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ABSTRACT. This article establishes the algebraic covering theory of quandles. For every
connected quandle Q with base point q ∈ Q, we explicitly construct a universal cover-
ing p : (Q̃, q̃)→ (Q,q). This in turn leads us to define the algebraic fundamental group
π1(Q,q) := Aut(p) = {g ∈ Adj(Q)′ | qg = q}, where Adj(Q) is the adjoint group of Q.
We then establish the Galois correspondence between connected coverings of (Q,q) and
subgroups of π1(Q,q). Quandle coverings are thus formally analogous to coverings of
topological spaces, and resemble Kervaire’s algebraic covering theory of perfect groups.
A detailed investigation also reveals some crucial differences, which we illustrate by nu-
merous examples.

As an application we obtain a simple formula for the second (co)homology group of
a quandle Q. It has long been known that H1(Q) ∼= H1(Q) ∼= Z[π0(Q)], and we construct
natural isomorphisms H2(Q)∼= π1(Q,q)ab and H2(Q,A)∼= Ext(Q,A)∼= Hom(π1(Q,q),A),
reminiscent of the classical Hurewicz isomorphisms in degree 1. This means that whenever
π1(Q,q) is known, (co)homology calculations in degree 2 become very easy.
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1. INTRODUCTION AND OUTLINE OF RESULTS

1.1. Motivation and background. In every group (G, ·) one can define conjugation on
the right a∗b = b−1 ·a ·b, and its inverse, conjugation on the left a∗b = b ·a ·b−1. They
enjoy the following properties for all a,b,c ∈ G:

(Q1) a∗a = a (idempotency)
(Q2) (a∗b)∗b = (a∗b)∗b = a (right invertibility)
(Q3) (a∗b)∗ c = (a∗ c)∗ (b∗ c) (self-distributivity)
Turning these properties into axioms, D. Joyce [16] defined a quandle to be a set Q

equipped with two binary operations ∗,∗ : Q×Q→Q satisfying (Q1–Q3). Alternatively it
suffices to require that ∗ be right invertible, the right inverse ∗ can then be deduced from ∗.
Quandles thus encode the algebraic properties of conjugation; this axiomatic approach is
most natural for studying situations where group multiplication is absent or of a secondary
nature. We mention three classical examples:

Example 1.1 (knot quandles). The main motivation to study quandles comes from knot
theory: the Wirtinger presentation of the fundamental group πK = π1(S3 rK) of a knot or
link K ⊂ S3 involves only conjugation but not the group multiplication itself, and can thus
be seen to define a quandle QK . The three quandle axioms then correspond precisely to the
three Reidemeister moves. These observations were first explored in 1982 by Joyce [16],
who showed that the knot quandle QK classifies knots up to orientation. Many authors have
since rediscovered and studied this notion. (See the historical remarks in §3.8.)

Example 1.2 (Lie algebras). Every Lie group G is tied to its Lie algebra g = T1G by two
important maps: the exponential map exp: g→ G and the adjoint action ad: G→ Aut(g),
denoted by ad(g) : x 7→ xg. They induce a quandle structure on g by x∗y := xexp(y). The Lie
bracket is its derivative, [x,y] = d

dt [x∗ ty]t=0. The quandle (g,∗) is thus half-way between
the Lie group (G, ·) and the Lie algebra (g, [, ]). It is usually preferable to work with the
strongest of these three structures, namely the Lie group (G, ·), which induces the other
two. Some infinite dimensional Lie algebras, however, cannot be integrated to a Lie group.
The quandle structure, on the contrary, can usually be saved, see §3.3.

Example 1.3 (symmetric spaces). A symmetric space is a Riemannian manifold such that
for each point x ∈ X there exists an isometry sx : X ∼−→ X that reverses every geodesic arc
γ : (]−ε,+ε[,0)→ (X ,x). It follows that (X ,∗) is a quandle with respect to the operation
x∗ y := sy(x), see §3.7.

Slightly more general than quandles, a rack is only required to satisfy (Q2–Q3). Such
structures appear naturally in the study of braid actions (Brieskorn [2]) and provide set-
theoretic solutions of the Yang-Baxter equation (Drinfel′d [8]).

In the 1990s emerged the concept of rack and quandle (co)homology [13], and it has
since been put to work in constructing combinatorial knot invariants [7, 6, 5]. Calculating
quandle cohomology, however, is difficult even in low degrees, mainly for two reasons:

• Brute force calculations are very limited in range. Even when they are feasible for
small quandles and small degrees, their results are usually difficult to interpret.

• Unlike group cohomology, the topological underpinnings are less well developed.
Geometric methods that make group theory so rich are mostly absent for quandles.

For example, given a diagram of a knot K ⊂ R3, it is comparatively easy to read off a
fundamental homology class [K] ∈ H2(QK) and to verify that it is an invariant of the knot
[7]. Ever since the conception of quandle homology, however, it was an important open
question how to interpret this fundamental class [K], and to determine when it vanishes.
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The notion of quandle covering [9] was introduced in order to geometrically interpret
and finally determine the second (co)homology groups H2(QK) ∼= H2(QK) ∼= Z for every
non-trivial knot K. More precisely, H2(QK) is freely generated by the canonical class
[E] ∈ H2(QK), corresponding to the galois covering E : Zy QL →→ QK coming from the
long knot L obtained by cutting K open, while its dual H2(QK) is freely generated by the
fundamental class [K] ∈ H2(QK). In particular, [K] vanishes if and only if the knot K is
trivial, answering Question 7.3 of [7]. As another consequence, [K] encodes the orientation
of the knot K, and so the pair (QK , [K]) classifies oriented knots. (The generalization to
links with several components will be established in §7.5 and §9.4 below.)

1.2. Quandle coverings. Knot quandles are somewhat special, and so it was not immedi-
ately realized that covering techniques could be useful for arbitrary quandles as well. The
aim of the present article is to fully develop the algebraic covering theory of quandles. This
will lead us to the appropriate definition of the algebraic fundamental group π1(Q,q), and
to the Galois correspondence between connected coverings and subgroups of π1(Q,q).1

Detailed definitions and results will be given in the next sections, following this overview.

Definition 1.4 (see §2.8). A quandle homomorphism p : Q̃→ Q is called a covering if it
is surjective and p(ỹ) = p(z̃) implies x̃∗ ỹ = x̃∗ z̃ for all x̃, ỹ, z̃ ∈ Q̃. In the words of Joyce,
ỹ and z̃ are behaviourally equivalent, that is, they act in the same way on Q̃.

Example 1.5. Consider a group extension p : G̃→→ G and let Q̃⊂ G̃ be a conjugacy class,
or more generally a union of conjugacy classes in G̃. Without loss of generality we can
assume that Q̃ generates G̃. As noted above, Q̃ is a quandle with respect to conjugation,
and the same holds for its image Q = p(Q̃) ⊂ G. The projection p : Q̃→→ Q is a quandle
covering if and only if p is a central extension.

As a consequence, the covering theory of quandles embedded in groups is essentially
the theory of central group extensions. Most quandles, however, do not embed into groups,
which is why quandle coverings have their own distinctive features. We will see below that
unlike central extensions, the theory of quandle coverings is inherently non-abelian.

Example 1.6. Consider the cyclic group Zm = Z/mZ with m ∈ N. We explicitly allow
m = 0, in which case Z0 = Z. The disjoint union Qm,n = ZmtZn becomes a quandle with
a ∗ b = a for a,b ∈ Zm or a,b ∈ Zn, and a ∗ b = a+ 1 otherwise. This quandle has two
connected components, Zm and Zn, each is trivial as a quandle, but both act non-trivially
on each other. This expository example will serve us for various illustrations; for example,
we will see in Proposition 2.38 that Qm,n embeds into a group if and only if m = n.

For every factorization m = m′m′′ and n = n′n′′, the canonical projections Zm →→ Zm′

and Zn →→ Zn′ define a map p : Qm,n →→ Qm′,n′ , which is a quandle covering according to
our definition. (See Figure 1.) In this family, the trivial quandle Q1,1 = {0}t{0} is the
terminal object, while Q0,0 = ZtZ is the initial object. In fact, the map Q0,0→→ Qm,n will
turn out to be the universal covering of Qm,n, provided that gcd(m,n) = 1. (The general
case is more complicated and involves the Heisenberg group; see Example 7.20 below.)

1In a more general context it will be cautious to use the notation π
alg
1 (Q,q) to emphasize that we are dealing

with purely algebraic notions derived from the quandle structure (Q,∗); we do not consider Q as a topological
space. When Q also carries a topology, π

alg
1 (Q,q) should not be confused with the usual topological fundamental

group π
top
1 (Q,q). While in the present article there seems to be no danger of confusion, the more distinctive

notation will become mandatory whenever both concepts are used alongside.
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Z Z

Z5Z6

FIGURE 1. The universal covering of the quandle Q6,5

1.3. The adjoint group. The structure of a quandle Q, and in particular its coverings, are
controlled by its adjoint group Adj(Q), a notion introduced by Joyce [16, §6] and discussed
in §2.4 below. In order to state our results precisely, we briefly insert its definition as a
technical digression:

Definition 1.7. The adjoint group of a quandle Q is the abstract group generated by the
elements of Q subject to the relations a ∗ b = b−1ab for a,b ∈ Q. It comes with a natural
map adj : Q→Adj(Q) sending each quandle element to the corresponding group element.

There exists a unique group homomorphism ε : Adj(Q)→ Z with ε(adj(Q)) = 1. We
denote its kernel by Adj(Q)◦ = ker(ε). If Q is connected, then ε is the abelianization
of Adj(Q), and Adj(Q)◦ is its commutator subgroup. Notice that we can reconstruct the
adjoint group from Adj(Q)◦ as a semi-direct product Adj(Q) = Adj(Q)◦oZ.

Remark 1.8. Even though it is easily stated, the definition of the adjoint group Adj(Q) by
generators and relations is difficult to work with in explicit calculations. Little is known
about such groups in general, and only a few examples have been worked out.

Example 1.9. For the quandle Qm,n of the previous example we will determine Adj(Qm,n)
in Proposition 2.38 below: assuming gcd(m,n) = 1 we find Adj(Qm,n) = Z× Z with
adj(a) = (1,0) for all a ∈ Zm and adj(b) = (0,1) for all b ∈ Zn. For m = n = 0, how-
ever, Adj(Q0,0) is the Heisenberg group H ⊂ SL3Z of upper triangular matrices. Since
Q0,0 →→ Qm,n →→ Q1,1 induces group homomorphisms H →→ Adj(Qm,n)→→ Z×Z, we find
that Adj(Qm,n) is some intermediate group. This turns out to be H/〈z`〉 where z ∈ H gen-
erates the centre of H, and `= gcd(m,n).

1.4. Galois theory for connected quandles. Motivated by the analogy with topological
spaces, we shall develop the covering theory of quandles along the usual lines:

• Introduce the category of coverings over a fixed pointed quandle (Q,q).
• Identify the universal covering space (uniqueness, existence, explicit description).
• Deduce the fundamental group π1(Q,q) as the group of deck transformations.
• Establish the Galois correspondence between coverings and subgroups.

The results are most easily stated for connected quandles. They can be suitably refined
and adapted to non-connected quandles, as explained below and detailed in §7–9.

Definition 1.10 (see §5.2). For a quandle Q we define its fundamental group based at q∈Q
to be π1(Q,q) = {g ∈ Adj(Q)◦ | qg = q}.
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Notice the judicious choice of the group Adj(Q)◦; the approach would not work with
another group such as Adj(Q) or Aut(Q) or Inn(Q). The right choice is not obvious, but
follows from the explicit construction of the universal covering quandle in §5.1.

Proposition 1.11 (functoriality, see §5.2). Every quandle homomorphism f : (Q,q) →
(Q′,q′) induces a group homomorphism f∗ : π1(Q,q)→ π1(Q′,q′). We thus obtain a func-
tor π1 : Qnd∗→Grp from the category of pointed quandles to the category of groups.

Proposition 1.12 (lifting criterion, see §5.4). Let p : (Q̃, q̃)→ (Q,q) be a quandle covering
and let f : (X ,x)→ (Q,q) be a quandle homomorphism from a connected quandle X. Then
there exists a lifting f̃ : (X ,x)→ (Q̃, q̃), p◦ f̃ = f , if and only if f∗π1(X ,x) ⊂ p∗π1(Q̃, q̃).
In this case the lifting f̃ is unique.

Theorem 1.13 (Galois correspondence for connected coverings, see §5.5). For every con-
nected quandle (Q,q) there exists a natural equivalence Cov∗(Q,q) ∼= Sub(π1(Q,q)) be-
tween the category of pointed connected coverings of (Q,q) and the category of subgroups
of π1(Q,q). Moreover, a normal subgroup K ⊂ π1(Q,q) corresponds to a galois covering
p : (Q̃, q̃)→ (Q,q) with deck transformation group Aut(p)∼= π1(Q,q)/K. �

The Galois correspondence can be extended to non-connected coverings, and further to
principal Λ-coverings. The latter correspond to extensions Λ y Q̃→→ Q of the quandle Q
by some group Λ as defined in §4.4.

Theorem 1.14 (Galois correspondence for general coverings, see §6.2). For every con-
nected quandle (Q,q) there exists a natural equivalence Cov(Q)∼= Act(π1(Q,q)) between
the category of coverings of (Q,q) and the category of actions of π1(Q,q). Moreover, there
exists a natural bijection Ext(Q,Λ) ∼= Hom(π1(Q,q),Λ) between equivalence classes of
extensions Λ y Q̃→→ Q and the set of group homomorphisms π1(Q,q)→ Λ.

Throughout this article our guiding principle is the analogy between the covering the-
ories of topological spaces and quandles. While their overall structure is the same, the
individual objects seem quite different. The formal analogy may thus come as a surprise,
even more so as it pervades even the tiniest details. This can in large parts be explained
by the common feature of the fundamental groupoid, as described in §8. We will complete
this analogy in §9 by establishing the relationship with (co)homology:

Theorem 1.15 (Hurewicz isomorphism for connected quandles, see §9.3). For every con-
nected quandle Q we have a natural isomorphism H2(Q)∼= π1(Q,q)ab. Moreover, for every
group Λ we have natural bijections H2(Q,Λ)∼= Ext(Q,Λ)∼= Hom(π1(Q,q),Λ). If Λ is an
abelian group, or more generally a module over some ring R, then these objects carry
natural R-module structures and the natural bijections are isomorphisms of R-modules.

The introduction of a cohomology H2(Q,Λ) with non-abelian coefficients Λ is natural
inasmuch as it allows us to treat all cases in a uniform way. This is analogous to the
cohomology H1(X ,Λ) of a topological space X with non-abelian coefficients Λ, see [30].

1.5. Examples and applications. As a general application, let us mention that every
quandle Q can be obtained as a covering of a quandle Q̄ ⊂ G in some group G. (Take
for example the image of Q in its inner automorphism group.) This is useful in understand-
ing finite connected quandles: it suffices to consider conjugacy classes Q̄ in finite groups
G such that G = 〈Q̄〉, together with their covering quandles Q→→ Q̄; these are parametrized
by subgroups of the fundamental group π1(Q̄, q̄).
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Remark 1.16. For every finite connected quandle Q the group Adj(Q)◦ is finite, whence
the fundamental group π1(Q,q) and the universal covering Q̃→ Q are both finite.

Example 1.17 (dihedral quandles). The dihedral quandle Dn is obtained from the cyclic
group Zn = Z/nZ with the quandle operation a ∗ b = 2b− a. It is isomorphic to the sub-
quandle Zn×{1} of the dihedral group Zn oZ2, corresponding to the n reflections of a
regular n-gon. For n odd, the quandle Dn is connected, and we find Adj(Dn) = Zn oZ
with group action (a, i) · (b, j) = (a+(−1)ib, i+ j), and adj : Dn → Adj(Dn) is given by
adj(a) = (a,1). Since Adj(Q)◦ = Zn o{0} acts on Dn by a(b,0) = a−2b, we find the fun-
damental group π1(Dn,0) = {0}. This means that evey dihedral quandle Dn of odd order is
simply connected. Equivalently, every quandle covering of Dn is trivial, that is, equivalent
to pr1 : Dn×F →→ Dn, where F is some trivial quandle.

Example 1.18 (symmetric groups). Consider the symmetric group Sn on n≥ 3 points, and
let Q be the conjugacy class of the transposition q = (12). This is a quandle with

(n
2

)
=

n(n−1)
2 elements. It is not difficult to see that Adj(Q) = AnoZ, where the action of k ∈Z on

An is given by a 7→ (12)ka(12)k. We thus find Adj(Q)◦ = An, which yields the fundamental
group π1(Q,q) ∼= Sn−2. The subgroups of Sn−2 thus characterize the connected coverings
of the quandle Q. (For n = 3 notice that Q = D3, for which we already know that π1 is
trivial; π1(Q,q) is non-trivial only for n≥ 4.)

Turning to the extensions of Q by some group Λ, we find H2(Q,Λ) ∼= Ext(Q,Λ) ∼=
Hom(Sn−2,Λ). If Λ is abelian, we see without any further calculation that H2(Q,Λ) is
trivial for n = 3, and isomorphic to the group of 2-torsion elements in Λ for n≥ 4, because
(Sn−2)ab ∼= Z2. Moreover, H2(Q) = 0 for n = 3, and H2(Q) = Z2 for n≥ 4.

Example 1.19 (knot quandles). As in [9, §3] let L be a long knot and let K be its corre-
sponding closed knot. Both knot quandles QL and QK are connected, their adjoint groups
are Adj(QL) = Adj(QK) = πK , and the natural projection p : QL → QK is a quandle cov-
ering. We may choose a canonical base point qL ∈ QL and its image qK ∈ QK . Both map
to a meridian mL = mK ∈ πK , and we denote by `K ∈ πK the corresponding longitude. The
explicit construction of universal coverings in [9] shows π1(QL,qL) = {1}, and so QL is
the universal covering of the quandle QK . For the quotient QK = 〈`K〉\QL we thus find
π1(QK ,qK) = 〈`K〉, whence π1(QK ,qK)∼= Z for every non-trivial knot K.

This observation, although not in the language of quandle coverings and fundamental
groups, was used by Joyce [16] in order to recover the knot group data (πK ,mK , `

±
K ) from

the knot quandle QK . According to Waldhausen’s result [36], the triple (πK ,mK , `K) classi-
fies knots, so the knot quandle classifies knots modulo inversion. The remaining ambiguity
can be removed by the orientation class [K] ∈ H2(QK), as explained in [9, §6].

Remark 1.20 (knot colouring polynomials). The knot quandle QK , just as the knot group
πK , is in general very difficult to analyze. A standard way to extract information is to con-
sider (finite) representations: we fix a finite quandle Q with base point q ∈ Q and consider
knot quandle homomorphisms φ : (QK ,qK)→ (Q,q). Each φ induces a group homomor-
phism φ∗ : π1(QK ,qK)→ π1(Q,q), which is determined by the image of the canonical
generator `K ∈ π1(QK ,qK). We can thus define a map

Pq
Q : {knots}→ Zπ1(Q,q) by Pq

Q(K) := ∑
φ : (QK ,qK)→(Q,q)

φ∗(`K).

This invariant is the knot colouring polynomial associated to (Q,q), and provides a com-
mon generalization to the invariants presented in [10] and [29]. Colouring polynomials
encode, in particular, all quandle 2-cocycle invariants, as proven in [10].
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Example 1.17 above shows that the longitude images are necessarily trivial for dihedral
colourings; the only information extracted is the number of n-colourings. The situation is
different for Q = (12)Sn , where longitude images yield more refined information.

Example 1.21. We conclude with another natural and highly non-abelian example, where
our tools are particularly efficient. Consider the quandle Qπ

K ⊂ πK consisting of all merid-
ians of the knot K, that is, the conjugacy class of our preferred meridian mK in πK , or
equivalently, the image of the natural quandle homomorphism QK → πK . Here we find
Adj(Qπ

K) = πK , and π1(Qπ
K ,mK) is a free group of rank n if K = K1 ] · · · ]Kn is the con-

nected sum of n prime knots [9, Corollary 39]. Via the Hurewicz isomorphism we obtain
that H2(Qπ

K)
∼= Zn, as previously noted in [9, Theorem 53].

1.6. Tournants dangereux. There are a number of subtleties where quandle coverings do
not behave as could be expected at first sight. First of all, they do not form a category:

Example 1.22. The abelian group Q = Q/Z becomes a connected quandle with a ∗ b =
2b−a. The map p : Q→Q, a 7→ 2a, is a quandle covering. The composition p◦ p : Q→Q,
a 7→ 4a, however, is not a covering: 0 and 1

4 do not act in the same way on Q. The same
phenomenon already appears for finite quandles, for example D4n

2−→−→ D2n
2−→−→ Dn.

Remark 1.23. Coverings of topological spaces suffer from the same problem, see Spanier
[33], Example 2.2.8: given two coverings p : X → Y and q : Y → Z, their composition
qp : X→ Z is not necessarily a covering. This phenomenon is, however, rather a pathology:
the composition qp is always a covering if Z is locally path connected and semilocally 1-
connected (see [33], Theorems 2.2.3, 2.2.6, 2.4.10). These hypotheses hold, in particular,
for coverings of manifolds, simplicial complexes, or CW-complexes.

When we speak of topological covering theory as our model, we will neglect all topolog-
ical subtleties such as questions of local and semilocal connectedness. The reader should
think of covering theory in its nicest possible form, say for CW-complexes.

