an alternating fashion around the circle. (See Figure 6.)
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S=0

R=0

Γ

(A) The curves R = 0 and S = 0 out-
side of a sufficiently large disk Γ.

(B) Joining the ends inside of Γ

forces the curves to intersect.
(C) Such pathological cases
have to be ruled out, of course.

FIGURE 6. Gauss’ geometric argument for the existence of zeros

Prolonging these curves into the interior of Γ, Gauss concludes that the curves R = 0
and S = 0 must intersect somewhere inside the disk Γ. The conclusion relies on certain
(intuitively plausible) assumptions, which Gauss clearly states but does not prove:

“It seems to have been proved with sufficient certainty that an algebraic
curve can neither suddenly break off anywhere (as it happens, for exam-
ple, with the transcendental curve whose equation is y = 1/ logx) nor lose
itself, so to say, in some point after infinitely many coils (like the loga-
rithmic spiral). As far as I know, nobody has raised any doubts about this.
Should someone demand it, however, then I will undertake to give a proof
that is not subject to any doubt, on some other occasion.”3

This amounts to a version of the Jordan Curve Theorem [19]. By modern standards
Gauss’ geometric argument is thus incomplete. The unproven assertions are indeed cor-
rect, and were rigorously worked out by Ostrowski [38, 39] more than a century later.
Gauss’ ingenious insight was to apply geometric arguments to an algebraic problem. In
terms of winding numbers he shows w(F |∂Γ) = n by an implicit homotopy F ∼ Zn. Our
development shows how to complete the proof using real-algebraic techniques.

Annotation 7.1. (How serious is this gap?) Gersten and Stallings [On Gauss’s first proof of the fundamental
theorem of algebra, Proc. Amer. Math. Soc. 103 (1988), 331–332]: “It is remarkable that Gauss himself was not
able to fill in the details, except to give a plausibility argument at the point in the proof where the free group
enters; the deep point in this argument involves the geometry of the 2-cell, especially a version of the Jordan
Curve Theorem which is used in the geometric theory of free groups.” Smale [The fundamental theorem of
algebra and complexity theory, Bull. Amer. Math. Soc. 4 (1981), 1–36]: “I wish to point out what an immense
gap Gauss’ proof contained. It is a subtle point even today that a real algebraic plane curve cannot enter a disk
without leaving. In fact even though Gauss redid this proof 50 years later, the gap remained. It was not until 1920
that Gauss’ proof was completed.” Ostrowksi’s arguments essentially use compactness to prove existence and are
not constructive. For the real-algebraic proof the intermediate value property of polynomials suffices; moreover,
it makes the proof constructive and provides computational tools.

Gauss gave two further proofs in 1816; the second proof is algebraic (§7.6.2), whereas
the third proof uses integration (§7.6.3) and foreshadows Cauchy’s integral formula for the
winding number. Gauss’ fourth proof in 1849 is essentially an improved version of his first
proof [64, chap. 5]. When Gauss published it for his doctorate jubilee, the works of Sturm

3 “Satis bene certe demonstratum esse videtur, curvam algebraicam neque alicubi subito abrumpi posse (uti
e.g. evenit in curva transscendente, cuius aequatio y = 1/ logx), neque post spiras infinitas in aliquo puncto se
quasi perdere (ut spiralis logarithmica), quantumque scio nemo dubium contra hanc rem movit. Attamen si
quis postulat, demonstrationem nullis dubiis obnoxiam alia occasione tradere suscipiam.” [18, Bd. 3, p. 27] My
translation is adapted from Prof. Ernest Fandreyer’s (Fitchburg State College Library, Manuscript Collections),
cf. van der Waerden [64, p. 96].
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(1835) and Cauchy (1837) had been known for several years. In particular Sturm’s theo-
rem had immediately risen to international acclaim, and was certainly familiar to Gauss.
Gauss could have taken up his first proof and completed it by arguments similar to the
ones presented here. Completing Gauss’ geometric argument, Ostrowski [39] mentions
the relationship with the Cauchy index but builds his proof on topological arguments.

