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A GEOMETRIC CHARACTERIZATION
OF VASSILIEV INVARIANTS

MICHAEL EISERMANN

Abstract. It is a well-known paradigm to consider Vassiliev invariants as

polynomials on the set of knots. We prove the following characterization: a

rational knot invariant is a Vassiliev invariant of degree ≤ m if and only if it
is a polynomial of degree ≤ m on every geometric sequence of knots. Here a

sequence Kz with z ∈ Z is called geometric if the knots Kz coincide outside a
ball B, inside of which they satisfy Kz ∩B = τz for all z and some pure braid
τ . As an application we show that the torsion in the braid group over the

sphere induces torsion at the level of Vassiliev invariants: there exist knots in
S1 × S2 that can be distinguished by Z/2-invariants of finite type but not by
rational invariants of finite type. In order to obtain such torsion invariants we
construct over Z a universal Vassiliev invariant of degree 1 for knots in S1×S2.

Introduction and statement of results

A Vassiliev invariant is a map v : K → A from the set of knots K to an
abelian group A such that v satisfies a certain finiteness condition (see §1). Vassiliev
invariants are commonly interpreted as polynomials on the set of knots [2, 3, 21].
One instance of this analogy is the following criterion:

Theorem (J.Dean [6], R.Trapp [20]). A Vassiliev invariant v : K → Q of degree
≤ m is a polynomial of degree ≤ m on every twist sequence of knots.

A twist sequence is a family of knots Kz (indexed by z ∈ Z) that are the same
outside a ball, inside of which they differ as depicted in Figure 1. Using this cri-
terion, J.Dean and R. Trapp showed that the class of Vassiliev invariants does not
contain certain classical knot invariants such as crossing number, genus, signature,
unknotting number, bridge number or braid index.
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Figure 1. Local picture of a twist sequence of knots
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This article addresses the question of how to characterize Vassiliev invariants by
means of such geometric conditions. To begin with, twist sequences alone do not
suffice, as shown in §5 by means of a counterexample.

Geometric characterization. Let M be a 3-manifold, and let K M be its set
of knots considered up to isotopy. A geometric sequence of knots is a sequence Kz

indexed by z ∈ Z such that the knots Kz coincide outside a ball B ⊂M , inside of
which they satisfy Kz ∩ B = τz for all z and some pure braid τ . Such sequences
were introduced by T. Stanford [19] under the name tangle maps.

We establish the following characterization of rational Vassiliev invariants.

Theorem 1 (proved in §4). A map v : K M → Q is a Vassiliev invariant of degree
≤ m if and only if it is a polynomial of degree ≤ m on every geometric sequence.

A twist sequence is a special case of a geometric sequence where τ is a full twist
of only two strands, as shown in Figure 1. We explain in §5 that twist sequences
alone do not suffice to characterize Vassiliev invariants. For knots in the 3-sphere,
however, we are led to the following characterization.

Theorem 2 (proved in §6). A map v : K S3 → Q is a Vassiliev invariant of degree
≤ m if and only if v is a polynomial on every twist sequence of knots and globally
bounded by a polynomial of degree m in the crossing number.

For a knot invariant with values in a torsion group the characterization is less
simple: the geometric sequence condition of Theorem 1 is necessary but perhaps
not sufficient, and the boundedness condition of Theorem 2 cannot even be for-
mulated. In this case a characterization can still be established using geometric
lattices instead of sequences (see §3, Theorem 28).

The geometric characterization extends verbatim to Vassiliev invariants of links,
tangles or embedded graphs. Generally speaking, these results give further evidence
to the paradigm that Vassiliev invariants are polynomials.

Torsion invariants. Section 9 uses Dirac’s spin trick to construct an involution θ
on the set of knots in a reducible 3-manifold. Using geometric sequences, it is easy
to see that rational Vassiliev invariants cannot distinguish a knot K from its twin
knot θK. For the manifold S1 × S2 we prove:

Theorem 3 (proved in §§9–10). For every knot K in S1 × S2 having homology
class [K] ∈ {±3,±5,±7, . . . } the following assertions hold:

(1) The knot K and its twin θK are distinguished by a suitable Vassiliev in-
variant K (S1 × S2)→ Z/2 of degree 1.

(2) The knot K and its twin θK cannot be distinguished by any Vassiliev in-
variant K (S1 × S2)→ A if the abelian group A has no 2-torsion.

In particular, rational invariants of finite type do not distinguish all knots in S1×S2.

Since this is the first occurrence of torsion in the Vassiliev theory of knots, we
analyze this example in more detail. In Section 10 we carry out a combinatorial
integration in order to construct a Z-universal Vassiliev invariant of degree 1:

Theorem 4 (proved in §10). Let M = S1 × S2, and let A1M be the Z-module of
chord diagrams modulo the obvious 1T and Kirby relations (as explained in §10.2).
Then there exists a universal Vassiliev invariant ZM1 : K M → A1M of degree 1.
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The Z-module A1M splits into a free part and a non-trivial torsion part, which
turns out to be a vector space over Z/2 as explained in Proposition 60. The preced-
ing theorem thus allows us to integrate the torsion invariants needed for Theorem 3.

To put this result in perspective, we remark that J. Lieberum [16] has constructed
a Kontsevich isomorphism for knots in S1 × S2. Since the Kontsevich integral and
its generalizations only work in characteristic zero, one generally loses the torsion
part. Theorem 3 tells us that the 2-torsion contains essential information about
knots in S1 × S2. It is still an open question whether this can occur for knots in
the 3-sphere.

How this paper is organized. Section 1 recapitulates the combinatorial defini-
tion of Vassiliev invariants, while Section 2 briefly recalls the definition of discrete
polynomial functions. They are combined in Section 3 to characterize Vassiliev
invariants via geometric lattices. Section 4 reduces this characterization to geo-
metric sequences. As an extended example, Section 5 discusses the determinant of
knots and shows that twist sequences alone do not suffice to characterize Vassiliev
invariants, while Section 6 explains that the crucial condition is polynomial growth.

The second part of this paper deals with torsion. Section 7 examines the poly-
nomial criterion for Vassiliev invariants with values in a torsion group. Section 8
shows that the torsion in the braid group over the sphere induces torsion at the level
of Vassiliev invariants. This is applied to knots in S1 × S2 in Section 9. The final
Section 10 analyzes the torsion at the level of chord diagrams of knots in S1 × S2

and constructs over Z a universal Vassiliev invariant of degree 1.

1. Vassiliev invariants

We first recall the axiomatic definition of Vassiliev invariants via singular knots,
as it was formulated by J.S. Birman and X.-S. Lin [5]. We will also make use of the
dual definition via the Vassiliev filtration of knots.

1.1. Vassiliev invariants. Let M be a 3-manifold. A knot is a smooth embedding
S1 ↪→M , regarded up to isotopy. Each knot is oriented by the standard orientation
of S1. A singular knot is an immersion S1 # M such that each multiple point is a
double point according to the local model .

Let K be the set of knots in M and Kn the set of singular knots with n double
points. Assuming that M is oriented, every knot invariant v : K → A with values
in an abelian group A can be uniquely extended to a family of maps v(n) : Kn → A
by the so-called Vassiliev skein relation

v(n)( ) = v(n−1)( )− v(n−1)( )

with the initial condition v(0) = v. This recursive formula is to be interpreted as a
local resolution of the depicted singularity, and the orientation of M determines the
sign of the resolved knots and . Evidently the definition of v(n) is independent
of the order in which the singularities are resolved.

Definition 5. A knot invariant v : K → A is a Vassiliev invariant of degree ≤ m
if v(m+1) vanishes. In this case v is also called an invariant of type ≤ m or simply
an invariant of finite type.

