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HOMOLOGICAL CHARACTERIZATION OF THE UNKNOT

MICHAEL EISERMANN

Abstract. Given a knot K in the 3-sphere, let QK be its fundamental quan-

dle as introduced by D. Joyce. Its first homology group is easily seen to be

H1(QK) ∼= Z. We prove that H2(QK) = 0 if and only if K is trivial, and
H2(QK) ∼= Z whenever K is non-trivial. An analogous result holds for links,

thus characterizing trivial components.

More detailed information can be derived from the conjugation quandle:
let Qπ

K be the conjugacy class of a meridian in the knot group π1(S3rK).

We show that H2(Qπ
K) ∼= Zp, where p is the number of prime summands in a

connected sum decomposition of K.

Introduction and statement of results

The fundamental group of a knot. For a knot K in the 3-sphere S3 let πK :=
π1(S3rK) be the fundamental group of the knot complement. All higher homotopy
groups vanish [27], which means that S3rK is an Eilenberg-MacLane space. By
Poincaré duality, its integral homology is given by H0

∼= H1
∼= Z and Hn = 0 for

all n ≥ 2. This means that among these classical invariants of algebraic topology,
only the group πK contains information about the knot K.

The knot group is indeed a very strong invariant: it classifies unoriented prime
knots [15, 33]. To capture the complete information, one can consider a meridian-
longitude pair mK , lK ∈ πK (see §1). It follows from the work of F.Waldhausen [31]
that the group system (πK ,mK , lK) classifies knots.

The fundamental quandle of a knot. A quandle, as introduced by D. Joyce [19],
is a set Q with a binary operation whose axioms model conjugation in a group, or
equivalently, the Reidemeister moves of knot diagrams. Quandles have been in-
tensively studied by different authors and under various names: as “distributive
groupoids” by S.V. Matveev [22], as “crossed G-sets” by P.J. Freyd and D.N.Yetter
[14], as “crystals” by L.H. Kauffman [20], and — slightly generalized — as “auto-
morphic sets” by E.Brieskorn [1], and as “racks” by R. Fenn and C.Rourke [12].
We review the relevant definitions in §2.

The Wirtinger presentation of the knot group πK involves only conjugation and
thus may be re-interpreted as defining a quandle. The quandle QK so presented is
called the fundamental quandle of the knot K (see §2). Using Waldhausen’s results,
Joyce [19] showed that the knot quandle is a classifying invariant: if QK and QK′

are isomorphic, then the knots K and K ′ are equivalent up to inversion.
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Homological characterization of the unknot. Like the knot group, the knot
quandle is in general very difficult to analyze. It is therefore natural to ask: how
can we extract partial information?

R. Fenn, C. Rourke, and B. Sanderson [13] have developed a homology theory for
racks, which has been adapted to quandles by J.S. Carter et al. [5, 6, 7]. The relevant
definitions are recalled in §5.1 and §6.1 below. Our main theorem determines the
second homology group of the knot quandle QK with integer coefficients:

Theorem 1. Let K be a knot and let QK be its fundamental quandle. If K is
trivial, then H2(QK) = 0. If K is non-trivial, however, then H2(QK) ∼= Z.

Unlike the knot group πK , the knot quandle QK thus has interesting homology.
Indeed, H2(QK) seems ideally suited to tackle the unknotting problem: given a
knot, how can we decide whether or not it is trivial? We will discuss algorithmic
questions in Section 10 at the end of this paper.

Remark 2. It is immediate from the definitions that H1(QK) = H1(QK) = Z.
By the Universal Coefficient Theorem we have H2(QK ,Λ) = H2(QK) ⊗ Λ and
H2(QK ,Λ) = Hom(H2(QK),Λ) for every abelian group Λ. Hence the preceding
theorem completely determines the second (co)homology groups of knot quandles.

Central extensions. In order to prove Theorem 1, it will be useful to compare
each closed knot K to the corresponding long knot L (see §1.2). We define the
fundamental quandle QL just as we defined QK , with the sole exception that the
first and the last arc of L are not identified. They correspond to distinguished
elements qL and q∗L in QL, and the quandle QK is obtained from QL by adjoining
the additional relation qL = q∗L. For the knot groups πL and πK this relation is
redundant, but for quandles the situation differs remarkably:

Theorem 3 (§4.2). Let L be a long knot and let K be the corresponding closed
knot. The natural projection QL → QK is the universal covering of QK . If K is
the trivial knot, then both QL and QK are trivial quandles. If K is non-trivial,
however, then QL → QK is a central extension with covering group Λ = 〈lK〉 ∼= Z.

This result is the key to Theorem 1. The notions of quandle covering and cen-
tral extension are introduced and discussed in §3. In order to translate central
extensions to cohomology classes, we establish the following classification theorem:

Theorem 4 (§5.2). Suppose that Q is a quandle and Λ is an abelian group. Let
E (Q,Λ) be the set of equivalence classes of central extensions of Q by Λ. Then
there is a natural bijection E (Q,Λ) ∼= H2(Q,Λ).

This is a direct analogue of a classical result in group cohomology: central exten-
sions of a group G with kernel Λ are classified by cohomology classes in H2(G,Λ).

Liftings and obstructions. The following unique lifting property will serve to
show that H2(QL) vanishes and, in a second step, to calculate H2(QK).

Lemma 5 (§3.2). Suppose that L is a long knot and f : QL, qL → Q, q is a quandle
morphism. If p : Q̃, q̃ → Q, q is a covering, then there exists a unique quandle
morphism f̃ : QL, qL → Q̃, q̃ with f = pf̃ .

For closed knots, we deduce the following lifting criterion:
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Lemma 6 (§6.3). Every closed knot K can be equipped with an orientation class
[K] ∈ H2(QK). Suppose that f : QK , qK → Q, q is a quandle morphism and p :
Q̃, q̃ → Q, q is a central extension with associated cohomology class [λ] ∈ H2(Q,Λ).
Then there exists a lifting f̃ : QK , qK → Q̃, q̃ if and only if

〈
[λ]

∣∣ f ∣∣ [K]
〉

vanishes.

To explain the notation, we remark that every quandle morphism f : QK → Q
induces a map on homology, f∗ : H∗(QK) → H∗(Q), and a map on cohomology,
f∗ : H∗(Q,Λ) → H∗(QK ,Λ). The evaluation〈

[λ]
∣∣ f ∣∣ [K]

〉
=

〈
[λ]

∣∣ f∗[K]
〉

=
〈
f∗[λ]

∣∣ [K]
〉

is thus an element in the coefficient group Λ.

State-sum invariants. The orientation class has been used implicitly by Carter
et al. [5] to define a state-sum invariant of knots. Their definition can now be
reformulated as follows: for every finite quandle Q and every cocycle λ ∈ Z2(Q,Λ),
the associated state-sum invariant is given by

SλQ(K) =
∑
f

〈
[λ]

∣∣ f ∣∣ [K]
〉
,

where f ranges over all quandle morphisms f : QK → Q. Here Λ is written
multiplicatively, so that the above sum is an element of the group ring ZΛ. (As the
referee pointed out, this interpretation of SλQ has independently been developed by
J.S. Carter, S. Kamada, and M. Saito in [8].)

Classifying oriented knots. As mentioned above, the knot quandle QK char-
acterizes the knot K only up to inversion, that is, simultaneously changing the
orientations of K and S3. The orientation class [K], as its name suggests, removes
the remaining ambiguity:

Theorem 7 (§6.4). Each oriented knot K is characterized by the pair (QK , [K]).

More explicitly, two oriented knots K and K ′ are isotopic if and only if there
exists a quandle isomorphism φ : QK → QK′ with φ∗[K] = [K ′].

Characteristic classes. As we have seen above, every knot K comes equipped
with two characteristic classes: the central extension QL → QK defines a cohomol-
ogy class [L] ∈ H2(QK), and dually the orientation of K defines [K] ∈ H2(QK).
We can now state the following more detailed version of Theorem 1:

Theorem 8 (§7). If K is a non-trivial knot, then H2(QK) ∼= Z, and the orientation
of K defines a canonical generator [K] ∈ H2(QK). Dually, we have H2(QK) ∼= Z,
and the central extension QL → QK defines a canonical generator [L] ∈ H2(QK)
whose evaluation yields

〈
[L]

∣∣ [K]
〉

= 1.

This result answers a fundamental question about quandle homology, raised by
J.S. Carter, S. Kamada, and M. Saito in [7], Question 7.3: the orientation class [K]
vanishes if and only if the knot K is trivial.