Annotation 7.2. (Historical sources) In 1831 Gauss discussed Fourier’s work Analyse des équations déterminées
on counting and locating real roots (Werke, Band 3, pp. 119–121). Kronecker attributes a certain example of
Sturm chains to Gauss in 1849 in his course Theorie der algebraischen Gleichungen (1872), notes written by
Kurt Hensel, archived at the University of Strasbourg, available at num-scd-ulp.u-strasbg.fr/429, page
165. Unfortunately I could not find this example or similar ones in Gauss’ collected works. A more detailed
research would be necessary to clarify the reception of the ideas of Sturm and Cauchy in Gauss’ writings.

7.3. Cauchy, Sturm, Liouville. Argand in 1814 and Cauchy in 1820 proved the Funda-
mental Theorem of Algebra by assuming the existence of a global minimum z0 of |F | and
a local argument to show that F(z0) = 0; see §7.6.1. While the local analysis is rigorous,
the existence of a minimum requires some compactness argument, which was yet to be
developed; see Remmert [43, §1.8].

Sturm’s theorem for counting real roots was announced in 1829 [54] and published in
1835 [55]. It was immediately assimilated by Cauchy in his residue calculus [8], based
on contour integration, which was published in 1831 during his exile in Turin. In 1837
he published a more detailed exposition [9] with analytic-geometric proofs, and explicitly
recognizes the relation to Sturm’s theorem and algebraic computations.

In the intervening years, Sturm and Liouville [58, 56] had elaborated their algebraic
version of Cauchy’s theorem, which they published in 1836. (Loria [33] and Sinaceur
[52, I.VI] examine the interaction between Sturm, Liouville, and Cauchy in detail.) As
opposed to Cauchy, their arguments are based on what they call the “first principles of
algebra”. In the terminology of their time this means the theory of complex numbers,
including trigonometric coordinates z = r(cosθ + isinθ) and de Moivre’s formula, but
excluding integration. They use the intermediate value property of real polynomials as
well as tacit compactness arguments.

7.4. Sturm’s algebraic vision. Sturm, in his article [56] continuing his work with Liou-
ville [58], presents arguments which closely parallel our real-algebraic proof: the argument
principle (Prop. 1, p. 294), multiplicativity (Prop. 2, p. 295), counting roots of a split poly-
nomial within a given region (Prop. 3, p. 297), the winding number in the absence of zeros
(Prop. 4, p. 297), and finally Cauchy’s theorem (p. 299). One crucial step is to show that
w(F |∂Γ) = 0 when F does not vanish in Γ. This is solved by subdivision and a tacit
compactness argument (pp. 298–299); our compactness proof of Lemma 5.3 makes this
explicit and completes his argument. Sturm then deduces the Fundamental Theorem of
Algebra (pp. 300–302) and expounds on the practical computation of the Cauchy index
w(F |∂Γ) using Sturm chains as in the real case (pp. 303–308).

Sturm’s exposition strives for algebraic simplicity, but his proofs are still based on geo-
metric and analytic arguments. It is only on the final pages that Sturm employs his alge-
braic method for computing the Cauchy index. This mixed state of affairs has been passed
on ever since, even though it is far less satisfactory than Sturm’s purely algebraic treatment
of the real case [55]. Our proof shows that Sturm’s algebraic vision of the complex case
can be salvaged and his arguments can be put on firm real-algebraic ground.