The map v(n) can be regarded as the n-th derivative of v (see Remark 27). The
vanishing of v(m+1) then means that v is a polynomial of degree ≤ m. The aim of
Sections 2 and 3 is to turn this analogy into a characterization.
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Remark 6. Many important knot invariants are of finite type, most notably the
coefficients of the Jones polynomial [5] (after a suitable change of variable) and its
generalizations, the so-called quantum invariants of knots [2].

1.2. The Vassiliev filtration. There is a dual version of Definition 5, which will
be useful in the sequel. Let ZK be the free Z-module with basis K , and let
∂n : ZKn → ZK be the map that is given by resolution of singularities following
the pattern 7→ − . This means that each n-singular knot is mapped to an
alternating sum of 2n non-singular knots.

Remark 7. Every knot invariant v : K → A extends to a linear map ZK → A,
which we also denote by v. By definition of ∂n we have v(n) = v ◦ ∂n. This means
that v is of degree ≤ m if and only if it vanishes on im(∂m+1).

Definition 8. We set Fn = im(∂n : ZKn → ZK ). The sequence of submodules
ZK = F0 ⊃ F1 ⊃ F2 ⊃ · · · is called the Vassiliev filtration.

Remark 9 (Orientability). The Vassiliev filtration does not require that M is
orientable: a local orientation around each singularity suffices to define ∂n, and
the choice of orientations affects only the sign. The module im(∂n) is thus well-
defined. This allows us to extend the notion of Vassiliev invariants to knots in a
non-orientable manifold.

Remark 10 (Knotted objects). The notion of Vassiliev filtration is based on the
idea of resolving singularities, i.e. self-intersections of a 1-dimensional object in a
3-dimensional ambient space. The definition immediately extends to braids, links,
tangles, embedded graphs, and other classes of knotted objects.

2. Discrete polynomial functions

In order to fix our notation, let us briefly recall the definition of discrete poly-
nomial functions f : Zd → A with values in an abelian group A. The discrete
derivative ∂if : Zd → A is defined by (∂if)(z) = f(z+ei) − f(z), where ei is the
i-th vector in the standard basis of Zd. Obviously ∂i∂jf = ∂j∂if . For a multi-index
α ∈ Nd we define ∂α := ∂α1

1 · · · ∂
αd

d . The sum |α| = α1 + · · ·+αd is called the degree
of the multi-index α.

Definition 11. A map f : Zd → A is a polynomial of degree ≤ m if the discrete
derivative ∂αf vanishes for every multi-index α of degree > m.

Example 12. For α ∈ N let bα : Z→ Z be the binomial coefficient function

bα(z) =
(
z

α

)
:=

z(z − 1) · · · (z − α+ 1)
α(α− 1) · · · 1

.

This includes the special case
(
z
0

)
= 1 and is extended to α < 0 by setting

(
z
α

)
= 0.

More generally, for α ∈ Nd, let bα : Zd → Z be given by bα(z) =
(
z
α

)
:=

(
z1
α1

)
· · ·

(
zd

αd

)
.

We have ∂βbα = bα−β ; hence bα is a polynomial function of degree |α|.

Proposition 13. A map f : Zd → A is a polynomial of degree ≤ m if and only if
it can be written as f(z) =

∑
|α|≤m cαb

α(z) with coefficients cα ∈ A. In this case
the coefficients are uniquely determined by the formula cα = (∂αf)(0). �
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Remark 14. If A is a vector space over Q, then every polynomial f : Zd → A can
be rewritten as f(z) =

∑
c′αz

α with coefficients c′α ∈ A. In characteristic zero we
thus recover the usual definition: a map f : Zd → Q is a polynomial of degree ≤ m
if and only if it is the restriction of a polynomial f̃ : Qd → Q of degree ≤ m.

3. Characterization of Vassiliev invariants via geometric lattices

This section discusses geometric lattices of braids and knots, and Theorem 28
characterizes Vassiliev invariants as polynomials on geometric lattices.

3.1. Geometric lattices of braids. Let Bn be the group of braids on n strands. It
is generated by the elementary braids σ1, σ2, . . . , σn−1, where σi performs a positive
half twist interchanging strands i and i + 1. The permutation of strands defines
an epimorphism π : Bn →→ Σn onto the symmetric group on n points. The kernel
Pn = ker(π) is the group of pure braids.

Definition 15. For a pure braid τ we call τz with z ∈ Z a geometric sequence of
braids. More generally, let β0, β1, . . . , βd ∈ Bn be braids and let τ1, . . . , τd ∈ Pn be
pure braids. We call the map Φ : Zd → Bn given by Φ(z) = β0τ

z1
1 β1 · · · τ

zd

d βd a
d-dimensional geometric lattice of braids.

Lemma 16 (Polynomial criterion). Let v : Bn → A be a Vassiliev invariant of
degree ≤ m. Then for every geometric lattice Φ : Zd → Bn, the composition
v ◦ Φ : Zd → A is a polynomial of degree ≤ m.

Proof. One can define singular braids and Vassiliev invariants of braids as in §1.1.
The dual point of view of §1.2, however, seems to be more natural in this setting:
Let I be the kernel of the epimorphism ZBn →→ ZΣn. The ideal I is generated by
the differences σ+

i − σ
−
i , and the I-adic filtration ZBn ⊃ I ⊃ I2 ⊃ · · · is exactly

the Vassiliev filtration of braids. By hypothesis, v vanishes on Im+1.
Let Φ(z) = β0τ

z1
1 β1 · · · τ

zd

d βd be a geometric lattice of braids, which we view as
a map Φ : Zd → ZBn. To this map we can apply the difference operators ∂1, . . . , ∂d
as explained in the previous section. For α ∈ Nd we get

∂αΦ(z) = β0τ
z1
1 (τ1 − 1)α1β1 · · · τ

zd

d (τd − 1)αdβd,

which is an element of I |α|. Composing this with our invariant v, we see that
∂α(v ◦ Φ) = 0 for every multi-index α ∈ Nd of degree > m. We conclude that
v ◦ Φ : Zd → A is a polynomial of degree ≤ m. �

Remark 17 (Polynomial characterization). It is easy to see that the converse of
Lemma 16 also holds. This means that Vassiliev invariants are characterized by
their behaviour on geometric lattices. We will prove this statement for knots in
Theorem 28 below.

Remark 18 (Tangles). Instead of pure braids one can equally well work with
geometric sequences of pure tangles [19]. In this setting the braid groups Bn and
their Vassiliev filtration ZBn ⊃ I ⊃ I2 ⊃ · · · are replaced with the tangle category
T and its Vassiliev filtration ZT ⊃ J ⊃ J2 ⊃ · · · , where J = ( − ) is the ideal
generated by crossing changes.
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3.2. Geometric lattices of knots. In the sequel we consider a 3-manifold M and
the set K = K M of knots in M .

Definition 19. A map K : Zd → K is called a geometric lattice if the knots K(z)
coincide outside a ball B ⊂ M , inside of which the tangles Φ(z) = K(z) ∩ B form
a geometric lattice of braids. (Here and in the sequel we tacitly assume that each
knot K(z) intersects ∂B transversely.)

Example 20 (Closed braids). For a braid β ∈ Bn let clos(β) be its closure, i.e.
the link in S3 obtained by identifying corresponding endpoints of the braid β.
Every geometric lattice of braids Φ : Zd → Bn defines a geometric lattice of links
K(z) = clos(Φ(z)). If some K(z) is a knot, then so are all members of the lattice.

Remark 21 (Inverse problem). Given an arbitrary family of knots, it may be quite
hard to decide whether or not they can be arranged to form a geometric lattice.
We will not address this “inverse problem”, but explicitly construct all geometric
lattices needed in the course of this paper.