The conjugation quandle. By construction, the fundamental quandle QK allows
a natural representation QK → πK on the knot group πK . Its image QπK is the
conjugacy class of the meridian mK and is called the conjugation quandle of K.
It is easy to see that H1(QπK) ∼= H1(QπK) ∼= Z. The rank of the second homology
group, however, depends on the number of prime summands:
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Theorem 9 (§8). If K is the connected sum of prime knots K1, . . . ,Kp, then
H2(QπK) ∼= H2(QπK) ∼= Zp. Moreover, the orientation classes [K1], . . . , [Kp] map to
a basis of H2(QπK), and their dual classes [L1], . . . , [Lp] map to a basis of H2(QπK).

In particular, the preceding theorem characterizes prime knots: a knot K is
trivial if and only if H2(QπK) = 0, and it is prime if and only if H2(QπK) ∼= Z.

Generalization to links. Let K ⊂ S3 be a link with components K1, . . . ,Kn. In
this case we find H1(QK) ∼= H1(QK) ∼= Zn. As before we can define character-
istic classes [K1], . . . , [Kn] ∈ H2(QK), one for each component of K, and dually
[L1], . . . , [Ln] ∈ H2(QK). A component Ki of K is called trivial if there exists an
embedded disk D ⊂ S3 with Ki = K ∩D = ∂D.

Theorem 10 (§9). Let K be a link with non-trivial components K1, . . . ,Km and
trivial components Km+1, . . . ,Kn. Then the second homology group H2(QK) is
freely generated by [K1], . . . , [Km], and the classes [Km+1], . . . , [Kn] vanish. Du-
ally, the second cohomology group H2(QK) is freely generated by [L1], . . . , [Lm],
and the classes [Lm+1], . . . , [Ln] vanish. For all i, j ∈ {1, . . . ,m}, evaluation yields〈
[Li]

∣∣ [Kj ]
〉

= δij.

In particular, the theorem characterizes trivial components: given a link K, the
component Ki is trivial if and only if its orientation class [Ki] ∈ H2(QK) vanishes.

How this paper is organized. The paper roughly follows the outline given in
this introduction. In order to make the presentation as self-contained as possible,
Section 1 recalls some facts about knot groups, while Section 2 collects the basic
definitions concerning knot quandles.

Section 3 introduces the notions of quandle covering and quandle extension. Sec-
tion 4 shows that QL is the universal central extension of QK and determines its
structure in terms of the group system (πK ,mK , lK). Central extensions are trans-
lated into quandle cohomology in Section 5. The dual notion of quandle homology
allows to define the orientation class of a knot, as explained in Section 6.

These tools are applied in Section 7 to determine the second (co)homology group
of knot quandles, thus proving our main result. The arguments are extended to
conjugation quandles in Section 8. The generalization to link quandles is sketched
in Section 9. We conclude this article with some remarks on algorithms and decid-
ability questions in Section 10.

1. Knot groups

This first section recalls some facts about the knot group system and its Wirtinger
presentation. It serves primarily to fix our notation.

1.1. Peripheral system. Let D2 be the closed unit disk in the complex plane,
its boundary ∂D2 = S1 being the unit circle. A knot is a smooth embedding
k : S1 ↪→ S3, considered up to isotopy. This is the same as considering the oriented
image K = k(S1) in S3, again up to isotopy. A standard framing of K is an
embedding f : S1 × D2 ↪→ S3 such that:

• The central axis f |S1×0 parametrizes the oriented knot K.
• The meridian curve f |1×S1 has linking number +1 with K.
• The longitude curve f |S1×1 has linking number 0 with K.
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Every knot K has a standard framing, and any two standard framings of K are
isotopic. As basepoint of the space S3rK we choose p = f(1, 1). In the fundamental
group πK := π1(S3rK, p), the homotopy class mK = [f |1×S1 ] is called the meridian
of the knot K, and the homotopy class lK = [f |S1×1] is called the longitude of K.

Up to isomorphism, the triple (πK ,mK , lK) is an invariant of the knot K: if K
andK ′ are isotopic, then there is an isomorphism φ : πK → πK′ with φ(mK) = mK′

and φ(lK) = lK′ . Remarkably, the converse also holds:

Theorem 11 ([31]). Two knots K and K ′ are isotopic if and only if there is an
isomorphism φ : πK → πK′ with φ(mK) = mK′ and φ(lK) = lK′ . �

This is a special case of Waldhausen’s theorem on sufficiently large 3-manifolds.
See [31], Corollary 6.5, as well as [3], §3C, for its application to knots.

A knot K is called trivial if there exists an embedded disk D ⊂ S3 with ∂D = K.
Up to isotopy, there is exactly one trivial knot. Dehn’s lemma [27] reformulates the
geometric condition in terms of the fundamental group:

Theorem 12 ([27]). K is trivial if and only if its longitude lK ∈ πK vanishes. �

1.2. Long knots versus closed knots. Besides closed knots k : S1 ↪→ S3 it will
be useful to consider long knots ` : R ↪→ R3, i.e. smooth embeddings such that
`(t) = (t, 0, 0) for all parameters t outside some compact interval. We regard long
knots only up to isotopy with compact support. This is the same as considering
the image L = `(R) in R3 up to isotopy with compact support.

The closure of a long knot is a closed knot, defined in the obvious way. The
closure map is well-defined on isotopy classes and establishes a bijection between
long knots and closed knots. Conversely, the passage from a closed knot K ⊂ S3

to a long knot L ⊂ R3 is essentially the choice of a basepoint P ∈ K, from which
we obtain a diffeomorphism (S3r{P},Kr{P}) ∼= (R3, L). In particular, we have
a homeomorphism of the knot complements S3rK ∼= R3rL, and the knot groups
πK and πL are isomorphic.

As far as the knot group is concerned, there is thus no difference between a closed
knot K and its corresponding long knot L, and we can freely choose the point of
view that is most convenient. One nice feature about long knots, for example, is
that the group πL has a canonical meridian-longitude pair as shown in Figure 1.

*

m
l

L

L

L

Figure 1. Meridian and longitude of a long knot
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1.3. Wirtinger presentation. The following well-known method produces a pre-
sentation of the knot group by generators and relations, called the Wirtinger pre-
sentation. Given a long knot L, we represent it by a long diagram as in Figure 1.
Travelling along the knot from −∞ on the left to +∞ on the right, we number
the arcs consecutively from 0 to n, where n is the number of crossings. At the end
of arc number i − 1, we undercross arc number κ(i) and continue on arc number
i. Let ε(i) = ±1 be the sign of this crossing, as depicted in Figure 2. The maps
κ : {1, . . . , n} → {0, . . . , n} and ε : {1, . . . , n} → {±1} are the Wirtinger code of
the diagram. From this we derive the following presentation:

Theorem 13. Suppose that L is represented as a long knot diagram with Wirtinger
code (κ, ε) as above. Then the knot group allows the presentation

πL ∼= 〈x0, x1, . . . , xn | r1, . . . , rn〉 with relations ri : xi = x−εiκi xi−1 x
εi
κi.

Moreover, as peripheral system we can choose the meridian mL = x0 and the
longitude lL =

∏i=n
i=1 x−εii−1 x

εi
κi. �

Since the Wirtinger presentation will be used throughout this article, it seems
worthwhile to make the isomorphism explicit: Suppose that the knot L lies in the
diagram plane and coincides with the diagram D except for the crossings, where
the undercrossing strand traces a small half-circle below the plane. As basepoint of
the complement R3rL we choose some point p above the diagram plane. Let γi be
the loop that starts at p, runs to arc number i in a straight line, encircles it once
in a right-handed loop (in order to achieve linking number +1), and returns to p
in a straight line. We define φ : 〈x0, x1, . . . , xn | r1, . . . , rn〉 → πL by φ(xi) = γi.
It is easy to see that the relations r1, . . . , rn are satisfied, so φ is a well-defined
homomorphism of groups. The theorem of Seifert and vanKampen shows that φ
is indeed an isomorphism. (For details see for example Crowell-Fox [10], §VI.3, or
Burde-Zieschang [3], §3B.) It now follows from our definitions that (mL, lL) is a
meridian-longitude pair of the knot L.

Remark 14. The Wirtinger presentation works just as well for a closed knot
diagram. Since arcs 0 and n are then identified, this amounts to adding the relation
x0 = xn to the above presentation. The group is, of course, the same.

1.4. Group homology. In order to illustrate our calculation of quandle homol-
ogy, we emphasize that the Wirtinger presentation allows to determine the low-
dimensional homology groups of πL by elementary methods: To start with, it is
easy to read off the abelianization, which yields H1(πL) ∼= Z. Moreover, πL is given
by n + 1 generators and n relations, which implies H2(πL) = 0 (see for example
Brown [2], §II.5, Exercise 5).

