

Nullstellensuche in der Ebene \mathbb{R}^2 J129 Erläuterung	Nullstellensuche in der Ebene \mathbb{R}^2
Die Technik der Nullstellensuche ist nicht auf komplexe Polynome $F \in \mathbb{C}[z]$ beschränkt, sondern funktioniert allgemein für jede stetige Funktion $F : \mathbb{R}^2 \supseteq R \to \mathbb{R}^2$, insbesondere Polynomfunktionen.	Beweis: (1) Hat $F: R \to \mathbb{R}^2$ keine Nullstelle, so haben wir die Homotopie $H: [0, 1]^2 \to \mathbb{R}^2 \setminus \{0\}$ mit $H_t = F \circ ((1 - t)a + t\gamma)$, also $H: \text{const} \simeq F \circ \gamma$ und $\deg(F \circ \gamma) = 0$. Per Kontraposition folgt die Aussage (2).
Lemma J1v: ebene Nullstellensuche Sei $R = [a, b, c, d] \subseteq \mathbb{R}^2$ ein Rechteck und $\gamma = a, b, c, d, a $ der Randweg.	(3) Wir beginnen mit einem Rechteck $R_0 \subseteq \mathbb{R}^2$, so dass $F \partial R_0$ keine Nullstelle hat und $\deg(F \partial R_0) \neq 0$ erfüllt. Wir unterteilen unser Rechteck $R_0 = A \cup B \cup C \cup D$ in vier gleichgroße Teilrechtecke. Dabei gilt
 Sei F: R → ℝ² stetig. Hat F keine Nullstelle, so folgt deg(F ∘ γ) = 0. Hat F keine Nullstelle auf dem Rand δR und gilt deg(F ∘ γ) ≠ 0, 	$1 = \deg(F \partial R_0) = \deg(F \partial A) + \deg(F \partial B) + \deg(F \partial C) + \deg(F \partial D).$
 so hat F eine Nullstelle im Innere Int R unseres Rechtecks. 3 Ein solche Nullstelle kann durch wiederholte Rechteckviertelung beliebig genau lokalisiert werden. 	Also existiert ein $R_1 \in \{A, B, C, D\}$ mit $\deg(F R_1) \neq 0$. (Jede Nullstelle auf dem Rand löst ebenfalls unser Problem, sollte aber bei diesem Verfahren abgefangen und gesondert behandelt werden, wie in J1R.)
Konkret für Polynomfunktionen $F:\mathbb{R}^2\supseteq R\to\mathbb{R}^2:(x,y)\mapsto\sum_{i,j}a_{ij}x^iy^j$ mit $a_{ij}\in\mathbb{R}$ können wir die Umlaufzahl $\deg(F\circ\gamma)$ algebraisch durch Sturm–Ketten berechnen (siehe Skript, J1s).	So fortfahrend erhalten wir $R_0 \supseteq R_1 \supseteq \cdots \supseteq R_n$ mit $\deg(F R_n) \neq 0$, also existiert eine Nullstelle von F in R_n . Wir können R_n bis zu jeder gewünschten Präzision verkleinern. \$\$QED\$
Brouwers Fixpunktsatz, konstruktive Fassung	J132 Brouwers Fixpunktsatz, konstruktive Fassung
Brouwers Fixpunktsatz J4H in Dimension $n \in \mathbb{N}$ besagt: Jede stetige Abbildung $f: \mathbb{D}^n \to \mathbb{D}^n$ hat einen Fixpunkt $a \in \mathbb{D}^n$, mit $f(a) = a$. In Dimension $n = 1$ folgt dies leicht aus dem Zwischenwertsatz. Mit der Umlaufzahl können wir jetzt bereits den Fall $n = 2$ beweisen. Ich formuliere diesen berühmten Satz hier konstruktiv, als Algorithmus zur Lokalisierung eines Fixpunkts, etwa für polynomielle Abbildungen. Statt der Kreisscheibe \mathbb{D}^2 betrachten wir lieber das Quadrat $[-1, 1]^2$; das ist topologisch äquivalent, aber algorithmisch vorteilhaft.	Beweis: Wir nutzen die Maximumsnorm $ (x, y) := \max\{ x , y \}$, denn für diese haben wir $R := [-1, 1]^2 = \{z \in \mathbb{R}^2 : z \le 1\}$. Darauf betrachten wir die affine Homotopie $H : [0, 1] \times R \to \mathbb{R}^2$ mit $H_t(z) = z - tf(z)$ von $H_0 = \operatorname{id}_R$ nach $H_1 = F$ mit $F(z) = z - f(z)$. (a) Es gilt $ H_t(z) = z - tf(z) \ge z - t f(z) = 1 - t f(z) $ für jeden Randpunkt $z \in \partial R$. Hier gilt $H_t(z) = 0$ genau dann, wenn $t = 1$ und $z = f(z)$, also einen Fixpunkt auf dem Rand vorliegt.
Satz J1w: Fixpunktsatz von Brouwer Jede stetige Abbildung $f : [-1, 1]^2 \rightarrow [-1, 1]^2$ hat einen Fixpunkt; ein solcher kann durch iterierte Rechteckviertelung lokalisiert werden.	(b) Andernfalls gilt $H_t(z) \neq 0$ für alle $z \in \partial R$ und $t \in [0, 1]$. Dank Homotopie-Invarianz (J1J) gilt $\deg(F \partial R) = \deg(\operatorname{id} \partial R) = 1$. Dank Lemma J1v hat F eine Nullstelle $z \in \operatorname{Int} R$, es gilt also
Bemerkung : Für jede <i>kontraktive</i> Abbildung $f : [-1, 1]^2 \rightarrow [-1, 1]^2$ garantiert der Banachsche Fixpunktsatz (C4Q) Existenz und Eindeutigkeit eines Fixpunktes und liefert zudem ein effizientes Näherungsverfahren. Voraussetzung und Folgerung sind hier wesentlich stärker.	0 = F(z) = z = f(z), und some nat f enten Fixpunkt. Das beweist die Existenz eines Fixpunktes $z \in R$. Darüber hinaus liefert Lemma J1v ein Verfahren zur Lokalisierung eines Fixpunktes. QED
Kreuzende Wege schneiden sich.	Kreuzende Wege schneiden sich.