Remark 1.24. There are two further aspects in which quandle coverings differ signifi-
cantly from the model of topological coverings:

• For a quandle covering p : (Q̃, q̃)→ (Q,q) the induced map on the fundamental
groups, p∗ : π1(Q̃, q̃)→ π1(Q,q), need not be injective.

• If Q̃ is simply connected, then p is the universal covering of (Q,q). The converse
is not true: it may well be that p is universal but Q̃ is not simply connected.

It is amusing to note that the Galois correspondence stated above is salvaged because
these two defects cancel each other.

Example 1.25. For Q = Q/Z one finds Adj(Q) = (Q/Z)oZ with adj(a) = (a,1). The
subgroup Adj(Q)◦=Q/Z×{0} acts on Q via a(b,0)= a−2b, which implies that π1(Q,0)=
{(0,0), ( 1

2 ,0)} ∼= Z2. This means that p : Q→ Q, a 7→ 2a is the universal covering. In
particular, the universal covering quandle is not simply connected, and the induced homo-
morphism p∗ between fundamental groups is not injective.

Remark 1.26. The previous example may appear somewhat artificial, because the problem
essentially arises from 2-torsion and the fact that all 2-torsion elements are 2-divisible. In
particular, these conditions force Q to be infinite. Example 5.18 exhibits a finite quandle
with a universal covering that is not simply connected. This is definitely not a pathological
construction: the phenomenon naturally occurs in finite groups, for example the conjugacy
class of

[
0 1
−1 0

]
in the group PSL2K over a finite field K.
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1.7. Perfect groups. Quandle coverings resemble Kervaire’s algebraic covering theory of
perfect groups [19], which he applied to algebraic K-theory in order to identify the Milnor
group K2(A) of a ring A with the Schur multiplier H2(GL(A)′). It is illuminating to contrast
the theory of quandle coverings with Kervaire’s classical results.

Recall that a group G is perfect, or connected in the words of Kervaire, if G′ = [G,G] =
G, or equivalently H1(G) = Gab = 0. A covering of G is a central extension G̃→→ G with
G̃ perfect. Kervaire established a bijection between subgroups of H2(G) and isomorphism
classes of coverings G̃→→ G. The theory is thus analogous to the covering theory of topo-
logical spaces, and consequently Kervaire defined π1(G) := H2(G).

Remark 1.27. By construction, π1(G) is abelian and base points play no rôle. Moreover,
the covering theory of perfect groups is well-behaved in the following sense:

• Coverings of perfect groups form a category, which means that the composition of
two coverings is again a covering [19, Lemme 1].
• A covering G̃ →→ G is universal if and only if G̃ is simply connected, that is,

π1(G̃) = H2(G̃) = 0 [19, Lemme 2].
• For every covering p : G̃→ G the induced map p∗ : π1(G̃)→ π1(G) is injective

[19, Théorème de classfication].
As we have seen above, quandle coverings do not enjoy these privileges in general. They
may thus be considered a “non-standard” covering theory that warrants a careful analysis.

The analogy between coverings of quandles and perfect groups is not only a formal one.
As an illustration, it can be applied to determine certain adjoint groups:

Theorem 1.28. Let G be a simply connected group, i.e. H1(G) = H2(G) = 0. Consider a
conjugacy class Q = qG that generates G, so that Q is a connected quandle. Then we have
an isomorphism Adj(Q) ∼−→G×Z given by adj(q) 7→ (q,1) for all q ∈Q. In particular, we
obtain Adj(Q)′ = G and π1(Q,q) =CG(q) = {g ∈ G | qg = q}. �

This directly applies to every simple group G with Schur multiplier H2(G) = 0. Most
often we have H2(G) 6= 0, in which case it suffice to pass to the universal covering G̃.

1.8. Generalization to non-connected quandles. One final difficulty arises when we
pass from connected to non-connected quandles. In the analogous model of topological
spaces, this generalization is simple, because a topological space (say locally connected)
is the disjoint union of its components. For quandles, however, this is far from being true:
the different components act on each other, and this interaction is in general non-trivial. In
particular, the disjoint union is not the appropriate model.

In order to develop a covering theory for non-connected quandles we have to treat all
components individually yet simultaneously. The convenient way to do this is to index the
components by some fixed set I, and then to deal with I-graded objects throughout. (For
details see Section 7.) The upshot is that for a non-connected quandle Q all preceding
statements remain true when suitably interpreted in the graded sense:

Definition 1.29 (grading, see §7.1). A graded quandle is a quandle Q=
⊔

i∈I Qi partitioned
into subsets (Qi)i∈I such that Qi ∗Q j = Qi for all i, j ∈ I. A pointed quandle (Q,q) is a
graded quandle with a base point qi ∈ Qi for each i ∈ I. We call (Q,q) well-pointed if q
specifies one base point in each component, i.e. Qi is the component of qi in Q. In this case
we define the graded fundamental group to be the product π1(Q,q) := ∏i∈I π1(Q,qi).

Theorem 1.30 (Galois correspondence, see §7.4). Let (Q,q) be a well-pointed quandle
indexed by some set I. There exists a natural equivalence CovI(Q,q) ∼= SubI(π1(Q,q))
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between the category of well-pointed coverings of (Q,q) and the category of graded sub-
groups of π1(Q,q). Likewise, there exists a natural equivalence Cov(Q) ∼= Act(π1(Q,q))
between the category of coverings of (Q,q) and the category of graded actions of π1(Q,q).

Theorem 1.31 (Hurewicz isomorphism for general quandles, see §9.3). For every well-
pointed quandle (Q,q) we have a natural isomorphism H2(Q)∼=

⊕
i∈I π1(Q,qi)ab, and for

every graded group Λ we have natural bijections

H2(Q,Λ)∼= Ext(Q,Λ)∼= Hom(π1(Q,q),Λ) = ∏
i∈I

Hom(π1(Q,qi),Λi).

One of the motivations to study non-connected quandles is their application to links.
Given an n-component link K = K1 t ·· · tKn ⊂ S3, we choose a base point qi

K ∈ QK for
each link component Ki, and obtain a decomposition QK = Q1

K t·· ·tQn
K into components

Qi
K = [qi

K ]. This establishes a natural bijection π0(K) ∼−→ π0(QK).

Theorem 1.32 (see §7.5). For every link K ⊂ S3 the graded fundamental group of the link
quandle QK is given by π1(QK ,qK) = ∏

n
i=1〈`i

K〉, where `i
K ∈ Adj(QK) = π1(S3 rK) is the

longitude associated to the meridian mi
K = adj(qi

K) ∈ Adj(QK).

This highlights once more that quandles are well suited to encode peripheral link group
data. We will see in §9.4 that the Hurewicz isomorphism maps the longitude `i

K ∈ π1(QK ,qi
K)

to the orientation class [Ki] ∈ H2(QK) of the component Ki. We conclude that the quandle
QK is a classifying invariant of the link K in the following sense:

Theorem 1.33 (see §9.4). Two oriented links K = K1t ·· ·tKn and K′ = K′1t ·· ·tK′n in
S3 are ambient isotopic respecting orientations and numbering of components if and only
if there exists a quandle isomorphism φ : QK

∼−→ QK′ such that φ∗[Ki] = [K′i ] for all i.

1.9. Related work. The present article focuses on the systematic investigation of quandle
coverings and their Galois correspondence. The explicit construction of a universal cov-
ering and the definition of the corresponding algebraic fundamental group appear here for
the first time. Our construction can easily be adapted to racks: here Adj(Q)◦ has to be
replaced by Adj(Q), and the definition of the fundamental group has to be adapted accord-
ingly. Modulo these changes, our results hold verbatim for racks instead of quandles.

As it could be expected, these notions are closely related to quandle extensions and
cohomology, which have both been intensively studied in recent years. The subject of
rack cohomology originated in the work of R. Fenn, C. Rourke, and B. Sanderson [13],
who constructed a classifying topological space BX for every rack X . The corresponding
quandle (co)homology theory was taken up by J.S. Carter and his collaborators, in order
to construct knot invariants (see for example [7, 6]). Quandle coverings were introduced
and applied to knot quandles in [9]. They have also appeared in the context of non-abelian
extensions, explored by N. Andruskiewitsch and M. Graña [1], where a corresponding non-
abelian cohomology theory was proposed. This generalized cohomology, in turn, has been
taken up and applied to knot invariants in [5].

We have stated above how our approach of quandle coverings can be applied to complete
the trilogy of cohomology H2(Q,Λ) and extensions Ext(Q,Λ) by the third aspect: the
fundamental group π1(Q,q). The result is the natural isomorphism

(1) H2(Q,Λ)∼= Ext(Q,Λ)∼= Hom(π1(Q,q),Λ).

A similar isomorphism has been noted by P. Etingof and M. Graña [11, Cor. 5.4]: for every
rack X and every abelian group A they prove that H2(X ,A) ∼= H1(Adj(X),Map(X ,A)),
where Map(X ,A) is the module of maps X→A with the action of the adjoint group Adj(X).
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The formulation (1) takes this one step further and highlights the geometric meaning. For
practical calculations it is as explicit and direct as one could possibly wish.

1.10. Acknowledgements. The concept of quandle covering, algebraic fundamental group,
and Galois correspondence developed in 2001 when I was working on knot quandles [9]. In
this case the fundamental group π1(Q,q) is abelian, and so H2(Q) captures all information.
In the intervening years, non-abelian extensions have gained interest, and in November
2006 the conference Knots in Washington XXIII on “Quandles, their homology and ap-
plications” convinced me that covering theory furnishes the missing link. I thank Józef
Przytycki and the organizers for bringing together this meeting.

1.11. How this article is organized. The article follows the outline given in the intro-
duction. Section 2 reviews the basic definitions of quandle theory leading up to quandle
coverings, while Section 3 displays some detailed examples. Section 4 records elementary
properties of quandle coverings. Section 5 constructs the universal connected covering,
defines the fundamental group, and establishes the Galois correspondence for connected
coverings. Section 6 explains how to extend these results to non-connected coverings over
a connected base quandle, while Section 7 discusses the technicalities necessary for non-
connected base quandles. Section 8 expounds the concept of fundamental groupoid in
order to explain the striking similarity between quandles and topological spaces. Section
9, finally, elucidates the correspondence between quandle extensions and quandle coho-
mology in the non-abelian and graded setting, and thus completes the trilogy H2, Ext, π1.

2. DEFINITIONS AND ELEMENTARY PROPERTIES

The following definitions serve to fix our notation and to make the presentation self-
contained. They are mainly taken from Joyce [16], suitably extended and tailored to our
application. Some immediate examples are stated alongside the definitions, more elaborate
examples will be postponed until the next section.

We also seize the opportunity to record some elementary but useful observations, which
have been somewhat neglected or dispersed in the published literature. In particular, we
emphasize the rôle played by central group extensions, which come to light at several
places. While on the level of groups only central extensions are visible, quandle coverings
turn out to be essentially non-abelian (see Example 1.18 above).

2.1. The category of quandles. The quandle axioms are symmetric in ∗ and ∗: if (Q,∗,∗)
is a quandle, then so is (Q,∗,∗). Moreover, each of the operations ∗ and ∗ determines the
other, so we can simply write (Q,∗) instead of (Q,∗,∗). If both operations coincide, then
we have (a∗b)∗b = a for all a,b ∈ Q, which is called an involutory quandle. We will use
the same symbol “∗” for different quandles, and we will frequently denote a quandle by Q
instead of (Q,∗), unless there is danger of confusion.

Definition 2.1. A quandle homomorphism between two quandles Q and Q′ is a map
φ : Q→ Q′ satisfying φ(a ∗ b) = φ(a) ∗ φ(b), and hence φ(a ∗ b) = φ(a) ∗ φ(b), for all
a,b ∈ Q. Quandles and their homomorphisms form a category, denoted Qnd.

Example 2.2. Every group (G, ·) defines a quandle (G,∗) with a ∗ b = b−1ab. This is
called the conjugation quandle of G and denoted Conj(G). Every group homomorphism
(G, ·)→ (H, ·) is also a quandle homomorphism (G,∗)→ (H,∗). We thus obtain a functor
Conj : Grp→Qnd from the category of groups to the category of quandles.
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Example 2.3. Every group (G, ·) defines an involutory quandle (G,∗) with a∗b = ba−1b.
This is called the core quandle of G and denoted Core(G). Every group homomorphism
(G, ·)→ (H, ·) is also a quandle homomorphism (G,∗)→ (H,∗). We thus obtain another
functor Core : Grp→Qnd from the category of groups to the category of quandles.

Example 2.4. If A is a group and T : A ∼−→ A an automorphism, then A becomes a quandle
with a∗b = T (ab−1)b. This is called the Alexander quandle of (A,T ), denoted Alex(A,T ).
Every group homomorphism φ : (A,T )→ (B,S) with φ ◦T = S◦φ is also a homomorphism
of Alexander quandles (A,∗)→ (B,∗). We thus obtain a functor Alex: GrpAut→ Qnd
from the category of group automorphisms to the category of quandles.

If A is abelian, then the pair (A,T ) is equivalent to a Z[t±]-module A with ta = T (a) for
all a ∈ A. Restricting to this case, we obtain a functor Alex: ModZ[t±] → Qnd from the
category of Z[t±]-modules to the category of quandles.

Remark 2.5. Our definition of Alexander quandles is more inclusive than usual, in or-
der to embrace also non-abelian groups. Joyce [16, §7] used the general construction,
but reserved the name Alexander quandle for abelian groups A. In this case the quandle
Alex(A,T ) is abelian in the sense that (a∗b)∗(c∗d) = (a∗c)∗(b∗d) for all a,b,c,d ∈Q.
Notice the special case Alex(A,− id) = Core(A,+).

Remark 2.6. Recall that a group (G, ·) is abelian if and only if the set End(G, ·) of en-
domorphisms is a group with respect to pointwise multiplication, ( f · g)(x) = f (x) · g(x).
Likewise, if a quandle (Q,∗) is abelian, then the set End(Q,∗) of endomorphisms is a
quandle with respect to the pointwise operation defined by aφ∗ψ = aφ ∗aψ .

2.2. Inner automorphisms. The automorphism group Aut(Q) consists of all bijective
homomorphisms φ : Q→ Q. We adopt the convention that automorphisms of Q act on the
right, written aφ , which means that their composition φψ is defined by a(φψ) = (aφ )ψ for
all a ∈Q. The quandle axioms (Q2) and (Q3) are equivalent to saying that for every b ∈Q
the right translation ρb : a 7→ a∗b is an automorphism of Q. Such structures were studied
by E. Brieskorn [2] under the name “automorphic sets” and by C. Rourke and R. Fenn [12]
under the name “rack”.

Definition 2.7. The group Inn(Q) of inner automorphisms is the subgroup of Aut(Q)
generated by all ρa with a ∈ Q. We define the map inn: Q→ Inn(Q) by a 7→ ρa.

Remark 2.8. For every φ ∈ Aut(Q) and a ∈ Q we have inn(aφ ) = φ−1 ◦ inn(a) ◦ φ =
inn(a)φ . In particular, the subgroup Inn(Q) is normal in Aut(Q).

Notation. In view of the map inn: Q→ Inn(Q), we also write ab for the operation a∗b =

ainn(b) in a quandle. Conversely, it will sometimes be convenient to write a ∗ b for the
conjugation b−1ab in a group. In neither case will there be any danger of confusion.

Definition 2.9. A right action of a group G by quandle automorphisms on Q is a group
action Q×G→Q, (a,g) 7→ ag such that (a∗b)g 7→ ag ∗bg for all a ∈Q and g ∈G. This is
the same as a group homomorphism h : G→ Aut(Q) with h(g) : Q ∼−→ Q, a 7→ ag. We say
that G acts by inner automorphisms if h(G)⊂ Inn(Q).

2.3. Representations and augmentations. The following terminology has proved useful
in describing the interplay between quandles and groups.

Definition 2.10. A representation of a quandle Q in a group G is a map φ : Q→ G such
that φ(a ∗ b) = φ(a) ∗ φ(b) for all a,b ∈ Q. In other words, a representation Q→ G is a
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quandle homomorphism Q→ Conj(G).

Q×Q
φ×φ−−−−→ G×G

∗
y yconj

Q
φ−−−−→ G

Definition 2.11. Let φ : Q→G be a representation and let α : Q×G→Q, (a,g) 7→ ag, be
a group action. We call the pair (φ ,α) an augmentation if a∗b = aφ(b) and φ(ag) = φ(a)g

for all a,b ∈ Q and g ∈ G. In other words, the following diagram commutes:

Q×Q
id×φ−−−−→ Q×G

φ×id−−−−→ G×G

∗
y yα

yconj

Q id−−−−→ Q
φ−−−−→ G

Remark 2.12. The right square says that (Q,G,φ ,α) is a crossed G-set in the sense of
Freyd and Yetter [14, §4.2]. Conversely, given (Q,G,φ ,α) making the right square com-
mute, the left square can be used to define the binary operation ∗ : Q×Q→ Q, and it is
easily seen to satisfy axioms (Q2) and (Q3). Adding the quandle condition (Q1), Joyce
defined in this way the notion of augmented quandle [16, §9]. By construction φ is a rep-
resentation and the action α is by quandle automorphisms. This shows that augmented
quandles are naturally equivalent to crossed G-sets satisfying aφ(a) = a.

Notation. We will usually reinterpret the group action α as a group homomorphism
ᾱ : G→ Aut(Q), and denote the augmentation by Q

φ−→ G ᾱ−→ Aut(Q).

Remark 2.13. Suppose that a representation φ : Q → G can be prolonged by a group
homomorphism ᾱ : G→ Aut(Q) such that ᾱ ◦φ = ρ . This condition is equivalent to the
commutativity of the left square, where we set α(a,g) = aᾱ(g). Moreover, φ(a ∗ b) =
φ(a) ∗φ(b) implies φ(ag) = φ(a)g for all a ∈ Q and g ∈ 〈φ(Q)〉. If we assume that G is
generated by the image φ(Q), then the right square becomes redundant: φ is equivariant,
G acts by inner automorphisms, and the action of G on Q is uniquely determined by the
representation φ . In this case we simply say that φ : Q→ G is an augmentation.

Example 2.14. We have inn(a∗b) = inn(a)∗ inn(b), in other words, inn is a representation
of Q in Inn(Q), called the inner representation. Together with the natural action of Inn(Q)
on Q we obtain the inner augmentation Q inn−→ Inn(Q)

inc−→ Aut(Q).

Remark 2.15. Augmented quandles form a category [16, §9]. The preceding example
shows that each quandle Q can be augmented on G = Inn(Q). This construction is canoni-
cal but not functorial, see §2.5. In this respect the adjoint augmentation has better proper-
ties, see §2.4. We thus emphasize that every quandle Q can be augmented on some group
G, i.e. presented as a crossed G-set, but the choice of G is not unique.

Remark 2.16. For an augmentation Q
φ−→G α−→Aut(Q) we do not require that the image

quandle φ(Q) generates the entire group G. We can always achieve this by restricting to
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the subgroup H = 〈φ(Q)〉. This also entails α(H) = Inn(Q), so that we obtain:

Q H Inn(Q)

Q G Aut(Q)

w
φ

z

u

ww
α|H

z

u
w

φ

w
α

The typical (and somewhat trivial) example is given by the augmentation inn : Q→Aut(Q)
and its restriction inn: Q→ Inn(Q).

Example 2.17. Consider a quandle Q that can be faithfully represented in a group G,
so that we can assume Q ⊂ G with the quandle operation given by conjugation. Assum-
ing QG = Q, we obtain an augmentation Q ↪→ G

conj−→ Aut(Q). For H = 〈Q〉, the inner
representation inn: Q→ Inn(Q) extends to an augmentation Q ↪→ H

ρ−→−→ Inn(Q), with
ker(ρ) = Z(H) and Inn(Q) ∼= Inn(H). In particular, ρ : H → Inn(Q) is a central group
extension. This observation will be generalized in §2.7, see Corollary 2.41 below.

2.4. The adjoint group. The universal representation can be constructed as follows:

Definition 2.18. Given a quandle Q we define its adjoint group Adj(Q) = 〈Q | R〉 to be
the quotient group of the group F(Q) freely generated by the set Q modulo the relations
induced by the quandle operation, R = {a∗b = b−1 ·a ·b | a,b ∈ Q}. By construction we
obtain a canonical map adj : Q ↪→ F(Q)→→ Adj(Q) with adj(a∗b) = adj(a)∗ adj(b).

The group Adj(Q) can be interpreted as the “enveloping group” of Q. Notice, however,
that the map adj is in general not injective, see Proposition 2.38 below.

Remark 2.19 (universal property). The map adj : Q→ Adj(Q) is the universal group rep-
resentation of the quandle Q: for every group representation φ : Q → G there exists a
unique group homomorphism h : Adj(Q)→ G such that φ = h◦ adj.

Remark 2.20 (functoriality). Every quandle homomorphism φ : Q→Q′ induces a unique
group homomorphism Adj(φ) : Adj(Q)→Adj(Q′) such that Adj(φ)◦adjQ = adjQ′ ◦φ . We
thus obtain a functor Adj : Qnd→Grp.

Remark 2.21 (adjointness). Its name is justified by the fact that Adj is the left adjoint
functor of Conj : Grp→Qnd, already discussed above. More explicitly this means that we
have a natural bijection HomQnd(Q,Conj(G))∼= HomGrp(Adj(Q),G), see [24, chap. IV].