These observations illustrate the main theme of this article. For knot quandles
we will see H1(QL) ∼= H1(QK) ∼= Z and H2(QL) = 0. So far this is completely
analogous to the homology of knot groups. Our proof that H2(QK) ∼= Z, however,
is based on the fact that passing from a long knot quandle QL to a closed knot
quandle QK adds a non-trivial relation (provided that the knot K is non-trivial).

2. Knot quandles

This section collects the basic definitions concerning quandles and in particular
fundamental quandles of knots.
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2.1. Knot colourings. The Wirtinger presentation allows to interpret knot group
homomorphisms πK → G as colourings of knot diagrams. More precisely: let D be
a long diagram, its arcs being numbered by 0, . . . , n. A G-colouring of D is a map
f : {0, . . . , n} → G such that at each coloured crossing as in Figure 2 the colours a
and c are conjugated via ab = c. Such a colouring is denoted by f : D → G.

b

c

a

b

ε = +1

b c

a b

ε = −1

Figure 2. Wirtinger rules for colouring a knot diagram

Remark 15. The Wirtinger theorem says that the knot group πK is the universal
colouring group for K in the following sense: each diagram D representing K comes
with a canonical colouring D → πK , and every group colouring D → G factors as
a composition of D → πK and a unique group homomorphism πK → G. Thus
colourings D → G are in bijection with group homomorphisms πK → G.

2.2. Quandles and automorphic sets. The Wirtinger presentation of πK in-
volves only conjugation but not the group multiplication itself. The underlying
algebraic structure can be described as follows:

Definition 16. A quandle is a set Q with two binary operations ∗, ∗ : Q×Q→ Q
satisfying the following axioms for all a, b, c ∈ Q:

(Q1) a ∗ a = a (idempotency)
(Q2) (a ∗ b) ∗ b = a = (a ∗ b) ∗ b (right invertibility)
(Q3) (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) (self-distributivity)

The name “quandle” was introduced by D. Joyce [19]. The same notion was stud-
ied by S.V. Matveev [22] under the name “distributive groupoid”, and by P.J. Freyd
and D.N.Yetter [14] under the name “crossed G-set”.

Definition 17. A homomorphism of quandles is a map φ : Q → Q′ that satisfies
φ(a ∗ b) = φ(a) ∗ φ(b), and hence φ(a ∗ b) = φ(a) ∗ φ(b), for all a, b ∈ Q. The
automorphism group Aut(Q) consists of all bijective homomorphisms φ : Q → Q.
We adopt the convention that automorphisms of Q act on the right, written aφ,
which means that their composition φψ is defined by a(φψ) = (aφ)ψ for all a ∈ Q.

Axioms (Q2) and (Q3) are equivalent to saying that for every a ∈ Q the right
translation %a : x 7→ x ∗ a is an automorphism of Q. Such structures were stud-
ied by E. Brieskorn [1] under the name “automorphic sets” and by C. Rourke and
R. Fenn [12] under the name “rack”.

Definition 18. The group Inn(Q) of inner automorphisms is the subgroup of
Aut(Q) generated by all right translations %a with a ∈ Q. The quandle Q is called
connected if the action of Inn(Q) on Q is transitive.

In view of the map % : Q → Inn(Q), we also write ab for the operation a ∗ b
in a quandle. Conversely, it will sometimes be convenient to write a ∗ b for the
conjugation b−1ab in a group. In neither case will there be any danger of confusion.
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Definition 19. A representation of a quandle Q on a group G is a map φ : Q→ G
such that φ(a ∗ b) = φ(a) ∗φ(b) for all a, b ∈ Q. We call % : Q→ Inn(Q) the natural
representation of Q. An augmentation consists of a representation φ : Q → G
together with a group homomorphism α : G→ Inn(Q) such that αφ = %.

In general we will simplify matters by assuming that G is generated by the image
φ(Q). In this case the action of G on Q is uniquely determined by the representation
φ, and we simply say that φ : Q → G is an augmentation. For example, every
quandle Q comes equipped with the natural augmentation % : Q→ Inn(Q).

2.3. Fundamental quandles. As before, let D be a long knot diagram, its arcs
being numbered by 0, . . . , n. A Q-colouring is a map f : {0, . . . , n} → Q such that
at each crossing as in Figure 2 the three colours a, b, c satisfy the relation a ∗ b = c.
Such a colouring is denoted by f : D → Q. The quandle axioms ensure that each
Reidemeister move D � D′ induces a bijection between the Q-colourings of D and
the Q-colourings of D′, see Joyce [19], §15.

The Wirtinger presentation says that D → πL is universal for group colourings.
The analogue for the category of quandles can be defined as follows:

Definition 20. Given a diagram D representing the long knot L, let QL be the
quandle generated by q0, . . . , qn subject to the Wirtinger relations: qi = qi−1 ∗ qκi
for each positive crossing and qi = qi−1 ∗qκi for each negative crossing, respectively.
We call QL the knot quandle or fundamental quandle of L.

The quandle axioms guarantee that QL (up to isomorphism) is indeed an invari-
ant of the knot L. For details of this construction, and for an alternative topological
definition, we refer to the article by D. Joyce [19], §14–15.

Remark 21. The generators q0, . . . , qn of the knot quandle QL are connected via
their mutual action, hence QL is connected. Moreover, QL has two special elements,
qL and q∗L, corresponding to the first and the last arc respectively.

Remark 22. The preceding definition serves equally well to define the fundamental
quandle QK of a closed knot K. The only difference is the additional relation
qL = q∗L, because the first and the last arc are now identified.

Remark 23. Let K be a (long or closed) knot. By definition, QK is the universal
colouring quandle for K: each diagram D representing K comes with a canonical
colouring D → QK , and every quandle colouring D → Q factors as a composition of
D → QK and a unique quandle homomorphism QK → Q. Thus colourings D → Q
are in bijection with quandle homomorphisms QK → Q.

Remark 24. Let K be a (long or closed) knot. The universal property of QK
induces a canonical representation QK → πK . The universal property of πK , in
turn, induces a canonical group homomorphism πK → Inn(QK). Both fit together
to form an augmentation QK → πK .

3. Quandle extensions

This section introduces the notions of quandle covering and quandle extension.
Given a long knot L with closure K, Theorem 30 shows that QL is the universal
covering quandle of QK .
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3.1. Meridians and partial longitudes. We begin by explaining how quandle
colourings can be used to encode longitudinal information. The Wirtinger pre-
sentation produces at each crossing a local relation between three meridians. The
longitude, however, is global in the sense that it involves a certain product over
all meridians. We can decompose this product into a sequence of local calcula-
tions as follows: Consider a long knot diagram D with Wirtinger code (κ, ε). We
colour each arc not only with its meridian xi but also with its partial longitude
li :=

∏j=i
j=1 x−εjj−1 x

εj
κj . In particular, the first arc is coloured with (mL, 1) and the

last arc is coloured with (mL, lL), the meridian-longitude pair of the knot L. At
each crossing we find the situation shown in Figure 3.

kl
x k

il
x i

x k

kl
x i+1 x k x k

-1x i=
i+1l il x i x k

-1=

il
x i

kl
x k

x k

kl
x k

-1 x i x kx i+1 =
i+1l il x-1

i x k=

ε = +1 ε = −1

Figure 3. Meridians and partial longitudes

This crossing relation can be encoded in a quandle as follows:

Lemma 25. Let G be a group that is generated by a conjugacy class Q = xG. Then
Q is a connected quandle with respect to conjugation a ∗ b = b−1ab and its inverse
a ∗ b = bab−1. Let G′ be the commutator subgroup and define

Q̃ = Q̃(G, x) := { (a, g) ∈ G×G′ | a = xg }.
The set Q̃ becomes a connected quandle when equipped with the operations

(a, g) ∗ (b, h) = (a ∗ b, ga−1b) and (a, g) ∗ (b, h) = (a ∗ b, gab−1).

Moreover, the projection p : Q̃ → Q given by p(a, g) = a is a surjective quandle
homomorphism. It becomes an equivariant map when we let G′ act on Q by con-
jugation and on Q̃ by (a, g)b = (ab, gb). In both cases G′ acts transitively and as a
group of inner automorphisms.

Proof. Obviously, the operations ∗ and ∗ turn Q into a quandle. Since G = 〈Q〉,
the quandle Q is connected. Moreover, the abelianized group G/G′ is generated by
the image of x, thus G = 〈x〉G′ and xG = xG

′
. In particular, G′ acts transitively

on Q and the map p : Q̃→ Q is surjective.
It is easily verified that the operations ∗ and ∗ on Q̃ are well-defined and satisfy

the quandle axioms. Obviously, G′ acts transitively on Q̃ and turns p into an
equivariant map. It remains to show that G′ acts by inner automorphisms. To see
this, first notice that the quandle operations of Q̃ can be reformulated as

(a, g) ∗ (b, h) = (a ∗ b, x−1gb) and (a, g) ∗ (b, h) = (a ∗ b, xgb−1).