Als eine weitere schöne Anwendung der Umlaufzahl beweisen wir nun: Je zwei Wege in einem Rechteck $[a, b] \times [c, d]$, die gegenüberliegende Seiten verbinden, sich also "kreuzen", haben einen Schnittpunkt.	Satz J1x: Kreuzende Wege schneiden sich. Seien $f, g: [-1, 1] \rightarrow [-1, 1]^2$ stetig mit $f_1(\pm 1) = \pm 1$ und $g_2(\pm 1) = \pm 1$. Dann kreuzen sich diese Wege: Es existieren $s, t \in [-1, 1]$ mit $f(s) = g(t)$. Eine solche Lösung kann durch Rechteckviertelung lokalisiert werden.
$\begin{tabular}{ c c c c } \hline \hline & \hline & \hline & \hline & \hline & & & \hline & \hline & & \hline & \hline & & \hline \hline & \hline & \hline & \hline \hline & \hline & \hline \hline$	Beweis: Für $h: [-1, 1]^2 \to \mathbb{R}^2: (s, t) \mapsto (f_1(s) - g_1(t), g_2(t) - f_2(s))$ gilt $h(s, t) = 0$ gdw $f(s) = g(t)$: Die Kreuzungspunkte sind die Nullstellen! (a) Hat h eine Nullstelle auf dem Rand, so ist dies ein Kreuzungspunkt. (b) Hat h keine Nullstellen auf dem Rand, so gilt $\deg(h \partial[-1, 1]^2) = 1$. Genauer: Die affine Homotopie $H: [0, 1] \times \partial[-1, 1]^2 \to \mathbb{R}^2$ mit $H(r, s, t) := (1 - r)(s, t) + rh(s, t)$ geht von $H_0(s, t) = (s, t)$ nach $H_1(s, t) = h(s, t)$ und verläuft in $\mathbb{R}^2 \setminus \{0\}$: In jedem Randpunkt $(s, t) \in \partial[-1, 1]^2$ weist der Vektor $h(s, t)$ nicht in das Quadrat $[-1, 1]^2$ hinein, denn $f_1(-1) \le g_1(t) \le f_1(1)$ und $g_2(-1) \le f_2(s) \le g_2(1)$. Dank Homotopie-Invarianz folgt $\deg(h \partial[-1, 1]^2) = \deg(H_0) = 1$.
der Form der Fläche: Andere Flächen haben diese Eigenschaft nicht!	$\label{eq:def_Dank Lemma J1v hat h eine Nullstelle $(s,t) \in Int[-1,1]^2$.} \qquad \qquad \mbox{QED}$
Kreuzende Wege schneiden sich.	Kreuzende Wege schneiden sich.
Der Satz beruht auf der Vollständigkeit von \mathbb{R} . Es ist immer wieder heilsam, sich drastische Gegenbeispiele über \mathbb{Q} vor Augen zu führen: Übung J1 Y: Vollständigkeit ist wesentlich! (1) Über \mathbb{Q} gibt es stetige Abbildungen $f, g: [-1,1]_{\mathbb{Q}} \to [-1,1]_{\mathbb{Q}}^2$ mit $f_1(\pm 1) = \pm 1$ und $g_2(\pm 1) = \pm 1$, aber $f(s) \neq g(t)$ für alle $s, t \in [-1,1]_{\mathbb{Q}}$. (2) Über \mathbb{Q} gibt es Homotopien $H: [0,1] \times \mathbb{S}_{\mathbb{Q}}^1 \to \mathbb{Q}^2 \setminus \{0\}$ von $H_0 = \mathrm{id}$ nach $H_1 = \mathrm{const}$, wobei $\mathbb{S}_{\mathbb{Q}}^1 := \mathbb{S}^1 \cap \mathbb{Q}^2 = \{(x,y) \in \mathbb{Q}^2 x^2 + y^2 = 1\}$. Anders als über \mathbb{R} gibt es über \mathbb{Q} keine homotopie-invariante Umlaufzahl!	Q ² Diese Wege "kreuzen" sich, haben aber keinen gemeinsamen Schnittpunkt! Q ²
Die reellen Zahlen $(\mathbb{R},+,\cdot,\leq)$ sind ordnungsvollständig. Daraus folgen insbesondere alle topologischen Eigenschaften, wie Zusammenhang und Kompaktheit von $[a,b]$. Über $(\mathbb{Q},+,\cdot,\leq)$ jedoch gilt all dies nicht! Unsere topologische Anschauung wird über \mathbb{R} bestätigt, doch über \mathbb{Q} enttäuscht. Dieser Kontrast betont erneut, wie wichtig ein sorgsamer Aufbau ist, sowohl Werkzeuge (Definitionen, Sätze, Beweise) als auch Beispiele.	Losung: (1) Die Abbildungen $f, g: [-1, 1]_{\mathbb{Q}} \to [-1, 1]_{\mathbb{Q}}^{\infty}$ mit $f(s) = (s, 0)$ und $g(t) = (t, (t+1)^2/2 - 1)$ erfüllen $f_1(\pm 1) = \pm 1$ und $g_2(\pm 1) = \pm 1$. Dennoch gilt $f(s) \neq g(t)$ für alle $s, t \in [-1, 1]_{\mathbb{Q}}$, denn $\sqrt{2} \notin \mathbb{Q}$. (2) Die affine Abbildung $H(s, q) = (1 - s)q + s(1, 1)$ ist stetig und erfüllt $H(0, q) = q$ und $H(1, q) = (1, 1)$. Wegen $\sqrt{2} \notin \mathbb{Q}$ gilt $\mathbb{S}_{\mathbb{Q}}^1 \cap \mathbb{R} \cdot (1, 1) = \emptyset$, also $H(s, q) \neq 0$ für alle $s \in [0, 1]$ und $q \in \mathbb{S}_{\mathbb{Q}}^1$.