We introduce geometric lattices Zd → K of arbitrary dimension d mainly for
technical reasons. We will mostly be interested in geometric sequences of knots, i.e.
in the case d = 1. A typical example is the well-known family of torus knots:

Example 22 (Torus knots). For coprime integers p, q with p ≥ 1, the torus knot
T (p, q) is the closure of the braid (σ1σ2 · · ·σp−1)q ∈ Bp. The map K : Z → K S3

with K(z) = T (p, q + zp) is a geometric sequence of torus knots.

3.3. Rearranging a geometric lattice. There are alternative ways to define a
geometric lattice of knots. We will briefly explain that they are equivalent.

Proposition 23. A map K : Zd → K is a geometric lattice if and only if there
exist disjoint balls B1, . . . , Bd and pure braids τ1, . . . , τd such that the knots K(z)
coincide outside B1 ∪ · · · ∪Bd, and for each i the tangle K(z) ∩Bi is given by τzi

i .

Proof. If K : Zd → K is a geometric lattice, then it obviously has the property
stated in the proposition. This means that K can be presented as in Figure 2 below.

Conversely, assume that K : Zd → K can be presented as in Figure 2. By
an isotopy of M we can place B1, . . . , Bd side by side in a slightly bigger ball B
containing B1 ∪ · · · ∪ Bd. In this situation we can define pure braids τ̃1, . . . , τ̃d in
the obvious way to obtain K(z) ∩B = τ̃z11 · · · τ̃

zd

d , as desired. �

2 d1 B

τ z

B

τ zd
2 d

B

τ z1
1

2

Figure 2. Alternative view of a geometric lattice K(z1, z2, . . . , zd)
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Corollary 24 (Commuting braids). A map K : Zd → K is a geometric lattice if
and only if there exist a ball B and commuting pure braids τ̃1, . . . , τ̃d such that the
knots K(z) coincide outside B and the tangle K(z) ∩B is given by τ̃z11 · · · τ̃

zd

d . �

Corollary 25 (Change of variables). If K : Zd → K is a geometric lattice and
ϕ : Ze → Zd is an affine map, then K ◦ϕ : Ze → K is also a geometric lattice. �

Please note that these arguments result from uniformly rearranging the family
of knots K(z) in M . This works fine for knots but not for braids; the assertions of
Corollaries 24 and 25 would be false for braids.

3.4. Twist lattices. As a special case of geometric lattice we have the following:
A twist lattice K : Zd → K is a family of knots as depicted in Figure 2, such that
each pure braid τi is a full twist of only two strands. In the one-dimensional case
d = 1 we obtain a twist sequence, as explained in the introduction (see Figure 1).

Example 26 (Pretzel knots). For odd integers t1, . . . , td ∈ Z let P(t1, . . . , td) be
the pretzel link as depicted in Figure 3. If d is odd, then this defines a twist lattice of
knots, more precisely, K : Zd → K given by K(z1, . . . , zd) = P(2z1−1, . . . , 2zd−1)
is a twist lattice of pretzel knots.

2 dt tt1

Figure 3. The pretzel link P(t1, t2, . . . , td)

Remark 27 (Twist lattice associated with a singular knot). Every knot K• with
n singularities defines a twist lattice K : Zn → K by replacing each of its singular
points i = 1, . . . , n by a twist sequence σ2zi−1. If we consider this as a map
K : Zn → ZK , then the derivative ∂1 · · · ∂nK(0) is the same as the resolution
∂nK• introduced in §1.2. Thus, given a knot invariant v : K → A, the composition
v ◦ K : Zn → A has derivative ∂1 · · · ∂n(v ◦ K)(0) = v(n)(K•). This explains the
interpretation of v(n) as an n-th derivative of the invariant v.

3.5. Characterization of Vassiliev invariants. The notion of geometric lattice
being in place, it is an easy matter to prove that Vassiliev invariants are character-
ized by their behaviour on geometric lattices. The point is to give a precise meaning
to the phrase “Vassiliev invariants are polynomials on the set of knots”.

Theorem 28. Let M be a 3-manifold and let v : K M → A be a knot invariant
with values in an abelian group A. The following conditions are equivalent:

(1) v is a Vassiliev invariant of degree ≤ m.
(2) v is a polynomial of degree ≤ m of every geometric lattice of knots.
(3) v is a polynomial of degree ≤ m of every twist lattice of knots.
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Proof. Implication (1 ⇒ 2) follows from the proof of Lemma 16. More explicitly,
let K : Zd → K be a geometric lattice of knots. For every multi-index α ∈ Nd
of degree |α| = n the discrete derivative ∂αK : Zd → ZK takes values in Fn. If
v : K → A is a Vassiliev invariant of degree ≤ m, then ∂α(v ◦ K) vanishes for
|α| > m, and hence v ◦K is a polynomial of degree ≤ m, as claimed.

Implication (2 ⇒ 3) is a specialization. To prove (3 ⇒ 1), let v : K → A
be a knot invariant satisfying condition (3) and let K• be an n-singular knot.
We have to show that v(K•) = 0 whenever n > m. The n-singular knot K•
defines a twist lattice K : Zn → K as explained in the preceding remark. By
hypothesis, the composition v ◦K : Zn → A is a polynomial of degree ≤ m. Thus
v(K•) = ∂1 · · · ∂n(v ◦K)(0) = 0 whenever n > m. �

4. Characterization of Vassiliev invariants via geometric sequences

Since sequences are a special case of lattices, we know that a Vassiliev invariant
v : K → Q is a polynomial on every geometric sequence of knots. Quite surprisingly
the converse is also true: rational Vassiliev invariants are characterized by their
behaviour on geometric sequences alone. In order to prove this characterization,
we first need a little lemma about polynomials.

4.1. Polynomial functions into torsion-free groups. The polynomial condi-
tion for f : Zd → A uses all directions ∂i in all possible combinations. In the torsion
free case, however, it suffices to require the polynomial condition on straight lines,
i.e. for every map g : Z → Zd with g(x) = a + xb and constants a, b ∈ Zd. This
reduces the d-dimensional condition to a one-dimensional condition:

Lemma 29 (Straight lines). Let A be an abelian group without torsion. A map
f : Zd → A is a polynomial of degree ≤ m if and only if it is a polynomial of degree
≤ m on every straight line g : Z→ Zd.

Proof. Since A → A ⊗ Q is injective, we can assume that A is a vector space
over Q. Every polynomial f : Zd → A of degree ≤ m can then be written as
f(z) =

∑
|α|≤m cαz

α with constants cα ∈ A, see Remark 14. Note that such a
presentation is in general not available if A has torsion.

To prove “⇒”, assume that g : Z→ Zd is a straight line. Then f ◦ g : Z→ A is
given by f(g(x)) =

∑
0≤k≤m c

′
kx

k, which is a polynomial of degree ≤ m.
To prove “⇐”, assume that f is a polynomial of degree ≤ m on every straight

line in Zd. In particular, this is true for g(x) = a + xei, which shows that ∂m+1
i f

vanishes for every i. Therefore f is a polynomial of degree ≤ dm. It remains to be
shown that the degree is at most m.