Every b ∈ G′ can be written as b = bε11 · · · bεn
n with bi ∈ Q and εi ∈ {±1} such that

the exponent sum ε =
∑
εi vanishes. Since p is surjective, each bi ∈ Q can be lifted
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to some (bi, hi) ∈ Q̃. Let βi ∈ Inn(Q̃) be the corresponding right translation, and
set β = βε11 · · ·βεn

n . We obtain (a, g)β = (ab, xεgb) = (a, g)b as desired. �

Remark 26. The action of G′ on Q̃ can be extended to an action of the whole
group G provided that there exists a homomorphism ε : G→ Z with ε(Q) = 1. In
this case every b ∈ G acts on Q̃ by

(a, g)b := (ab, ga−εbb) = (ab, x−εbgb).

Since (a, g) ∗ (b, h) = (a, g)b for every (b, h) ∈ Q̃, we see that G acts by inner
automorphisms and p : Q̃→ Q ⊂ G is an augmentation.

Remark 27. Since all the information of (a, g) ∈ Q̃ is contained in g, we can just
as well consider the set G′ equipped with quandle operations

g ∗ h = x−1gh−1xh and g ∗ h = xgh−1x−1h.

These operations already appear in the work of D. Joyce [19], §7, on the representa-
tion theory of quandles. The notation proposed in the preceding lemma emphasizes
the meridian-longitude interpretation.

3.2. Quandle coverings. The quandle Q̃ = Q̃(G, x) constructed above is tailor-
made to capture longitude information. Considered purely algebraically, it is a
covering in the following sense:

Definition 28. A surjective quandle homomorphism p : Q̃→ Q is called a covering
if p(x̃) = p(ỹ) implies ã ∗ x̃ = ã ∗ ỹ for all ã, x̃, ỹ ∈ Q̃. In other words, the natural
representation Q̃→ Inn(Q̃) factors through p.

This property allows to define an action of Q on Q̃ by setting ã ∗ x := ã ∗ x̃ with
x̃ ∈ p−1(x). Note that every augmentation φ : Q̃ → G defines a covering Q̃ → Q

when restricted to its image Q = φ(Q̃).

Example 29. The natural representation QL → Inn(QL) factors through the
quotients QK and QπK , hence QL → QK and QL → QπK are coverings.

The term “covering” is motivated by formal similarities with covering maps in
the category of topological spaces. The unique path lifting property, for example,
corresponds to the unique lifting property for long knots:

Theorem 30. Suppose that L is a long knot and f : QL, qL → Q, q is a quandle
morphism. If p : Q̃, q̃ → Q, q is a covering, then f lifts to a unique quandle
morphism f̃ : QL, qL → Q̃, q̃ with f = pf̃ .

In particular, the natural projection QL, qL → QK , qK is the universal covering
of QK , and QL, qL → QπK ,mK is the universal covering of QπK .

Proof. Let D be a long knot diagram representing L. As usual we number the arcs
by 0, . . . , n and denote by (κ, ε) the Wirtinger code of D. Let q0, . . . , qn be the
corresponding generators of QL. Given a homomorphism f : QL, qL → Q, q, we
inductively define f̃ : {q0, . . . , qn} → Q̃ as follows: Since q0 = qL, we have f̃(q0) = q̃

to start with. At each positive resp. negative crossing we set f̃(qi) = f̃(qi−1)∗f(qκi)
resp. f̃(qi) = f̃(qi−1) ∗ f(qκi). By induction we have pf̃(qi) = f(qi) for all i.
This implies that f̃ satisfies the Wirtinger relations. It thus uniquely extends to a
homomorphism f̃ : QL, qL → Q̃, q̃ with f = pf̃ , as claimed. �
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Remark 31. The preceding proof is based on the fact that each generator q1, . . . , qn
is connected to q0 in a unique way via the Wirtinger relations. The argument holds
more generally for every quandle that is given by such a tree-like presentation.

On the other hand, the lifting property does not hold for closed knots, because
the Wirtinger relations form a cycle. Lemma 49 below determines the lifting ob-
struction in terms of quandle homology.

3.3. Quandle extensions. We will be mostly interested in coverings that are ga-
lois in the sense to be defined below. To illustrate this notion, let us consider a
group G = 〈xG〉, from which we construct quandles Q = xG and Q̃ = Q̃(G, x) as
in Lemma 25. As we have seen above, the projection p : Q̃→ Q is a covering map.
Moreover, covering transformations are given by the left action of Λ = C(x) ∩ G′
defined by λ · (a, g) = (a, λg). This action satisfies the following axioms:

(E1) (λx̃) ∗ ỹ = λ(x̃ ∗ ỹ) and x̃ ∗ (λỹ) = x̃ ∗ ỹ for all x̃, ỹ ∈ Q̃ and λ ∈ Λ.
(E2) Λ acts freely and transitively on each fibre p−1(x).

Axiom (E1) is equivalent to saying that Λ acts by automorphisms and the left
action of Λ commutes with the right action of Inn(Q̃). We denote such an action by
Λ y Q̃. In this situation the quotient Q := Λ\Q̃ carries a unique quandle structure
that turns the projection p : Q̃→ Q into a quandle covering.

Definition 32. A galois covering or extension E : Λ y Q̃ → Q consists of a
surjective quandle homomorphism Q̃ → Q and a group action Λ y Q̃ satisfying
axioms (E1) and (E2). We call E a central extension if Λ is abelian.

Quandle extensions are an analogue of group extensions, and central quandle
extensions come as close as possible to imitating central group extensions. This
will become even more evident in §5 where we classify central quandle extensions
via the second cohomology group H2(Q,Λ).

4. The structure of knot quandles

As before, we consider a long knot L and the corresponding closed knot K.
Theorems 33 and 35 explicitly determine the structure of the covering QL → QK
in terms of the group system (πK ,mK , lK). Corollary 39 extends this result to the
covering QL → QπK , where QπK is the conjugation quandle of K.

4.1. The fundamental quandle of a long knot. As a first step, we provide a
concrete presentation of QL in terms of the fundamental group πL.

Theorem 33. For every long knot L there exists a unique quandle isomorphism
QL ∼= Q̃(πL,mL) sending qL to (mL, 1) and respecting both augmentation maps
QL → πL and Q̃(πL,mL) → πL.

Proof. First recall that the universal properties of QL and πL induce the augmen-
tation φ : QL → πL. It respects basepoints in the sense that φ(qL) = mL, and its
image QπL is the conjugacy class of mL in πL. On the other hand we consider the
covering p : Q̃ → QπL with Q̃ = Q̃(πL,mL) as defined in Lemma 25. According to
Remark 26, p : Q̃→ QπL ⊂ πL is an augmentation as well.

Theorem 30 tells us that φ lifts to a unique quandle morphism Φ : QL → Q̃
with Φ(qL) = (mL, 1). This map is equivariant with respect to the action of πL: it
suffices to prove this for the action of a = φ(q) with q ∈ QL, thus

Φ(qa0 ) = Φ(q0 ∗ q) = Φ(q0) ∗ Φ(q) = Φ(q0) ∗ (a, g) = Φ(q0)a.
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We define the inverse map Ψ : Q̃ → QL by Ψ(a, g) = qgL. This map, too, is
equivariant with respect to the action of πL: for every x ∈ πL we have

Ψ
(
(a, g)x

)
= Ψ(ax,m−εx

L gx) = qgxL = Ψ(a, g)x.

The composition ΨΦ : QL → QL fixes qL, and ΦΨ : Q̃ → Q̃ fixes (mL, 1). Both
quandles are connected, which means that πL acts transitively. Equivariance thus
implies ΨΦ = id and ΦΨ = id. �

Corollary 34. For a long knot L, the natural representation φ : QL → πL is an
embedding if and only if L is trivial. Stated differently, QL can be embedded into a
group if and only if L is the trivial knot.

Proof. We continue to use the notation of the previous proof. Comparing the first
and the last arc of L, we find that Φ(qL) = (mL, 1) while Φ(q∗L) = (mL, lL), hence
qL 6= q∗L for every non-trivial long knot. Since φ(qL) = φ(q∗L) = mL, the natural
representation φ : QL → πL is an embedding if and only if L is trivial. Moreover,
any other representation QL → G factors through φ. Hence, if L is non-trivial,
then QL cannot be embedded into any group. �

This non-embedding result should be contrasted with the situation for a closed
knot K: H.Ryder [28] proved that the natural representation QK → πK is an
embedding if and only if K is trivial or prime (see Corollary 40 below).