Inventor's paradox nach George Pólya	Inventor's paradox nach George Pólya
Die stärkere Aussage ist hier einfacher zu beweisen. Wie kann das sein? Das ist bei vollständiger Induktion ein häufiges, ja typisches Phänomen! George Pólya nannte dies treffenderweise das inventor's paradox: The typical proposition A accessible to proof by mathematical induction has an infinity of cases $A_0, A_1, A_2, \dots, A_n, \dots$ The case A_0 is often easy; at any rate, A_0 has to be handled by specific means. Once A_0 is established, we have to prove A_{n+1} assuming A_n . A proposition A' stronger than A may be easier to prove than A. In fact, let A' consist of the cases $A'_0, A'_1, A'_2, \dots, A'_n, \dots$. In passing from A to A' we make the burden of the proof heavier: we have to prove the stronger A'_{n+1} instead of A_{n+1} . Yet we make also the support of the proof stronger: we may use the more informative A'_n instead of A_n . Lernen ist induktiv: Ihre Investition von gestern ist Ihr Ertrag von heute. Ihre Investition von heute ist Ihr Ertrag von morgen. So geht es weiter Jetzt mehr zu leisten, erlaubt anschließend mehr zu nutzen, usw.	$ \begin{bmatrix} I \end{bmatrix} n \ trying \ to \ devise \ a \ proof \ by \ mathematical \ induction, \\ you \ may \ fail \ for \ two \ opposite \ reasons. \\ You \ may \ fail \ because \ you \ try \ to \ prove \ too \ much: \\ \\ \begin{bmatrix} given \ A_n \end{bmatrix} \ you \ A_{n+1} \ is \ too \ heavy \ a \ burden. \\ Yet \ you \ may \ also \ fail \ because \ you \ try \ to \ prove \ too \ little: \\ you \ A_n \ is \ too \ weak \ a \ support \ [to \ deduce \ A_{n+1}]. \\ You \ have \ to \ balance \ the \ statement \ of \ your \ theorem \\ so \ that \ the \ support \ is \ just \ enough \ for \ the \ burden. \\ George \ Pólya, \ 1887-1985, \ Mathematics \ and \ plausible \ reasoning. \\ vol. \ I, \ Induction \ and \ analogy \ in \ mathematics, \ 1954, \ p. \ 119 \\ Wenn \ Sie \ eigenständig \ Induktionsbeweise \ führen, \ müssen \ Sie \ also \ (1) \ die \ Behauptung \ A(n)_{n\geq m} \ geeignet \ formulieren \ und \ ausbalancieren \ (2) \ und \ damit \ anschließend \ den \ Induktionsbeweis \ sorgfältig \ ausführen. \\ Viele \ Übungsaufgaben \ verlangen \ nur \ (2), \ das \ ist \ leichter, \ aber \ künstlich. \\ Aufgabe \ (1) \ erfordert \ verzweigtes \ Erkunden \ und \ planvolles \ Probieren. \\ Für \ (1) \ benötigen \ Sie \ meist \ Kreativität, \ für \ (2) \ nur \ solides \ Handwerk. \\ \end{bmatrix}$
Weniger ist mehr? Weniger ist schwer! J219 Erläuterung Erläuterung	Weniger ist mehr? Weniger ist schwer! J220 Erläuterung
Ich konnte an dieser besonderen Gelegenheit nicht achtlos vorbeigehen, ich musste Ihnen den ersten, erfolglosen Beweisversuch zeigen, damit Sie den zweiten, erfolgreichen Beweis würdigen können. Ich wünsche Ihnen ein lebenslang wirksames Aha! In Ihrem Studium sehen und lösen Sie viele Aufgaben, von folgender künstlicher Form: "Zeigen Sie Aussage A_n per Induktion für alle $n \in \mathbb{N}$." Wie Sie aus Ihrer Erfahrung wissen, kann das leicht oder schwer sein. Immerhin wissen Sie sofort und genau, welche Aussage A_n zu zeigen ist. In der Praxis stehen Sie vor einem zusätzlichen, natürlichen Problem: Wenn Ihnen niemand die Aufgabe hilfreich entlastend vorformuliert, dann müssen Sie sich selbst vortasten und irgendwann entscheiden: Welche Aussagenfamilie $(A_n)_{n\in\mathbb{N}}$ wollen Sie überhaupt zeigen? Dasselbe gilt insgesamt für Ihr Studium: Solide Grundlagen kosten anfangs Mühe, doch dann tragen sie reiche Früchte. Das lohnt sich! Leben allgemein ist ein Balanceakt zwischen Investition und Konsum. Ihre Vorbereitung von heute ist Ihr Nutzen von morgen!	$\begin{array}{l} \textbf{Beispiel:} \mbox{ Wir betrachten } s_n = \sum_{k=1}^n 1/k^2 = 1/1 + 1/4 + 1/9 + \dots + 1/n^2.\\ \mbox{ Beweisen Sie die Schranke } s_n < 2 \mbox{ für alle } n \in \mathbb{N}_{\geq 1}. \mbox{ Gelingt Induktion?}\\ \mbox{ Erste Beweisversuche per Induktion schlagen fehl: Der Schritt misslingt.}\\ \mbox{ Es ist leichter, eine stärkere Aussage zu beweisen, etwa } s_n \leq 2 - 1/n.\\ \mbox{ Beweis: Induktionsanfang: } s_1 = 1 \leq 2 - 1/1. \mbox{ Induktionsschritt:}\\ s_n = s_{n-1} + \frac{1}{n^2} \leq 2 - \frac{1}{n-1} + \frac{1}{n^2} < 2 - \frac{n}{n(n-1)} + \frac{1}{n(n-1)} = 2 - \frac{1}{n}\\ \mbox{ Alternative: Für alle } k \geq 2 \mbox{ gilt } 1/k^2 \leq 1/k(k-1) = 1/(k-1) - 1/k,\\ \mbox{ also } \sum_{k=2}^n 1/k^2 = \sum_{k=2}^n 1/(k-1) - 1/k = 1 - 1/n \mbox{ (Teleskopsumme)}.\\ \mbox{ Monotonie und oberer Schranke garantieren Konvergenz } s_n \nearrow s \in [1,2].\\ \mbox{ Es war lange ein berühmtes Problem, den Grenzwert } s \mbox{ zu berechnen.}\\ \mbox{ Euler fand 1735 den richtigen Wert } s = \pi^2/6 = 1.64493 \dots.\\ \mbox{ Das Problem der Balance entsteht nicht nur bei vollständiger Induktion, sondern bereits in endlichen Argumentationsketten und Rechnungen.\\ \mbox{ Wir formulieren Übungsaufgaben daher wohlüberlegt und detailliert!}\\ \end{array}$
Der Satz von Schoenflies für polygonale Jordan-Kurven	Der Satz von Schoenflies für polygonale Jordan-Kurven
Jordan: Jede Kurve $\mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ trennt \mathbb{R}^2 in zwei Gebiete A und B.	Schoenflies: Das innere Gebiet ist homöomorph zu einer Kreisscheibe.