Let n be the degree of f and f(z) =
∑

|α|≤n cαz
α. Let fi(z) =

∑
|α|=i cαz

α be
the homogeneous part of degree i. We choose a point b ∈ Zd such that fn(b) 6= 0.
On the straight line g(x) = xb the polynomial f restricts to f(xb) =

∑n
i=0 x

ifi(b),
which is a polynomial of degree n. Using the hypothesis, we conclude n ≤ m. �

4.2. Characterization of Vassiliev invariants. We are now in position to prove
the following one-dimensional characterization:

Theorem 30. Let A be an abelian group without torsion. Then v : K → A is a
Vassiliev invariant of degree ≤ m if and only if v is a polynomial of degree ≤ m on
every geometric sequence of knots.
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Proof. The implication “⇒” is a special case of Theorem 28. To prove “⇐”, suppose
that Φ : Zd → K is a geometric lattice of knots. Then every ϕ : Z → K
with ϕ(x) = Φ(a + xb) is a geometric sequence by Corollary 25. By hypothesis,
v ◦ ϕ : Z → A is a polynomial of degree ≤ m. Since A is torsion-free, Lemma 29
ensures that v ◦ Φ : Zd → A is a polynomial of degree ≤ m. By Theorem 28 we
conclude that v is a Vassiliev invariant of degree ≤ m. �

Question 31. Is this characterization valid for every abelian group?

If A is a finite abelian group, then Lemma 29 and the argument of the previous
proof are no longer valid (see Example 45 below). I could find neither an alternative
proof nor a counterexample in the torsion case.

5. The determinant of knots

Twist sequences are a special case of geometric sequences. The latter charac-
terize Vassiliev invariants, but the former do not. As an example we analyze the
determinant of knots: its square is “almost” a Vassiliev invariant in the sense that
it is a polynomial on every twist lattice, yet it is not of finite type.

5.1. The determinant on twist sequences. Given a knot K in S3, one can
construct a Seifert surface spanning it and derive the associated Seifert matrix V
(see for example [15], Chapter 6). The symmetrized matrix V + V † defines the
quadratic form of the knot, up to a certain equivalence relation. Its determinant is
a classical knot invariant and appears in various guises: for example, the absolute
value |det(V + V †)| is the order of the first homology group H1(M), where M is
the two-fold cover of S3 branched along K.

Up to a sign the determinant coincides with the Alexander polynomial

∆(K) = det(t−
1
2V − t 1

2V †)

evaluated at t = −1. For our purposes it will be most convenient to use the skein
theoretic approach via the Conway polynomial (see [15], Chapter 8): the map
∇ : L → Z[z] is the unique link invariant that takes the value ∇(©) = 1 on the
unknot and satisfies the skein relation

∇( )−∇( ) = z∇( ).

The Alexander polynomial ∆(L) is obtained from ∇(L) by substituting z =
t

1
2−t− 1

2 . We thus define the (signed) determinant det : L → Z[2i] by det(L) =
∇(L)|z=2i. It satisfies the skein relation

det( )− det( ) = 2idet( ),

which shows, by the way, that the determinant coincides with the value of the
Jones polynomial at t = −1. This particular value has the remarkable property
that, up to a sign, it is linear on every twist sequence:

Proposition 32. The squared determinant det2 : K S3 → Z is a polynomial of
degree ≤ 2 on every twist sequence. It is hence a polynomial on every twist lattice.

Proof. If K(n) is a twist sequence of knots, then the skein relation for the determi-
nant translates, after a small calculation, into a simple recursive formula:

detK(n)− 2ε detK(n− 1) + detK(n− 2) = 0,
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where ε = −1 if the twisted strands are parallel and ε = 1 if the strands are
anti-parallel. Given the values a0 := detK(0) and a1 := detK(1), we obtain

detK(n) = εn · [a0 + n(εa1 − a0)] .

In either case its square is constant or quadratic in n. This proves that det2 is a
polynomial of degree ≤ 2 on every twist sequence. �

We remark that the determinant of a knot is an integer in 1 + 4Z, which implies
that the sign of det(K) can be recovered from |det(K)|. In other words, the knot
invariants det and det2 contain exactly the same information.

In order to illustrate the preceding characterization theorems, we give two proofs
that det2 is not of finite type, the first using twist lattices (as in Theorem 28), the
second using geometric sequences (as in Theorem 30).

5.2. The determinant on pretzel knots. The squared determinant is a poly-
nomial of degree ≤ 2 on every twist sequence and hence of degree ≤ 2d on every
d-dimensional twist lattice. The following calculation for the family of pretzel knots
shows that this bound is actually attained.

Proposition 33 (Pretzel knots). For d ≥ 0 and odd integers t0, t1, . . . , td the cor-
responding pretzel link has determinant detP(t0, t1, . . . , td) = i−dS(t0, t1, . . . , td),
where S is the elementary symmetric polynomial of degree d in d+ 1 variables.

For any integer d ≥ 0 we have S(t0, t1, . . . , td) =
∑k=d
k=0

∏
j 6=k tj ; for example,

S(t0) = 1 and S(t0, t1) = t0 + t1 and S(t0, t1, t2) = t0t1 + t0t2 + t1t2. Fixing an
even integer d ≥ 2 and the parameter t0, we obtain a d-dimensional twist lattice

K : Zd → K given by K(z1, . . . , zd) = P(t0, 2z1 − 1, . . . , 2zd − 1),

on which the squared determinant is a polynomial of degree 2d. Since its degree is
unbounded, det2 cannot be a Vassiliev invariant.

Proof. The formula detP(t0, t1, . . . , td) = i−dS(t0, t1, . . . , td) can be derived from
the skein relation as follows. We set N =

∑
j |tj + 1|. If N = 0, then tj = −1 for

all j, and the pretzel link P(t0, t1, . . . , td) coincides with the torus link T (2, d+ 1).
Its determinant is id(d+ 1), which equals i−dS(t0, t1 . . . , td). If N > 0, then there
is a parameter tj 6= −1, and the skein relation for detP yields

detP(t0, . . . , tj , . . . , td)−detP(t0, . . . , tj±2, . . . , td) = ±2i·detP(t0, . . . , t̂j , . . . , td).

This corresponds to the recursive property of the function S:

i−dS(t0, . . . , tj . . . , td)−i−dS(t0, . . . , tj±2, . . . , td) = ±2i·i−d+1S(t0, . . . , t̂j , . . . , td).

The desired equality now follows by induction on N . �

5.3. The determinant on torus knots. There is an alternative proof to show
that det2 is not of finite type. It uses geometric sequences of torus knots as ex-
plained in Example 22. We include it in order to illustrate the characterization via
geometric sequences given in Theorem 30.

Proposition 34 (Torus knots). Let p and q be coprime integers and let K(z) =
T (p, q + zp) be the corresponding geometric sequence of torus knots.

(1) If p is even, then det2K(z) = (q + zp)2 is a quadratic polynomial in z.
(2) If p is odd, then det2K(z) is of period 2, taking alternating values 1 and

p2.
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In particular, det2 is not a Vassiliev invariant.

Proof. Up to factors ±tk, the Alexander polynomial of torus knots is given by

∆T (p, q) .=
(tpq − 1)(t− 1)
(tp − 1)(tq − 1)

(see [15], Chapter 11). Expanding this formula and evaluating it at t = −1 yields

|detT (p, q)| =


1 if both p and q are odd,
|p| if p is odd and q is even,
|q| if p is even and q is odd.

For the geometric sequence K(z) = T (p, q+ zp), two cases occur: If p is even, then
det2K(z) = (q + zp)2 is quadratic in z. If p is odd, however, then det2K(z) takes
alternating values 1 and p2, and thus cannot be a polynomial in z. �

6. Characterization of Vassiliev invariants via polynomial growth

As we have seen in the preceding example of the determinant, being a polynomial
of degree ≤ m on every twist sequence does not imply that v is a Vassiliev invariant.
This section shows that the missing condition is that v be uniformly bounded to
have polynomial growth.

This motivates the definition of the following intermediate class of invariants:

Definition 35. An invariant v : K → A is called locally polynomial (of degree
≤ m) if it is a polynomial (of degree ≤ m) on every twist sequence.