We note that Sturm and Liouville [58] explicitly exclude zeros on the boundary:

http://num-scd-ulp.u-strasbg.fr/429
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“We formally exclude, however, the case where for some point of the
curve we have simultaneously P = 0 and Q = 0: this special case does not
enjoy any regular property and cannot give rise to any theorem.”4

This seems overly pessimistic in view of our Theorem 1.5 above. In his continuation [56],
Sturm formulates the same problem more cautiously:

“It is under this hypothesis that we have proven the theorem of Mr. Cauchy;
the necessary modifications in the case where roots were on the con-
tour would require a long and meticulous discussion, which we wanted
to avoid by neglecting this special case.”5

It seems safe to say that our detailed discussion is just as “long and meticulous” as the
usual development of Sturm’s theorem. Modulo these details, the cited works of Gauss,
Cauchy, and Sturm contain the essential ideas for the real-algebraic approach.

Annotation 7.3. To this end our presentation refines the techniques in several ways:

• We purge all arguments of transcendental functions and compactness assumptions. This simplifies the
proof and generalizes it to real closed fields.

• The product formula (§4.5) and homotopy invariance (§5.2) streamline the proof and avoid tedious
calculations.

• The uniform treatment of boundary points extends Sturm’s theorem to piecewise polynomial functions
and leads to straightforward algorithms.

7.5. Further development in the 19th century. Sturm’s theorem was a decisive step in
the development of algebra as an autonomous field; see Sinaceur [52]. Algebraic gener-
alizations to higher dimensions were conjectured by Sylvester in 1840 and developped by
Hermite from 1852 onwards. In 1869 Kronecker [27] turned from algebra to integration
in order to construct his higher-dimensional index (also called Kronecker characteristic).
Subsequent work was likewise built on analytic or topological methods over R: one gains
in generality by extending the index to smooth or continuous functions, but one loses alge-
braic computability and the elementary setting of real closed fields.

7.5.1. Applications. Generalizing Example 3.3, the problem of stability of motion led
Routh [44] in 1878 and Hurwitz [23] in 1895 to count, for a given polynomial, the number
of complex roots having negative real part. With the celebrated Routh–Hurwitz theorem,
the algebraic Cauchy index has transited from algebra to application, where it survives to
the present day.

7.5.2. Encyclopaedic surveys. In the 1898 Encyklopädie der mathematischen Wissenschaften
[36], Netto’s survey on the Fundamental Theorem of Algebra (Kap. IB1, §a7) mentions
Cauchy’s algebraic approach only briefly (p. 236), whereas Runge’s article on approxi-
mation of complex roots (Kap. IB3, §a6) discusses the Sturm–Cauchy method in detail
(pp. 418–422). In the 1907 Encyclopédie des Sciences Mathématiques [37], Netto and le
Vavasseur give an overview of nearly 100 published proofs (tome I, vol. 2, chap. I-9, §80–
88), including Cauchy’s argument principle (§87). The work of Sturm–Liouville [58, 56]
is listed but the algebraic approach via Sturm chains is not mentioned.

7.5.3. Nineteenth-century textbooks. While Sturm’s theorem made its way to modern al-
gebra textbooks, the algebraic approach to the complex case seems to have been lost on the
way. I will illustrate this by two prominent and perhaps representative textbooks.

4 “Toutefois nous excluons formellement le cas particulier où, pour quelque point de la courbe ABC, on aurait
à la fois P = 0, Q = 0 : ce cas particulier ne jouit d’aucune propriété régulière et ne peut donner lieu à aucun
théorème.” [58, p. 288]

5 “C’est en admettant cette hypothèse que nous avons démontré le théorème de M. Cauchy ; les modifications
qu’il faudrait y apporter dans le cas où il aurait des racines sur le contour même ABC, exigeraient une discussion
longue et minutieuse que nous avons voulu éviter en faisant abstraction de ce cas particulier.” [56, p. 306]
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In his 1866 textbook Cours d’algèbre supérieure, starting with the third edition, Serret
[51, pp. 117–131] presents the proof of the Fundamental Theorem of Algebra following
Cauchy and Sturm–Liouville, with only minor modifications.