Der Satz von Schoenflies für polygonale Jordan-Kurven	Der Satz von Schoenflies für polygonale Jordan-Kurven
Satz J2j: Schoenflies für polygonale Jordan–Kurven (0) Für jede polygonale Kurve $\mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ gilt $(\mathbb{R}^2, C) \cong (\mathbb{R}^2, \mathbb{S}^1)$, d.h. es existiert ein Homöomorphismus $h : \mathbb{R}^2 \Rightarrow \mathbb{R}^2$ mit $h(C) = \mathbb{S}^1$. (1) Genauer: Das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ zerfällt in zwei Gebiete, A unbeschränkt und B beschränkt, mit $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$. Sei \mathcal{X} eine affine Triangulierung von \overline{B} und $D \in \mathcal{K}_2$ ein Dreieck. Sei $U \subseteq \mathbb{R}^2$ eine offene Umgebung des Kompaktums $\overline{B} \setminus \overline{D}$. Dann existiert ein stückweiser affiner Homöomorphismus $h : \mathbb{R}^2 \Rightarrow \mathbb{R}^2$ mit $h(\overline{B}) = D$ und Träger $\mathrm{sup}(h) \subseteq U$. Beweis: (1) Induktion über $n = \sharp \mathcal{K}_2$: Für $n = 1$ genügt $h = \mathrm{id}_{\mathbb{R}^2}$. Für $n \ge 2$ können wir ein Dreieck $\Delta \in \mathcal{K}_2 \setminus \{D\}$ einklappen (J21) durch einen stückweise affinen Homöomorphismus mit Träger in U (J2H). (0) Dank (1) haben wir zunächst $h : \mathbb{R}^2 \Rightarrow \mathbb{R}^2$ mit $h(\overline{B}) = D$. Radiale Projektion (F6G) liefert $k : \mathbb{R}^2 \Rightarrow \mathbb{R}^2$ mit $k(D) = \mathbb{D}^2$. Komposition ergibt $k \circ h : (\mathbb{R}^2, \overline{B}) \cong (\mathbb{R}^2, D) \cong (\mathbb{R}^2, \mathbb{D}^2)$.	 ② Die genauere und ausführliche Formulierung (1) besagt anschaulich: Wir müssen in der Ebene nur so viel bewegen wie offensichtlich nötig, eine beliebig kleine offene Umgebung U genügt hierzu. ③ Der Satz von Jordan–Schoenflies gilt nicht nur für polygonale Einbettungen S¹ → ℝ² sondern ganz allgemein für alle Einbettungen! Die beiden Sätze sind dann allerdings weit schwieriger zu beweisen. Ich gehe hier den leichteren Weg und setze polygonale Einbettung S¹ → ℝ² voraus. Daran können Sie die kombinatorisch-topologischen Grundideen gut erlernen und müssen sich im ersten Durchgang nicht mit technischen Schwierigkeiten belasten. Alles ist wunderbar explizit! In der komplexen Analysis (aka Funktionentheorie) lernen Sie später den wunderbaren Riemannschen Abbildungssatz (J2B), der das Problem vollkommen allgemein und extrem elegant löst. Freuen Sie sich drauf! Einstweilen arbeiten wir ganz elementar mit simplizialen Methoden.

Der Jordansche Nicht-Trennungssatz	Der Jordansche Nicht-Trennungssatz
Satz J2R: Nicht-Trennungssatz	Satz J2T: der Jordansche Nicht-Trennungssatz
Für jede einfache Kurve $[0,1] \cong C \subseteq \mathbb{R}^n$ und $n \ge 2$ gilt:	Für jede Einbettung $f : [0,1]^{\kappa} \hookrightarrow \mathbb{R}^n$ ist $\mathbb{R}^n \setminus \text{Im } f$ wegzusammenhängend.
 Das Komplement A = ℝⁿ \ C ist wegzusammenhangend. Der Pand der Komplements ℝⁿ \ C in ℝⁿ ist die Menge C 	Für die Topologie der Ebene interessiert uns zunächst $n = 2$, und hier
In kleiner Dimension $n < 2$ oder für polygonale Kurven <i>C</i> gilt stärker:	allen Dimensionen gleich, daher formuliere ich ihn hier allgemein. Als
3 Es existiert ein Homöomorphismus $h : \mathbb{R}^n \setminus C \simeq \mathbb{R}^n \setminus \{0\}$.	Hilfsmittel benötigen wir folgendes Ergebnis, auf das ich hier vorgreife:
4 Es existiert ein Homöomorphismus $h : \mathbb{R}^n \cong \mathbb{R}^n$ mit $h(C) = [0, 1]$.	Lemma J4E:
Die Schwierigkeit dieses Satzes liegt in der schwachen Voraussetzung:	Es gibt keine stetige Retraktion $r:\mathbb{D}^{n+1}\to\mathbb{S}^n$ des Balls auf seinen Rand.