4.2. The fundamental quandle of a closed knot. Besides the long knot L we
now consider its closure K. Recall that QK is obtained from QL by adjoining one
extra relation identifying the elements qL and q∗L, corresponding respectively to the
first arc and the last arc of L.

Theorem 35. The natural projection QL → QK is the universal covering of QK .
If K is trivial, then both QL and QK are trivial quandles. If K is non-trivial,
however, then QL → QK is a central extension with covering group Λ = 〈lK〉 ∼= Z.

Proof. We have seen in §3.2 that QL → QK is the universal covering of QK . Theo-
rem 33 allows to identify the fundamental quandle QL with Q̃(πK ,mK). The group
Λ = 〈lK〉 acts on Q̃(πK ,mK) on the left by λ · (a, g) = (a, λg). This action satisfies
axiom (E1) as defined in §3.3. We can thus pass to the quotient quandle Q̄ and
obtain a central extension Λ y QL → Q̄.

Since this quotient identifies qL = (mK , 1) and q∗L = (mK , lK), it factors through
QL → QK and induces a quandle homomorphism Φ : QK → Q̄. We define the
inverse map Ψ : Q̄ → QK by Ψ([a, g]) = qgK . This is well-defined because lK acts
trivially on qK . By construction we have Φ(qK) = [mK , 1] and Ψ([mK , 1]) = qK .
The group πK acts transitively on QK and on Q̄, and both quandle homomorphisms
Φ and Ψ are equivariant. We conclude that ΨΦ = id and ΦΨ = id. This means
that the action of Λ = 〈lK〉 defines a central quandle extension Λ y QL → QK . �

Remark 36. As a corollary, we can present QK as the quotient 〈lK〉\Q̃(πK ,mK).
An equivalent presentation was obtained by Joyce [19], Corollary 16.2. Conversely,
QK determines (πK ,mK , 〈lK〉). As a consequence, the knot quandle classifies knots
up to inversion, cf. Joyce [19], Corollary 16.3. The remaining ambiguity can be
removed by the orientation class [K] ∈ H2(QK), as explained in §6.
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4.3. The conjugation quandle of a knot. Having examined the fundamental
quandles QL and QK , we can now compare them to their common conjugation
quandle. Recall that QL allows a natural representation QL → πL on the knot
group πL. Its image QπL is the conjugacy class of the meridian mL and is called the
conjugation quandle of L. Since the knot groups πL and πK are identical, so are
the conjugation quandles QπL and QπK .

In order to understand QπK , we have to determine the centralizer of mK in πK .
Notice that πK = 〈mK〉n π′K , hence C(mK) = 〈mK〉 × Λ with Λ = C(mK) ∩ π′K .
The geometric significance of Λ is highlighted by the following theorem:

Theorem 37. If K is the connected sum of prime knots K1, . . . ,Kp, then their
longitudes l1K , . . . , l

p
K ∈ πK freely generate Λ = C(mK) ∩ π′K .

Proof. The connected sum K = K1 ] . . . ] Kp allows to define a family of group
homomorphisms πKi → πK , mapping every meridian mKi to mK and every longi-
tude lKi to some element liK such that lK = l1K · · · lpK . The theorem of Seifert and
vanKampen shows that πK is the amalgamated product πK1 ∗ · · · ∗πKp , where the
subgroups 〈mK1〉, . . . , 〈mKp〉 are identified via mK1 = · · · = mKp . In particular,
π′K = π′K1 ∗ · · · ∗ π′Kp is a free product, hence Λ = Λ1 ∗ · · · ∗ Λp. According to
Lemma 38 (proved below), we have Λi = 〈lKi〉 for every prime knot Ki. �

In the case of fibered knots, the preceding theorem was proven by D. Noga [26],
§4, and by W.Whitten [32], §2. The following lemma settles the general case. It is a
straightforward application of the annulus theorem, for which we refer to the article
by J.W. Cannon and C.D. Feustel [4] or the book by W. Jaco [18], Theorem VIII.13.
Similar applications have been worked out by J. Simon [29] and H. Ryder [28].

Lemma 38. If K is a prime knot, then C(mK) = 〈mK , lK〉.

Proof. Given a closed knot K ⊂ S3, we choose a standard framing f : S1×D2 ↪→ S3

as in §1.1. The exterior M = S3rf(S1 × int D2) is a compact oriented 3-manifold
with boundary ∂M = f(S1 × S1). As before we choose p = f(1, 1) as basepoint
and represent the meridian mK ∈ π1(M) by the curve µ = f |1×S1 . Given another
element c ∈ π1(M), we represent c by a loop γ : [0, 1] →M with γ(0) = γ(1) = p.

Let A = [0, 1] × S1 be the standard annulus. If c and mK commute, then
there exists a continuous map g : A → M such that g|0×S1 = g|1×S1 = µ and
g|[0,1]×1 = γ. If moreover c /∈ π1(∂M), then g is essential in the sense of [4, 18].
By a slight deformation we can then obtain an essential map ḡ : A → M such
that ḡ|∂A is an embedding. More explicitly, we can arrange that ḡ|1×S1 = µ̄ is
a different meridian, µ̄ = f |ϑ×S1 say, while ḡ|0×S1 = µ remains unchanged. The
annulus theorem [4, 18] then guarantees the existence of an essential embedding
h : A ↪→M with h|∂A = ḡ|∂A.

Considering again M ⊂ S3, we can cap off the embedded annulus h(A) by two
meridian disks f(1×D2) and f(ϑ×D2). This produces an embedded sphere S ⊂ S3

that meets K transversely in exactly two points. The annulus h(A) being essential
in M means that S splits K into two non-trivial summands (cf. [3], §15C). We
conclude that the existence of c ∈ C(mK)rπ1(∂M) implies that K is a non-trivial
connected sum. In other words, if K is prime, then C(mK) = 〈mK , lK〉. �

Corollary 39. For every long knot L, the natural projection QL → QπL is the
universal quandle covering of QπL. It is an extension whose covering group Λ is
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freely generated by the partial longitudes l1L, . . . , l
p
L ∈ πL coming from the prime

summands of a connected sum decomposition L = L1 ] · · · ] Lp.

Proof. We have already seen in §3.2 that QL → QπL is the universal covering
of QπL. Theorem 33 allows to identify QL → QπL with the canonical projection
Q̃(πL,mL) → QπL. By construction, the latter is an extension with covering group
Λ = C(mL) ∩ π′L. �

Corollary 40 ([28]). For a closed knot K, the natural projection QK → QπK is
an isomorphism if and only if K is trivial or prime. Stated differently, QK can be
embedded into a group if and only if K is trivial or prime.

Proof. Theorem 35 allows to identify QK with the quotient 〈lL〉\QL, where L is
the long knot corresponding to K. On the other hand, Corollary 39 identifies QπK
with 〈l1L, . . . , l

p
L〉\QL, where l1L, . . . , l

p
L are the longitudes of the prime summands of

L. Hence the projection QK → QπK is injective if and only if p ≤ 1. �

We remark that for p ≥ 2 the projection QK → QπK is a covering but not galois.
The universal covering QL → QπK , however, is always galois. This is another reason
why it it easier to work with QL instead of QK .

5. Quandle cohomology

We begin this section by recalling the definition of quandle cohomology [5]. The-
orem 44 shows that central extensions of a quandle Q by an abelian group Λ are
classified by elements of the second cohomology group H2(Q,Λ).

5.1. Quandle cohomology. Let Q be a quandle and let Λ be an abelian group.
An n-cochain is a map λ : Qn → Λ satisfying λ(a1, . . . , an) = 0 whenever ai = ai+1

for some index i. The set Cn = Cn(Q,Λ) of all n-cochains forms a Z-module. The
coboundary operator δn : Cn → Cn+1 is defined by

(δnλ)(a0, . . . , an) =
n∑
i=1

(−1)i
[
λ(aai

0 , . . . , a
ai
i−1, ai+1, . . . , an)

− λ(a0, . . . , ai−1, ai+1, . . . , an)
]
.

This defines a cochain complex (C∗, δ∗). As usual, the kernel Zn = ker(δn) is called
the submodule of n-cocycles, and the image Bn = im(δn−1) is called the submodule
of n-coboundaries. Their quotient Hn(Q,Λ) = Zn/Bn is the n-th cohomology
group of the quandle Q with coefficients in Λ.

Example 41. A 1-cochain is simply a map µ : Q→ Λ. It is a cocycle if and only if
µ(a ∗ b)− µ(a) = 0 for all a, b ∈ Q. In other words, 1-cocycles are exactly the class
functions, that is, constant on orbits under the action of Inn(Q). In particular, if
Q is connected, then H1(Q,Λ) = Λ.