In his 1898 textbook Lehrbuch der Algebra, Weber [65] devotes over 100 pages to
real-algebraic equations, where he presents Sturm’s theorem in great detail (§91–106).
Calling upon Kronecker’s index theory (§100–102), he sketches how to count complex
roots (§103–104). Quite surprisingly, he uses only Ind

(P′
P ) and Corollary 3.16 where the

general case Ind
(R

S ) and Theorem 3.15 would have been optimal. Here Cauchy’s algebraic
method [9], apparently unknown to Weber, had gone much further concerning explicit
formulae and concrete computations.

7.6. Survey of proof strategies. Since the time of Gauss numerous proofs of the Funda-
mental Theorem of Algebra have been developed. We refer to Remmert [43] for a concise
overview and to Fine–Rosenberger [15] for a textbook presentation. As mentioned in §1.1,
the proof strategies can be grouped into three families:

7.6.1. Analysis. Early proofs in this family are based on the existence of a global mini-
mum z0 of |F | and some local argument from complex analysis showing that F(z0) = 0
(d’Alembert 1746, Argand 1814, Cauchy 1820). See Remmert [43, §2] for a presentation
in its historical context, or Rudin [47, chap. 8] in the context of a modern analysis course.
The most succinct formulation follows from Liouville’s theorem for entire functions.

These existence proofs are in general not constructive and do not indicate the location
of zeros. For a discussion of constructive refinements see [43, §2.5].

7.6.2. Algebra. Proofs in this family use the fundamental theorem of symmetric polyno-
mials in order to reduce the problem from real polynomials of degree 2km with m odd to
degree 2k−1m′ with m′ odd (Euler 1749, Lagrange 1772, Laplace 1795, Gauss 1816; see
[43, appendix]). The argument can also be reformulated using Galois theory; see Cohn
[11, Thm. 8.8.7], Jacobson [25, Thm. 5.2], or Lang [29, §VI.2, Ex. 5]. The induction is
based, for k = 0, on real polynomials of odd degree, where the existence of at least one real
root is guaranteed by the intermediate value theorem.

This algebraic proof works over every real closed field, as elaborated by Artin and
Schreier [3] in 1926. It is constructive but ill-suited to actual computations.

7.6.3. Topology. Proofs in this family use some form of the winding number w(γ) of
closed paths γ : [0,1]→ C∗ (Gauss 1799/1816, Cauchy 1831/37, Sturm–Liouville 1836).
The winding number appears in various guises; see Remark 1.3. In each case the diffi-
culty is a rigorous construction and to establish its characteristic properties: normalization,
multiplicativity and homotopy invariance, as stated in Theorem 1.2.

Our proof belongs to this last family. Unlike previous proofs, however, we do not base
the winding number on analytic or topological arguments, but on real algebra.

7.7. Constructive and algorithmic aspects. Sturm’s method is eminently practical, by
the standards of 19th century mathematics as for modern-day implementations. As early
as 1840 Sylvester [59] wrote “Through the well-known ingenuity and proferred help of a
distinguished friend, I trust to be able to get a machine made for working Sturm’s theo-
rem (. . . )”. It seems, however, that such a machine was never built. Calculating machines
had been devised by Pascal, Leibniz, and Babbage; the latter was Lucasian Professor of
Mathematics when Sylvester studied at Cambridge in the 1830s. The idea of computing
machinery seems to have been popular among mid-19th century mathematicians. For ex-
ample, in a small note of 1846, Ullherr [63] remarks that the argument principle “provides a
method to find the roots of higher-degree equations by means of a mechanical apparatus.”6

6 “Die bei dem ersten Beweise gebrauchte Betrachtungsart giebt ein Mittel an die Hand, die Wurzeln der
höheren Gleichungen mittels eines Apparates mechanisch zu finden.” [63, p. 234]
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For separating and approximating roots, the state of the art at the end of the 19th century
was surveyed in Runge’s Encyklopädie article [36, Kap. IB3, §a], and in particular the
Sturm–Cauchy method is discussed in detail (pp. 416–422).