Zwar ist der Teilraum $C \cong [0, 1]$ sehr einfach, aber er kann kompliziert im	Für $n = 1$ genügt der Zwischenwertsatz, für $n = 2$ die Umlaufzahl:
Raum \mathbb{R}^n liegen, etwa wie obige Artin-Fox-Kurve. Wir denken auch an	Beweis: Die Inklusion $\mu : \mathbb{S}^1 \hookrightarrow \mathbb{D}^2 : \mathfrak{s} \mapsto \mathfrak{s}$ ist zusammenziehbar vermöge
Osgood-Kurven $C \subseteq \mathbb{R}^2$ (C6H) mit positivem Flacheninnait $\operatorname{vol}_2(C) > 0$.	$H: \iota \simeq * \operatorname{mit} H(t, s) = (1 - t)s.$ Gäbe es $r: \mathbb{D}^2 \to \mathbb{S}^1$ stetig mit $r \circ \iota = \operatorname{id}_{\mathbb{S}^1}$,
$C = [v_0, v_1] \cup \cdots \cup [v_{\ell-1}, v_{\ell}]$ per Induktion über die Länge $\ell \in \mathbb{N}_{>1}$.	so folgt $id_{\mathbb{S}^1} = r \circ \iota \simeq \text{const.}$ Dies widerspricht der Homotopie-Invarianz
	der Offinautzahl J1J, denn $\deg(\operatorname{Id}_{\mathbb{S}^1}) = 1$ aber $\deg(\operatorname{const}) = 0$.
Der Jordansche Nicht-Trennungssatz	Der Jordansche Nicht-Trennungssatz J236 Erläuterung
Beweis des Satzes: Die Bildmenge $C = f([0, 1]^k) \subseteq \mathbb{R}^n$ ist kompakt (F1J),	Finhettungen [0, 1] ^k $\subseteq \mathbb{D}^n$ können erschreckend kompliziert sein wie
demnach in \mathbb{R}^n beschränkt und abgeschlossen dank Heine–Borel (F10).	zum Beispiel Osgood–Kurven $[0,1] \hookrightarrow \mathbb{R}^2$ mit positiven Flächeninhalt
Wir wenden Tietzes Fortsetzungssatz an (E5L): Die stetige Abbildung $q = f^{-1}: C \to [0, 1]^k$ erlaubt eine stetige Fortsetzung $G: \mathbb{R}^n \to [0, 1]^k$.	oder Artin–Fox–Kurven $[0,1] \hookrightarrow \mathbb{R}^3$ mit verknotetem Komplement.
Wir erhalten eine Retraktion $q := f \circ G : \mathbb{R}^n \to C$, denn $q _C = \mathrm{id}_C$.	Each hogh transfer to be so komplizierte Einhettung $f : [0, 1]^k \in \mathbb{R}^n$ den
Das Komplement $X = \mathbb{R}^n \setminus C$ ist offen, somit lokal wegzs hgd, daher ist	Raum, das Komplement $\mathbb{R}^n \setminus \text{Im } f$ bleibt wegzusammenhängend! Diese
$X = \bigsqcup \pi_0(X)$ topologische Summe von Gebieten (G3c). Sei $A \in \pi_0(X)$ die unbeschräpkte und <i>B</i> die Vereinigung aller anderen Komponenten	Tatsache mag anschaulich plausibel sein, doch obige Beispiele lassen an
Es gilt $\overline{A} \subseteq A \cup C$ und $\overline{B} \subseteq B \cup C$, also $\overline{A} \cap \overline{B} \subseteq C$. Wir verkleben (E1P)	der Verlasslichkeit unserer topologischen Intuition zweifeln.
$\int x \qquad \text{für } x \in \overline{A} \cup C,$	zum Gluck mussen wir uns nicht allein auf unsere Intuition verlassen, wir können diesen Satz beweisen, und sogar vergleichsweise leicht.
$h: \mathbb{R}^n \to \mathbb{R}^n : x \mapsto \begin{cases} q(x) & \text{für } x \in \overline{B}. \end{cases}$	Das verdanken wir unseren starken Werkzeugen aus der analytischen
Angenommen, es existierte ein Punkt $b \in B$. Nach Verschieben sei $b = 0$,	Topologie (Heine-Borel, Tietze, Verklebesatz,) und ersten Werkzeugen der algebraischen Topologie (hier Umlaufzahl, Abbildungsgrad,)
nach Stauchen zudem $C\subseteq \mathbb{B}^n.$ Wegen $0\notin \mathrm{Im}(h)$ ist $r:\mathbb{D}^n\to \mathbb{S}^{n-1}$ mit	Die Beweicidee ist raffiniert, doch die Ausführung gelingt nun leicht
$r(x) = h(x)/ h(x) $ wohldefiniert und stetig. Zudem gilt $r(x) = x$ für alle $x \in \mathbb{S}^{n-1} \subset A$. Diese Retraktion widerspricht Lemma 14E.	▲ Die obigen Beispiele zeigen, dass es nicht noch leichter gelingen kann.