The condition that v : K → A be locally polynomial of degree ≤ m can be
restated as saying that v vanishes on every singular knot with a chain of m + 1
consecutive singularities, as shown in Figure 4.

Figure 4. A chain of consecutive singularities

Suppose that v is locally polynomial of degree ≤ m. Then on every twist lattice
Zd → K the invariant v is a polynomial of degree at most dm, but there may not
be any global bound (independent of d). In order to discuss the idea of polynomial
growth, we restrict our attention to rational invariants of knots in the sphere S3.
Let |K| be the crossing number of the knot K, i.e. the minimal number of crossings
needed to represent K by a planar diagram.

Definition 36. We say that an invariant v : K S3 → Q has polynomial growth
of degree ≤ m if it satisfies the inequality |v(K)| ≤ a|K|m for all knots K with
sufficiently large crossing number. This is the same as saying that v satisfies
|v(K)| ≤ a|K|m + b for all knots K and some constants a, b ∈ Q.

Theorem 37. An invariant v : K S3 → Q is a Vassiliev invariant of degree ≤ m
if and only if v is locally polynomial and has polynomial growth of degree ≤ m.
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Proof. To prove “⇒”, assume that v is a Vassiliev invariant of degree ≤ m. By The-
orem 28, v is a polynomial of degree ≤ m on every twist sequence. The inequality
|v(K)| ≤ a|K|m + b was proven by D.Bar-Natan [3].

To prove “⇐”, consider a twist lattice Φ : Zd → K . It can be realized as a twist
lattice of diagrams D(z) having crossing numbers c0 + 2|z|. Therefore on every
twist lattice Φ the crossing number is bounded by |Φ(z)| ≤ c0 + 2|z| with some
constant c0 ∈ N.

We assume that v is a polynomial on every twist sequence ϕ : Z → K and
bounded by |v(K)| ≤ a|K|m + b. This implies that v ◦ ϕ : Z → Q is a polynomial
of degree ≤ m. Given a twist lattice Φ : Zd → K , the composition v ◦Φ : Zd → Q
is hence a polynomial of degree ≤ dm. Again by the boundedness argument, the
degree of v ◦ Φ must be ≤ m. By Theorem 28 we conclude that v is a Vassiliev
invariant of degree ≤ m. �

Example 38. The crossing number has, of course, linear growth. The same holds
for many other classical knot invariants, such as the unknotting number, the genus,
the braid index, and the bridge number [10]. They are not Vassiliev invariants,
because they are not locally polynomial [6, 20].

Example 39. The squared determinant is locally polynomial but has exponential
growth: with respect to connected sums the determinant is multiplicative, which
implies that det(K]n) grows exponentially while |K]n| grows only linearly. This
proves anew that the squared determinant is not a Vassiliev invariant.

Remark 40. A generalization from S3 to an arbitrary 3-manifold is possible. For
example, the polynomial bound in the crossing number can be replaced by the
condition that v be dominated by max{|v1|, . . . , |vk|}, where v1, . . . , vk : K M → Q
are already known to be Vassiliev invariants of degree ≤ m.

7. Vassiliev invariants with values in a torsion group

The technique of geometric sequences and lattices can equally well be applied to
invariants with values in an arbitrary abelian group A. The image of a polynomial
function f : Zd → A is contained in a finitely generated subgroup of A. Without
loss we can assume that A itself is finitely generated; it thus splits into a free part
and a torsion part. In this section we deal with the torsion case.

To analyze polynomial functions into a torsion group it suffices to study the case
A = Z/pe, where p is a prime and e ≥ 1. The case e = 1 is particularly simple:

Lemma 41. A map f : Z→ Z/p is a polynomial of degree < p` if and only if it is
of period p`.

Proof. For q = p` we have

(∂qf)(z) =
q∑

k=0

(−1)q−k
(
q

k

)
· f(z + k) = f(z + q)− f(z),

because 0 < k < q implies
(
q
k

)
≡ 0 mod p. �

The situation is similar for maps Z → Z/pe with e ≥ 2, but unfortunately the
relation between period and degree is less simple. We content ourselves with the
following weaker characterization:
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Lemma 42. A map f : Z → Z/pe is a polynomial if and only if it is of period p`

for some ` ≥ 0.

Proof. First observe that every polynomial function Z → Z/pe is periodic. In
view of Proposition 13 it suffices to show this for

(
z
k

)
mod pe. For q ∈ Z we have(

z+q
k

)
−

(
z
k

)
= q

k! · r with some remaining term r ∈ Z. For q = p` with sufficiently
large exponent ` we arrive at

(
z+q
k

)
≡

(
z
k

)
mod pe for all z.

Conversely, suppose that f has period q = p` and values in A ⊂ Z/pe. The proof
of the preceding lemma shows that ∂qf has values in pA. By iteration we see that
∂qef = 0, which means that f is a polynomial of degree < qe. �

The condition can obviously be generalized to a d-dimensional lattice: a map
f : Zd → Z/pe is a polynomial if and only if it is of period p` for some ` ≥ 0, i.e.
f(z) = f(z+p`w) for all z, w ∈ Zd. Returning to the general case of a finite abelian
group, we conclude the following criterion:

Corollary 43. Every polynomial f : Zd → A into a finite abelian group A is
periodic, i.e. there exists a period q ≥ 1 such that f(z) = f(z+qw) for all z, w ∈ Zd.
If q is the smallest such period, then the prime factors of q divide |A|. �

Example 44. We consider again the squared determinant, but this time modulo
some integer q. Let q = p2m with p ≥ 1 odd. Since Z/q ∼= Z/p×Z/2m, we have to
consider two separate cases:

• Modulo any odd integer p ≥ 3, the squared determinant det2 : K → Z/p
is not a Vassiliev invariant, because it is of period 2 on some geometric
sequences, for example on torus knots T (p, 1 + zp) as in Proposition 34.
• Modulo 2m, however, the determinant det : K → Z/2m is a Vassiliev

invariant of degree < m, as can easily be seen from the Conway polynomial
and the definition det(K) = ∇(K)|z=2i.

The preceding example shows that the geometric sequence criterion can be useful
in the torsion case as well. I do not know, however, whether this condition is also
sufficient. If the group A is torsion-free, then Lemma 29 states that polynomials
f : Zd → A of degree ≤ m can be characterized by their behaviour on straight lines,
from which we deduced Theorem 30. This argument is not valid for torsion groups:

Example 45 (Straight lines). Let p be a prime, and let f : Zd → Z/p be given by
f(z) = z1z2 · · · zd mod p, which is a polynomial of degree d. On every straight line
it is p-periodic and hence of degree < p. Since d and p are independent, the degree
of f cannot be determined by its behaviour on straight lines.

8. Torsion in braid groups

R.H. Fox and L.P.Neuwirth [14] defined the braid group BnS over an arbitrary
surface S. As for Artin’s braid group, the permutation of strands defines an epi-
morphism π : BnS →→ Σn onto the symmetric group on n points. The kernel
PnS = ker(π) is called the group of pure braids over the surface S.

We will use the technique of geometric sequences to prove that the torsion in the
braid group over the sphere induces torsion at the level of Vassiliev invariants.



14 MICHAEL EISERMANN

8.1. Braid groups over the plane. Artin’s braid group, which we have been
using so far, is the braid group BnR2 over the plane. It has the following well-
known presentation [1, 12, 4]:

BnR2 =
〈
σ1, . . . , σn−1

∣∣∣ σiσj=σjσi if |i−j|≥2
σiσjσi=σjσiσj if |i−j|=1

〉
.