In 1924 Weyl [67] reemphasized that the analytic winding number can be used to find
and approximate the roots of F . In this vein Weyl formulated his constructive proof of
the Fundamental Theorem of Algebra, which indeed translates to an algorithm: a careful
numerical approximation can be used to calculate the integer w(F |∂Γ); see Henrici [22,
§6.11]. While Weyl’s motivation may have been philosophical, it is the practical aspect that
has proven most successful. Variants of Weyl’s algorithm are used in modern computer
implementations for finding approximate roots, and are among the asymptotically fastest
known algorithms. The question of algorithmic complexity was pursued by Schönhage
[50] and others since the 1980s. See Pan [41] for an overview.

The fact that Sturm’s and Cauchy’s theorems can be combined to count complex roots
seems not to be as widely known as it should be. It is surprising that the original publi-
cations in the 1830s did not have a lasting effect (§7.5) and likewise Runge’s presentation
in the 1898 Encyklopädie fell into oblivion. In the 1969 Proceedings [12] on construc-
tive aspects of the Fundamental Theorem of Algebra, the Sturm–Cauchy method is not
mentioned. It reappears in 1978 in a small note by Wilf [70], and is briefly mentioned in
Schönhage’s report [49, p. 5]. Most often the computer algebra literature credits Weyl for
the analytic-numeric method, and Lehmer or Wilf for the algebraic-numeric method, but
not Cauchy or Sturm. Their real-algebraic method for complex root location seems largely
ignored.

APPENDIX A. THE ROUTH–HURWITZ STABILITY THEOREM

For a polynomial with only real roots, as in Example 3.3, Descartes’ rule of signs
quickly computes the number of negative resp. positive roots. More generally, in certain
applications it is important to determine, for a given complex polynomial F ∈ C[Z], how
many roots lie in the left half-plane {z ∈C | re(z)< 0}. This question originated from the
theory of dynamical systems and the problem of stability of motion:

Example A.1. Let A ∈ Rn×n be a square matrix with real coefficients. The differential
equation y′ = Ay with initial value y(0) = y0 has a unique solution, given by exp(tA)y0.
In terms of dynamical systems, the origin 0 is a fixed point; it is stable if all eigenvalues
λ1, . . . ,λn ∈ C of A satisfy reλk < 0: in this case exp(tA) has eigenvalues exp(tλk) of
absolute value < 1, whence exp(tA)→ 0 for t→+∞.

Example A.2. The foregoing argument holds locally around fixed points of any dynamical
system given by a differential equation y′ = Φ(y) where Φ : Rn→ Rn is continuously dif-
ferentiable. Suppose that a is a fixed point, i.e., Φ(a) = 0. It is stable if all eigenvalues of
the matrix A = Φ′(a) ∈ Rn×n have negative real part: in this case there exists a neighbour-
hood V of a that is attracted to a: every trajectory f : R≥0→ Rn, starting at f (0) ∈V and
satisfying f ′(t) = Φ( f (t)) for all t ≥ 0, satisfies f (t)→ a for t→+∞.

In this sense, stability means that trajectories are robust under small perturbations.
Given F ∈C[Z] we can determine the number of roots with positive real part simply by

calculating w(F |∂Γ) with respect to a rectangle Γ = [0,r]× [−r,r] for r sufficiently large.
(One could use the Cauchy radius ρF defined in §5.3.) Routh’s theorem, however, offers a
simpler solution by calculating the Cauchy index along the imaginary axis. This is usually
proven using contour integration, but here we will give a real-algebraic proof. As before
we consider a real closed field R and its extension C = R[i] with i2 =−1.