1005	1000
Der Jordansche Trennungssatz	Der Jordansche Trennungssatz
Der Jordansche Trennungssatz Erläuterung Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich	Der Jordansche Trennungssatz $\frac{1238}{Erläuterung}$
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.	Der Jordansche TrennungssatzJ238 Erläuterung n p_0 R Nach dieser Vorbereitung vereinbaren wir: Der Weg $\alpha : [0,1] \xrightarrow{\sim} C_+ : t \mapsto f(e^{\pi i t})$ führt von a
Der Jordansche Trennungssatz J237 Erläuterung Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Er ich Eich Human for Slave G C R2 of Slave G C R2	Der Jordansche Trennungssatz p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Der} p_{Her} p_{Ter} p_{Ter} p_{Der} p_{Der} p_{Her} p_{Der} p_{Her} p_{Her} p_{Der} p_{Her} p_{Der} p_{Her} p_{Her} p_{Her} p_{Her} p_{Her} p_{Der} p_{He} p_{Her} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} p_{He} $p_$
Der Jordansche Trennungssatz J237 Erläuterung Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \hline \end{array} \\ \begin{array}{c} \end{array} \\ \hline \end{array} \\ \begin{array}{c} \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \hline \\ \hline \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$	Der Jordansche Trennungssatz $p_{\text{Eflauterung}}^{\text{J238}}$ Nach dieser Vorbereitung vereinbaren wir: Der Weg $\alpha : [0,1] \cong C_+ : t \mapsto f(e^{\pi i t})$ führt von a nach b längs des oberen Halbkreises, der Weg $\beta : [0,1] \cong C : t \mapsto f(-e^{\pi i t})$ von b zurück nach a längs des unteren Halbkreises. Vom "Nordpol" n = (0,2) zum "Südpol" $s = (0,-2)$ führt der Weg
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \hline \end{array} \\ \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$. Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$. Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \\ \hline \\ \begin{array}{c} \\ \end{array} \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$. Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \dim(C)$ Nach Umparametrisjerung von \mathbb{S}^1 kömpen wir	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Der Jordansche Trennungssatz Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2$. (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$. Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und	J238 EnlauterungDer Jordansche TrennungssatzDer Jordansche TrennungssatzPolymein der StrennungssatzDer Weg $\alpha: [0,1] \cong C_+: t \mapsto f(e^{\pi it})$ führt von a nach b längs des oberen Halbkreises, der Weg $\beta: [0,1] \cong C: t \mapsto f(-e^{\pi it})$ von b zurück nach a längs des unteren Halbkreises. Vom "Nordpol" $n = (0,2)$ zum "Südpol" $s = (0,-2)$ führt der Weg $\gamma: [0,1] \cong [n,s]$ mit $\gamma(t) = (1-t)n + ts$ und schneidet sowohl α als auch β (ZWS).Wir können annehmen, dass γ zuerst α schneidet, andernfalls ersetzen wir $f: \mathbb{S}^1 \cong C$ durch $f \circ$ conj.Sei p_0 der erste und p_1 der letzte Schnittpunkt von γ mit α ; eventuell gilt $p_0 = p_1$. Nach p_1 muss γ noch β schneiden: Andernfalls führt der Weg ern α , α even α noch β schneiden: Andernfalls führt der Weg
J237 ErläuterungDer Jordansche TrennungssatzDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C.$ Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen.Damit ligt C im Rechteck $B = [-1, 1] \times [-2, 2]$ und $\partial B \cap C = \{a, b\}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Der Jordansche Trennungssatz \mathbb{E}^{J237} Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall. Satz J2v: Jordanscher Trennungssatz (1) Für jede Einbettung $f : \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt. (2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2$. (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$. Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
J237 ErläuterungDer Jordansche TrennungssatzDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an :: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche Trennungssatz	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
J237 ErläuterungDer Jordansche TrennungssatzDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C.$ Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche Trennungssatz	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
J237 ErlauterungDer Jordansche TrennungssatzDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{dian}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche TrennungssatzJ239 Erlauterung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $p_{20} \longrightarrow q_1 z$ im Komplement von $[z, s]$ und β durch einen Polygonzug	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
J237 ErlauterungDer Jordansche TrennungssatzDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2$.(3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1,0)$ und $b = (-1,0)$ annehmen. Damit liegt C im Rechteck $R = [-1,1] \times [-2,2]$ und $\partial R \cap C = \{a,b\}$.Der Jordansche TrennungssatzJ239 Erlauterung(2a) Wir berechnen deg $(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \ np_1 z$ in Komplement von $[z,s]$ und β durch einen Polygonzug $w = np_0 \ldots p_1 z$ in R. Falls nötig machen wir $ w $ doppelpunktfrei, indem	J238 ExtanterungDer Jordansche TrennungssatzJ238 ExtanterungNach dieser Vorbereitung vereinbaren wir: Der Weg $\alpha : [0,1] \cong C_+ : t \mapsto f(e^{\pi it})$ führt von a nach b längs des oberen Halbkreises, der Weg $\beta : [0,1] \cong C : t \mapsto f(-e^{\pi it})$ von b zurück nach a längs des unteren Halbkreises. Vom "Nordpol" $n = (0, 2)$ zum "Südpol" $s = (0, -2)$ führt der Weg $\gamma : [0,1] \cong [n,s]$ mit $\gamma(t) = (1-t)n + ts$ und schneidet sowohl α als auch β (ZWS).Wir können annehmen, dass γ zuerst α schneidet, andernfalls ersetzen wir $f : \mathbb{S}^1 \cong C$ durch $f \circ \operatorname{conj}$.Sei p_0 der erste und p_1 der letzte Schnittpunkt von γ mit α ; eventuell gilt $p_0 = p_1$. Nach p_1 muss γ noch β schneiden: Andernfalls führt der Weg $np_0 \ \alpha$ $p_1 s$ von n nach s , ohne β zu schneiden, im Widerspruch zu J1x. Nach p_1 sei q_1 der erste und q_0 der letzte Schnittpunkt von γ mit β ; eventuell gilt $q_0 = q_1$. Sei $z = (p_1 + q_1)/2$ der Mittelpunkt.J240 Erfauterung(1) Das Komplement $\mathbb{R}^2 \setminus C$ hat genau zwei Komponenten und (2) die Abbildung $\nu : \pi_0(\mathbb{R}^2 \setminus C) \to \{0,1\} : [x] \mapsto \deg_2(f-x)$ ist bijektiv. Hierzu sei A die unbeschränkte und $B = [z]$ die beschränkte Komponente