There are several different proofs that BnR2 is torsion-free:
• The configuration space of n points in the plane is a 2n-dimensional mani-

fold with fundamental group BnR2. E. Fadell and L.P. Neuwirth [13] proved
that it is an Eilenberg-MacLane space. This implies, by a standard argu-
ment of group cohomology, that BnR2 is torsion-free. Their proof applies, in
fact, to every surface that is different from the sphere S2 and the projective
plane P2.
• Using Seifert fibre spaces, K.Murasugi [17] proved that BnR2 is torsion-free

and classified the torsion elements in BnS2 and BnP2 (see below).
• J.L.Dyer [8] gave an algebraic proof based on Artin’s faithful representation

BnR2 → Aut(Fn) of braids as automorphisms of a free group.
• P. Dehornoy [7] constructed a left-invariant linear ordering on BnR2, which

implies, among other things, that Bn is torsion-free.

8.2. Braid groups over the sphere. For the braid group over the sphere, E. Fadell
and J. van Buskirk [12] obtained the following presentation:

BnS2 =
〈
σ1, . . . , σn−1

∣∣∣ σiσj=σjσi if |i−j|≥2
σiσjσi=σjσiσj if |i−j|=1

σ1σ2···σn−1σn−1···σ2σ1=1

〉
.

The additional relation rn = σ1σ2 · · ·σ2
n−1 · · ·σ2σ1 is depicted in Figure 5a be-

low. Unlike Artin’s braid group BnR2, the braid group BnS2 over the sphere has
torsion elements. For example we have B2S2 ∼= Z/2 and B3S2 ∼= Z/3 o Z/4.
K.Murasugi [17] proved that BnS2 is infinite for n ≥ 4 and classified all its torsion
elements up to conjugation (see below).

In view of geometric sequences we are mainly interested in the pure braid group
PnS2. Here the obvious torsion candidate is the pure braid τn, corresponding to a
full twist of all n strands as depicted in Figure 5b.

=

(b)(a)

Figure 5. (a) Braid relation over the sphere, (b) braid of order 2

The braid τn is easily seen to satisfy τ2
n = 1. Using the Dirac twist explained

in §9.1, this follows from the fact that π1SO(3) ∼= Z/2. In fact, this observation
was used by P.A.M. Dirac in the 1930’s to visualize spin phenomena. The exact
formulation in terms of braid groups was first investigated by M.H.A. Newman [18].

Theorem 46. For n ≥ 3, the pure braid group PnS2 contains a unique torsion
element, namely the braid τn = (σ1σ2 · · ·σn−1)n of order 2.
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Proof. To show that τn 6= 1, we consider the abelianization vn : BnS2 → Z/2n−2
given by the sum of exponents modulo 2n−2. The equality vn(τn) = n(n − 1)
proves that τn 6= 1n for all n ≥ 3 odd. For n ≥ 4 even, we consider the group
homomorphism PnS2 → Pn−1S2 given by deleting the last strand. Since τn is
mapped to τn−1, this shows that τn 6= 1n for all n ≥ 3.

The braid group BnS2 contains the following obvious torsion elements:

αn = σ1σ2 · · ·σn−1 has order 2n,

βn = σ1σ2 · · ·σn−1σ1 has order 2(n− 1),

γn = σ1σ2 · · ·σn−2σ1 has order 2(n− 2).

To see this, we consider the natural epimorphism π : BnS2 →→ Σn:

π(αn) = (123 . . . n) has order n and αnn = τn has order 2,

π(βn) = (134 . . . n) has order n− 1 and βn−1
n = τn has order 2,

π(γn) = (134 . . . n−1) has order n− 2 and γn−2
n = τn has order 2.

K.Murasugi [17] proved that each torsion element in BnS2 is conjugate to αkn
or βkn or γkn for a suitable exponent k. Hence every torsion element in PnS2 must
be conjugate to τn. Since τn is central in BnS2, we conclude that τn is the unique
torsion element in PnS2. �

Lemma 47. Let A be an abelian group without 2-torsion and v : BnS2 → A an
invariant of finite type. Then v cannot distinguish the braids τn and 1n.

Proof. Since τn is a pure braid of order 2, the sequence τzn is geometric of period
2, and v(τzn) is a polynomial in z of period 2. We may assume that A is finitely
generated. Since A splits into a free part and a torsion part, it suffices to consider
two cases: If A is torsion free, then v(τzn) is a bounded polynomial and hence
constant. If A is finite of odd order, then the same conclusion can be drawn from
Corollary 43. �

Note that the abelianization vn : BnS2 → Z/2n−2 is a Vassiliev invariant of
degree 1, and the distinction between τn and 1n is due to the 2-torsion part. The
next section is devoted to generalizing this construction from braids to knots.

9. Application to knots in S1 × S2

In this section we show that there exist knots in S1 × S2 that cannot be distin-
guished by any rational Vassiliev invariant. In order to construct such examples we
use the Dirac twist to define an involution θ on the set of knots.

9.1. The Dirac twist. For t ∈ [0, 1] let ρt : R3 → R3 be a rotation of 2πt around
some chosen axis. The loop ρ : [0, 1] → SO(3) given by t 7→ ρt represents the
non-trivial element in π1SO(3) ∼= Z/2. Define θ : [0, 1] × S2 → [0, 1] × S2 by
θ(t, s) = (t, ρt(s)). The homeomorphism θ fixes the boundary {0, 1}×S2 pointwise,
and its square θ2 is isotopic to the identity relative to the boundary. We call the
homeomorphism θ the Dirac twist of [0, 1]× S2.

Remark 48. The Dirac twist is the 3-dimensional analogue of the 2-dimensional
Dehn twist [0, 1] × S1 → [0, 1] × S1 given by (t, s) 7→ (t, ρt(s)) where ρt is the
rotation of the plane by 2πt. There are higher-dimensional analogues as well. The
remarkable difference is that π1SO(2) ∼= Z, whereas π1SO(n) is of order 2 for n ≥ 3.
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Remark 49. For every braid σ ∈ BnS2 we have θ(σ) = στn. This relationship is
interesting in two ways: The isotopy from θ2 to the identity transforms τ2

n into the
trivial braid 1n, which is a nice geometric proof that τn has order at most 2. On
the other hand τn 6= 1n witnesses that θ is not isotopic to the identity.

9.2. Twin knots. In order to apply the Dirac twist to knots in a 3-manifold M
we consider an embedding S : [0, 1] × S2 ↪→ M , i.e. a thickened sphere in M . We
define θS : M →M by θS(x) = SθS−1(x) if x is in the image of S, and θS(x) = x
otherwise. Clearly, θS is a homeomorphism, and θ2S is isotopic to the identity of
M . Moreover, the isotopy class of θS depends only on the isotopy class of S.

Definition 50. Given a thickened sphere S in a manifold M , we call θS : M →M
the Dirac twist associated with S. For a knot K in M we call θSK its twin knot.
We will simply write θ : M →M when the embedding S is understood.

Lemma 51. If A is an abelian group without 2-torsion, then Vassiliev invariants
K M → A cannot distinguish a knot K from its twin θK.

Proof. After an isotopy we can assume that the thickened sphere S intersects K in
a trivial braid on n strands. Thus the application of θz corresponds to inserting the
braid τzn, which shows that θzK is a geometric sequence. Furthermore, θ2K = K,
because θ2 is isotopic to the identity and we regard knots only up to isotopy.

Suppose that v : K M → A is a Vassiliev invariant. By construction, v(θzK) is a
polynomial in z and of period 2. As we have already seen in the proof of Lemma 47,
v(θzK) must be constant if A has no 2-torsion. Hence v(K) = v(θK). �

Remark 52. The preceding lemma does not say that K and θK are distinct. For
example, if the sphere S bounds a ball in M , then θ is isotopic to the identity of
M , and of course θK = K. If the sphere S is essential, however, chances are that
θK 6= K. Alas, the distinction between K and θK is quite subtle: by construction
the spaces (M,K) and (M, θK) are homeomorphic. Moreover, K and θK are
homotopic in M . This means that the classical invariants of algebraic topology do
not distinguish K and θK.