5.2. Classification of central extensions. It is a classical result of group coho-
mology that central extensions of a group G with kernel Λ are classified by the sec-
ond cohomology groupH2(G,Λ), see for example Brown [2], §IV.3, or MacLane [21],
§IV.4. We will now prove that an analogous theorem holds for quandles. As the
referee pointed out, this result has independently been developed in [8, 9].

Lemma 42. Let E : Λ y Q̃→ Q be a central extension. Each section s : Q→ Q̃
defines a map λ : Q×Q→ Λ such that s(a)∗s(b) = λ(a, b)·s(a∗b). This map λ is a 2-
cocycle. Furthermore, if s′ : Q→ Q̃ is another section, then the associated 2-cocycle
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λ′ differs from λ by a 2-coboundary. Thus each central extension E determines a
cohomology class Φ(E) := [λ] ∈ H2(Q,Λ).

Proof. Since the action of Λ is free and transitive on each fibre, the above equation
uniquely defines the map λ. Idempotency of Q̃ implies λ(a, a) = 0 for each a ∈ Q,
so λ is a cochain. Self-distributivity implies the cocycle condition δλ = 0.

If s′ is another section, then there exists µ : Q→ Λ with s′(a) = µ(a) · s(a), and
we find λ − λ′ = δµ. This shows that the cohomology class [λ] is independent of
the chosen section, and hence characteristic of the extension E. �

Conversely, we will associate with each [λ] ∈ H2(Q,Λ) a central extension of Q
by Λ. There is essentially only one possibility to do this. More precisely:

Definition 43. Let Q be a quandle and Λ an abelian group. An equivalence
between two central extensions Λ y Q1 → Q and Λ y Q2 → Q is a quandle
isomorphism φ : Q1 → Q2 that respects projections, p1 = p2φ, and is equivariant,
i.e. φt = tφ for all t ∈ Λ. We define E (Q,Λ) to be the set of equivalence classes of
central extensions of Q by Λ.

Theorem 44. Let Q be a quandle and let Λ be an abelian group. For each central
extension E : Λ y Q̃→ Q let Φ(E) be the associated cohomology class in H2(Q,Λ).
This map induces a bijection Φ : E (Q,Λ) ∼= H2(Q,Λ).

Proof. First note that Φ is well-defined on equivalence classes of extensions. To
prove the theorem, we will construct an inverse map Ψ : H2(Q,Λ) → E (Q,Λ) as
follows. Given a 2-cocycle λ ∈ Z2(Q,Λ), we define the quandle Λ ×λ Q as the set
Λ×Q equipped with the binary operation

(u, a) ∗ (v, b) = (u+ λ(a, b), a ∗ b).

Indeed, this defines a quandle: idempotency is guaranteed by λ(a, a) = 0, the
inverse operation is given by

(u, a) ∗ (v, b) = (u− λ(a ∗ b, b), a ∗ b),

and self-distributivity follows from the cocycle condition δλ = 0. The action of Λ
is defined by t · (u, a) = (t+u, a). We obtain a central extension Λ y Λ×λQ→ Q.

If λ′ = λ+ δµ, then the corresponding extensions are equivalent via the isomor-
phism φ : Λ ×λ Q → Λ ×λ′ Q defined by φ(u, a) = (u + µ(a), a). Hence we have
indeed constructed a map Ψ : H2(Q,Λ) → E (Q,Λ).

To see that ΦΨ = id, let λ ∈ Z2(Q,Λ) and consider the section s : Q→ Λ×λ Q
with s(a) = (0, a). The corresponding cocycle is λ, hence ΦΨ = id.

It remains to show that ΨΦ = id. Given an extension E : Λ y Q̃ → Q, we
choose a section s : Q→ Q̃ and consider the corresponding 2-cocycle λ ∈ Z2(Q,Λ).
The map φ : Λ ×λ Q → Q̃ given by φ(u, a) = u · s(a) is then an equivalence of
extensions, which proves ΨΦ = id. �

6. Orientation classes

This section recalls the definition of quandle homology [6] and defines the orien-
tation class [K] ∈ H2(QK) of a knot K. Theorem 51 shows that the oriented knot
K is characterized by the pair (QK , [K]).
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6.1. Quandle homology. Given a quandle Q, let C ′n be the free abelian group
generated by n-tuples (a1, . . . , an) ∈ Qn. We define ∂n : C ′n → C ′n−1 by

∂n(a1, . . . , an) =
n∑
i=2

(−1)i
[
(aai

1 , . . . , a
ai
i−1, ai+1, . . . , an)

− (a1, . . . , ai−1, ai+1, . . . , an)
]
.

It is easily verified that (C ′∗, ∂∗) is a chain complex. Let C ′′n be the submodule
generated by all n-tuples a ∈ Qn with ai = ai+1 for some index i. Quandle axiom
(Q1) ensures that ∂n(C ′′n) ⊂ C ′′n−1, hence (C ′′∗ , ∂∗) is a sub-complex of (C ′∗, ∂∗).

We define the chain complex for our quandle Q as the quotient C∗ := C ′∗/C
′′
∗ .

The induced boundary operator is again denoted by ∂∗. As usual, the kernel
Zn = ker(∂n) is called the submodule of n-cycles, and the image Bn = im(∂n+1) is
called the submodule of n-boundaries. Their quotient Hn(Q) = Zn/Bn is the n-th
homology group of the quandle Q with integer coefficients.

Example 45. Every 1-cycle is just a formal sum
∑i=n
i=1 αiai of elements ai ∈ Q

with coefficients αi ∈ Z. The submodule of 1-boundaries is generated by differences
a ∗ b − a with a, b ∈ Q. This means that the equivalence classes of homologous
elements in Q coincide with orbits under the Inn(Q)-action, and these classes freely
generate H1(Q). In particular, we have H1(Q) = Z if and only if Q is connected.

Given an abelian group Λ, we define Cn(Q,Λ) = Cn(Q) ⊗ Λ. Notice that
Cn(Q,Λ) = Hom(Cn(Q),Λ) is the cochain complex defined in §5.1. This allows
to define quandle homology Hn(Q,Λ) = Hn(C∗(Q,Λ)) and quandle cohomology
Hn(Q,Λ) = Hn(C∗(Q,Λ)) in the usual way, and both notions are dual to each
other. Whenever the coefficient group is not specified, we tacitly assume Λ = Z.

Lemma 46. For every quandle Q and every abelian group Λ there are natural
isomorphisms H2(Q,Λ) ∼= H2(Q)⊗ Λ and H2(Q,Λ) ∼= Hom(H2(Q),Λ).

Proof. This follows from the Universal Coefficient Theorem and the fact thatH1(Q)
is free. See for example MacLane [21], Theorems III.4.1 and V.11.1. �

6.2. The orientation class of a closed knot. Let K be a closed knot and let D
be a diagram representing K. Let each arc of D be coloured with the corresponding
generator of QK . For each coloured crossing p with sign ε = ±1 as in Figure 2, we
define its weight to be (p) := ε · (a, b), considered as an element in C2(QK). Let
(D) ∈ C2(QK) be the sum of the weights of all crossings.

Lemma 47. For every closed diagram, (D) ∈ C2(QK) is a cycle. Its homology
class [D] ∈ H2(QK) is invariant under Reidemeister moves. Every closed knot K
can thus be equipped with a characteristic class [K] := [D] ∈ H2(QK).

The orientation class has been used implicitly by Carter et al. [5] to define a state-
sum invariant of knots. The explicit definition given here has independently been
studied by J.S. Carter, S. Kamada, and M. Saito in [7], building on the Ph.D. thesis
of M.T. Greene [17].

Proof of the lemma. Consider a positive crossing as in Figure 2a. Its weight is
+(a, b), which maps to ∂(a, b) = c − a. We interpret this as saying that the arc
coloured with a contributes the weight −a at its end, and the arc coloured with
c contributes +c at its beginning. The same holds for a negative crossing as in
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Figure 2b. Its weight is −(a, b), which maps to −∂(a, b) = a − c. Again we
interpret this as saying that the arc coloured with a contributes the weight +a
at its beginning, and the arc coloured with c contributes −c at its end. In total,
every arc, coloured with some a ∈ Q, contributes +a at its beginning and −a at
its end. For a closed knot diagram all contributions cancel each other, and we have
∂(D) = 0.