Definition A.3. For every polynomial F ∈ C[Z]∗ we define its Routh index as

(A.1) Routh(F) := Ind−r
+r
( reF(iY )

imF(iY )

)
+ Ind+1/r

−1/r

( reF(i/Y )
imF(i/Y )

)
for some arbitrary parameter r ∈ R>0; the result is independent of r by Proposition 3.6(b).
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Remark A.4. We can decompose F(iY ) = R+ iS with R,S ∈R[Y ] and compare the degrees
m = degS and n = degR. If m≥ n, then the fraction R(1/Y )

S(1/Y ) =
Y mR(1/Y )
Y mS(1/Y ) has no pole at 0, so

the second index vanishes for r sufficiently large, and Equation (A.1) simplifies to

(A.2) Routh(F) =− Ind+∞
−∞

( reF(iY )
imF(iY )

)
.

Example A.5. In general the second index in Equation (A.1) cannot be neglected, as illus-
trated by F = (Z−1)(Z−2): here F(iY ) =−Y 2−3iY +2, whence

reF(iY )
imF(iY ) =

Y 2−2
3Y and reF(i/Y )

imF(i/Y ) =
1−2Y 2

3Y .

Both indices in Equation (A.1) contribute +1 such that Routh(F) = +2.

Lemma A.6. We have Routh(Z− z0) = sign(rez0) for all z0 ∈ C.

Proof. For F = Z− z0 we find F(iY ) = R+ iS with R = − rez0 and S = Y − imz0. Thus
Routh(F) =− Ind+∞

−∞

(R
S ) = Ind+∞

−∞

( rez0
Y−imz0

) = sign(rez0). �

Lemma A.7. We have Routh(FG) = Routh(F)+Routh(G) for all F,G ∈ C[Z]∗.

Proof. This follows from the product formula (4.3) as in Corollary 4.6. �

Remark A.8. For every c ∈ C∗ we have Routh(c) = 0, whence Routh(cF) = Routh(F).
We can thus ensure the favourable situation of Remark A.4: if degS < degR, then it is
advantageous to pass from F to iF , that is, to replace (R,S) by (−S,R).

We can now deduce the following formulation of the famous Routh–Hurwitz theorem:

Theorem A.9. The Routh index of every polynomial F ∈C[Z]∗ satisfies Routh(F) = p−q
where p resp. q is the number of roots of F in C having positive resp. negative real part.

Proof. The Fundamental Theorem of Algebra ensures that F = c0(Z− z1) · · ·(Z− zn) for
some c∈C∗ and z1, . . . ,zn ∈C, so the Routh index follows from the preceding lemmas. �

Remark A.10. By a linear transformation z 7→ az+b, with a ∈ C∗ and b ∈ C, we can map
the imaginary line onto any other straight line, so we can apply the theorem to count roots
in any half-space in C. The transformation z 7→ z−1

z+1 maps Ri∪{∞} onto the unit circle,
and the right half-plane to the unit disk. Again by linear transformation we can thus apply
the theorem to count roots in any given disk in C.

Routh’s criterion is often applied to real polynomials P ∈ R[X ], as in the motivating
examples above, which warrants the following more detailed formulation:

Corollary A.11. Consider P = c0Xn + c1Xn−1 + · · ·+ cn−1X + cn in R[X ] and denote by
p resp. q the number of roots of P in C having positive resp. negative real part. Then

(A.3) p−q = Routh(P) =

{
− Ind+∞

−∞

( reP(iY )
imP(iY )

)
if n is odd,

+ Ind+∞
−∞

( imP(iY )
reP(iY )

)
if n is even.

Both cases can be subsumed into the unique formula

(A.4) q− p = Ind+∞
−∞

(
c1Xn−1− c3Xn−3 + . . .

c0Xn− c2Xn−2 + . . .

)
.

This implies Routh’s criterion: All roots of P have negative real part if and only if q = n
and p = 0, which is equivalent to saying that the Cauchy index in (A.4) evaluates to n.