Example 2.22 (adjoint action). The inner representation inn: Q→ Inn(Q) induces a unique
group homomorphism ρ : Adj(Q)→→ Inn(Q) such that inn= ρ ◦adj. In this way the adjoint
group Adj(Q) acts on the quandle Q, again denoted by Q×Adj(Q)→ Q, (a,g) 7→ ag.

Remark 2.23 (adjoint augmentation). The pair Q
adj−→ Adj(Q)

ρ−→ Inn(Q) is an augmen-
tation of the quandle Q on its adjoint group Adj(Q), called the adjoint augmentation. By
construction it is the universal augmentation, in the obvious sense.

Remark 2.24 (equivariance). Each quandle homomorphism φ : Q→ Q′ induces a mor-
phism of adjoint augmentations. In particular, Adj(Q) acts on Q via ρ , and on Q′ via
ρ ′ ◦Adj(φ). The map φ thus becomes equivariant under the natural action of Adj(Q).
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2.5. (Non-)Functoriality. Unlike the adjoint representation adj : Q→ Adj(Q), the inner
representation inn: Q→ Inn(Q) is not functorial:

Example 2.25. Consider a quandle Q′ and an element q′ ∈ Q′ that acts non-trivially, i.e.
inn(q′) 6= idQ′ . The trivial quandle Q = {q} maps into Q′ with q 7→ q′, but no group
homomorphism Inn(Q)→ Inn(Q′) can map inn(q) = idQ to inn(q′) 6= idQ′ .

A closer look reveals that the crucial hypothesis is surjectivity:

Proposition 2.26. For every surjective quandle homomorphism p : Q→→ Q̄ there exists a
unique group homomorphism h : Inn(Q)→→ Inn(Q̄) such that h◦ innQ = innQ̄ ◦p. In other
words, h makes the following diagram commute:

Q Inn(Q)

Q̄ Inn(Q̄)
uu

p

w
innQ

uu
h=Inn(p)

w
innQ̄

Proof. Uniqueness is clear because Inn(Q) = 〈inn(Q)〉. In order to prove existence, first
observe that for each a ∈ Q the inner action x 7→ x ∗a preserves the fibres of p. The same
is thus true for every g ∈ Inn(Q), so we obtain a well-defined map ḡ : Q̄→ Q̄ as follows:
for each x̄ choose a preimage x ∈Q with p(x) = x̄ and set x̄ḡ := p(xg). By construction we
have f ◦g = f̄ ◦ ḡ, and g = inn(a) is mapped to ḡ = inn(p(a)). This shows that the map
h : Inn(Q)→ Inn(Q̄), g 7→ ḡ, is well-defined and a surjective group homomorphism. �

Remark 2.27 (functorial augmentation). In the category of augmentations of a fixed quan-
dle Q, the adjoint augmentation adj : Q→ Adj(Q) is the initial object, while inn : Q→
Aut(Q) is the terminal object [16, §9]. We have already noticed that adj is functorial, and
so it provides a functor from quandles to augmented quandles, whereas inn is not func-
torial. In a more restrictive setting, Proposition 2.26 provides a functor from quandles
and surjective homomorphisms to augmented quandles and surjective homomorphisms by
mapping each quandle Q to the inner augmentation inn: Q→ Inn(Q).

2.6. Connected components. As is the case for many other mathematical structures, a
quandle Q is called homogeneous if Aut(Q) acts transitively on Q. The following definition
is more specific for quandles, and essentially goes back to Joyce [16, §8]:

Definition 2.28. A quandle Q is called connected if Inn(Q) acts transitively on Q. A
connected component of Q is an orbit under the action of Inn(Q). Given an element q ∈ Q
we denote by [q] its connected component, that is, the orbit of q under the action of Inn(Q).
Finally, we denote by π0(Q) = {[q] | q ∈ Q} the set of connected components of Q.

Remark 2.29. The augmentation Q→ Adj(Q)→→ Inn(Q) shows that the connected com-
ponents of Q are precisely the Adj(Q)-orbits. Sometimes this alternative point of view
proves technically simpler because the adjoint group behaves functorially.

Proposition 2.30 (universal property). The set π0(Q) of connected components can be
considered as a trivial quandle, in which case the canonical projection φ : Q→→ π0(Q),
q 7→ [q] becomes a quandle homomorphism. It is universal in the sense that every quandle
homomorphism Q→ X to a trivial quandle X factors uniquely through φ . �
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Corollary 2.31 (functoriality). Every quandle homomorphism φ : Q→ Q′ induces a map
φ∗ : π0(Q)→ π0(Q′) defined by [x] 7→ [φ(x)]. If φ is surjective then so is φ∗. In particular,
the homomorphic image of a connected quandle is again connected. �

Remark 2.32. For every quandle Q, the elements of a given component become conjugate
in Adj(Q). Its abelianization is thus given by α : Adj(Q)→Zπ0(Q), q 7→ [q], and its kernel
is the commutator subgroup Adj(Q)′ = ker(α).

Definition 2.33. For every quandle Q there exists a unique group homomorphism ε : Adj(Q)→
Z with adj(Q)→{1}. Its kernel Adj(Q)◦ := ker(ε) is generated by all products of the form
adj(a)−1 adj(b) with a,b ∈ Q. The image of Adj(Q)◦ under the natural group homomor-
phism Adj(Q)→ Inn(Q) will be denoted by Inn(Q)◦. It is generated by products of the
form inn(a)−1 inn(b), called transvections by Joyce [16, §5]. In his analysis of symmetric
spaces É. Cartan called this the group of deplacements (see Loos [23, §II.1.1]).

Remark 2.34. If Q is connected, then ε : Adj(Q)→ Z is the abelianization of the adjoint
group, and in this case Adj(Q)◦ = Adj(Q)′ and Inn(Q)◦ = Inn(Q)′.

We have Adj(Q)=Adj(Q)◦oZ: choosing a base point q∈Q, every element g∈Adj(Q)

can be uniquely written as g = adj(q)ε(g)h with h ∈ Adj(Q)◦.

Remark 2.35. The components of Q are the orbits under the adjoint action of Adj(Q).
We obtain the same orbits with respect to the subgroup Adj(Q)◦. Indeed, for a ∈ Q and
g ∈ Adj(Q) we have ag = ah with h = adj(a)−ε(g)g ∈ Adj(Q)◦.

Remark 2.36. If Q is not connected, then the orbits under Adj(Q)◦ and Adj(Q)′ usually
differ significantly: Consider the quandle Q = Qm,n of Example 1.6 with gcd(m,n) = 1,
where we find Adj(Q) = Z×Z and Inn(Q) = Zn×Zm. The orbits under Adj(Q)◦ ∼= Z are
the two connected components, and do thus not coincide with the orbits under the trivial
group Adj(Q)′ = {id}.
2.7. Central group extensions. Fenn and Rourke [12] have called the kernel of the natu-
ral group homomorphism ρ : Adj(Q)→→ Inn(Q) the excess of Q, but did not study ρ more
closely. We will now see that ρ is a central extension.

As for every group, the inner automorphism group Inn(Adj(Q)) is the image of the
homomorphism γ : Adj(Q)→→ Aut(Adj(Q)) defined by conjugation, γ(g) : x 7→ xg, and
its kernel is the centre of Adj(Q). By definition of the adjoint group, we also have a
homomorphism α : Aut(Q)→ Aut(Adj(Q)) given by φ 7→ Adj(φ).

Q Inn(Q) Aut(Q)

Adj(Q) InnAdj(Q) AutAdj(Q)

w
inn

u

adj

y w

uu
β

u

α

[
[
[
[
[[]]

ρ

ww
γ

y w

Proposition 2.37. We have α(Inn(Q)) = InnAdj(Q). The restriction of α defines a group
homomorphism β : Inn(Q)→→ InnAdj(Q) that makes the above diagram commute. As a
consequence, the group homomorphism ρ : Adj(Q)→→ Inn(Q) is a central extension.

Proof. We already have inn = ρ ◦ adj by construction of ρ , so we only have to verify that
α ◦ρ = γ . Every g ∈ Adj(Q) acts on Q by inner automorphisms, ρ(g) : Q ∼−→ Q, a 7→ ag.
The quandle automorphism ρ(g) induces a group automorphism Adjρ(g) : Adj(Q) ∼−→
Adj(Q) with adj(a) 7→ adj(ag) = adj(a)g, see Remark 2.23. We conclude that Adjρ(g) =
γ(g). This means that the diagram is commutative and α(Inn(Q)) = InnAdj(Q). �
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As an illustration we wish to determine the adjoint group of the quandle Qm,n =ZmtZn
from Example 1.6. Recall that it decomposes into two components, Zm and Zn.

Proposition 2.38. The adjoint group Adj(Q0,0) is isomorphic to the Heisenberg group

H =
{(

1 ∗ ∗
0 1 ∗
0 0 1

)
∈ SL3Z

}
generated by x =

(1 1 0
0 1 0
0 0 1

)
, y =

(1 0 0
0 1 1
0 0 1

)
, z =

(1 0 1
0 1 0
0 0 1

)
.

More generally, for parameters m,n∈N the adjoint group G=Adj(Qm,n) is isomorphic
to the quotient H` = H/〈z`〉 with ` = gcd(m,n), via the isomorphism φ : G ∼−→ H` defined
by adj(a) 7→ xza for a ∈ Zm and adj(b) 7→ yz−b for b ∈ Zn.

In particular, adj : Qm,n → Adj(Qm,n) is injective if and only if m = n, and we have
Adj(Qm,n)∼= Z×Z if and only if the parameters m and n are coprime.

Proof. By definition, the adjoint group G = Adj(Qm,n) is generated by elements sa with
a ∈ Zm and tb with b ∈ Zn subject to the quandle relations sa ∗ tb = sa+1 and tb ∗ sa = tb+1,
as well as sa ∗ sa′ = sa and tb ∗ tb′ = tb for all a,a′ ∈ Zm and b,b′ ∈ Zn.

In H we have [x,y] = x−1y−1xy = z and [x,z] = [y,z] = 1, which entails the desired
relations (xza) ∗ (yz−b) = xza+1 and (yz−b) ∗ (xza) = yz−(b+1). The quotient group H` =
H/〈z`〉 thus allows a quandle representation Qm,n → H` with a 7→ xza for a ∈ Zm and
b 7→ yz−b for b ∈ Zn. This induces a surjective group homomorphism φ : G→→ H`.

Since Inn(Qm,n) ∼= Zn×Zm is abelian, the commutator group G′ is contained in the
kernel of G→→ Inn(Q), which is central according to Proposition 2.37. Consider

u := [sa, tb] = s−1
a t−1

b satb = s−1
a sa+1.

Repeatedly conjugating this equation by tb yields

u = s−1
a sa+1 = s−1

a+1sa+2 = · · ·= s−1
a−1sa.

On the other hand we find u = t−1
b+1tb and repeatedly conjugating by sa yields

u = t−1
b+1tb = t−1

b+2tb+1 = · · ·= t−1
b tb−1.

This shows that um = un = 1 and thus u` = 1 for `= gcd(m,n). With s := s0 and t := t0 we
finally obtain sa = sua for all a ∈ Zm and tb = tu−b for all b ∈ Zn. We conclude that every
element of G can be written as sit juk with i, j ∈ Z and k ∈ Z`. The group homomorphism
φ : G→→ H` satisfies φ(sit juk) = xiy jzk, and is thus seen to be injective. �

Remark 2.39. The natural group homomorphism β : Inn(Q)→→ InnAdj(Q) is surjective
but in general not injective. Consider for example Q = Qm,n with gcd(m,n) = 1. Then
Adj(Q)∼= Z2, so InnAdj(Q) = {id}, whereas Inn(Q)∼= Zm×Zn.

Remark 2.40. The group homomorphism α : Aut(Q)→ AutAdj(Q) is in general neither
injective nor surjective. The trivial quandle Q= {q}, for example, has trivial automorphism
group Aut(Q) = {id}, whereas the adjoint group Adj(Q)∼= Z has AutAdj(Q) = {± id}.

Corollary 2.41. For every augmentation Q
φ−→ G α−→ Inn(Q) with G = 〈φ(Q)〉, the in-

duced group homomorphism h : Adj(Q)→→G and α : G→→ Inn(Q) are central extensions,
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because α ◦h = ρ is a central extension according to Proposition 2.37. �

Adj(Q)

Q G

Inn(Q)

[
[[]]h

ρ�
���

adj

w
φ

[
[[]

inn uu
�

���� α

2.8. Quandle coverings. The following definition of quandle covering was inspired by
[9], where this approach was successfully used to study knot quandles.

Definition 2.42. A quandle homomorphism p : Q̃→Q is called a covering if it is surjective
and p(x̃) = p(ỹ) implies ã∗ x̃ = ã∗ ỹ for all ã, x̃, ỹ ∈ Q̃.

In other words, a surjective quandle homomorphism p : Q̃→→Q is a covering if and only
if the inner representation inn: Q̃→ Inn(Q̃) factors through p.

Example 2.43. For every augmentation Q
φ−→G α−→Aut(Q) the quandle homomorphism

φ : Q→→ φ(Q) is a covering. In particular, the inner representation inn: Q→ Inn(Q) de-
fines a quandle covering Q→→ inn(Q). By definition, inn(Q) is the smallest quandle cov-
ered by Q. In the other extreme we will show in Section 5 below how to construct the
universal covering of Q.

Notation. We shall reserve the term “covering” for the map p : Q̃→ Q. If emphasis is
desired, it is convenient to call p : Q̃→Q the quandle covering and Q̃ the covering quandle.

Example 2.44. A surjective group homomorphism p : G̃→→ G yields a quandle covering
Conj(G̃)→ Conj(G) if and only if ker(p)⊂ G̃ is a central subgroup.

Example 2.45. A surjective group homomorphism p : G̃→→ G yields a quandle covering
Core(G̃)→ Core(G) if and only if ker(p)⊂ G̃ is a central subgroup of exponent 2.

Example 2.46. A surjective group homomorphism p : Ã→→ A with p◦ T̃ = T ◦ p yields a
quandle covering Alex(Ã, T̃ )→ Alex(A,T ) if and only if T̃ acts trivially on ker(p)⊂ Ã.

Warning 2.47. The composition of two central group extensions is in general not a central
extension, and so the functor Conj shows that we cannot generally expect the composition
of two quandle coverings to be again a covering (see also Example 1.22). Similar remarks
apply to the functors Core and Alex.

Remark 2.48. A covering p : Q̃→→Q allows us to define a representation σ̃ : Q→ Inn(Q̃)
by setting ã ∗ x := ã ∗ x̃ for all x ∈ Q and ã, x̃ ∈ Q̃ with p(x̃) = x. This is well-defined
because ã ∗ x̃ does not depend on the choice of the preimage x̃. Moreover, σ̃ induces a
group homomorphism ρ̃ : Adj(Q)→ Inn(Q̃). This situation is summarized in the following
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commutative diagram:

Q̃ Adj(Q̃)

Inn(Q̃)

Q Adj(Q)

Inn(Q)

w
adjQ̃

uu

p

'
'')

innQ̃

uu

Adj(p)

[
[[̂̂ ρQ̃

uu

Inn(p)

adjQ

\
\
\]σ̃

'
'')

innQ

w

(
((** ρ̃

[
[[̂̂ ρQ

In particular, σ̃ : Q→ Inn(Q̃) is an augmentation with Inn(Q̃) = 〈σ̃(Q)〉, and the cov-
ering p is equivariant with respect to the action of Inn(Q̃). Moreover, ρ̃ defines a natural
action of the adjoint group Adj(Q) on the covering quandle Q̃, and p is equivariant with
respect to this action. By functoriality, Adj(p) and Inn(p) are likewise equivariant.

Proposition 2.49. For every quandle covering p : Q̃→→ Q, the induced group homomor-
phisms Adj(p) : Adj(Q̃)→→Adj(Q) and Inn(p) : Inn(Q̃)→→ Inn(Q) are central extensions.

Proof. This follows from the commutativity of the diagram and Proposition 2.37. �

3. EXAMPLES OF QUANDLES AND COVERINGS

This section recalls some classical examples where quandles arise naturally: conjuga-
tion in groups, the adjoint action of a Lie group on its Lie algebra, and the symmetries of a
Riemannian symmetric space. Our aim here is to highlight the notion of quandle covering
and its relationship to central group extensions, coverings of Lie groups, and coverings of
symmetric spaces, respectively.

3.1. Trivial coverings. Even though this is by far the least interesting case, we shall start
our tour with trivial coverings.

Example 3.1 (trivial covering). Let Q be a quandle and let F be a non-empty set. We
can consider F as a trivial quandle, and equip the product Q̃ = Q×F with the quandle
operation (a,s)∗ (b, t) = (a∗b,s). The projection p : Q×F → Q given by (q,s) 7→ q is a
quandle covering, called trivial covering with fibre F .

Remark 3.2. For every quandle homomorphism p : Q̃→ Q, each fibre F = p−1(q) is a
subquandle of Q̃. If p is a quandle covering, then F is necessarily trivial. The fibres over
any two points of the same component are isomorphic. The isomorphism is not canonical,
however, and covering theory studies the possible monodromy.

Remark 3.3 (almost trivial covering). If Q decomposes into connected components (Qi)i∈I ,
then we can choose a non-empty set Fi for each i ∈ I and equip the union Q̃ =

⊔
i∈I Qi×Fi

with the previous quandle operation (a,s)∗ (b, t) = (a∗b,s). The result is a quandle cov-
ering Q̃→ Q, (q,s) 7→ q that is trivial over each component, but not globally trivial if the
fibres over different components are non-isomorphic (i.e. have different cardinality).

3.2. Conjugation quandles. As already noted in the introduction, every group G becomes
a quandle with respect to conjugation a ∗ b = b−1ab. More generally, every non-empty
union Q of conjugacy classes in G is a quandle with these operations, and Q is a connected
quandle if and only if Q is a single conjugacy class in the generated subgroup H = 〈Q〉.



QUANDLE COVERINGS AND THEIR GALOIS CORRESPONDENCE 19

Remark 3.4 (central extensions). Given a quandle Q ⊂ G and a central group extension
p : G̃→→ G, the preimage Q̃ = p−1(Q) yields a quandle covering p : Q̃→ Q. The kernel
Λ= ker(p) acts on the covering quandle Q̃ such that (λa)∗b= λ (a∗b) and a∗(λb) = a∗b
for all a,b ∈ Q̃ and λ ∈ Λ. This will be called a quandle extension, see Definition 4.14.

Example 3.5 (linear groups). Consider the special linear group SL2K over a field K. Its
centre is Z = {± id} and thus of order 2 if charK 6= 2. The quotient is the projective
special linear group PSL2K = SL2K/Z, and by construction p : SL2K→→ PSL2K is a
central extension. We will assume that |K| ≥ 4, so that SL2K is perfect and PSL2K is
simple. (See [22, §XIII.8].)

The conjugacy class Q̃ = q̃G̃ of q̃ =
(

0 1
−1 0

)
defines a quandle in G̃ = SL2K. Its image

Q := p(Q̃)= qG is the conjugacy class of q := p(q̃)=±q̃ in G= PSL2K. We have G= 〈Q〉
because G is simple, and G̃ = 〈Q̃〉 because G̃ is perfect. (This is a general observation: 〈Q̃〉
is normal in G̃ and maps onto G, so that G̃/〈Q̃〉 is abelian, whence G̃ = 〈Q̃〉.)

Suppose that there exist a,b ∈ K such that a2 + b2 = −1. (This always holds in finite
characteristic, and also for K=C, but not for K=R.) In this case the matrix c =

(
a b
b −a

)
∈

G̃ conjugates q̃ to q̃c = −q̃, so that Z · Q̃ = Q̃. This means that p : Q̃→→ Q is a two-fold
covering of connected quandles, and even an extension Z y Q̃→→ Q.

If a2 +b2 = −1 has no solution in K, as for example in K = R, then q̃ and −q̃ are not
conjugated in G̃ = SL2K, so that p−1(Q) = +Q̃t−Q̃ consists of two isomorphic copies
of Q. This is again a two-fold quandle covering, but a trivial one.

3.3. Lie groups and Lie algebras. Every Lie group G is tied to its Lie algebra g = T1G
by two maps: the exponential map exp: g→ G and the adjoint action ad: G→ Aut(g),
denoted by ad(g) : x 7→ xg. This corresponds to a quandle structure in the following sense:

• The set g is a quandle with respect to x∗ y = xexp(y).
We recover the Lie bracket as the derivative d

dt [x∗ ty]t=0 = [x,y].
• The triple g

exp−→ G ad−→ Aut(g) is an augmentation of the quandle (g,∗).
The image Q = exp(g) is a quandle in the group G, with respect to conjugation.

• In general we have exp(g) ( G. If G is connected and exp: (g,0)→ (G,1) is a
local diffeomorphism, then we have G = 〈exp(g)〉 and ad(G) = Inn(g,∗).

Remark 3.6. In the finite-dimensional case, the manifold G is modelled on Rn or Cn,
and the inverse function theorem ensures that exp is a local diffeomorphism from an open
neighbourhood of 0 ∈ g onto an open neighbourhood of 1 ∈ G. In the infinite-dimensional
case, this result still holds for Lie groups modelled on Banach spaces. It may fail, how-
ever, for complete locally convex vector spaces, a setting motivated and studied by Milnor
[28]. He notes that in some cases the conclusion G = 〈exp(g)〉 follows from the additional
property that the group G is simple, because 〈exp(g)〉 is a normal subgroup.