It is a routine exercise to check that [D] does not change under Reidemeister
moves. For R1-moves notice that we have quotiented out degeneracies, so that
(a, a) = 0 in C2(QK). An R2-move introduces two extra crossings, which cancel
each other because of our sign convention. An R3-move, finally, adds a 2-boundary.
The homology class [D] is thus an invariant of the knot, as claimed. �

Remark 48. We call [K] the orientation class of K. As its name suggests, it
encodes the orientation of K (see §6.4 below). Let K∗ be the inverse knot, obtained
from K by inverting the orientation of K and of the sphere S3. This operation
produces a canonical isomorphism φ : QK → QK∗ satisfying φ∗[K] = −[K∗].

6.3. The lifting lemma for closed knots. The orientation class [K] also encodes
the obstruction to the following lifting problem. Suppose that p : Q̃, q̃ → Q, q is a
central extension with covering group Λ and cohomology class [λ] ∈ H2(Q,Λ).

Lemma 49. Let K be a closed knot. A quandle morphism f : QK , qK → Q, q can
be lifted to a morphism f̃ : QK , qK → Q̃, q̃ if and only if

〈
[λ]

∣∣ f ∣∣ [K]
〉

vanishes.

This is a consequence of the following monodromy calculation:

Lemma 50. Let L be the long knot corresponding to K. Every homomorphism
f : QK , qK → Q, q can be lifted to a unique homomorphism h : QL, qL → Q̃, q̃. For
all a ∈ QL we have h(lK · a) = ` · h(a) with ` =

〈
[λ]

∣∣ f ∣∣ [K]
〉
.

Proof. The quandle homomorphism f : QK , qK → Q, q can be composed with
QL, qL → QK , qK to define a homomorphism g : QL, qL → Q, q. By Theorem 30,
there exists a unique lifting h : QL, qL → Q̃, q̃. We first prove that h(q∗L) = ` · q̃.

Let s : Q→ Q̃ be a section with s(q) = q̃ and s(a) ∗ s(b) = λ(a, b) · s(a ∗ b). As
usual, we represent L by a long diagram D, its arcs being numbered by 0, . . . , n. Let
q0, . . . , qn be the corresponding generators of QL. Define `i ∈ Λ by the condition
h(qi) = `i · sg(qi). We have `0 = 0 to start with. For i = 1, . . . , n we find
`i = `i−1 +

〈
λ

∣∣ f ∣∣ (pi)
〉
, where (pi) is the weight of the crossing pi. In total we

get ` = `n =
〈
[λ]

∣∣ f ∣∣ [K]
〉
, as claimed.

The equality h(lK · a) = ` · h(a) thus holds for the basepoint a = qL. If it holds
for a ∈ QL, then it also holds for a ∗ b and a ∗ b with b ∈ QL:

h(lK · a ∗ b) = h(lK · a) ∗ h(b) = ` · h(a) ∗ h(b) = ` · h(a ∗ b).

Since QL is connected, we conclude that h(lK · a) = ` · h(a) for all a ∈ QL. �

6.4. Classifying oriented knots. Joyce [19], building on the work of Wald-
hausen [31], showed that the fundamental quandle QK characterizes the knot K
up to inversion. The remaining ambiguity is removed by the orientation class
[K] ∈ H2(QK):

Theorem 51. An oriented knot K is characterized by the pair (QK , [K]).
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Proof. With the fundamental quandle QK we associate its universal group repre-
sentation φ : QK → π. Choosing a basepoint q ∈ QK defines a basepoint m = φ(q)
in the group π. Furthermore, the group π acts on QK with stabilizer Λ := Stab(q).

The abstract data (π,m,Λ) can easily be interpreted in terms of the fundamental
group. Since the natural representation QK → πK satisfies the same universal
property as φ : QK → π, there is a canonical isomorphism π ∼= πK , which is in fact
an isomorphism between (π,m,Λ) and (πK ,mK , 〈lK〉). Choosing a generator l ∈ Λ
thus yields (π,m, l) ∼= (πK ,mK , l

±1
K ). According to Theorem 11, this means that

(π,m,Λ) characterizes the knot K up to inversion (see [3], §3C).
If Λ is trivial, then the knot K is trivial and there is nothing to prove. Otherwise,

let Q̃, q̃ → QK , q be the universal covering of QK . We know from Theorem 35 that
it is a central extension with covering group Λ. The choice of a generator l ∈ Λ
defines an action of Z, where z ∈ Z acts by lz : Q̃ → Q̃. This corresponds to a
cohomology class [l] ∈ H2(QK) with

〈
[l]

∣∣ [K]
〉

= ±1. We choose the generator
l ∈ Λ such that

〈
[l]

∣∣ [K]
〉

= 1. By Lemma 50, the extensions Z y Q̃ → QK and
Z y QL → QK are then equivalent. It follows that (π,m, l) ∼= (πK ,mK , lK).

We can thus translate (QK , [K]) to the knot group system (πK ,mK , lK). Ac-
cording to Theorem 11, this data characterizes the knot K. �

7. Homology of knot quandles

As we have seen in the preceding sections, every knotK comes equipped with two
characteristic classes: the central extension QL → QK defines a cohomology class
[L] ∈ H2(QK), and the orientation of K defines a homology class [K] ∈ H2(QK).

We will now prove our main result. Recall that the quandles QL and QK are
connected, which implies H1(QL) = H1(QK) = Z and H1(QL) = H1(QK) = Z.
The interesting point is the second (co)homology group:

Theorem 52. Let L be a long knot and K the corresponding closed knot. We have
H2(QL) = H2(QL) = 0, and in the case of the trivial knot H2(QK) = H2(QK) = 0
as well. If K is non-trivial, however, then H2(QK) ∼= Z, and the orientation of K
defines a canonical generator [K] ∈ H2(QK). Dually, we have H2(QK) ∼= Z, and
the central extension QL → QK defines a canonical generator [L] ∈ H2(QK) whose
evaluation yields

〈
[L]

∣∣ [K]
〉

= 1.

Proof. We first show H2(QL,Λ) = 0. Consider [λ] ∈ H2(QL,Λ) and the associated
central extension p : Q̃ → QL. Theorem 30 says that there exists a quandle
morphism s : QL → Q̃ with ps = id, hence [λ] = 0 as claimed. Specializing to
Λ = H2(QL), the isomorphism H2(QL,Λ) ∼= Hom(H2(QL),Λ) implies H2(QL) = 0.

If the knot K is trivial, then QK consists of a single element, and Hn(QK) = 0
for all n ≥ 2. In the sequel we can thus assume that K is non-trivial. In this case,
Theorem 35 says that QL → QK is a central extension with covering group Λ ∼= Z
generated by the longitude lK ∈ πK . By Lemma 50, the associated cohomology
class [L] ∈ H2(QK) satisfies

〈
[L]

∣∣ [K]
〉

= 1. This shows that [K] generates an
infinite cyclic subgroup in H2(QK).

It remains to prove H2(QK) = 〈[K]〉. Consider an abelian group Λ and a linear
map λ : H2(QK) → Λ. By the Universal Coefficient Theorem, λ corresponds
to a cohomology class in H2(QK ,Λ). By Theorem 44, this class is realized by a
central extension Λ y Q̃ → QK . If λ([K]) = 0, then Lemma 49 implies that the



HOMOLOGICAL CHARACTERIZATION OF THE UNKNOT 19

extension splits and λ vanishes. In particular this is true for the quotient map
λ : H2(QK) → H2(QK)/〈[K]〉, which proves that H2(QK) = 〈[K]〉. �

8. Homology of conjugation quandles

In this section we determine the homology of the conjugation quandle QπK , that
is, the conjugacy class of the meridian mK in πK . Since the quandle QπK is con-
nected, we have H1(QπK) = H1(QπK) = Z. The rank of the second homology group,
however, depends on the number of prime summands:

Theorem 53. If K is the connected sum of prime knots K1, . . . ,Kp, then we have
H2(QπK) ∼= H2(QπK) ∼= Zp. Moreover, the orientation classes [K1], . . . , [Kp] map to
a basis of H2(QπK), and their dual classes [L1], . . . , [Lp] map to a basis of H2(QπK).

Proof. The connected sum K = K1 ] . . . ] Kp allows to define quandle monomor-
phisms αi : QπKi → QπK and epimorphisms βi : QπK → QπKi such that βiαi is the
identity for all i, whereas βiαj is the constant map to mKi whenever i 6= j.

Since each summand Ki is prime, Corollary 40 tells us that the fundamental
quandle QKi and the conjugation quandle QπKi are canonically isomorphic. We
can thus identify the orientation class [Ki] ∈ H2(QπKi) with its image under αi∗ :
H2(QπKi) → H2(QπK), and the dual class [Li] ∈ H2(QπKi) with its image under
β∗i : H2(QπKi) → H2(QπK). It follows from this construction that

〈
[Li]

∣∣ [Kj ]
〉

= δij .
This shows that [K1], . . . , [Kp] ∈ H2(QπK) freely generate an abelian subgroup of
rank p, and the same holds for [L1], . . . , [Lp] ∈ H2(QπK).