J237 ErlauterungDer Jordansche TrennungssatzDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C.$ Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \text{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}.$ J239 Erlauterung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \ alpha \ alpha \ bla \ $	$\begin{array}{c} \hline \label{eq:product} \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline tabu$
Der Jordansche Trennungssatz $^{J237}_{Erlauterung}$ Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.J239 Erlauterung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \hfillow np_1 z$ in R . Falls nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan-Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $	J238 EndaterungDer Jordansche TrennungssatzJ238 EndaterungNach dieser Vorbereitung vereinbaren wir:Der Weg $\alpha : [0,1] \cong C_+ : t \mapsto f(e^{\pi i t})$ führt von a nach b längs des oberen Halbkreises, der Weg $\beta : [0,1] \cong C : t \mapsto f(-e^{\pi i t})$ von b zurück nach a längs des unteren Halbkreises. Vom "Nordpol" $n = (0, 2)$ zum "Südpol" $s = (0, -2)$ führt der Weg $\gamma : [0,1] \cong [n,s]$ mit $\gamma(t) = (1-t)n + ts$ und schneidet sowohl α als auch β (ZWS).Wir können annehmen, dass γ zuerst α schneidet, andernfalls ersetzen wir $f : \mathbb{S}^1 \cong C$ durch $f \circ \operatorname{conj}$.Sei p_0 der erste und p_1 der letzte Schnittpunkt von γ mit α ; eventuell gilt $p_0 = p_1$. Nach p_1 muss γ noch β schneiden: Andernfalls führt der Weg $np_0 \ alpha p_1 sv$ on n nach s , ohne β zu schneiden, im Widerspruch zu J1x. Nach p_1 sei q_1 der erste und q_0 der letzte Schnittpunkt von γ mit β ; eventuell gilt $q_0 = q_1$. Sei $z = (p_1 + q_1)/2$ der Mittelpunkt.J240
Der Jordansche Trennungssatz $^{1257}_{\text{Erlauterung}}$ Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C.$ Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche Trennungssatz p_{229} Erlauterung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \hdots p_1 z$ in K . Falls nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan-Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $ polygonal durch β^* . Der Weg β^* überschreitet γ^* ungeradzahlig off, und enz ausenbließlich über $[s, c]$ Der steict $b = (c^*, c) = 1$. In $[s, c]$ user der globalla glich föller approximieren β im Komplement von $[w]$	$\begin{array}{c} \begin{tabular}{ c c c } \hline \begin{tabular}{c} \end{tabular} \end{tabular} \\ \hline \begin{tabular}{c} \end{tabular} \\ \hline \bedin{tabular}{c} \end{tabular} \\ \hline $
Der Jordansche Trennungssatz $^{J237}_{Enlauterung}$ Der Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C.$ Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \text{diam}(C).$ Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}.$ (2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \hfillow np_1 \ldots n_2 n_2 in K.$ Falls nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan-Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $ polygonal durch β^* . Der Weg β^* überschreitet γ^* ungeradzahlig oft, und zwar ausschließlich über $[z, s]$. Das zeigt $\deg(f - z) = 1$ dank J1M. (1a) Das Kamplament \mathbb{R}^2 . Chast auswir wir al z is the set \mathbb{R}^2 of here to set \mathbb{R}^2 is the set \mathbb{R}^2 of here \mathbb{R}^2 . Chast auswir \mathbb{R}^2 is the set \mathbb{R}^2 of here \mathbb{R}^2 is the set \mathbb{R}^2 . If \mathbb{R}^2 is the set	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Der Jordansche Trennungssatz $[227]$ EdaterungDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \cong C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2.$ (3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche Trennungssatz $[229]$ Edaterung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \hdown p_1 z$ in \mathcal{K} Falls nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan–Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $ polygonal durch β^* . Der Weg β^* überschreitet γ^* ungeradzahlig oft, und zwar ausschließlich über $[z, s]$. Das zeigt $\deg(f - z) = 1$ dank J1M. (1a) Das Komplement $\mathbb{R}^2 \setminus C$ hat somit mindestens zwei Komponenten.	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Der Jordansche Trennungssatz[227 EntauterungDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \Rightarrow C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \cong \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2$.(3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche TrennungssatzIzag relaterung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \dots p_1 z$ in K . Falls nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan-Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $ polygonal durch β^* . Der Weg β^* überschreitet γ^* ungeradzahlig oft, und zwar ausschließlich über $[z, s]$. Das zeigt $\deg(f - z) = 1$ dank J1M. (1a) Das Komplement $\mathbb{R}^2 \setminus C$ hat somit mindestens zwei Komponenten. (3) Für jede Komponente $U \in \pi_0(\mathbb{R}^2 \setminus C)$ gilt $\delta U = C$: Hierzu sei A die unbeschränkte und B	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Der Jordansche Trennungssatz[EdatterungDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \Rightarrow C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \Rightarrow \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2$.(3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = \operatorname{diam}(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \dots p_1 z$ in K . Falls nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan-Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $ polygonal durch β^* . Der Weg β^* überschreitet γ^* ungeradzahlig off, und zwar ausschließlich über $[z, s]$. Das zeigt $\deg(f - z) = 1$ dank J1M. (1a) Das Komplement $\mathbb{R}^2 \setminus C$ hat somit mindestens zwei Komponenten. (3) Für jede Komponente $U \in \pi_0(\mathbb{R}^2 \setminus C)$ gilt $\delta U = C$. Hierzu sei A die unbeschränkte und B eine beschränkte Komponente; eine solche existiert dank (1a). Es g	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