Remark 3.7 (central extensions again). If p : G̃→ G is a connected covering of the Lie
group G, then G̃ carries a unique Lie group structure such that p is a Lie group homo-
morphism. The linear isomorphism T1 p : T1G̃ ∼−→ T1G provides an isomorphism of Lie
algebras g̃ ∼−→ g, and so we obtain another augmentation g

exp−→ G̃ ad−→ Aut(g). This can be
summarized as follows:

g̃ Q̃ G̃ Inn(g̃)

g Q G Inn(g)

ww
expG̃

u

∼=

y w
inc

uu
p

ww
adG̃

uu
p

u

∼=

ww
expG

y w
inc

ww
adG
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Assuming G = 〈Q〉 and G̃ = 〈Q̃〉, we recover a well-known fact of Lie group theory:
p : G̃→ G is a central group extension, because both G̃ and G are intermediate to the
central extension Adj(g,∗)→→ Inn(g,∗), see Corollary 2.41. In particular, p : Q̃→ Q is a
quandle covering, see Remark 3.4.

3.4. Infinite-dimensional Lie algebras. Contrary to the finite-dimensional case, not ev-
ery infinite-dimensional Lie algebra (L, [, ]) can be realized as the tangent space of a Lie
group G. This fails even for Banach Lie algebras, as remarked by van Est and Korthagen
[35]. (See also Serre [32], Part II, §V.8.) It is worth noting that the construction of the
quandle (L,∗) can still be carried out.

The obvious idea is to define x ∗ y by the initial condition x ∗ 0 = x and the differential
equation d

dt (x∗ ty) = [x∗ ty,y]. This equation has at most one analytic solution, namely

x∗ y =
∞

∑
k=0

1
k!
[. . . [[x,y],y] . . . ,y].

In order to ensure convergence, it suffices to impose some reasonable condition on the
topology of L: all obstacles disappear, for example, if L is a Banach Lie algebra. It is then
an amusing exercise to verify that (L,∗) is indeed a quandle:

(Q1) Antisymmetry [x,x] = 0 translates to idempotency x∗ x = x.
(Q2) The functional equation exp(y)◦ exp(−y) = id ensures invertibility.
(Q3) The Jacobi identity of the Lie bracket [, ] translates to self-distributivity of the

quandle operation ∗.
We conclude that constructing the quandle (L,∗) is a rather benign topological problem.

The natural group that appears here is G = 〈exp(L)〉 = Inn(L,∗), but in general this need
not be a Lie group; and even if it is we can only expect T1G = ad(L) = L/Z(L). The
much deeper problem of constructing a Lie group G realizing the Lie algebra L involves
the structure of L in a more profound way and leads in general to non-trivial obstructions.

The lesson to be learned from this excursion is that although a Lie group G may be
too much to ask, the less ambitious quandle structure (L,∗) can still be rescued. The
construction is natural in the following sense:

Proposition 3.8. Let (K, [, ]) and (L, [, ]) be Lie algebras, and let (K,∗) and (L,∗) be
the corresponding quandles. A continuous linear map p : K → L is a Lie algebra homo-
morphism (K, [, ])→ (L, [, ]) if and only if it is a quandle homomorphism (K,∗)→ (L,∗).
Moreover, p is a central extension of Lie algebras if and only if it is a covering of quandles.
(In this case p is even an extension of quandles in the sense of Definition 4.14.) �

3.5. Reflection quandles. Consider Rn with a∗b = a∗b = 2b−a, which is the symmetry
about the point b. This defines a connected involutory quandle Q = (Rn,∗), called the n-
dimensional reflection quandle. Since b is the unique fix-point of inn(b), we see that
inn : Q→ Inn(Q) is injective. More precisely, (Rn,∗) is isomorphic to conjugacy class of
reflections in the semidirect product Inn(Rn,∗)∼= (Rn,+)o{± id}.

Example 3.9. The quandle structure passes to the quotient group Tn = Rn/Zn, where it
can again be formulated as a∗b= 2b−a. In this way the torus Tn inherits a unique quandle
structure such that the projection p : Rn→ Tn is a quandle homomorphism. The quotient
map p is not a quandle covering, because innQ is injective and does not factor through p.

Example 3.10. We can produce quandle coverings Tn → Tn as follows. Consider the
subgroup Λ = p( 1

2Z
n) = {[0], [ 1

2 ]}
n acting on Tn by translation. For b,b′ ∈ Tn we have

inn(b) = inn(b′) if and only if b− b′ ∈ Λ. The quotient Λ\Tn carries a unique quandle
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structure such that the projection Tn→→ Λ\Tn is a quandle covering. (This quotient can be
identified with Tn ·2−→ Tn.) Similar remarks apply to the quotient by any subgroup of Λ.

3.6. Spherical quandles. We can equip the unit sphere Sn ⊂ Rn+1 with the operation
a ∗ b = 2〈a,b〉b− a, which is the unique involution fixing b and mapping x 7→ −x for
x orthogonal to b. This turns (Sn,∗) into a connected involutory quandle, called the n-
dimensional spherical quandle.

Example 3.11. For λ =±1 and a,b ∈ Sn we have (λa)∗b = λ (a∗b) and a∗ (λb) = a∗b.
This means that the projective space RPn = Sn/{±1} inherits a unique quandle structure
[a]∗ [b] = [a ∗ b] such that the projection p : Sn→ RPn is a quandle covering. The map p
is, of course, also a covering of topological spaces.

Remark 3.12. The inner action defines a representation of the quandle (Sn,∗) in the or-
thogonal group O(n+1), and into SO(n+1) if n is even. This representation is not faithful
because inn(b) = inn(−b) for all b ∈ Sn, but we obtain a faithful representation of the
projective quandle (RPn,∗). A faithful representation of the spherical quandle (Sn,∗) is
obtained by lifting to the double covering Pin(n+1)→→ O(n+1), see [22, §XIX.4].

(Sn,∗) Pin(n+1)

(RPn,∗) O(n+1)
uu

y w

uu
y w

3.7. Symmetric spaces. Reflection quandles and spherical quandles have a beautiful com-
mon generalization: globally symmetric Riemannian manifolds. They have been intro-
duced and classified by Élie Cartan in the 1920s and form a classical object of Riemann-
ian geometry. (See Helgason [15, §IV.3], Loos [23], Klingenberg [20, §2.2], Lang [21,
§XIII.5].) We briefly recall some elementary properties in order to characterize the quan-
dle coverings that naturally arise in this context.2

Definition 3.13. A symmetric space is a smooth connected manifold X equipped with a
Riemannian metric such that for each point x ∈ X there exists an isometry sx : X ∼−→ X that
reverses every geodesic arc γ : (]−ε,+ε[,0)→ (X ,x), meaning that sx ◦ γ(t) = γ(−t).

In a symmetric space every geodesic arc can be prolonged to a complete geodesic
R→ X , and the Hopf-Rinow theorem implies that X is a complete Riemannian mani-
fold. Conversely, the fact that X is connected and complete ensures that any two points
x,x′ ∈ X can be joined by a geodesic, and so the symmetry sx is unique for each x.

Proposition 3.14. A symmetric space X is an involutory quandle with respect to the oper-
ation ∗ : X×X → X defined by the symmetry x∗ y = sy(x).

Proof. Axiom (Q1) follows from sx(x) = x, and Axiom (Q2) from s2
x = idX . For (Q3)

notice that the isometry szsysz reverses every geodesic (R,0)→ (X ,sz(y)), and so we con-
clude szsysz = ssz(y) by uniqueness of the symmetry about sz(y). �

2 In the classification of symmetric spaces one usually passes to universal coverings and then concentrates on
simply connected spaces. The observations that follow concern non-simply connected symmetric spaces, because
we are particularly interested in the coverings themselves. We will not appeal to the classification, so our remarks
can be considered an elementary complement to the simply connected case.
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Remark 3.15. For a symmetric space X , topological connectedness entails algebraic con-
nectedness. The quandle (X ,∗) is even strongly connected: since any two points x,x′ ∈ X
can be joined by a geodesic γ : R→ X with γ(0) = x and γ(1) = x′, the symmetry about
y = γ( 1

2 ) maps x to x′. In other words, we do not need a product of successive symmetries
to go from x to x′; one step suffices. For the quandle (X ,∗) this means that x′ = xg for some
g ∈ inn(X), rather than g ∈ Inn(X) as usual.

In favourable cases a covering p : X̃→→X of symmetric spaces is also a quandle covering
(X̃ ,∗) →→ (X ,∗), as for Sn →→ RPn, but in general it need not be, as illustrated by the
example Rn→→ Tn above. For Lie groups this phenomenon is easy to understand:

Example 3.16. Consider a Lie group G with a bi-invariant Riemannian metric, for ex-
ample, a compact Lie group. (See [15, §IV.6]). In this case G is a symmetric space: a
smooth map (R,0)→ (G,1) is a geodesic if and only if it is a group homomorphism, and
the geodesic-reversing involution at 1 ∈ G is just s1(g) = g−1. For any other point h ∈ G
we find sh(g) = hg−1h; we thus recover Core(G), the core quandle of G of Example 2.3.

We deduce from Example 2.45 that a covering p : G̃→→ G of connected Lie groups is a
quandle covering Core(G̃)→→ Core(G) if and only if ker(p) is a group of exponent 2. This
is actually the general condition:

Theorem 3.17. Let X be a symmetric space. For every connected covering p : X̃ → X the
covering space X̃ carries a unique Riemannian structure such that p is a local isometry.
Equipped with this canonical structure, X̃ is itself a symmetric space and p is a quandle
homomorphism. It is a quandle covering if and only if Aut(p) is a group of exponent 2.

The proof relies on the following observation, which is interesting in its own right:

Lemma 3.18. Let X be a homogeneous Riemannian manifold. Then in every homotopy
class c ∈ π1(X ,x) there exists a loop γ : [0,1]→ X, with γ(0) = γ(1) = x, minimizing the
arc-length of all loops in c. Every such loop γ is a closed geodesic, satisfying γ ′(0) = γ ′(1),
so that its continuation defines a geodesic (R,0)→ (X ,x) of period 1. �

Notice that we do not consider free homotopy classes, but homotopy classes based at x.
Moreover, X need not be compact; the crucial hypothesis is homogeneity. For the special
case of symmetric spaces, which is of interest to us here, the conclusion γ ′(0) = γ ′(1) can
be obtained by parallel transport along γ , see [20, Corollary 2.2.7].

Proof of the theorem. The symmetry sx : (X ,x)→ (X ,x) acts as inversion on π
top
1 (X ,x),

which implies that this group is abelian. Every connected covering p : (X̃ , x̃)→ (X ,x) is
thus galois, and the symmetry sx : (X ,x)→ (X ,x) lifts to a symmetry sx̃ : (X̃ , x̃)→ (X̃ , x̃).
This turns X̃ into a Riemannian symmetric space, and we obtain a quandle (X̃ ,∗). The
projection p is a quandle homomorphism: for a,b ∈ X̃ we have p◦ sb = sp(b) ◦ p, whence
p(a∗b) = p◦ sb(a) = sp(b) ◦ p(a) = p(a)∗ p(b).

Any two points a,b ∈ p−1(x) are related by a unique deck transformation h ∈ Aut(p)
such that h(a) = b, and by a (possibly non-unique) geodesic γ : R→ X̃ with γ(0) = a and
γ(1) = b such that γ|[0,1] is length-minimizing. We thus have γ(s)∗ γ(t) = γ(2t− s) for all
s, t ∈ R, and also hγ(t) = γ(t +1) according to Lemma 3.18.

If p is a quandle covering, then sa = sb entails h2(a) = γ(2) = γ(0)∗ γ(1) = a∗b = a.
This shows that the deck transformation h2 : X̃ → X̃ fixes a and is thus the identity.

Conversely, if h2 = id, then a ∗ b = γ(0) ∗ γ(1) = γ(2) = h2(a) = a. This implies that
sb = sa, because both are liftings of sx = p◦ sa = p◦ sb fixing a. �
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Remark 3.19. The examples of Lie groups and symmetric Riemannian manifolds are
manifestly of a topological nature, and the quandles that emerge naturally are topological
quandles, analogous to topological groups. It is conceivable to define the adjoint group in
the topological category, so that the adjoint augmentation Q→Adj(Q)→ Inn(Q) is contin-
uous and universal in an appropriate sense. Likewise, the theory of (algebraic i.e. discrete)
quandle coverings can be adapted to continuous quandle coverings, and a topological Ga-
lois correspondence can be established. We postpone this generalization and consider only
the algebraic aspect, that is, discrete quandles, in this article.

3.8. Historical remarks. As early as 1942, M. Takasaki [34] introduced the notion of
“kei” (i.e. involutory quandle) as an abstraction of symmetric spaces, and later O. Loos [23]
extensively studied symmetric spaces as differential manifolds with an involutory quandle
structure. Racks first appeared around 1959 under the name “wracks” in unpublished cor-
respondence between J.H. Conway and G.C. Wraith (see [12]). D. Joyce published the first
comprehensive treatment of quandles in 1982, and also coined the name “quandle”. Inde-
pendently, S. Matveev [26] studied the equivalent notion of “distributive groupoid” (which
is not a groupoid in the usual sense, as in §8). Racks were rediscovered on many occasions
and studied under various names: as “automorphic sets” by E. Brieskorn [2], as “crossed
G-sets” by P.J. Freyd and D.N. Yetter [14], as “racks” by R. Fenn and C. Rourke [12], and
as “crystals” by L.H. Kauffman [17]. For a detailed review see [12].

4. THE CATEGORY OF QUANDLE COVERINGS

This section initiates the systematic study of quandle coverings. They correspond
vaguely to central group extensions, but also incorporate intrinsically non-abelian features.
The best analogy seems to be with coverings of topological spaces. Throughout this article
we will use this analogy as a guiding principle wherever possible.

4.1. The category of quandle coverings. We have already seen that the composition of
quandle coverings is in general not a quandle covering (see §1.6). In order to obtain a
category we have to consider coverings over a fixed base quandle:

Definition 4.1. Let p : Q̃→ Q and p̂ : Q̂→ Q be two quandle coverings. A covering
morphism from p to p̂ (over Q) is a quandle homomorphism φ : Q̃→ Q̂ such that p = p̂◦φ .

Q̃ Q̂

Q

w
φ

[[]
p ���p̂

Proposition 4.2. A map φ : Q̃→ Q̂ with p = p̂◦φ is a covering morphism if and only if φ

is equivariant with respect to Adj(Q), or equivalently, its subgroup Adj(Q)◦.

Proof. Consider ã, b̃ ∈ Q̃ and b = p(b̃) = p̂φ(b̃). Since both p and p̂ are coverings, we
have on the one hand φ(ã∗ b̃) = φ(ãadj(b)) and on the other hand φ(ã)∗φ(b̃) = φ(ã)adj(b).
This proves the desired equivalence. It suffices to assume equivariance under the subgroup
Adj(Q)◦, by replacing adj(b) with adj(a)−1 adj(b) ∈ Adj(Q)◦ where a = p(ã). �

Proposition 4.3. Given a quandle Q, the coverings p : Q̃→Q together with their covering
morphisms form a category, called the category of coverings over Q, denoted Cov(Q).

Proof. The only point to verify is that, given three coverings pi : Q̃i→ Q with i = 1,2,3,
the composition of two covering morphisms φ1 : Q̃1 → Q̃2 and φ2 : Q̃2 → Q̃3 is again a
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covering morphism. We already know that Qnd is a category, so φ = φ2 ◦φ1 : Q̃1→ Q̃3 is
a quandle homomorphism. Moreover, p3 ◦φ = p3 ◦φ2 ◦φ1 = p2 ◦φ1 = p1. �

Remark 4.4. Every surjective covering morphism φ : Q̃→→ Q̂ is itself a quandle covering:
if φ(x̃) = φ(ỹ) then p(x̃) = p̂φ(x̃) = p̂φ(ỹ) = p(ỹ) and so inn(x̃) = inn(ỹ).

Definition 4.5. For a quandle covering p : Q̃→ Q we define Aut(p) to be the group of
covering automorphisms of p, also called the group of deck transformations of the covering
p. We will adopt the convention that deck transformations of p act on the left, which means
that their composition φψ is defined by (φψ)(q̃) = φ(ψ(q̃)) for all q̃ ∈ Q̃.

We let Aut(p) act on the left because this is the most convenient (and traditional) way
to denote two commuting actions:

Proposition 4.6. Given a quandle covering p : Q̃→ Q, two groups naturally act on the
covering quandle Q̃: the group of deck transformations Aut(p) acts on the left while the
group of inner automorphisms Inn(Q̃) acts on the right. Both actions commute.

Proof. Consider φ ∈ Aut(p) and x̃, ỹ ∈ Q̃. Then φ(x̃ ∗ ỹ) = φ(x̃) ∗φ(ỹ) = φ(x̃) ∗ ỹ, which
means that φ and inn(ỹ) commute. Since the group Inn(Q̃) is generated by inn(Q̃), this
proves that the actions of Aut(p) and Inn(Q̃) commute. �

4.2. Pointed quandles and coverings. As in the case of topological spaces, we have to
choose base points in order to obtain uniqueness properties of coverings.

Definition 4.7. A pointed quandle (Q,q) is a quandle Q with a specified base point q ∈Q.
A homomorphism (resp. covering) φ : (Q,q) → (Q′,q′) between pointed quandles is a
quandle homomorphism (resp. covering) φ : Q→ Q′ such that φ(q) = q′. Pointed quan-
dles and their homomorphisms form a category, denoted Qnd∗. Likewise, coverings
p : (Q̃, q̃)→ (Q,q) over a fixed base quandle (Q,q) form a category, denoted Cov(Q,q).

Definition 4.8. Let f : (X ,x) → (Q,q) and p : (Q̃, q̃) → (Q,q) be homomorphisms of
pointed quandles. A lifting of f over p is a quandle homomorphism f̃ : (X ,x)→ (Q̃, q̃)
such that p◦ f̃ = f .

(Q̃, q̃)

(X ,x) (Q,q)
u
p

w
fB

B
B
B
BBCf̃

Proposition 4.9 (lifting uniqueness). Let f : (X ,x)→ (Q,q) be a quandle homomorphism,
and let p : (Q̃, q̃)→ (Q,q) be a quandle covering. Then any two liftings f̃1, f̃2 : (X ,x)→
(Q̃, q̃) of f over p coincide on the component of x in X. In particular, if X is connected,
then f admits at most one lifting over p.

Proof. The quandle homomorphism f induces a group homomorphism h : Adj(X)→Adj(Q).
Since p is a covering, the group Adj(Q) acts on Q̃, and so does Adj(X) via h. In this way,
all the maps in the above triangle are equivariant with respect to the action of Adj(X). If
f̃1 and f̃2 coincide on one point x, they coincide on its entire orbit, which is precisely the
connected component of x in X . �

Corollary 4.10. Between a connected covering p : (Q̃, q̃)→ (Q,q) and an arbitrary cov-
ering p̂ : (Q̂, q̂)→ (Q,q) there can be at most one covering morphism φ : (Q̃, q̃)→ (Q̂, q̂).
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Proof. The equation p = p̂◦φ means that φ is a lifting of p over p̂. �

Corollary 4.11. Let p : Q̃→ Q be a quandle covering. If Q̃ is connected, then the group
Aut(p) of deck transformations acts freely on each fibre.

Proof. Choose a base point q ∈Q and consider the fibre F = p−1(q). Every deck transfor-
mation φ ∈ Aut(p) satisfies φ(F) = F , and so Aut(p) acts on the set F . If φ fixes a point
q̃ ∈ F , then φ = id by the previous corollary. �

4.3. Galois coverings. As for topological coverings, the galois case is most prominent:

Definition 4.12. A covering p : Q̃→ Q is said to be galois if Q̃ is connected and Aut(p)
acts transitively on each fibre. (It necessarily acts freely by the previous corollary.)

Numerous examples are provided by central group extensions (Remark 3.4 and Example
3.5) and coverings of symmetric spaces (Examples 3.10 and 3.11, and Theorem 3.17).

Remark 4.13. Every galois covering p : Q̃→ Q comes with the natural action Λ y Q̃ of
the deck transformation group Λ = Aut(p) satisfying the following two axioms:

(E1) (λ x̃)∗ ỹ = λ (x̃∗ ỹ) and x̃∗ (λ ỹ) = x̃∗ ỹ for all x̃, ỹ ∈ Q̃ and λ ∈ Λ.
(E2) Λ acts freely and transitively on each fibre p−1(x).
Axiom (E1) says that Λ acts by automorphisms and the left action of Λ commutes with

the right action of Inn(Q̃), see Proposition 4.6. We denote such an action simply by Λy Q̃.
In this situation the quotient Q := Λ\Q̃ carries a unique quandle structure that turns the
projection p : Q̃→ Q into a quandle covering. Axiom (E2) then says that p : Q̃→ Q is a
principal Λ-covering, in the sense that each fibre is a principal Λ-set.

4.4. Quandle extensions. The freeness expressed in (E2) relies on the connectedness of
Q̃. As an extreme counter-example, consider the trivial covering p : Q̃ = Q×F→Q where
Q is a connected quandle and F is a set with at least three elements. Here the deck trans-
formation group Aut(p) = Sym(F) is too large: it acts transitively but not freely.