Routh’s formulation via Cauchy indices is unrivaled in its simplicity, and can immedi-
ately be calculated using Sturm’s theorem (§3.7). Hurwitz’ formulation uses determinants,
which has the advantage to produce explicit polynomial formulae in the given coefficients.
See Henrici [22, §6.7], Marden [35, chap. IX], or Rahman–Schmeisser [42, chap. 11].
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APPENDIX B. BROUWER’S FIXED POINT THEOREM OVER REAL CLOSED FIELDS

Brouwer’s theorem states that every continuous map f : [0,1]n→ [0,1]n of a cube in Rn

to itself has a fixed point. While in dimension n = 1 this follows directly from the inter-
mediate value theorem, the statement in dimension n≥ 2 is more difficult to prove: one em-
ploys either sophisticated machinery (differential topology, Stokes’ theorem, co/homology)
or subtle combinatorial techniques (Sperner’s lemma, Nash’s game of Hex). These proofs
use Brouwer’s mapping degree, in a more or less explicit way, and the compactness of
[0,1]n. Such proofs are often non-constructive and do not address the question of locating
fixed points. Using the algebraic winding number we can prove Brouwer’s theorem, in
dimension n = 2, in a constructive way over every real closed field. To this end, we have
to restrict the statement from continuous to polynomial functions:

Theorem B.1. Let R be a real closed field and let Γ = [−1,+1]2 in R2. Then for every
polynomial map f : Γ→ Γ there exists z ∈ Γ such that f (z) = z.

Proof. We consider the homotopy gt = id−t f from g0 = id to g1 = id− f . For z ∈ ∂Γ we
have gt(z) = 0 if and only if t = 1 and f (z) = z; in this case the assertion holds. Otherwise,
we have gt(z) 6= 0 for all z ∈ ∂Γ and t ∈ [0,1]. We can then apply homotopy invariance
(Theorem 5.4) to conclude that w(g1|∂Γ) = w(g0|∂Γ) = 1. Lemma 5.3 implies that there
exists z ∈ IntΓ such that g1(z) = 0, whence f (z) = z. �

Remark B.2. As for the Fundamental Theorem of Algebra, the algebraic proof of The-
orem B.1 also provides an algorithm to approximate a fixed point to any desired preci-
sion (assuming R to be archimedean). Quadrisecting successively, we can construct a
sequence of subsquares Γ = Γ0 ⊃ Γ1 ⊃ ·· · ⊃ Γk such that f has a fixed point on ∂Γk, or
w(id− f |∂Γk) 6= 0. In the first case, a fixed point on the boundary ∂Γk is signalled during
the computation of w(id− f |∂Γk) and leads to a one-dimensional search problem. In the
second case, we continue the two-dimensional approximation.

Remark B.3. Tarski’s theorem says that all real closed fields share the same elementary
theory (§2.3). This implies that the statement of Brouwer’s fixed point theorem, for poly-
nomial maps, extends from the real numbers R to every real closed field R: as formulated
above it is a first-order assertion in each degree. It is remarkable that there exists a first-
order proof over R that is as direct as the usual second-order proof over R.

Remark B.4. Over the field R of real numbers the algebraic version implies the continu-
ous version: Since Γ ⊂ R2 is compact, the Stone-Weierstrass theorem ensures that every
continuous function f : Γ→ Γ can be approximated by polynomials gn : Γ→ R2, where
n = 1,2,3, . . . , such that |gn− f | ≤ 1

n . The polynomials fn =
n

n+1 gn satisfy fn(Γ)⊂ Γ and
| fn− f | ≤ 2

n . For each n there exists zn ∈ Γ such that fn(zn) = zn according to Theorem B.1.
Again by compactness of Γ we can extract a convergent subsequence. Assuming zn→ z,
we find

| f (z)− z| ≤ | f (z)− f (zn)|+ | f (zn)− fn(zn)|+ |zn− z| → 0,

which proves f (z) = z.
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http://perso.univ-rennes1.fr/marie-francoise.roy
http://mathdoc.emath.fr/OEUVRES/
http://mathdoc.emath.fr/OEUVRES/
http://resolver.sub.uni-goettingen.de/purl?PPN235993352
http://www.ams.org/notices/200811
http://www.ams.org/notices/200811


42 MICHAEL EISERMANN
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