9.3. Twin knots in S1×S2. It remains to be shown that K and θK are actually
distinct in some cases. The simplest non-trivial example is the manifold S1 × S2.

Theorem 53. Let u : H1(S1 × S2) → Z be an isomorphism. For every knot K in
S1 × S2 having homology class u(K) ∈ {±3,±5,±7, . . . }, the following holds:

(1) The knot K and its twin θK are distinguished by a suitable Vassiliev in-
variant K (S1 × S2)→ Z/2 of degree 1.

(2) The knot K and its twin θK cannot be distinguished by any Vassiliev in-
variant K (S1 × S2)→ A if the abelian group A has no 2-torsion.

In particular, rational invariants of finite type do not distinguish all knots in S1×S2.

Assertion (2) holds for all twin knots and was proven in Lemma 51 above. The
subtle point is to distinguish K and θK. A proof modelled on the abelianization
vn : BnS2 → Z/2n−2 has been sketched in [11]. A complete proof will be given in
the next section, where we construct a universal Vassiliev invariant of degree 1 by
combinatorial integration.

Remark 54. It seems plausible that K 6= θK also holds for knots having homology
class u(K) ∈ {±4,±6,±8, . . . }, as well as for certain knots with homology class
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0,±1,±2. Suitable invariants can probably be found among Vassiliev invariants
K (S1×S2)→ Z/2 of degree ≥ 2. A more systematic treatment of torsion invariants
would certainly be desirable, but it seems difficult in general.

One can also try to generalize the construction to other reducible 3-manifolds:

Question 55. Suppose that M = M1]M2 is a non-trivial connected sum and the
thickened sphere S bounds M1 on one side and M2 on the other. Under which
condition is a knot K distinct from its twin θSK? How can we construct invariants
that distinguish K and θSK?

10. Combinatorial integration in S1 × S2

In his thesis [16], J. Lieberum has constructed a Kontsevich isomorphism for
knots in S1 × S2. Unfortunately, the Kontsevich integral and its generalizations
only work in characteristic zero, and thus ignore the torsion part. In order to
construct torsion invariants, we will hence carry out a combinatorial integration.
In view of Theorem 53 and to keep the argument as simple as possible, we will
restrict our attention to weight systems of degree 1.

10.1. Surgery presentation for knots in S1×S2. We study knots inM = S1×S2

via their surgery presentation. Let S2 = D2 ∪ P , where D2 is the open disk and
P consists of a single point. This yields a decomposition of our manifold M into
an open solid torus T = S1 × D2 and a circle S1 × P . The inclusion T ⊂ M
induces a surjection K T →→ K M , which simply means that every knot in M can
be represented as a knot in T . Of course, this representation is not unique:

Definition 56. We say that two knots K and K ′ in T differ by a Kirby move if
they coincide outside a sector U = [a, b]×D2 of T , inside of which K ∩U is a trivial
braid on k strands, whereas K ′∩U is given by the braid rk = σ1σ2 · · ·σ2

k−1 · · ·σ2σ1.
The Kirby move K 
 K ′ thus corresponds to Figure 5a.

Lemma 57. Two knots in the solid torus T represent the same knot in S1 × S2 if
and only if they are related by a sequence of isotopies and Kirby moves. �

10.2. Chord diagrams of degree one. We will deal with Vassiliev invariants in
the manifold M = S1 × S2 and in the solid torus T = S1 × D2. As before, let
ZK = F0 ⊃ F1 ⊃ F2 ⊃ · · · be the Vassiliev filtration of knots (in M or in T
respectively). Our aim is to understand the quotients Fn/Fn+1 by means of chord
diagrams. To this end we consider the natural maps of the following diagram:

ZK
inc←−−−− Fn

∂n

←−−−− ZKn

quot

y quot

y yc
ZK /Fn+1

inc←−−−− Fn/Fn+1
ψn←−−−− Cn

Here Cn is the module of chord diagrams, i.e. n-singular knots modulo homotopy,
and the forgetful map c : ZKn → Cn sends each n-singular knot to its chord
diagram. The map ∂n assigns to each n-singular knot its resolution as explained in
§1.2. Modulo Fn+1 it passes to the quotient Cn and induces ψn : Cn → Fn/Fn+1.
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a

b

Figure 6.

In order to simplify matters we will only analyze the
case n = 1. For integers a, b let C(a, b) be the chord
diagram depicted in Figure 6. It is obviously symmetric in
the sense that C(a, b) = C(b, a). Let C1 be the Z-module
with basis C(a, b) indexed by a, b ∈ Z, a ≤ b.

The map c : K1 → C1 associates to each 1-singular
knot K• its chord diagram c(K•): cutting the singularity
according to the model → produces two oriented
curves K1 and K2 with homology classes u(K1) = a and
u(K2) = b, and we obtain c(K•) = C(a, b).

Proposition 58. For the solid torus T = S1 ×D2, the map ψT1 : C1 → F1T/F2T
is surjective and its kernel contains the following obvious relation:

(1) Framing invariance: C(a, b) = 0 whenever a = 0 or b = 0.
For M = S1 × S2, the map ψM1 : C1 → F1M/F2M is again surjective. Its kernel
contains relation (1) and the following additional relation:

(2) Kirby invariance:
∑

0<k<n C(k, n−k) = 0 for n ≥ 0,
and analogously

∑
n<k<0 C(k, n−k) = 0 for n ≤ 0.

Proof. Surjectivity is clear. The first relation follows from Reidemeister moves of
type 1. The second relation follows from the Kirby move depicted in Figure 5a. �

10.3. Torsion at the level of chord diagrams. We will show that the relations
of Proposition 58 generate the whole kernel, but first we have a closer look at the
quotients. Let A1T be the quotient of C1 by relation (1), and let A1M be the
quotient of C1 by relations (1) and (2). The maps ψT1 resp. ψM1 defined above thus
induce ΨT

1 : A1T → F1T/F2T resp. ΨM
1 : A1M → F1M/F2M , which will turn

out to be isomorphisms. We begin by stating the following observation:

Proposition 59. The Z-module A1T is free with basis C(a, b) indexed by all pairs
a, b ∈ Z \ {0} with a ≤ b. �

Let C̄(a, b) be the image of C(a, b) in A1M and define

tn =
∑

0<k<n

k · C̄(k, n−k) for n ≥ 0 and

tn =
∑

n<k<0

k · C̄(k, n−k) for n ≤ 0 respectively.

Obviously tn = 0 for |n| ≤ 1. Moreover, relation (2) implies tn = 0 for n even,
and 2tn = 0 for n odd. More precisely, we have:

Proposition 60. The Z-module A1M splits into a free part and a torsion part. The
free part has basis C̄(a, b) indexed by all pairs a, b ∈ Z\{0} with a ≤ b−2. The tor-
sion part is a vector space over Z/2 with basis tn indexed by n ∈ {±3,±5,±7, . . . }.