If the covering quandle Q̃ is non-connected, we can nevertheless salvage the above
properties by passing from the group Aut(p) to a subgroup Λ that satisfies (E2). We are
thus led to the concept of a principal Λ-covering. Motivated by the terminology used in
group theory, we will call this a quandle extension:

Definition 4.14. An extension E : Λ y Q̃
p−→ Q of a quandle Q by a group Λ consists of

a surjective quandle homomorphism p : Q̃→ Q and a group action Λ y Q̃ satisfying the
above axioms (E1) and (E2). This can also be called a principal Λ-covering of Q.

Quandle extensions are intermediate between galois coverings and general coverings:

Proposition 4.15. In every extension E : Λ y Q̃
p−→ Q the projection p : Q̃→ Q is a

quandle covering. It is a galois covering if and only if Q̃ is connected.
Conversely, every galois covering p : Q̃→ Q defines an extension of Q, with the group

Λ = Aut(p) acting naturally on Q̃ by deck transformations. �

We have already seen quandle extensions in the general Examples 2.44, 2.45, 2.46, and
the more concrete Examples 3.1, 3.5, 3.10, 3.11. Here is another natural construction,
which essentially goes back to Joyce [16, §7] and will be proven universal in §5.1.

Example 4.16. As in Example 2.4 we consider a group G with automorphism T : G ∼−→ G
and the associated Alexander quandle Q = Alex(G,T ). Suppose that H ⊂ G is a subgroup
such that T |H = idH . Then H×G→G, (h,g) 7→ hg defines a free action of H on the quan-
dle Q satisfying axiom (E1) above. As a consequence, the quotient set Q̄ = H\G carries a
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unique quandle structure such that the projection p : Q→→ Q̄ is a quandle homomorphism,
and H y Q→→ Q̄ is a quandle extension.

Coverings of Q form a category, which provides us with a natural notion of isomor-
phism, i.e. equivalence of coverings. Here is the appropriate notion for extensions:

Definition 4.17. Let Q be a quandle and let Λ be a group. An equivalence, or isomorphism,
between extensions E1 : Λ y Q1

p1−→Q and E2 : Λ y Q2
p2−→Q is a quandle isomorphism

φ : Q1
∼−→Q2 that respects projections, p1 = p2φ , and is equivariant, φλ = λφ for all λ ∈Λ.

We denote by Ext(Q,Λ) the set of equivalence classes of extensions of Q by Λ.

On could also define the seemingly weaker notion of homomorphism between exten-
sions E1 and E2 as a quandle homomorphism φ : Q1 → Q2 that respects projections and
is Λ-equivariant. This leads to the following observation, which is a variant of the well-
known Five Lemma for short exact sequences in abelian categories (see [25, §VIII.4]).

Proposition 4.18. Every homomorphism φ : Q1 → Q2 between two quandle extensions
E1 : Λ y Q1

p1−→ Q and E2 : Λ y Q2
p2−→ Q is an isomorphism of extensions. �

The proof is a straightforward diagram chase, and will be omitted.

4.5. Pull-backs. Given quandle homomorphisms p : Q̃→ Q and f : X → Q we construct
their pull-back, or fibred product X̃ = X×Q Q̃ as follows:

X̃
f̃−−−−→ Q̃

p̃
y yp

X
f−−−−→ Q

The set X̃ := {(x, ã) ∈ X × Q̃ | f (x) = p(ã)} can be equipped with a quandle operation
(x, ã)∗(y, b̃) := (x∗y, ã∗ b̃) such that the projections p̃(x, ã) = x and f̃ (x, ã) = ã are quandle
homomorphisms and make the above diagram commute. The triple (X̃ , p̃, f̃ ) is universal
in the usual sense that any other candidate uniquely factors through it, and this property
characterizes it up to unique isomorphism.

The quandle homomorphism f ∗p := p̃ : X̃ → X is called the pull-back of p along f .

Proposition 4.19. If p is a covering, then its pull-back f ∗p is again a covering. Thus every
quandle homomorphism f : X → Q induces a covariant functor f ∗ : Cov(Q)→ Cov(X)
by sending each covering p : Q̃→ Q to its pull-back f ∗p : X̃ → X, and every morphism
between coverings to the induced morphism between their pull-backs.

Proof. Suppose that p : Q̃ → Q is a covering, that is, p is surjective and p(ã) = p(b̃)
implies inn(ã) = inn(b̃). Then p̃ : X̃ → X is surjective, and for all x̃ = (x, ã) and ỹ = (y, b̃)
the equality p̃(x̃) = p̃(ỹ) entails x = y as well as p(ã) = f (x) = f (y) = p(b̃). These in
turn imply that inn(x̃) = inn(ỹ), as claimed. This construction is natural with respect to
covering morphisms, whence f ∗ is a functor. �

For extensions Λ y Q̃→→ Q we record the following observations:

Proposition 4.20 (functoriality in Q). The pull-back of an extension E : Λ y Q̃
p−→ Q

along a quandle homomorphism f : X → Q inherits a natural Λ-action and defines an
extension f ∗E : Λ y X̃

f ∗p−→ X. We thus obtain a natural map f ∗ : Ext(Q,Λ)→ Ext(X ,Λ).

Proof. The action on X̃ is given by λ (x, ã) = (x,λ ã) for λ ∈ Λ. Axioms (E1) and (E2)
carry over from Q̃ to X̃ , so that f ∗E is an extension, as claimed. �
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Proposition 4.21 (functoriality in Λ). Every group homomorphism h : Λ→ Λ′ induces a
natural map on extensions, h∗ : Ext(Q,Λ)→ Ext(Q,Λ′).

Proof. Given an extension E : Λ y Q̃
p−→ Q, the induced extension h∗E is defined as the

product Λ′ × Q̃ modulo the relation (λ ′,λ ã) ∼ (λ ′h(λ ), ã) for λ ∈ Λ. The quotient Q̂
inherits the quandle structure [λ ′,a] ∗ [λ ′′,b] = [λ ′,a ∗ b], and the extension h∗E : Λ′ y
Q̂

p̂−→ Q is defined by the projection p̂[λ ′,a] = p(a) and the action λ ′[λ ′′,a] = [λ ′λ ′′,a].
This construction is well-defined on isomorphism classes of extensions, so that we obtain
h∗ : Ext(Q,Λ)→ Ext(Q,Λ′) as desired. �

The preceding propositions can be restated as saying that Ext(Q,Λ) is a contravariant
functor in Q and a covariant functor in Λ. In general Ext(Q,Λ) is only a set, with the class
of the trivial extension as zero element. We obtain a group structure if Λ is abelian:

Proposition 4.22 (module structure). If Λ is an abelian group, or more generally a module
over some ring R, then Ext(Q,Λ) carries a natural R-module structure, and the pull-back
f ∗ : Ext(Q,Λ)→ Ext(X ,Λ) is a homomorphism of R-modules.

Proof. The group Λ is abelian if and only if its multiplication µ : Λ×Λ→ Λ is a group
homomorphism. In this case we obtain a binary operation on Ext(Q,Λ) as follows:

⊗ : Ext(Q,Λ)×Ext(Q,Λ)
P−→ Ext(Q,Λ×Λ)

µ∗−→ Ext(Q,Λ)

Here P is the fibred product and µ∗ is the induced map as above. More explicitly, given
two extensions E1 : Λ y Q1

p1−→ Q and E2 : Λ y Q2
p2−→ Q, their composition E3 = E1⊗

E2 is the fibred product Q1×Q Q2 modulo the relation (λa1,a2) ∼ (a1,λa2) for λ ∈ Λ.
The quotient Q3 inherits the quandle structure [a1,a2]∗ [b1,b2] = [a1 ∗b1,a2 ∗b2], and the
extension E3 : Λ y Q3

p3−→Q is defined by the projection p3[a1,a2] = p1(a1) = p2(a2) and
the action λ [a1,a2] = [λa1,a2] = [a1,λa2].

The composition is well-defined and associative on isomorphism classes of extensions.
The neutral element is given by the trivial extension E0 : Λ y Λ×Q

pr2−→ Q. The inverse
of E1 is obtained by replacing the action of Λ with the inverse action via λ 7→ λ−1. The
details are easily verified and will be omitted. �

5. CLASSIFICATION OF CONNECTED COVERINGS

In order to avoid clumsy notation, we will first classify connected coverings. The pas-
sage to arbitrary coverings over a connected base quandle is then straightforward, and will
be treated in Section 6. Assuming that the base quandle is connected is technically easier
and corresponds most closely to our model, the Galois correspondence for coverings over
a connected topological space. The non-connected case will be treated in Section 7.

5.1. Explicit construction of universal covering quandles. Our first task is to ensure the
existence of a universal covering quandle. As usual, universality is defined as follows:

Definition 5.1. A pointed quandle covering p : (Q̃, q̃)→ (Q,q) is universal if for each
covering p̂ : (Q̂, q̂)→ (Q,q) there exists a unique covering morphism φ : (Q̃, q̃)→ (Q̂, q̂).
In other words, a universal covering is an initial object in the category Cov(Q,q). Two
universal coverings of (Q,q) are isomorphic by a unique isomorphism, so that we can
unambiguously speak of the universal covering of (Q,q).

The following explicit construction has been inspired by [9, Lemma 25].
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Lemma 5.2. Consider a connected quandle Q with base point q ∈ Q. Recall that the
commutator subgroup Adj(Q)′ is the kernel of the group homomorphism ε : Adj(Q)→ Z
with ε(adj(Q)) = 1. We define

Q̃ :=
{
(a,g) ∈ Q×Adj(Q)′ | a = qg }, q̃ := (q,1).

The set Q̃ becomes a connected quandle with the operations

(a,g)∗ (b,h) :=
(

a∗b, g · adj(a)−1 · adj(b)
)
,

(a,g)∗ (b,h) :=
(

a∗b, g · adj(a) · adj(b)−1 ).
The quandle Q̃ comes with a natural augmentation Q̃

ρ−→ Adj(Q)
α−→ Inn(Q̃), where

ρ(b,h) = adj(b) and α is defined by the action

Q̃×Adj(Q)→ Q̃ with (a,g)h :=
(

ah, adj(q)−ε(h) ·gh
)
.

By construction, the subgroup Adj(Q)′ = ker(ε) acts freely and transitively on Q̃. The
canonical projection p : Q̃→ Q given by p(a,g) = a is a surjective quandle homomor-
phism, and equivariant with respect to the action of Adj(Q).

Proof. Since Q is connected, we have adj(a)−1 adj(b) ∈ Adj(Q)′, which ensures that the
operations ∗ and ∗ are well-defined. The first quandle axiom (Q1) is obvious:

(a,g)∗ (a,g) =
(

a∗a, g · adj(a)−1 · adj(a)
)
= (a,g).

The second axiom (Q2) follows using adj(a∗b) = adj(b)−1 adj(a)adj(b):(
(a,g)∗ (b,h)

)
∗ (b,h) =

(
a, g · adj(a)−1 · adj(b) · adj(a∗b) · adj(b)−1 )= (a,g).

For the third axiom (Q3) notice that each (a,g) ∈ Q̃ satisfies a = qg, which entails
adj(a) = g−1 · adj(q) ·g. The quandle operations can thus be reformulated as

(a,g)∗ (b,h) =
(

a∗b, adj(q)−1 ·g · adj(b)
)
,

(a,g)∗ (b,h) =
(

a∗b, adj(q) ·g · adj(b)−1 ).
This implies self-distributivity, because(

(a,g)∗ (b,h)
)
∗ (c,k) =

(
(a∗b)∗ c, adj(q)−2gadj(b)adj(c)

)
equals(

(a,g)∗ (c,k)
)
∗
(
(b,h)∗ (c,k)

)
=
(
(a∗ c)∗ (b∗ c), adj(q)−2gadj(c)adj(b∗ c)

)
.

The projection p : Q̃→ Q, p(a,g) = a, is a quandle homomorphism, which implies
that ρ = adj◦p : Q̃→ Adj(Q) is a representation. Moreover, the action α satisfies (a,g)∗
(b,h) = (a,g)adj(b), so that (ρ,α) is an augmentation. Since adj(Q) generates the group
Adj(Q), this also shows that Adj(Q) acts on Q̃ by inner automorphisms, and that p is
equivariant with respect to the action of Adj(Q). Under this action, the subgroup Adj(Q)′

acts freely and transitively on Q̃, which shows that Q̃ is connected. �

The reader will notice a close resemblance with the construction of the universal cover-
ing for a connected topological space. In order to construct Q̃ from Q, we keep track not
only of the points a ∈ Q but also the paths g ∈ Adj(Q)′ leading from our base point q to
the point a in question. Forgetting the extra information projects back to Q, while keeping
it defines the universal covering Q̃→→ Q, as we shall now prove:

Theorem 5.3. Let Q be a connected quandle with base point q∈Q and let (Q̃, q̃) be defined
as in Lemma 5.2 above. Then the canonical projection p : (Q̃, q̃)→ (Q,q) is the universal
quandle covering of (Q,q).
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Proof. It is clear from its construction that p : (Q̃, q̃)→ (Q,q) is a covering. We want
to show that for every other covering p̂ : (Q̂, q̂)→ (Q,q) there exists a unique quandle
homomorphism φ : (Q̃, q̃)→ (Q̂, q̂) with p̂ ◦ φ = p. Uniqueness is clear from Corollary
4.10, the crucial point is thus to show existence.

We recall from Remark 2.48 that every covering p̂ : Q̂→Q induces an action of Adj(Q)
on Q̂ by inner automorphisms, and that p̂ is equivariant with respect to this action. For our
covering p : Q̃→ Q this action has been made explicit in the preceding Lemma 5.2.

We define φ : (Q̃, q̃)→ (Q̂, q̂) by φ(a,g) = q̂g. This is an equivariant map with respect
to Adj(Q)′. Both maps p̂φ and p are thus equivariant and coincide in q̃ = (q,1). Since
Q̃ is connected we conclude p̂φ = p. Proposition 4.2 now shows that φ is a quandle
homomorphism, and hence a covering morphism from p to p̂ as desired. �

Remark 5.4. In Lemma 5.2, all the information of (a,g) ∈ Q̃ is contained in the second
coordinate g, so we could just as well dispense with the first coordinate a = qg. This means
that we consider the group G = Adj(Q)′ equipped with quandle operations

g∗h = x−1gh−1xh and g∗h = xgh−1x−1h,

where x = adj(q). This is the (non-abelian) Alexander quandle Alex(G,T ) with automor-
phism T : G ∼−→G given by g 7→ x−1gx. These formulae already appear in the work of Joyce
[16, §7] on the representation theory of homogeneous quandles. There the natural choice
is G = Aut(Q), whereas the universal covering requires G = Adj(Q)′.

The notation proposed in the preceding lemma emphasizes the interpretation of Q̃ as
a path fibration, where (a,g) designates a path g from q to the endpoint a. This extra
information of base points will become necessary when we consider quandles with more
than one connected component, see Lemma 7.11 below.

5.2. Fundamental group of a quandle. As announced in the introduction, once we have
understood the universal covering p : (Q̃, q̃)→ (Q,q) of a quandle (Q,q), we can define
the fundamental group π1(Q,q) as the group Aut(p) of deck transformations:

Definition 5.5. We call π1(Q,q) = {g ∈ Adj(Q)′ | qg = q} the fundamental group of the
quandle Q based at q ∈ Q.

Proposition 5.6. For the universal covering p : (Q̃, q̃)→ (Q,q) as above, we obtain a
canonical group isomorphism φ : π1(Q,q) ∼−→Aut(p) from the left action π1(Q,q)×Q̃→ Q̃
defined by h · (a,g) = (a,hg).

Proof. The action is well-defined and induces an injective group homomorphism π1(Q,q)→
Aut(Q̃). By construction it respects the projection p : Q̃→Q, so we obtain φ : π1(Q,q)→
Aut(p). The action of π1(Q,q) is free and transitive on the fibre p−1(q) = {(q,g) | qg = q}.
Given a covering automorphism α ∈Aut(p) there exists thus a unique element h∈ π1(Q,q)
with α(q̃) = h · q̃. This means that α = φ(h), because Q̃ is connected (see Corollary 4.10).
This proves that φ is also surjective. �

Proposition 5.7 (functoriality). Every quandle homomorphism f : (X ,x)→ (Y,y) induces
a homomorphism f∗ : π1(X ,x)→ π1(Y,y) of fundamental groups. We thus obtain a functor
π1 : Qnd∗→Grp from the category of pointed quandles to the category of groups.

Proof. Every quandle homomorphism f : X → Y induces a group homomorphism h =
Adj( f ) : Adj(X)→ Adj(Y ). In this way Adj(X) acts on Y , and f becomes equivariant.
In particular, every g ∈ Adj(X)′ with xg = x is mapped to h(g) ∈ Adj(Y )′ with yh(g) = y,
which proves the first claim. Moreover, this construction respects composition. �
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Proposition 5.8. We have π1(Q,qg) = π1(Q,q)g for every g ∈ Adj(Q), or more generally
for every g∈Aut(Q). Thus, if Q is connected, or homogeneous, then the isomorphism class
of the fundamental group π1(Q,q) is independent of the choice of base point q ∈ Q. �

5.3. Coverings and monodromy. As for topological coverings, two groups naturally act
on a quandle covering p : Q̃→ Q: the deck transformation group Aut(p) acts on the left,
while the adjoint group Adj(Q) and in particular its subgroup π1(Q,q) act on the right.
Both actions are connected as follows:

Proposition 5.9 (monodromy action). Every galois covering p : Q̃→Q induces a natural
surjective group homomorphism h : π1(Q,q)→→ Aut(p).

More generally, every quandle extension E : Λ y Q̃
p−→ Q of a connected quandle Q

by a group Λ induces a natural group homomorphism h : π1(Q,q)→ Λ. Moreover, h is
surjective if and only if Q̃ is connected; in this case p is a galois covering.

In both settings, h is an isomorphism if and only if p is the universal covering of Q.

Proof. Every galois covering p : Q̃→ Q defines an extension, with the group Λ = Aut(p)
acting naturally on Q̃ by deck transformations (see Proposition 4.15). We will thus con-
centrate on the more general formulation of extensions.

Since the covering p : Q̃→ Q is equivariant under the natural action of Adj(Q), every
g∈ π1(Q,q) maps the fibre F = p−1(q) to itself. In particular, there exists a unique element
h(g) ∈ Λ such that q̃g = h(g)q̃. For g1,g2 ∈ π1(Q,q) we find that

q̃g1g2 = (h(g1)q̃)g2 = h(g1)(q̃g2) = h(g1)h(g2)q̃,

since both actions commute (see Proposition 4.6). We conclude that h(g1g2) = h(g1)h(g2),
whence h is a group homomorphism.

If Q̃ is connected, there exists for each q̂ ∈ F a group element g ∈ Adj(Q)′ such that
q̃g = q̂ (see Remark 2.34). By equivariance this equation projects to qg = q, and so we
have g ∈ π1(Q,q). This implies that h is surjective.

Conversely, if h is surjective, then Q̃ is connected: given q̂∈ Q̃, there exists g1 ∈Adj(Q)
such that p(q̂)g1 = q, because Q is connected. This implies that q̂g1 = λ q̃ for some λ ∈ Λ.
Since h is assumed to be surjective, there exists g2 ∈ π1(Q,q) such that h(g2) = λ−1. We
conclude that q̂g1g2 = q̃, as desired.

Finally, if h is an isomorphism, then Adj(Q)′ acts freely on Q̃. We thus obtain an
isomorphism between (Q̃, q̃) and the universal covering constructed in Theorem 5.3. �

Proposition 5.10. For every quandle covering p : (Q̃, q̃)→→ (Q,q) the induced group ho-
momorphism p∗ : π1(Q̃, q̃)→ π1(Q,q) has image im(p∗) = {g ∈ Adj(Q)◦ | q̃g = q̃} and
kernel ker(p∗) = ker

[
Adj(p) : Adj(Q̃)→ Adj(Q)

]
.

Proof. We know by Proposition 2.49 that φ = Adj(p) : Adj(Q̃)→→ Adj(Q) is a central
extension. By Definition 2.33 we have εQ̃ = εQ ◦φ , so that φ maps Adj(Q̃)◦ onto Adj(Q)◦.
The action of Adj(Q) on Q̃ is such that q̃g̃ = q̃φ(g̃) for all g̃ ∈ Adj(Q̃), see Remark 2.48.

If g̃ ∈ π1(Q̃, q̃) then g = φ(g̃) satisfies g ∈ Adj(Q)◦ and q̃g = q̃. Conversely, for each
g ∈ Adj(Q)◦ with q̃g = q̃, every preimage g̃ ∈ φ−1(g) satisfies g̃ ∈ Adj(Q̃)◦ and q̃g̃ = q̃,
whence g̃ ∈ π1(Q̃, q̃) and g = p∗(g̃). Existence of g̃ is ensured by the surjectivity of φ .

Finally, g̃ ∈ ker(p∗) is equivalent to g̃ ∈ Adj(Q̃)◦ and q̃g̃ = q̃ and φ(g̃) = 1. This last
condition entails the two previous ones: if φ(g̃) = 1 then g̃ ∈ Adj(Q̃)◦ and q̃g̃ = q̃φ(g̃) = q̃,
so that g̃ ∈ ker(p∗). We conclude that ker(p∗) = ker(Adj(p)). �

Warning 5.11. For a connected quandle covering p : Q̃→→ Q the adjoint group homomor-
phism Adj(Q̃)→→Adj(Q) can have non-trivial kernel, and so p∗ : π1(Q̃, q̃)→ π1(Q,q) is in
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general not injective. In this respect the covering theory of quandles differs sharply from
coverings of topological spaces, where p∗ is injective for every covering.