In order to show that H2(QπK) is generated by [K1], . . . , [Kp], we consider an
abelian group A and a linear map λ : H2(QπK) → A. By the Universal Coefficient
Theorem, λ corresponds to a cohomology class in H2(QπK , A), and by Theorem 44,
this class is realized by a central extension. If λ([K1]) = · · · = λ([Kp]) = 0, then
Lemma 54 (proved below) implies that the extension splits and λ vanishes. In par-
ticular this is true for the quotient map λ : H2(QK) → H2(QK)/〈[K1], . . . , [Kp]〉,
which proves that H2(QK) = 〈[K1], . . . , [Kp]〉. �

Lemma 54. Let η : Q̃, q̃ → Q, q be a central extension with covering group A and
cohomology class [λ] ∈ H2(Q,A). A quandle morphism f : QπK ,mK → Q, q can be
lifted to a morphism f̃ : QπK ,mK → Q̃, q̃ if and only if

〈
[λ]

∣∣ f ∣∣ [Ki]
〉

vanishes for
all i = 1, . . . , p.

This is a consequence of the following monodromy calculation. Recall from
Corollary 39 that the universal covering of QπK is given by Λ y QL → QπK , where
QL is the fundamental quandle of the corresponding long knot L, and the covering
group Λ is freely generated by the partial longitudes l1K , . . . , l

p
K ∈ πK coming from

the prime summands K1, . . . ,Kp.

Lemma 55. Let η : Q̃, q̃ → Q, q be a central extension with covering group A and
cohomology class [λ] ∈ H2(Q,A). Every homomorphism f : QπK ,mK → Q, q can
be lifted to a unique homomorphism h : QL, qL → Q̃, q̃. For all a ∈ QL we have
h(liK · a) = `i · h(a) with `i =

〈
[λ]

∣∣ f ∣∣ [Ki]
〉
.

Proof. The quandle homomorphism f : QπK ,mK → Q, q can be composed with the
natural projection QL, qL → QπK ,mK to define a homomorphism g : QL, qL → Q, q.
By Theorem 30, there exists a unique lifting h : QL, qL → Q̃, q̃ with g = ηh. Since
g(liK · a) = g(a), there exists `i ∈ A such that h(liK · a) = `i · h(a). It follows that
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h(liK · aφ) = `i · h(aφ) for all φ ∈ Inn(QL). Since QL is connected, the factor `i is
the same for all a ∈ QL.

We represent the knot K = K1 ] . . . ] Kp as a planar diagram D = D1 ] . . . ] Dp

realizing the connected sum decomposition. The monodromy `i can be read off the
diagram D as in the proof of Lemma 50: it suffices to travel along the summand
Di. Each crossing pi1, . . . , p

i
n contributes

〈
λ

∣∣ f ∣∣ (pij)
〉
, and in total we obtain

`i =
〈
λ

∣∣ f ∣∣ (Di)
〉
. Since the 2-cocycle (Di) represents the cohomology class [Ki],

we conclude that `i =
〈
[λ]

∣∣ f ∣∣ [Ki]
〉
. �

9. Homology of link quandles

Our calculation of homology groups can be generalized from knot quandles to
link quandles. All proofs parallel those given for knots — they are slightly more
technical but introduce no new ideas. We will therefore only sketch the main
ingredients.

In this section, let K ⊂ S3 be a link with n components. A component Ki of K is
called trivial if there exists an embedded disk D ⊂ S3 with Ki = K ∩D = ∂D. As
in the case of knots, Dehn’s lemma [27] allows to formulate this geometric condition
in terms of the fundamental group: the component Ki is trivial if and only if its
longitude liK ∈ πK is trivial.

Remark 56. Just as K has n components, its fundamental quandle QK decom-
poses into n orbits under the action of Inn(QK). More precisely, if we choose
meridians q1K , . . . , q

n
K ∈ QK , one for each component K1, . . . ,Kn ⊂ K, then

their orbits Q1
K , . . . , Q

n
K form the desired decomposition of QK . This implies

H1(QK) = H1(QK) = Zn. See Examples 41 and 45, or [6], Proposition 3.8.

Orientation classes [K1], . . . , [Kn] ∈ H2(QK) can be defined as before, summing
over each component separately. The lifting lemma now takes the following form:

Lemma 57. Suppose that K is a closed link and f : QK → Q is a quandle
morphism with f(qiK) = qi for all i. Let p : Q̃ → Q be a central extension with
p(q̃i) = qi for all i, let Λ be its covering group, and let [λ] ∈ H2(Q,Λ) be the
associated cohomology class. Then there exists a lifting f̃ : QK → Q̃ with f = pf̃
and f̃(qiK) = q̃i for all i if and only if all evaluations

〈
[λ]

∣∣ f ∣∣ [Ki]
〉

vanish. �

For each i consider the long link Li obtained from K by opening the component
Ki while leaving all other components closed. Up to isotopy there is only one way
of doing this, so we can speak of Li as the i-th long link associated with K. As
before the quandle QK can be obtained from QLi by adjoining one extra relation
identifying both ends of Li.

Lemma 58. The natural projection of fundamental quandles pi : QLi → QK is
a quandle covering. For each closed component j 6= i, it induces an isomorphism
pji : QjLi ∼= QjK . For the open component i, the restriction pii : QiLi → QiK is a
central extension with covering group Λi = 〈lKi〉. �

Notice that the covering pi : QLi → QK is not a central extension in the sense
of §3.3, because the action Λi is not free on each fibre. Nevertheless, it is possible
to associate cohomology classes [L1], . . . , [Ln] ∈ H2(QK) with the maps p1, . . . , pn.

These prerequisites being in place, it is now an easy matter to determine the
second (co)homology group of the link quandle QK , thus proving Theorem 10 stated
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in the introduction. The proof simply reformulates the above proof of Theorem 52,
so we will omit it.

A similar analysis can be carried out for the conjugation quandle QπK .

10. Algorithmic questions

We conclude this article with a few remarks on algorithmic questions.

10.1. The unknotting problem. The discussion of knot groups and knot quan-
dles touches upon the notoriously difficult classification problem: given two knots,
how can we decide whether or not they are equivalent? W.Haken, G. Hemion, and
others proved that this problem is algorithmically solvable [23].

In this article we have restricted our attention to the less ambitious but still very
difficult unknotting problem: given a knot, how can we decide whether or not it is
trivial? Dehn’s lemma [27] translates this into a group-theoretical criterion: a knot
K is trivial if and only if its longitude lK ∈ πK vanishes.

Remark 59. Dehn’s lemma can be turned into an algorithm, using a result of
W.Thurston (see [30], Theorem 3.3): knot groups are residually finite, i.e. for every
non-trivial element x ∈ πK there exists a finite group G and a homomorphism
φ : πK → G such that φ(x) 6= 1.

Restricted to the class of residually finite groups, the word problem can be
solved in a uniform way (see [25] or [24], Theorem 5.3): there exists an algo-
rithm that, given a residually finite group G = 〈x1, . . . , xm | r1, . . . , rn〉 and a word
w ∈ 〈x1, . . . , xm〉, decides whether or not w vanishes in G. Applied to a Wirtinger
presentation of (πK , lK), this algorithm thus solves the unknotting problem. De-
spite its theoretical importance, however, this algorithm is far from being practical.

10.2. Computing quandle homology. Theorem 1 says that a knot K is trivial if
and only if H2(QK) = 0. At first glance this seems to be a step towards a practical
algorithm. Alas, the main difficulty resides in the following question:

Question 60. Given a knot quandle QK , is there an algorithm for computing
H2(QK)? If so, what is the complexity of this problem?

In order to estimate the difficulty of this question, let us consider a group-
theoretical analogue. For a finitely presented group G, it is easy to compute
H1(G) = G/[G,G]. For the second homology group, we quote the well-known
theorem of H.Hopf (cf. Brown [2], §II.5): given G = F/R, where F is a free group,
there is an isomorphism

H2(G) ∼=
R ∩ [F, F ]

[F,R]
.

In particular, if G has a finite presentation P , then H2(G) is finitely generated.
Does this mean that we can effectively compute H2(G) from P? Quite surprisingly,
this is not the case! C.Gordon [16] has shown that there is no algorithm for deciding,
given a finite presentation of a group G, whether or not H2(G) = 0.

Returning to our initial Question 60, it is worth emphasizing that knot quandles
are a special class of quandles, and their Wirtinger presentations form a special
class of presentations. It is in this restricted setting that we are looking for an
algorithm to compute H2(QK). As far as I know, the question remains open. A
detailed investigation would certainly be desirable.
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