Proof. The module A1T =
⊕

n A1,nT is graded with respect to the homology class
n = a + b. Relation (2) respects this grading, so the quotient A1M =

⊕
n A1,nM

is also graded. Moreover, relation (2) is empty for n = 0 and for n = ±1. In these
cases A1,nM ∼= A1,nT has basis C̄(a, n− a) with a ≤ n−2

2 , as claimed.
For ease of notation we will assume n ≥ 2 in the sequel, the case n ≤ −2 being

analogous. The module A1,nT has basis C(a, n − a) with a ≤ n
2 and a 6= 0. Two

cases occur, according to whether n is even or odd:
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• If n = 2m is even, then we obtain a new basis for A1,nT by replacing
C(m,m) with sn =

∑
0<k<n C(k, n − k). In this new basis, relation (2)

becomes sn = 0. Thus the quotient A1,nM has basis C̄(a, n − a) with
a ≤ n−2

2 and a 6= 0.
• If n = 2m + 1 is odd, then we obtain a new basis for A1,nT by replacing
C(m,m + 1) with sn =

∑
0<k≤m C(k, n − k). In this new basis, relation

(2) becomes 2sn = 0. Moreover, sn maps to tn in the quotient A1M . This
means that A1,nM has one element tn of order 2, while the free part has
basis C̄(a, n− a) with a ≤ n−3

2 and a 6= 0.
This completes the proof on the module structure of A1M . �

10.4. Integrating invariants of degree one. Let A be an abelian group. A
Vassiliev invariant v : K → A of degree 1 defines a weight system w : A1 → A
by setting w = v ◦ Ψ1. Conversely, we call v an integral of w. It is natural to ask
whether there exists an integral for every weight system w : A1 → A.

This can be reformulated as follows: a universal Vassiliev invariant of degree
1 is a map Z1 : K → A1 that vanishes on F2 and satisfies Z1Ψ1 = id. Given a
weight system w, this allows us to define an integral v = w ◦Z1. In particular, such
a map Z1 restricts to F1 and induces an isomorphism Φ1 : F1/F2 → A1 that is
inverse to Ψ1 : A1 → F1/F2.

Theorem 61. For the manifold M = S1 × S2 there exists a Z-universal Vassiliev
invariant ZM1 : K M → A1M of degree 1.

To prove this theorem we present knots in M by knots in the solid torus T
modulo Kirby moves. The following folklore lemma constructs a universal Vassiliev
invariant of degree 1 for knots in the solid torus.

Lemma 62. For the solid torus T = S1 × D2 there exists a Z-universal Vassiliev
invariant ZT1 : K T → A1T of degree 1.

Proof. Let D be a knot diagram on the annulus. Cutting a crossing p yields two
oriented curves D′ and D′′ with homology classes p′ = u(D′) and p′′ = u(D′′). This
allows us to define the sum f(D) =

∑
p ε(p)C(p′, p′′) over all crossings p of D. Here

ε(p) is the sign of the crossing, defined by ε( ) = +1 and ε( ) = −1.
The value f(D) in A1T is invariant under Reidemeister moves and thus defines a

knot invariant f : K T → A1T . By construction we have f( )− f( ) = 2c( ).
Since A1T is a free Z-module, there exists a knot invariant ZT1 : K T → A1T
satisfying ZT1 ( ) − ZT1 ( ) = c( ). This shows that ZT1 is a Vassiliev invariant
of degree 1 satisfying ZT1 ΨT

1 = id. �

Lemma 63. The composition Z̄T1 : K T → A1T →→ A1M is invariant under Kirby
moves. Thus Z̄T1 induces a Z-universal Vassiliev invariant ZM1 : K M → A1M of
degree 1, for the manifold M = S1 × S2.

Proof. Let K and K ′ be two knots that are identical outside a sector U ⊂ T , inside
of which they are given by the braids 1k and rk as depicted in Figure 5a. We have
to show that ZT1 (K) ≡ ZT1 (K ′) modulo relation (2) of Proposition 58.

Let n = u(K) be the homology class of K and K ′. To simplify notation we will
assume n ≥ 0, the case n ≤ 0 being analogous. Furthermore, we can assume that
the leftmost strand in U is oriented positively. If necessary, we can achieve this by
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the looping manœuvre of Figure 7. This does not alter the knots K and K ′, but
ensures that the Kirby move K 
 K ′ is performed on a positive strand.

K K’

Figure 7. Transforming a negative Kirby move into a positive one

Beginning with the leftmost strand, we number the strands with 1, . . . , k in the
order they are visited when travelling along the knot. After a permutation of
strands we can assume that they are visited in this order from left to right. Such
a permutation alters the diagrams but not the knots K and K ′.

Let k↓ resp. k↑ be the number of strands with positive resp. negative orientation.
Thus k = k↓ +k↑ and n = k↓−k↑ . We prove Z̄T1 (K) = Z̄T1 (K ′) by induction on the
number k↑ of negative strands. The case k↑ = 0 is clear: all strands are oriented
the same way and the difference ZT1 (K)− ZT1 (K ′) is given by

∑
0<i<n C̄(i, n− i).

Kirby invariance is thus guaranteed by relation (2) of Proposition 58.
In the general case we will simplify K and K ′ by simultaneously changing cross-

ings outside the sector U . This alters the knots K and K ′ but not the difference
ZT1 (K)− ZT1 (K ′), because ZT1 is a Vassiliev invariant of degree 1.

In the case k↑ ≥ 1 there exists an index i such that the strands i and i+ 1 have
opposite orientations. Let i be maximal with this property. Then some crossing
changes and Reidemeister moves outside U lead to a situation as in Figure 8. The
indicated Reidemeister moves then reduce the number k↑ by one. (This also holds
in the exceptional case i = 1, where we necessarily have k = 2 and n = 0. After
some crossing changes outside U we can reduce this to k = 0.)

K K’

Figure 8. Reducing the number k↑ of negative strands

By induction on k↑ we conclude that ZT1 (K) ≡ ZT1 (K ′) modulo relation (2),
which means that Z̄T1 is invariant under Kirby moves. Hence Z̄T1 induces a universal
Vassiliev invariant ZM1 : K M → A1M for our manifold M = S1 × S2. �

10.5. Distinguishing twin knots. In order to distinguish twin knots in S1 × S2

we study the behaviour of the universal Vassiliev invariant ZM1 under Dirac twists:

Lemma 64. Suppose that K is a knot in M = S1 × S2 having homology class n.
Then ZM1 (K)− ZM1 (θK) = tn, with tn ∈ A1M as defined in §10.3.
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Proof. Define t : K (S1 × S2)→ A1M by t(K) = ZM1 (K)− ZM1 (θK). Since ZM1 is
of degree 1, the difference t is of degree 0, hence invariant under crossing changes.

Figure 9.

It thus suffices to prove t(K) = tn for any one knot K with
homology class n. In the case |n| ≤ 1 we clearly have t(K) =
0, which coincides with tn = 0. For the rest of this proof we
will assume n ≥ 2, the case n ≤ −2 being analogous.

Let K be a closed n-braid in the torus. Application of θ
inserts the braid τn as depicted in Figure 9. We number the
strands with 1, . . . , n in the order that they are visited when
travelling along the knot. The difference ZM1 (K)−ZM1 (θK) is
calculated by changing the marked crossings, one for each pair
(i, j) with 1 ≤ i < j ≤ n. Since all strands are oriented the
same way, this gives a contribution C̄(j−i, n−j+i). Summing
over all pairs yields tn. �

Proof of Theorem 53. Suppose that K is a knot in S1×S2 having an odd homology
class n = u(K) with |n| ≥ 3. It remains to be shown that K can be distinguished
from its twin knot θK by a Vassiliev invariant v : K (S1 × S2)→ Z/2 of degree 1.

We will assume n ≥ 3, the case n ≤ −3 being analogous. By the preceding lemma
we have ZM1 (K) − ZM1 (θK) = tn. We define a weight system w : A1M → Z/2
by w(C̄(a, b)) = 1 if {a, b} = {1, n−1}, and w(C̄(a, b)) = 0 otherwise. Since
w(tn) = 1, the composition v = w ◦ ZM1 defines a Vassiliev invariant of degree 1
with v(K)− v(θK) = 1, as desired. �
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