Example 5.12. As in Example 3.5, consider a group G̃ and a conjugacy class Q̃⊂ G̃ such
that G̃ = 〈Q̃〉. Assume that Λ⊂ Z(G̃) is a non-trivial central subgroup such that Λ · Q̃ = Q̃.
The quotient map p : G̃→ G := G̃/Λ sends Q̃ to a conjugacy class Q = p(Q̃) in G with
G = 〈Q〉. We thus obtain an extension Λ y Q̃

p−→ Q.
Since Q̃ embeds into a group, the adjoint map Q̃→ Adj(Q̃) is injective. The group

homomorphism h = Adj(p) : Adj(Q̃)→ Adj(Q) is not injective because q̃ and λ q̃ with
λ ∈ Λr{1}, are distinct in Q̃ but get identified in Q. The element z̃ = adj(q̃)−1 adj(λ q̃) in
Adj(Q̃)′ is thus contained in ker(h), and thus in the centre of Adj(Q̃). In particular q̃z̃ = q̃,
and so z̃ ∈ π1(Q̃, q̃) is a non-trivial element that maps to p∗(z̃) = 1 in π1(Q,q).

5.4. The lifting criterion. As for topological coverings, the fundamental group provides
a simple criterion for the lifting over a quandle covering:

Proposition 5.13 (lifting criterion). Let f : (X ,x)→ (Q,q) be a quandle homomorphism,
and let p : (Q̃, q̃)→ (Q,q) be a quandle covering. Assume further that (X ,x) is connected.
Then there exists a lifting f̃ : (X ,x)→ (Q̃, q̃) if and only if f∗π1(X ,x)⊂ p∗π1(Q̃, q̃).

Proof. We already know from Corollary 4.10 that f̃ is unique, and so we only have to
consider existence. Let us begin with the easy case: If a lifting f̃ exists, then f = p f̃
implies f∗ = p∗ f̃∗ and thus f∗π1(X ,x) = p∗ f̃∗π1(X ,x)⊂ p∗π1(Q̃, q̃).

Conversely, assume f∗π1(X ,x) ⊂ p∗π1(Q̃, q̃). Since p is a covering, the group Adj(Q)
acts on Q̃ by inner automorphisms. The quandle homomorphism f : X → Q induces a
group homomorphism f∗ = Adj( f ) : Adj(X)→ Adj(Q), and in this way Adj(X) also acts
on Q̃. By connectedness, every element of X can be written as xg with some g ∈ Adj(X)′.
We can thus define f̃ : (X ,x)→ (Q̃, q̃) by setting f̃ : xg 7→ q̃g, and our hypothesis ensures
that this is well-defined. By construction, the map f̃ is Adj(X)′-equivariant. Both maps p f̃
and f are Adj(X)′-equivariant and coincide in x; since X is connected we obtain p f̃ = f .
As in Proposition 4.2 we conclude that f̃ is a quandle homomorphism. �

Definition 5.14. A quandle Q is simply connected if it is connected and π1(Q,q) = {1}.

Notice that connectedness implies that π1(Q,q) ∼= π1(Q,q′) for all q,q′ ∈ Q. It thus
suffices to verify triviality of π1(Q,q) for one base point q ∈ Q; the property of being
simply connected is independent of this choice, and hence well-defined.

Proposition 5.15. For a quandle Q the following properties are equivalent:

(1) The quandle Q is simply connected.
(2) Every covering p : Q̃→ Q is equivalent to a trivial covering pr1 : Q×F → Q.
(3) Every quandle homomorphism f : (Q,q)→ (Q̄, q̄) lifts uniquely over each quandle

covering p : (Q̃, q̃)→ (Q̄, q̄).
(4) Every covering p : (Q,q)→ (Q̄, q̄) is universal in the category Cov(Q̄, q̄).

Proof. (1) ⇒ (2): We choose a base point q ∈ Q and define F := p−1(q). According
to the Lifting Criterion, for each q̃ ∈ F there exists a unique quandle homomorphism
φq̃ : (Q,q)→ (Q̃, q̃) such that p◦φq̃ = idQ. Its image is the connected component of q̃ in Q̃.
We thus have a bijection ψ : π0(Q̃)→ F such that ψ([q̃]) = q̃ for every q̃ ∈ F . Putting this
information together we obtain mutually inverse quandle isomorphisms Φ : Q×F → Q̃,
Φ(x, q̃) = φq̃(x) and Ψ : Q̃→ Q×F , Ψ(x̃) = (p(x̃),ψ([x̃])).
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(2) ⇒ (3): By hypothesis (2) and Remark 3.3, Q must be connected, which ensures
uniqueness. Existence follows from the pull-back construction, because f ∗p is a covering
over (Q,q) and trivial by hypothesis.

(3)⇒ (4): This is clear from Definition 5.1.
(4) ⇒ (1): The identity idQ : (Q,q)→ (Q,q) is a covering. If it is universal, then Q

must be connected by Remark 3.3. Moreover, (Q,q) must be isomorphic to the explicit
model (Q̃, q̃) of Theorem 5.3 via the projection map p : (Q̃, q̃)→ (Q,q). This implies
π1(Q,q) = {1}, whence Q is simply connected. �

Example 5.16. For a long knot L, the knot quandle QL is simply connected by [9, Theorem
30]. The natural quandle projection QL →→ QK is thus the universal covering of the knot
quandle QK associated to the closed knot K.

Warning 5.17. For a universal quandle covering p : (Q̃, q̃)→ (Q,q) the covering quandle
Q̃ need not be simply connected. This is another aspect in which quandle coverings differ
from topological coverings, where every universal covering is simply connected.

Example 5.18. We continue Example 5.12 using the same notation. The universal cov-
ering p̂ : (Q̂, q̂)→ (Q,q) of (Q,q) induces a covering p̃ : (Q̂, q̂)→ (Q̃, q̃). This means
that Adj(p̂) : Adj(Q̂)→→ Adj(Q) factors as Adj(Q̂)

g−→−→ Adj(Q̃)
h−→−→ Adj(Q). We have al-

ready found a non-trivial element z̃ ∈ π1(Q̃, q̃) with h(z̃) = 1 in π1(Q,q). Every preimage
ẑ∈ g−1(z̃) lies in centre of Adj(Q̂) and also in the commutator subgroup, and thus provides
a non-trivial element ẑ ∈ π1(Q̂, q̂).

5.5. Galois correspondence. Let (Q,q) be a connected quandle. We wish to establish
a correspondence between the following two categories. On the one hand, we have the
category Cov∗(Q,q) formed by pointed connected coverings p : (Q̃, q̃)→ (Q,q) and their
pointed covering morphisms. On the other hand, we have the category Sub(π1(Q,q))
formed by subgroups of π1(Q,q) and homomorphisms given by inclusion. The Galois
correspondence establishes a natural equivalence Cov∗(Q,q)∼= Sub(π1(Q,q)).

Remark 5.19. In Sub(π1(Q,q)) inclusion defines a partial order on the set of subgroups.
Likewise, in Cov∗(Q,q) each set of covering morphisms Hom(p, p′) is either empty or
contains exactly one element (see Corollary 4.10), which expresses a partial preorder.

Lemma 5.20. There exists a unique functor Φ : Cov∗(Q,q)→ Sub(π1(Q,q)) mapping
each covering p : (Q̂, q̂)→ (Q,q) to the subgroup p∗π1(Q̂, q̂)⊂ π1(Q,q).

Proof. Obviously Φ is well-defined on objects. Every covering morphism φ from p to p′

entails that p∗π1(Q̂, q̂) = p∗φ∗π1(Q̂, q̂)⊂ p∗π1(Q̂′, q̂′), so that Φ is indeed a functor. �

Lemma 5.21. There exists a unique functor Ψ : Sub(π1(Q,q))→ Cov∗(Q,q) mapping
each subgroup K ⊂ π1(Q,q) to the quotient Q̃K := K\Q̃ of the universal covering Q̃.

Proof. We consider the universal covering p : (Q̃, q̃)→ (Q,q) constructed in Lemma 5.2.
Given a subgroup K ⊂ π1(Q,q), we identify K with the corresponding subgroup of Aut(p),
via the monodromy action explained in Proposition 5.9. This allows us to define the quo-
tient Q̃K := K\Q̃ with base point q̃K = [q̃] and projection pK : (Q̃K , q̃K)→ (Q,q) defined
by pK([x̃]) = p(x̃). The result is the covering Ψ(K) := pK we wish to consider.

Moreover, if K ⊂ L ⊂ π1(Q,q), then the covering pL is a quotient of the covering pK .
We thus have a covering morphism from pK to pL, so that Ψ is indeed a functor. �

Theorem 5.22 (Galois correspondence). Let (Q,q) be a connected quandle. Then the
functors Φ : Cov∗(Q,q)→ Sub(π1(Q,q)) and Ψ : Sub(π1(Q,q))→Cov∗(Q,q) establish
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a natural equivalence between the category of pointed connected coverings of (Q,q) and
the category of subgroups of π1(Q,q).

Proof. We will first prove that ΦΨ = id. Consider a subgroup K ⊂ π1(Q,q) and the associ-
ated covering pK : (Q̃K , q̃K)→ (Q,q). By Proposition 5.10 we know that the image group
(pK)∗π1(Q̃K , q̃K) consists of all g ∈ Adj(Q)′ such that q̃g

K = q̃K . Comparing this with the
construction of the universal covering (Q̃, q̃) and its quotient (Q̃K , q̃K) we obtain precisely
the group K with which we started out.

Conversely, let us prove that ΨΦ ∼= id. For every connected covering p : (Q̂, q̂) →
(Q,q) the associated group K = p∗π1(Q̂, q̂) defines a covering pK : (Q̃K , q̃K)→ (Q,q) as
above. We already know that (pK)∗π1(Q̃K , q̃K) = K = p∗π1(Q̂, q̂). The Lifting Criterion
(Proposition 5.13) implies that there exist covering morphisms f : (Q̃K , q̃K)→ (Q̂, q̂) and
g : (Q̂, q̂)→ (Q̃K , q̃K). By the usual uniqueness argument (Corollary 4.10) we conclude
that f ◦g = idQ̂ and g◦ f = idQ̃K

�

Proposition 5.23 (monodromy and deck transformation group). Consider a connected
covering p : (Q̃, q̃)→ (Q,q) and the associated subgroup K = p∗π1(Q̃, q̃)⊂ π1(Q,q).

(1) The natural right action F ×π1(Q,q)→ F induces a bijection between the fibre
F = p−1(q) and the quotient set K\π1(Q,q). In particular, the cardinality of F
equals the index of the subgroup K in π1(Q,q).

(2) Let N = {g ∈ π1(Q,q) | Kg = K} be the normalizer of K in π1(Q,q). There exists
a covering transformation (Q̃, q̃)→ (Q̃, q̂) if and only if there exists an element
g ∈ N such that q̃g = q̂.

(3) We have a natural short exact sequence K ↪→ N →→ Aut(p). The covering p is
galois if and only if the subgroup K is normal in π1(Q,q). In this case the deck
transformation group is Aut(p)∼= π1(Q,q)/K.

Proof. Since Q̃ is connected, π1(Q,q) acts transitively on the fibre F = p−1(q). The stabi-
lizer of q̃ is precisely the subgroup K, see Proposition 5.10. Given g∈ π1(Q,q) there exists
a covering automorphism φ : (Q̃, q̃)→ (Q̃, q̃g) if and only if the subgroups p∗π1(Q̃, q̃) = K
and p∗π1(Q̃, q̃g) = Kg coincide (see the Lifting Criterion, Proposition 5.13). In this case φ

is unique, and so g 7→ φ defines a surjective group homomorphism N→→ Aut(p), as in the
proof of Proposition 5.9. �

6. CLASSIFICATION OF NON-CONNECTED COVERINGS

6.1. Non-connected covering quandles. In this section we deal with coverings p : Q̃→Q
where the base quandle Q is connected but the covering quandle Q̃ can be non-connected.
Non-connected base quandles are more delicate and will be treated in the next section.

Proposition 6.1. Consider a family of quandle coverings pi : Q̃i→Q indexed by i ∈ I. Let
Q̃ =

⊔
i∈I Q̃i×{i} be their disjoint union with projection p : Q̃→Q, p(a, i) = pi(a). There

exists a unique quandle structure on Q̃ that extends the one on each Q̃i and turns p into
a quandle covering. The result is called the union of the given quandle coverings over Q,
denoted by (Q̃, p) =

⊕
i∈I(Q̃i, pi).

Proof. The point is to define the quandle structure on Q̃. Since each pi is a covering,
the base quandle Q acts on Q̃i such that a ∗ b = a ∗ pi(b) for all a,b ∈ Q̃i. If there is a
compatible quandle structure on Q̃ such that p : Q̃→ Q becomes a covering, then Q acts
on Q̃ and we must have (a, i) ∗ (b, j) = (a, i) ∗ p j(b, j) = (a ∗ p j(b), i). This shows that
there can be at most one such structure. In order to prove existence, we equip Q̃ with the
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operation (a, i)∗ (b, j) := (a∗ p j(b), i). If I is non-empty, then it is easily verified that this
definition turns Q̃ into a quandle, and that p becomes a quandle covering of Q. �

Proposition 6.2. Let p : Q̃→ Q be a covering of the connected quandle Q. We can de-
compose Q̃ into connected components (Q̃i)i∈I and define pi : Q̃i→Q by restriction. Then
each pi is a covering, and (Q̃, p) =

⊕
i∈I(Q̃i, pi) is their union.

Proof. Notice that each Q̃i is an orbit under the action of Adj(Q) on Q̃, and each pi is a
covering because it is an Adj(Q)-equivariant map. By construction we have the equality
of sets and maps, (Q̃, p) =

⊕
i∈I(Q̃i, pi). The equality of their quandle structures follows

from the uniqueness part of the previous proposition. �

6.2. Galois correspondence. Theorem 5.22 above established the correspondence be-
tween connected coverings and subgroups of the fundamental group. In the general setting
it is more convenient to classify coverings by actions of the fundamental group on the fibre.

Definition 6.3 (the category of G-sets). Let G be a group. A G-set is a pair (X ,α) con-
sisting of a set X and a right action α : X ×G→ X , denoted by α(x,g) = xg. A morphism
φ : (X ,α)→ (Y,β ) between two G-sets is an equivariant map φ : X → Y , i.e. satisfying
φ(xg) = φ(x)g for all x ∈ X and g ∈ G. The class of G-sets and their morphisms form a
category, denoted by Act(G).

Lemma 6.4. There exists a canonical functor Φ : Cov(Q)→Act(π1(Q,q)) mapping each
covering p : Q̃→Q to (F,α) where F = p−1(q) is the fibre over q, and α : F×π1(Q,q)→
F is the monodromy action.

Proof. Given a covering p : Q̃→Q, the natural action of Adj(Q) on Q̃ restricts to an action
of π1(Q,q) on the fibre F = p−1(q). This defines Φ on objects.

Every covering morphism φ : Q̃→ Q̂ is equivariant with respect to the action of Adj(Q).
It maps the fibre F = p−1(q) to the fibre F̂ = p̂−1(q), and the restriction φq : F → F̂ is
equivariant with respect to the action of π1(Q,q). Hence Φ is indeed a functor. �

Lemma 6.5. There exists a canonical functor Ψ : Act(π1(Q,q))→Cov(Q) mapping each
action α : F ×π1(Q,q)→ F to the covering pα : Q̃α → Q with Q̃α = (F × Q̃)/π1(Q,q),
where Q̃ is the universal connected covering of Q.

Proof. We start with the universal connected covering p : (Q̃, q̃)→ (Q,q). According to
Proposition 5.9 we have a group isomorphism h : π1(Q,q) ∼−→Aut(p), such that h(g)q̃ = q̃g

for all g ∈ π1(Q,q). Given (F,α) ∈ Act(π1(Q,q)), we quotient the product F × Q̃ by
the equivalence relation (xg, ã) ∼ (x,h(g)ã) for all x ∈ F , ã ∈ Q̃, and g ∈ π1(Q,q). The
quotient Q̃α := (F × Q̃)/∼ inherits the quandle structure [x, ã] ∗ [y, b̃] := [x, ã ∗ b̃]. The
projection pα : Q̃α → Q, pα([x, ã]) := p(ã) is well-defined and a quandle covering. As a
consequence, the action of Adj(Q) on Q̃α is given by [x, ã]g = [x, ãg] for all g ∈ Adj(Q).

A morphism φ : (X ,α)→ (Y,β ) of G-sets induces a map φ × id : X × Q̃→ Y × Q̃ that
descends to a quandle homomorphism on the quotients, φ̄ : Q̃α → Q̃β . This turns out to be
a covering morphism from pα to pβ , so that Ψ is indeed a functor. �

Theorem 6.6 (Galois correspondence). Let (Q,q) be a connected quandle. The functors
Φ : Cov(Q)→Act(π1(Q,q)) and Ψ : Act(π1(Q,q))→Cov(Q) establish a natural equiv-
alence between the category of coverings of Q and the category of sets endowed with an
action of π1(Q,q).
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Proof. Before we begin, let us point out that strictly speaking the compositions ΨΦ and
ΦΨ are not the identity functors. They are, however, naturally equivalent to the identity
functors, in the sense of [25, §I.4], and this is what we have to show.

We will first prove that ΦΨ ∼= id. Consider an action α : X × π1(Q,q)→ X and the
associated covering pα : Q̃α → Q with fibre Fα := p−1

α (q). Recall that Aut(p) acts freely
and transitively from the left on the fibre p−1(q) of the universal covering p : (Q̃, q̃)→
(Q,q). The map ψα : X → Fα , x 7→ [x, q̃], is thus a bijection. Moreover, we find

ψα(xg) = [xg, q̃] = [x,h(g)q̃] = [x, q̃g] = [x, q̃]g = ψα(x)g

for every g ∈ π1(Q,q). This shows that ψα : X → Fα is an equivalence of π1(Q,q)-sets, as
claimed. Naturality in α is easily verified.

Conversely, let us prove that ΨΦ ∼= id. Consider a quandle covering p̂ : Q̂→ Q with
fibre F = p̂−1(q) and monodromy action α : F × π1(Q,q)→ F . The universal property
of the covering p : (Q̃, q̃)→ (Q,q) ensures that there exists a unique covering morphism
φp̂ : F × Q̃→ Q̂ over Q such that φp̂(x, q̃) = x for all x ∈ F . More explicitly, this map
is given by (x,(q,g)) 7→ xg for all x ∈ F and g ∈ Adj(Q)′. By construction, this map is
surjective and equivariant with respect to the action of Adj(Q)′.

For g ∈ π1(Q,q) we find φp̂(xg, ã) = φp̂(x,h(g)ã) for all x ∈ F and ã ∈ Q̃. This means
that φp̂ descends to a covering morphism φ̄p̂ : Q̃α → Q̂. Conversely, if φ p̂(x, ã) = φ p̂(y, b̃),
then both maps φp̂(x,−) and φp̂(y,−) have as image the same component of Q̂, which
takes us back to the case of connected coverings. We thus see that (x, ã) and (y, b̃) get
identified in Q̃α , which proves that φ̄p̂ is a covering isomorphism. Naturality in p̂ is easily
verified. �

Theorem 6.7. Let Q be a connected quandle with base point q ∈ Q and let Λ be a group.
There exists a natural bijection Ext(Q,Λ) ∼= Hom(π1(Q,q),Λ). If Λ is an abelian group,
or more generally a module over some ring R, then both objects carry natural R-module
structures and the bijection is an R-module isomorphism.

Proof. Every extension E : Λ y Q̃
p−→ Q induces a group homomorphism h : π1(Q,q)→

Λ as in Proposition 5.9. Choosing a base point q̃ in the fibre F = p−1(q), we can identify
Λ with F via the bijection Λ

∼−→ F , λ 7→ λ q̃. The monodromy action of π1(Q,q) then
translates to right multiplication α : Λ×π1(Q,q)→ Λ with (λ ,g) 7→ λ ·h(g).

Conversely, every group homomorphism h defines a right action α : Λ×π1(Q,q)→ Λ

by (λ ,g) 7→ λ ·h(g). Via Theorem 6.6 the action α corresponds to a covering pα : Q̃α→→Q.
Multiplication on the left defines an action of Λ on Λ× Q̃, which descends to the quotient
Q̃α and defines an extension E : Λ y Q̃α

p−→ Q.
These constructions are easily seen to establish a natural bijection, as desired. �

7. NON-CONNECTED BASE QUANDLES

7.1. Graded quandles. So far we have concentrated on connected base quandles. In order
to develop a covering theory over non-connected quandles we have to treat all components
individually yet simultaneously. The convenient way to do this is to index the components
by some fixed set I, and then to deal with I-graded objects throughout. The following
example illustrates the notions that will appear:

Example 7.1. Consider a quandle Q and its decomposition Q =
⊔

i∈I Qi into connected
components. For every covering p : Q̃→ Q the quandle Q̃ is graded, with Q̃i = p−1(Qi),
and p is a graded map, with pi : Q̃i→ Qi given by restriction. Every deck transformation
φ : Q̃ ∼−→ Q̃ is a graded map with φi : Q̃i

∼−→ Q̃i. The deck transformation group G = Aut(p)
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is a graded group, with Gi acting by covering transformations on Q̃i, and this action turns
Q̃ into a graded G-set.

The following definitions make the notions of this example explicit. In the sequel we fix
an index set I. Whenever the context determines I without ambiguity, the term “graded”
will be understood to mean “I-graded”, that is, graded with respect to our fixed set I.

Definition 7.2 (graded quandles). A graded quandle is a quandle Q =
⊔

i∈I Qi partitioned
into subsets (Qi)i∈I such that Qi ∗Q j = Qi for all i, j ∈ I. This is equivalent to saying
that each Qi is a union of connected components. A grading is equivalent to a quandle
homomorphism gr : Q→ I from Q to the trivial quandle I with fibres Qi = gr−1(i).

A homomorphism φ : Q→Q′ of graded quandles is a quandle homomorphism such that
φ(Qi)⊂Q′i for all i∈ I, or equivalently gr = gr′ ◦φ . Obviously, I-graded quandles and their
homomorphisms form a category, denoted QndI .

Definition 7.3 (graded groups). A graded group is a group G = ∏i∈I Gi together with the
collection of groups (Gi)i∈I that constitute the composition of G as a product. A homomor-
phism of graded groups f : G→H is a product f =∏i∈I fi of homomorphisms fi : Gi→Hi.
Obviously, I-graded groups and their homomorphisms form a category, denoted GrpI . A
graded subgroup of G = ∏i∈I Gi is a product H = ∏i∈I Hi of subgroups Hi ⊂ Gi.

Definition 7.4 (graded G-sets). A graded set is a disjoint union X =
⊔

i∈I Xi together with
the partition (Xi)i∈I . A graded map φ : X → Y between graded sets is a map satisfying
φ(Xi)⊂ Yi for all i ∈ I. Graded sets and maps form a category, denoted SetsI .

A graded (right) action of a graded group G on a graded set X is a collection of (right)
actions αi : Xi×Gi → Xi, denoted by α(x,g) = xg. This defines an action of G on X via
the canonical projections G→→ Gi. A graded G-set is a pair (X ,α) consisting of a graded
set X and a graded action α of G on X . A morphism φ : (X ,α)→ (Y,β ) between graded
G-sets is a graded map φ : X→Y satisfying φ(xg) = φ(x)g for all x∈ X and g∈G. Graded
G-sets and their morphisms form a category, denoted by ActI(G).

Remark 7.5. If the index set I = {∗} consists of one single element, then all gradings
are trivial, and the categories of graded quandles, groups, and sets coincide with the usual
(non-graded) notions.

Remark 7.6. As Mac Lane [24, §VI.2] points out, it is often most convenient to consider
a graded object M as a collection of objects (Mi)i∈I ; this is usually called an external
grading. Depending on the context and the category in which we are working, this can be
reinterpreted as an internally graded object, say ∏i∈I Mi or

⊔
i∈I Mi or ⊕i∈IMi etc.

For graded sets we use
⊔

i∈I Xi, whereas for graded groups the appropriate structure
turns out to be ∏i∈I Gi. As we have already mentioned, for quandles the situation is special,
because the decomposition Q =

⊔
i∈I Qi is not simply a disjoint union of quandles Qi: in

general we have to encode a non-trivial action Qi×Q j→ Qi, (a,b) 7→ a∗b.

7.2. Graded extensions.

Definition 7.7. A graded quandle Q is connected (in the graded sense) if each set Qi is a
connected component of Q. Likewise, a graded covering p : Q̃→Q is said to be connected
if each set Q̃i = p−1(Qi) is a connected component of Q̃. The covering p is said to be
galois if, moreover, Aut(p) acts transitively on the ith fibre p−1(qi) for each i ∈ I.

Remark 7.8. Every galois covering p : Q̃→ Q comes with the natural action Λ y Q̃ of
the graded deck transformation group Λ = Aut(p) satisfying the following two axioms:
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(E1) (λ x̃)∗ ỹ = λ (x̃∗ ỹ) and x̃∗ (λ ỹ) = x̃∗ ỹ for all x̃, ỹ ∈ Q̃ and λ ∈ Λ.
(E2) Λi acts freely and transitively on each fibre p−1(x) with x ∈ Qi.

Axiom (E2) then says that Q̃i→ Qi is a principal Λi-covering, in the sense that each fibre
is a principal Λi-set. Notice, however, that we have to consider these actions individually
over each component Qi; the groups Λi act independently and may vary for different i ∈ I.

Definition 7.9. A graded extension E : Λ y Q̃
p−→ Q of a graded quandle Q by a graded

group Λ consists of a surjective quandle homomorphism p : Q̃→ Q and a graded group
action Λy Q̃ satisfying the axioms (E1) and (E2). They entail that p is a quandle covering,
and the action of Λ defines an injective homomorphism Λ→ Aut(p) of graded groups.

7.3. Universal coverings. As before we will have to choose base points in order to obtain
uniqueness properties. To this end we equip each component with its own base point.

Definition 7.10 (pointed quandles). A pointed quandle (Q,q) is a graded quandle Q =⊔
i∈I Qi with a base point qi ∈ Qi for each i ∈ I. In other words, if the partition is seen as a

quandle homomorphism gr : Q→ I, then the choice of base points is a section q : I→ Q,
gr◦q = idI . We call (Q,q) well-pointed if q specifies one base point in each component,
that is, the induced map π0 ◦q : I→ π0(Q) is a bijection between I and the set of connected
components of Q.

A homomorphism φ : (Q,q)→ (Q′,q′) between pointed quandles is a quandle homo-
morphism φ : Q→ Q′ such that φ ◦q = q′. Obviously, I-pointed quandles and their homo-
morphisms form a category, denoted Qnd∗I .

Lemma 7.11. Let (Q,q) be a well-pointed quandle with connected components (Qi,qi)i∈I .
Let Adj(Q)◦ be the kernel of the group homomorphism ε : Adj(Q)→Z with ε(adj(Q))= 1.
For each i ∈ I we define

Q̃i :=
{
(a,g) ∈ Qi×Adj(Q)◦ | a = qg

i

}
, q̃i := (qi,1).

The disjoint union Q̃ =
⊔

i∈I Q̃i becomes a graded quandle with the operations

(a,g)∗ (b,h) :=
(

a∗b, g · adj(a)−1 · adj(b)
)
,

(a,g)∗ (b,h) :=
(

a∗b, g · adj(a) · adj(b)−1 ).
The quandle Q̃ comes with a natural augmentation Q̃

ρ−→ Adj(Q)
α−→ Inn(Q̃), where

ρ(b,h) = adj(b) and α is defined by the action

Q̃i×Adj(Q)→ Q̃i with (a,g)h :=
(

ah, adj(qi)
−ε(h) ·gh

)
.

The subgroup Adj(Q)◦ acts freely and transitively on each Q̃i. As a consequence, the
connected components of Q̃ are the sets Q̃i, and so Q̃ is connected in the graded sense.

The canonical projection p : (Q̃, q̃)→ (Q,q) given by p(a,g) = a is a surjective quandle
homomorphism, and equivariant with respect to the action of Adj(Q). �

Theorem 7.12. Let (Q,q) be a well-pointed quandle and let (Q̃, q̃) be defined as above.
Then the projection p : (Q̃, q̃)→ (Q,q) is the universal quandle covering of (Q,q). �

The verification of this and the following results in the graded case are a straightforward
transcription of our previous arguments for the non-graded case of connected quandles, and
will be omitted.
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7.4. Fundamental group and Galois correspondence.

Definition 7.13. We call π1(Q,qi) = {g ∈ Adj(Q)◦ | qg
i = qi} the fundamental group of

the quandle Q based at qi ∈ Q. For a pointed graded quandle (Q,q) we define the graded
fundamental group to be the product π1(Q,q) := ∏i∈I π1(Q,qi).

Proposition 7.14. For the universal covering p : (Q̃, q̃)→ (Q,q) as above, we obtain a
canonical isomorphism φ : π1(Q,q) ∼−→Aut(p) of graded groups from the graded left action
π1(Q,qi)× Q̃i→ Q̃i defined by h · (a,g) = (a,hg). �

Proposition 7.15 (functoriality). Every homomorphism f : (Q,q)→ (Q′,q′) of pointed
quandles induces a homomorphism f∗ : π1(Q,q)→ π1(Q′,q′) of graded fundamental groups.
We thus obtain a functor π1 : Qnd∗I →GrpI from the category of I-pointed quandles to the
category of I-graded groups. �

Proposition 7.16 (lifting criterion). Let p : (Q̃, q̃)→ (Q,q) be a quandle covering and let
f : (X ,x)→ (Q,q) be a quandle homomorphism from a well-pointed quandle (X ,x) to the
base quandle (Q,q). Then there exists a lifting f̃ : (X ,x)→ (Q̃, q̃), p◦ f̃ = f , if and only if
f∗π1(X ,x)⊂ p∗π1(Q̃, q̃). In this case the lifting f̃ is unique. �

Theorem 7.17 (Galois correspondence for well-pointed coverings). Let (Q,q) be a well-
pointed quandle indexed by some set I. The canonical functors CovI(Q,q)→SubI(π1(Q,q))
and SubI(π1(Q,q))→CovI(Q,q) establish a natural equivalence between the category of
well-pointed coverings of (Q,q) and the category of graded subgroups of π1(Q,q). �

Theorem 7.18 (Galois correspondence for general coverings). Let (Q,q) be a well-pointed
quandle indexed by some set I. The canonical functors Cov(Q)→ ActI(π1(Q,q)) and
ActI(π1(Q,q))→ Cov(Q) establish a natural equivalence between the category of cover-
ings of (Q,q) and the category of graded actions of π1(Q,q). �

Theorem 7.19. Let (Q,q) be a well-pointed quandle indexed by some set I, and let Λ be
a graded group. There exists a natural bijection Ext(Q,Λ) ∼= Hom(π1(Q,q),Λ). If Λ is
a graded abelian group, or more generally a graded module over some ring R, then both
objects carry natural R-module structures and the natural bijection is a graded R-module
isomorphism. �

Example 7.20. The covering theory of non-connected quandles allows us to complete the
discussion of the quandle Qm,n = Zm tZn begun in Example 1.6. We set ` = gcd(m,n).
From Proposition 2.38 we deduce that

Adj(Qm,n)
◦ =

{( 1 −s t
0 1 +s
0 0 1

) ∣∣ s ∈ Z, t ∈ Z`

}
⊂ H/〈z`〉.

The shown matrix acts as a 7→ a+ s on a ∈ Zm, and as b 7→ b− s on b ∈ Zn, which entails
π1(Q,a) = mZ×Z` and π1(Q,b) = nZ×Z`. The universal covering p : Q̃→→ Qm,n can be
constructed as in Lemma 7.11. After some calculation this leads to Q` = AtB, where A
and B are copies of Z×Z` with `= gcd(m,n), and the quandle structure

(a,a′)∗ (b,b′) =

{
(a,a′+b−a) if (a,a′),(b,b′) ∈ A or if (a,a′),(b,b′) ∈ B,
(a+1,a′−b) otherwise.

The quandle Q` has two connected components, A and B, so it is connected in the
graded sense. The projection p : Q`→→Qm,n is defined by A→Zm, (a,a′) 7→ a mod m, and
B→ Zn, (b,b′) 7→ b mod n. This is the universal covering of Qm,n, and any other covering
that is connected in the graded sense is obtained by quotienting out some graded subgroup
of Aut(p)∼= π1(Q,a)×π1(Q,b).
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Notice that in the special case ` = 1 we obtain the obvious covering Q0,0 →→ Qm,n,
but even in this toy example the general case would be difficult to analyze without the
classification theorem.

7.5. Application to link quandles. Given an n-component link K = K1 t ·· · tKn ⊂ S3,
we choose a base point qi

K ∈ QK for each link component Ki. The adjoint group Adj(QK)
is isomorphic to the fundamental group πK = π1(S3 rK), and each element qi

K maps to a
meridian mi

K = adj(qi
K) ∈ πK . We denote by `i

K ∈ πK the corresponding longitude.
The universal covering p : Q̃K →→ QK can formally be constructed as in Lemma 7.11.

Its geometric interpretation has been studied in [9] in terms of quandle homology H2(QK)
and orientation classes [Ki] ∈ H2(QK). We are now in position to go one step further and
determine the fundamental group:

Theorem 7.21. Over each component Qi
K ⊂ QK the automorphism group of the universal

covering p : Q̃K →→ QK is given by Aut(p)i = π1(QK ,qi
K) = 〈`i

K〉. For the graded funda-
mental group this means that π1(QK ,qK) = Aut(p) = ∏

n
i=1〈`i

K〉.

Proof. Fixing a link component Ki, we can construct a long link L ⊂ R3 by opening Ki
while leaving all other components closed. This is the same as removing from the pair
(S3,K) a point on Ki so as to obtain the pair (R3,L). In particular, the correspondence
(S3,K)↔ (R3,L) is well-defined when we pass to isotopy classes. The associated quandle
QL has two distinguished elements qL and q∗L, corresponding to the beginning and the end
of the open component, respectively. The natural quandle homomorphism pi : QL→→QK is
the quotient obtained by identifying qL and q∗L, both being mapped to qi

K = pi(qL)= pi(q∗L).
While pi : QL→→QK is in general not an isomorphism between the quandles QL and QK ,

the induced map Adj(pi) : Adj(QL)→→ Adj(QK) is always an isomorphism between the
adjoint groups Adj(QL) = πL = π1(R3rL) and Adj(QK) = πK = π1(S3rK). In particular,
this implies that pi : (QL,qL)→→ (QK ,qK) is a quandle covering, and an isomorphism over
all components except Qi

K .
Let p̂i : (Q̂K , q̂i

K)→→ (QK ,qi
K) be the covering that is universal over Qi

K and an isomor-
phism over all other components. Then one can construct an isomorphism (QL,qL)

∼−→
(Q̂K , q̂i

K) of quandle coverings over (QK ,qi
K) as in [9, Theorem 30]. In particular, we

obtain a canonical group isomorphism Aut(pi)∼= π1(QK ,qi
k) as in Proposition 7.14.

The longitude `i
K satisfies (qi

K)
`i

K = qi
K , so `i

K ∈ π1(QK ,qi
k). Moreover, (qL)

`i
K = q∗L,

so the quotient of QL by the subgroup 〈`i
K〉 ⊂ Aut(pi) yields 〈`i

K〉\QL = QK . To see this,
notice that we have a canonical projection 〈`i

K〉\QL →→ QK as a quotient of the covering
QL→→ QK . Inversely, we have a canonical map QK →→ 〈`i

K〉\QL by the universal property
of the quotient QK = QL/(qL = q∗L). We conclude that Aut(p)i = Aut(pi) = 〈`i

K〉. �

A link component Ki ⊂ K is called trivial, if there exists an embedded disk D⊂ S3 with
Ki = K∩D = ∂D. Using the Loop Theorem of Papakyriakopoulos [31] we conclude:

Corollary 7.22. For a link K ⊂ S3 the following assertions are equivalent:

(1) The link component Ki ⊂ K is trivial.
(2) The fundamental group π1(QK ,qi

K) is trivial.
(3) The longitude `i

K ∈ πK is trivial.

Conversely, if the link component Ki is non-trivial, then the fundamental group π1(QK ,qi
K)

of the quandle QK based at qi
K is freely generated by the longitude `i

K .
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Proof. The implications (1)⇒ (2)⇔ (3) follow from π1(QK ,qi
K) = 〈`i

K〉, established in
the previous theorem, while (3)⇒ (1) is a consequence of the Loop Theorem [31]. If K is
non-trivial, then `i

K is of infinite order, and thus freely generates π1(QK ,qi
K). �

8. FUNDAMENTAL GROUPOID OF A QUANDLE

As in the case of topological spaces, the choice of a base point q ∈Q in the definition of
π1(Q,q) focuses on one connected component and neglects the others. If we do not want
to fix base points, then the fundamental groupoid is the appropriate tool. (See Spanier [33,
§1.7], Brown [4, chap. 9], and May [27, chap. 3]). We shall expound this idea in the present
section because it explains the striking similarity between quandles and topological spaces.

8.1. Groupoids. We recall that a groupoid is a small category in which each morphism is
an isomorphism. In geometric language one considers its objects as “points” a,b, . . . and
it morphisms a→ b as “paths” (or, more frequently, equivalence classes of paths).

Example 8.1. The classical example is the fundamental groupoid Π(X) of a topological
space X : this is the category whose objects are the points x ∈ X and whose morphisms
x→ y are the homotopy classes of paths from x to y. There exists a morphism x→ y if and
only if x and y belong to the same path-component. The group of automorphisms of an
object x is exactly the fundamental group π1(X ,x) of X based at x.

Example 8.2. Consider a set Q with a group action Q×G→ Q, denoted by (a,g) 7→ ag.
We can then define the groupoid

Π(Q,G) := { (a,g,b) ∈ Q×G×Q | ag = b }.

Here the objects are given by elements a∈Q, and the morphisms from a to b are the triples
(a,g,b) ∈ Π(Q,G). Their composition is defined by (a,g,b) ◦ (b,h,c) = (a,gh,c). There
exists a morphism a→ b if and only if a and b belong to the same G-orbit. The group of
automorphisms of an object a is exactly the stabilizer of a in G.

Definition 8.3. For a quandle Q we call Π(Q,Adj(Q)◦) the fundamental groupoid of Q.

Remark 8.4 (connected components). Already Joyce noticed some analogy between quan-
dles and topological spaces when he introduced the terminology “connected component”
of Q to signify an orbit with respect to the inner automorphism group Inn(Q). (This was
probably motivated by the example of symmetric spaces, where both notions of connect-
edness coincide, see Remark 3.15.) This turned out to be a very fortunate and intuitive
wording, and connectedness arguments have played a crucial rôle for all subsequent inves-
tigations of quandles. The connected components of the quandle Q are precisely those of
the groupoid Π(Q,Adj(Q)◦), see Remark 2.34.

Remark 8.5 (fundamental group). According to the previous remark one can partition a
quandle Q into the set π0(Q) of connected components, and with a little bit of naı̈veté
one could wonder what the fundamental group π1(Q,q) should be. In the above groupoid
we recover the fundamental group π1(Q,q) = {g ∈ Adj(Q)◦ | qg = q} based at q ∈ Q
as the group of automorphisms of the object q in the category Π(Q,Adj(Q)◦). For base
points q,q′ in the same component of Q, these groups are isomorphic by a conjugation in
Π(Q,Adj(Q)◦). As usual this isomorphism is not unique, unless π1(Q,q) is abelian.

Remark 8.6 (coverings). There exists an extensive literature on groupoids because they
generalize and simplify recurring arguments in seemingly different situations, notably in
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diverse Galois theories, just as in our setting of coverings and fundamental groups of quan-
dles. The universal covering quandle (Q̃, q̃) constructed in Lemmas 5.2 and 7.11 reappears
here as the set of paths based at q (with arbitrary endpoint). This is exactly the path fibra-
tion used to construct the universal covering of a topological space, or more generally of a
groupoid. We refer to the excellent introduction of May [27, chap. 3].

In conclusion, the “generic part” of quandle covering theory can be recast in the general
language of groupoid coverings. The initial problem, however, is to construct the appropri-
ate groupoid. Several groupoid structures are imaginable, and one cannot easily guess the
appropriate one: a priori one can choose many groups acting on Q, for example Adj(Q),
Aut(Q), Inn(Q), or Inn(Q)◦, but only the choice Adj(Q)◦ yields the groupoid that is dual
to quandle coverings. The difficulty is thus resolved by first analyzing coverings, which
seem to be the more natural notion.

It should also be noted that the unifying concept of groupoids does not cover the whole
theory of quandle coverings. Besides its “generic” aspects, the latter also has its distinctive
“non-standard” features. These have been pointed out in §1.6 and merit special attention.
This is why we have preferred to present all constructions in detail.

8.2. Combinatorial homotopy. For future reference, let us give another derivation how
the group Adj(Q)◦ and the associated groupoid Π(Q,Adj(Q)◦) appear naturally — as the
groupoid of combinatorial paths modulo combinatorial homotopy.

Definition 8.7. Let Q be a quandle. Consider the graph Γ with vertices q ∈ Q and edges
a b−→ c for each triple a,b,c ∈ Q with a∗b = c. A combinatorial path from q to q′ in Γ is
a sequence of vertices q = a0,a1, . . . ,an−1,an = q′ ∈ Q and arrows bε1

1 , . . . ,bεn
n with bi ∈ Q

and εi ∈ {±1} for all i, such that ai−1 ∗bi = ai for εi =+1 and ai−1 ∗bi = ai for εi =−1.
The sign εi is just a convenient way to denote the orientation of the ith arrow:

(a b+−→ a∗b) = (a b−→ a∗b) and (a b−−→ a∗b) = (a b←− a∗b).

Let P(Q) be the category having as objects the elements q ∈ Q and as morphisms from
q to q′ the set of combinatorial paths from q to q′. Composition is given by juxtaposition:

(a0→ ··· → am)◦ (am→ ··· → an) = (a0→ ··· → am→ ·· · → an).

Two combinatorial paths are homotopic if they can be transformed one into the other by
a sequence of the following local moves and their inverses:

(H1) a a−→ a is replaced by a, or a a←− a is replaced by a.
(H2) a b−→ a∗b b←− a is replaced by a, or a b←− a∗b b−→ a is replaced by a.
(H3) a b−→ a∗b c−→ (a∗b)∗ c is replaced by a c−→ a∗ c b∗c−→ (a∗ c)∗ (b∗ c).
We denote by Π(Q) the quotient category having as objects the elements q ∈ Q and as

morphisms from q to q′ the set of homotopy classes of combinatorial paths from q to q′.

a±1

a

b+1

b−1

c

b

c

b∗ c

FIGURE 2. Elementary homotopies for paths in P(Q)
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Proposition 8.8. The category Π(Q) is a groupoid, that is, every morphism is invertible.
Moreover, there exists a natural isomorphism Φ : Π(Q) ∼−→Π(Q,Adj(Q)◦), given by

[a0
b

ε1
1−→ ·· · bεn

n−→ an] 7→ (a0,g,an) with g = a−∑i εi
0 bε1

1 · · ·b
εn
n ∈ Adj(Q)◦

Proof. The homotopy relation (H2) above ensures that Π(Q) is a groupoid. It is straight-
forward to verify that the map Φ is well-defined: a homotopy (H1) does not change the
element g ∈ Adj(Q)◦ due to the normalization with a−∑i εi

0 . A homotopy (H2) translates to
b±b∓ = 1. A homotopy (H3) translates to one of the defining relations c · (b∗ c) = b · c of
the adjoint group Adj(Q). By construction, Φ sends composition in Π(Q) to composition
in Π(Q,Adj(Q)◦), so it is a functor. Obviously Φ is a bijection on objects q ∈ Q, and it is
easy to see that it is also a bijection on morphisms. �

8.3. Classifying spaces. As usual, combinatorial paths and combinatorial homotopy can
be realized by a suitable topological space K: it suffices to take the graph Γ as 1-skeleton
and to glue a 2-cell for each relation of type (H1) and (H3). (Relation (H2) is automatic,
since both a b+−→ a∗b and a b−←− a∗b are actually represented by the same edge.) This en-
sures that Π(Q) is the edge-path groupoid of the resulting 2-dimensional (cubical) complex
K; see Spanier [33, §3.6] for the simplicial case.

When we go back to the sources of quandle and rack cohomology, we thus rediscover
yet another approach to the fundamental group π1(Q,q) of a quandle Q, which is entirely
topological and has the merit to open up the way to a full-fledged homotopy theory: Fenn,
Rourke, and Sanderson [13] constructed a classifying space BX for a rack X , which allowed
them to define (co)homology and homotopy groups for each rack. Their construction can
be adapted to quandles Q, so that the resulting classifying space BQ is a topological model
for quandle (co)homology H∗(Q) = H∗(BQ) and H∗(Q) = H∗(BQ). Our construction of
K corresponds precisely to the 2-skeleton of BQ.

The homotopy groups πn(BQ) have not yet played a rôle in the study of quandles.
It turns out, however, that our algebraic fundamental group π1(Q,q) coincides with the
fundamental group of the classifying space, π1(BQ,q), at least in the case of a connected
quandle. Starting from the algebraic notion of quandle covering, we thus recover and
remotivate the topological construction of Fenn, Rourke, and Sanderson.

8.4. Theft or honest toil? In order to define the fundamental group of a quandle Q, one
could thus take its classifying space BQ and set π1(Q,q) := π1(BQ,q). Does this mean
that we could entirely replace the algebraic approach by its topological counterpart? Two
arguments suggest that this is not so:

• Even with an independent topological definition of π1(Q,q), one would still have
to prove that the algebraic covering theory of quandles behaves the way it does,
and in particular is governed by the fundamental group so defined, in order to
establish and exploit their relationship.

• Quandle coverings differ in some crucial details from topological coverings (§1.6),
which means that both theories cannot be equivalent in any superficial way. It is
thus justified and illuminating to develop the algebraic theory independently.

In conclusion it appears that algebraic coverings are interesting in their own right, and
that the algebraic and the topological viewpoint are complementary.

9. EXTENSIONS AND COHOMOLOGY

Our goal in this final section is to establish a correspondence between quandle exten-
sions E : Λy Q̃→Q and elements of the second cohomology group H2(Q,Λ). For abelian
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groups Λ this is classical for group extensions (see for example Mac Lane [24, §IV.4] or
Brown [3, §IV.3]) and has previously been translated to quandle extensions. This corre-
spondence has to be generalized in two directions in order to apply to our general setting:

• The usual formulation is most appealing for abelian groups Λ, and has been inde-
pendently developed in [6] and [9]. For general galois coverings and extension,
however, the coefficient group Λ can be non-abelian.

• For non-connected quandles the notion of extension must be refined in the graded
sense, because different components have to be treated individually. The cor-
responding cohomology theory H2(Q,Λ) deals with a graded quandle Q and a
graded group Λ, both indexed by some fixed set I.

For racks such a non-abelian cohomology theory has previously been proposed by
N. Andruskiewitsch and M. Graña [1, §4]. In view of knot invariants, this has been adapted
to a non-abelian quandle cohomology in [5]. We will complete this approach by establish-
ing a natural bijection between Ext(Q,Λ) and H2(Q,Λ) in the non-abelian graded setting,
which specializes to the previous formulation in the abelian non-graded case.

9.1. Non-abelian graded quandle cohomology. Let Q =
⊔

i∈I Qi be a graded quandle
and let Λ = ∏i∈I Λi be a graded group. We do not assume Λ to be abelian and will thus use
multiplicative notation.

Remark 9.1. The first cohomology H1(Q,Λ) consists of all graded maps g : Q→ Λ with
g(Qi) ⊂ Λi, such that g(a) = g(a ∗ b) for all a,b ∈ Q. These are the class functions, i.e.
functions that are constant on each connected component of Q. Notice that the grading
of Q =

⊔
i∈I Qi turns H1 into a graded group, H1(Q,Λ) = ∏i∈I H1(Q,Λ)i. If Q is graded

connected, i.e. each Qi is a connected component of Q, then H1(Q,Λ) = ∏i∈I Λi = Λ.

In order to define H2(Q,Λ) we proceed as follows.

Definition 9.2. The grading of the quandle Q =
⊔

i∈I Qi induces a grading of the product
Q×Q =

⊔
i∈I Qi×Q. A 2-cochain is a graded map f : Q×Q→ Λ with f (Qi×Q) ⊂ Λi,

such that f (a,a) = 1 for all a ∈ Q. We say that f is a 2-cocycle if

f (a,b) f (a∗b,c) = f (a,c) f (a∗ c,b∗ c) for all a,b,c ∈ Q.

We denote by Z2(Q,Λ) the set of 2-cocycles. We say that two cocycles f , f ′ ∈ Z2(Q,Λ)
are cohomologous if there exists a graded map g : Q→ Λ with g(Qi)⊂ Λi such that

f (a,b) = g(a)−1 f ′(a,b)g(a∗b) for all a,b ∈ Q.

This is an equivalence relation on Z2(Q,Λ), and we denote by H2(Q,Λ) the quotient set.
Its elements are cohomology classes [ f ] of 2-cocycles f ∈ Z2(Q,Λ).

Remark 9.3. Notice that the set C2 of 2-cochains decomposes as C2 = ∏i∈I C2
i where C2

i
consists of maps fi : Qi×Q→ Λi. Likewise, we obtain Z2 = ∏i∈I Z2

i and H2 = ∏i∈I H2
i .

In the case where Λ is an abelian group, or more generally a module over some ring R,
one can define in every degree n ∈ N an R-module Cn(Q,Λ) of quandle n-cochains with
values in Λ, together with R-linear maps δn : Cn → Cn+1 satisfying δnδn−1 = 0. Such a
cochain complex allows us, as usual, to define the submodule of n-cocycles Zn = ker(δn)
and its submodule of n-coboundaries Bn = im(δn−1), and finally the cohomology Hn =
Zn/Bn as their quotient module. This construction respects the I-grading, and so cochains
Cn = ∏i∈I Cn

i , cocycles Zn = ∏i∈I Zn
i , coboundaries Bn = ∏i∈I Bn

i , and finally cohomology
Hn = ∏i∈I Hn

i are I-graded modules.
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In the non-abelian case we content ourselves with H1 and H2. Notice that H1 can
be given a group structure by point-wise multiplication. For H2 pointwise multiplication
works if Λ is abelian, but it fails in the non-abelian case. This means that the quotient
H2(Q,Λ) is in general only a set. It has nonetheless a canonical base point, namely the
class [1] of the trivial 2-cocycle Q×Q→{1}, which plays the rôle of the neutral element.

Remark 9.4 (functoriality in Q). Every graded quandle homomorphism φ : Q′ → Q in-
duces a natural graded map φ ∗ : H2(Q,Λ)→ H2(Q′,Λ) mapping the trivial class to the
trivial class. More explicitly, φ ∗ sends [ f ] to [φ ∗ f ], where f ∈ Z2(Q,Λ) is mapped to
φ ∗ f ∈ Z2(Q,Λ) defined by (φ ∗ f )(a′,b′) = f (φ(a′),φ(b′).

Remark 9.5 (functoriality in Λ). Every graded group homomorphism h : Λ→ Λ′ induces
a natural graded map h∗ : H2(Q,Λ)→ H2(Q,Λ′) mapping the trivial class to the trivial
class. More explicitly, φ∗ sends [ f ] to [φ f ], defined by composing f : Q×Q→ Λ with the
group homomorphism φ : Λ→ Λ′.

9.2. Classification of extensions. It is a classical result of group cohomology that central
extensions of a group G with kernel Λ are classified by the second cohomology group
H2(G,Λ), see for example Brown [3, §IV.3], or Mac Lane [24, §IV.4]. We will now prove
that an analogous theorem holds for quandles and their non-abelian graded extensions.

Lemma 9.6. Let E : Λy Q̃→Q be a graded extension of a graded quandle Q by a graded
group Λ. Each set-theoretic section s : Q→ Q̃ defines a unique graded map f : Q×Q→Λ

such that s(a) ∗ s(b) = f (a,b) · s(a ∗ b). This map f is a quandle 2-cocycle; it measures
the failure of the section s to be a quandle homomorphism. Furthermore, if s′ : Q→ Q̃ is
another section, then the associated quandle 2-cocycle f ′ is homologous to f . In this way
each extension E determines a cohomology class Φ(E) := [ f ] ∈ H2(Q,Λ).

Proof. Since the action of Λi is free and transitive on each fibre p−1(a) with a ∈ Qi, the
above equation uniquely defines the map f . Idempotency of Q̃ implies f (a,a) = 0, and
self-distributivity implies the cocycle condition:[

s(a)∗ s(b)
]
∗ s(c) = f (a,b) f (a∗b,c) s

[
(a∗b)∗ c

]
and[

s(a)∗ s(c)
]
∗
[
s(b)∗ s(c)] = f (a,c) f (a∗ c,b∗ c) s

[
(a∗ c)∗ (b∗ c)

]
.

Since both terms are equal, we obtain f (a,b) f (a∗b,c) = f (a,c) f (a∗ c,b∗ c), as desired,
which means that f is a 2-cocycle. If s′ is another section, then there exists a graded map
g : Q→ Λ with s′(a) = g(a)s(a). The defining relation s′(a)∗ s′(b) = f ′(a,b)s′(a∗b) thus
becomes g(a)s(a) ∗ g(b)s(b) = f ′(a,b)g(a ∗ b)s(a ∗ b). Comparing this to s(a) ∗ s(b) =
f (a,b)s(a ∗ b) we find that f (a,b) = g(a)−1 f ′(a,b)g(a ∗ b), which means that f and f ′

are cohomologous. In other words, the cohomology class [ f ] is independent of the chosen
section s, and hence characteristic of the extension E. �

Conversely, we can associate with each quandle 2-cohomology class [ f ] ∈H2(Q,Λ) an
extension of Q by Λ:

Theorem 9.7. Let Q be a graded quandle and let Λ be a graded group. For each extension
E : Λ y Q̃→ Q let Φ(E) be the associated cohomology class in H2(Q,Λ). This map
induces a natural bijection Φ : Ext(Q,Λ) ∼= H2(Q,Λ). If Λ is an abelian group, or more
generally a module over some ring R, then Ext(Q,Λ) and H2(Q,Λ) carry each a natural
R-module structure, and Φ is an isomorphism of R-modules.
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Proof. We first note that Φ is well-defined on equivalence classes of extensions. If two
extensions E1 : Λ y Q1

p1−→ Q and E2 : Λ y Q2
p2−→ Q are equivalent via a quandle iso-

morphism φ : Q1→Q2, then every section s1 : Q→Q1 induces a section s2 = φ ◦s1 : Q→
Q2, and by Λ-equivariance the equation s1(a) ∗ s1(b) = f (a,b) · s1(a ∗ b) is translated to
s2(a)∗ s2(b) = f (a,b) · s2(a∗b), which means that Φ(E1) = [ f ] = Φ(E2), as desired.

To prove the theorem, we will construct an inverse map Ψ : H2(Q,Λ)→ Ext(Q,Λ) as
follows. Given a quandle 2-cocycle f : Q×Q→ Λ, we define the quandle Q̃ = Λ× f Q as
the set

⊔
i∈I Q̃i with Q̃i = Λi×Qi equipped with the binary operation

(u,a)∗ (v,b) =
(

u f (a,b), a∗b
)
.

Idempotency is guaranteed by f (a,a) = 1, the inverse operation is given by

(u,a)∗ (v,b) =
(

u f (a∗b,b)−1, a∗b
)
,

and self-distributivity follows from the cocycle condition:[
(u,a)∗ (v,b)

]
∗ (w,c) =

(
u f (a,b), a∗b

)
∗ (w,c)

=
(

u f (a,b) f (a∗b,c), (a∗b)∗ c
)

and[
(u,a)∗ (w,c)

]
∗
[
(v,b)∗ (w,c)] =

(
u f (a,c), a∗ c

)
∗
(

v f (b,c), b∗ c
)

=
(

u f (a,c) f (a∗ c,b∗ c), (a∗ c)∗ (b∗ c)
)
.

The graded left action of Λ on the quandle Q̃ = Λ× f Q is defined by λ · (u,a) = (λu,a)
for all (u,a) ∈ Q̃i and λ ∈ Λi. It is straightforward to verify that we thus obtain a graded
extension Λ y Λ× f Q

p−→ Q with projection p(u,a) = a.
Suppose that f , f ′ ∈ Z2(Q,Λ) are cohomologous, that is, there exists g : Q→ Λ such

that f ′(a,b) = g(a)−1 f (a,b)g(a∗b). Then the corresponding extensions are equivalent via
the isomorphism φ : Λ× f Q→ Λ× f ′ Q defined by φ(u,a) = (ug(a),a). Hence we have
constructed a well-defined map Ψ : H2(Q,Λ)→ Ext(Q,Λ).

To see that ΦΨ = id, let f ∈ Z2(Q,Λ) and consider the section s : Q→ Λ× f Q with
s(a) = (1,a). The corresponding 2-cocycle is f , hence ΦΨ = id.

It remains to show that ΨΦ = id. Given an extension E : Λ y Q̃→ Q, we choose
a section s : Q→ Q̃ and consider the corresponding 2-cocycle f ∈ Z2(Q,Λ). The map
φ : Λ× f Q→ Q̃ given by φ(u,a) = u · s(a) is then an equivalence of extensions, which
proves ΨΦ = id.

Naturality and the module structure are easily verified. �

9.3. The Hurewicz isomorphism. On the one hand, the Galois correspondence estab-
lishes a natural bijection between quandle extensions E : Λ y Q̃→ Q and group homo-
morphisms π1(Q,q)→ Λ, see Theorems 6.7 and 7.19. On the other hand, the preceding
cohomology arguments show that the second cohomology group H2(Q,Λ) classifies ex-
tensions, see Theorem 9.7. We thus arrive at the following conclusion:

Corollary 9.8. For every well-pointed quandle (Q,q) and every graded group Λ we have
natural graded bijections

H2(Q,Λ)∼= Ext(Q,Λ)∼= Hom(π1(Q,q),Λ).

If Λ is an abelian group, or more generally a module over some ring R, then these objects
carry natural R-module structures and the bijections are isomorphisms of R-modules. �
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Finally, we want to prove that H2(Q) ∼= π1(Q,q)ab. This is somewhat delicate if Q has
infinitely many components: then the graded group π1(Q,q) is an infinite product, whereas
H2(Q) is an infinite sum of abelian groups. The correct formulation is as follows:

Theorem 9.9 (Hurewicz isomorphism for quandles). Let (Q,q) be a well-pointed quan-
dle with components (Qi,qi)i∈I and graded fundamental group π1(Q,q) = ∏i∈I π1(Q,qi).
Then there exists a natural graded isomorphism H2(Q)∼=

⊕
i∈I π1(Q,qi)ab.

Proof. In §8.3 we have constructed a 2-complex K that realizes the fundamental groupoid
Π(Q,Adj(Q)◦) of a given quandle Q, and thus the fundamental group π1(Q,qi)∼= π1(K,qi)
based at some given point qi ∈ Q. Notice that the connected components of K correspond
to the connected components of Q.

We deduce an isomorphism H1(K)∼= H2(Q) as follows. The combinatorial chain group
C1(K) is the free abelian group with basis given by the edges of the graph Γ, which is the 1-
skeleton of K. On the chain level we can thus define f : C1(K)→C2(Q) by mapping each
edge (a b−→ a ∗ b) ∈ C1(K) to the 2-chain (a,b) ∈ C2(Q). (For the definition of quandle
homology, see [7] or [9]). It is readily verified that this maps 1-cycles to 2-cycles and
induces the desired isomorphism H1(K)∼= H2(Q) on homology. We conclude that

H2(Q)∼= H1(K)∼=⊕i∈Iπ1(K,qi)ab ∼=⊕i∈Iπ1(Q,qi)ab

by appealing to the classical Hurewicz Theorem, see Spanier [33, Theorem 7.5.5]. �

9.4. Application to link quandles. Having the Hurewicz isomorphism at hand, we can
apply it to complete our study of links K ⊂ S3 and their quandles QK . In particular we
obtain an explicit correspondence between the longitude `i

K ∈ π1(QK ,qi
K), as explained in

§7.5, and the orientation class [Ki] ∈ H2(QK), as explained in [9, §6.2].

Corollary 9.10. For every choice of base points qi
K ∈ Qi

K , the natural Hurewicz homo-
morphism h : π1(QK ,qK)→ H2(QK) is an isomorphism of graded groups, mapping each
longitude `i

K ∈ π1(QK ,qi
K) to the orientation class [Ki] ∈ H2(QK).

Proof. We know from Theorem 7.21 that π1(QK ,qK) = ∏
n
i=1〈`i

K〉 is abelian, and so h is
an isomorphism. The longitude `i

K can be read from a link diagram, as explained in [9,
Theorem 13], as a word in the generators of πK = Adj(QK), which corresponds to a path
in the complex associated to the link quandle QK . Likewise, the homology class [Ki] ∈
H2(QK) can be read from the link diagram, as explained in [9, §6.2], which corresponds to
a 1-cocycle in the same complex. The construction of the group homomorphism h in the
proof of Theorem 9.9 shows that h(`i

K) = [Ki]. �

Consider two oriented links K = K1 t ·· · tKn and K′ = K′1 t ·· · tK′n in S3, and their
respective link quandles QK and QK′ . We have a natural bijection π0(K) ∼−→ π0(QK). Every
quandle isomorphism φ : QK

∼−→ QK′ induces a bijection τ : π0(QK)
∼−→ π0(QK′) as well as

a graded isomorphism φ∗ : H2(QK)
∼−→ H2(QK′). We also know that for each i the group

H2(QK)i = 〈[Ki]〉 is either trivial or freely generated by [Ki], and the same holds for its
isomorphic image H2(QK)τi = 〈[K′τi]〉. This means that φ∗[Ki] =±[K′τi] for all i.

Theorem 9.11. Two oriented links K = K1 t ·· · tKn and K′ = K′1 t ·· · tK′n in S3 are
ambient isotopic respecting orientations and numbering of components if and only if there
exists a quandle isomorphism φ : QK

∼−→ QK′ such that φ∗[Ki] = [K′i ] for all i = 1, . . . ,n.

Proof. Obviously, if K and K′ are ambient isotopic, then the quandles QK and QK′ are
isomorphic. Conversely, consider an isomorphism φ : QK

∼−→ QK′ such that φ∗[Ki] = [K′i ]
for all i = 1, . . . ,n. According to the characterization of trivial components in Corollary
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7.22, we can assume that all components of K and K′ are non-trivial. We number the
components Q1

K , . . . ,Q
n
K of QK such that [Ki] ∈ H2(QK) is supported by Qi

K . We choose
a base point qi

K ∈ Qi
K for each i = 1, . . . ,n. In the adjoint group Adj(QK) this determines

group elements mi
K = adj(qi

K). For each i there are two generators (`i
K)
± ∈ π1(QK ,qi

K) of
the fundamental group, and we choose `i

K corresponding to the given class [Ki] ∈ H2(QK)
under the Hurewicz isomorphism. In this way we recover the link group πK = Adj(QK)
together with the peripheral data (mi

K , `
i
K) for each link component Ki. The quandle iso-

morphism φ : QK
∼−→ QK′ thus induces a group isomorphism ψ : πK

∼−→ πK′ respecting the
peripheral data. According to Waldhausen’s result [36, Corollary 6.5], there exists an ori-
entation preserving homeomorphism f : (S3,K) ∼−→ (S3,K′) such that f∗ = ψ; for details
see [18, Theorem 6.1.7]. Moreover, f can be realized by an ambient isotopy. �
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