Der Jordansche Trennungssatz1227 EntauterungDer Jordansche Trennungssatz ist wunderbar einfach und übersichtlich für polygonale Kurven (J2D). Wir beweisen nun den allgemeinen Fall.Satz J2v: Jordanscher Trennungssatz(1) Für jede Einbettung $f: \mathbb{S}^1 \Rightarrow C \subseteq \mathbb{R}^2$ zerfällt das Komplement $\mathbb{R}^2 \setminus C = A \sqcup B$ in zwei Gebiete, A unbeschränkt, B beschränkt.(2) Wir haben $\pi_0(\mathbb{R}^2 \setminus C) = \{A, B\} \Rightarrow \{0, 1\} : [x] \mapsto \deg(f - x) \mod 2$.(3) Für den Rand gilt $\delta A = \delta B = C$, also $\overline{A} = A \cup C$ und $\overline{B} = B \cup C$.Beweis: (0) Die Abstandsfunktion $\mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R} : (s_1, s_2) \mapsto f(s_1) - f(s_2) $ ist stetig. Da $\mathbb{S}^1 \times \mathbb{S}^1$ kompakt ist, nimmt sie ihr Maximum an: Es gibt $s_1, s_2 \in \mathbb{S}^1$ sodass $a = f(s_1)$ und $b = f(s_2)$ maximalen Abstand haben, kurz $ a - b = diam(C)$. Nach Umparametrisierung von \mathbb{S}^1 können wir $s_1 = 1$ und $s_2 = -1$ annehmen. Nach Drehung und Skalierung und Verschiebung von \mathbb{R}^2 können wir $a = (1, 0)$ und $b = (-1, 0)$ annehmen. Damit liegt C im Rechteck $R = [-1, 1] \times [-2, 2]$ und $\partial R \cap C = \{a, b\}$.Der Jordansche Trennungssatz1239 Ruderung(2a) Wir berechnen $\deg(f - z) = 1$. Zunächst approximieren wir den Weg $np_0 \dots p_1 z$ in K malts nötig machen wir $ w $ doppelpunktfrei, indem wir an jedem Doppelpunkt die unnötige Schleife abschneiden. Nach dem polygonalen Jordan-Satz (J2D) zerlegt $\gamma^* = w * zs $ das Rechteck R in zwei Komponenten. Wir approximieren β im Komplement von $ w $ polygonal durch β^* . Der Weg β^* überschreitet γ^* ungeradzahlig off, und zwar ausschließlich über $[z, s]$. Das zeigt $\deg(f - z) = 1$ dank J1M. (1a) Das Komplement $\mathbb{R}^2 \setminus C$ hat somit mindestens zwei Komponenten. (3) Für jede Komponente $U \in \pi_0(\mathbb{R}^2 \setminus C)$ gilt $\delta U = C$: Hierzu sei A die unbeschränkte und B eine	JER Editation Light Colspan="2">JER Editation Light Colspan="2">JER Editation Light Colspan="2">JER Editation Light Colspan="2">JER Light Colspan="2">JER Lig
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

Modellabbildung $\varphi_k^n:\mathbb{S}^n ightarrow\mathbb{S}^n$ zum Abbildungsgrad $k\in\mathbb{Z}$	Definition des Abbildungsgrades $\deg : [\mathbb{S}^n, \mathbb{S}^n] \to \mathbb{Z}$
	Zur Erinnerung: $[X, Y] = \mathscr{C}(X, Y)/_{\sim} = \{ [f] f : X \to Y \}$ ist die Menge aller Homotopieklassen $[f]$ stetiger Abbildungen $f : X \to Y$, siehe G4H. Das vergröbert unsere Sichtweise und vereinfacht die Klassifikation: Satz 13a: Brouwer 1912 Hopf 1927
	In jeder Dimension $n \in \mathbb{N}_{\geq 1}$ stiftet $k \mapsto [\varphi_k^n]$ eine Bijektion $\mathbb{Z} \cong [\mathbb{S}^n, \mathbb{S}^n]$.
	Die Inverse ist der Abbildungsgrad $\deg : [\mathbb{S}^n, \mathbb{S}^n] \to \mathbb{Z} : [f] \mapsto \deg(f).$ deg
	$[\mathbb{S}^n, \mathbb{S}^n] \xrightarrow{\cong} \mathbb{Z}.$
	Das bedeutet: Jede stetige Abbildung $f : \mathbb{S}^n \to \mathbb{S}^n$, egal wie kompliziert,
$\varphi_k^n:\mathbb{S}^n\to\mathbb{S}^n:(r\cos t,r\sin t,x_2,\ldots,x_n)\mapsto(r\cos(kt),r\sin(kt),x_2,\ldots,x_n)$	Die eindeutige Zahl $k \in \mathbb{Z}$ mit $f \simeq \varphi_k^n$ heißt der Abbildungsgrad von f .
In Zylinderkoordinaten: Diese Modellabbildung $\varphi_k : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ für $n \in \mathbb{N}_{>1}$ und $k \in \mathbb{Z}$ wickelt die $x_0 - x_1$ -Ebene k -mal um den Nullpunkt,	Anschaulich zählt er also, wie off f die Sphäre um sich selbst wickelt. Die Homotopie-Äquivalenz $(\iota, \rho) : \mathbb{S}^n \rightleftharpoons \mathbb{R}^{n+1} \setminus \{0\}$ stiftet die Bijektionen
entsprechend wickelt $\varphi_{\pmb{k}}^n$ die Sphäre $k-$ mal um sich selbst wie skizziert.	$[\mathbb{S}^n, \mathbb{S}^n] \cong [\mathbb{S}^n, \mathbb{R}^{n+1} \setminus \{0\}] \cong [\mathbb{R}^{n+1} \setminus \{0\}, \mathbb{S}^n] \cong [\mathbb{R}^{n+1} \setminus \{0\}, \mathbb{R}^{n+1} \setminus \{0\}].$
Definition des Abbildungsgrades $\deg : [\mathbb{S}^n, \mathbb{S}^n] \to \mathbb{Z}$	Geschichtliche Entwicklung des Abbildungsgrades
Solution Homotopie vereinfacht dramatisch und extrahiert das Wesentliche: Die Menge $\mathscr{C}(\mathbb{S}^n, \mathbb{S}^n)$ aller stetigen Abbildungen $f : \mathbb{S}^n \to \mathbb{S}^n$ ist riesig	Ober Abbildung von Mannigfaltigkeiten.*) Abbildungsklassen n-dimensionaler Mannigfaltigkeiten. Vea Vea L. S. J. Boevern in Ansterlaan. Heint Reof in Petin.
und sehr unübersichtlich. Der Abbildungsgrad destilliert hieraus eine wichtige Kennzahl: $deg(f) \in \mathbb{Z}$ zählt, wie oft f die Sphäre umwickelt.	§ 1. Browrer hat die Umkohbarkeit neiner Statze, daß zwei zu derselben «Klauser pehörige, d. h. stetig ineinander Breichnbark oblikalingen einer «-dimensionalen, geschlausen, reseinitigen Manigkaligist » det eine
Beweis-Ideen: In Dimension $n = 1$ haben wir den Abbildungsgrad deg : $[\mathbb{S}^1, \mathbb{S}^1] \cong \mathbb{Z}$ durch die Umlaufzahl ganz elementar konstruiert: als Winkelsumme J1J, Wegintegral J1 κ und durch Achsübergänge J1 κ .	Taker einen Singleichere des radiensinden Zahlermanne ver- schen vie eine in einer Longung eine Paulus der Uberall däht lingen eine Singleicher des Singlei
Jeder dieser Ansätze funktioniert auch in beliebiger Dimension $n \in \mathbb{N}$. Die Konstruktion ist technisch aufwändiger, ich führe dies hier nicht aus.	There is a Dispation has p-dimensionales Solits von E verathen vir aladama für Shider of Robustik bes. der p-dimensionales Shita von S. Wir bliden nun an edimensionales Researche eine soldbe maanmas- häugesde J. ha verä dense Einemente antworker bister
□ J.W. Milnor: Topology from the differentiable viewpoint. Princeton 1965 Ein wunderschönes Thema für ein Pro/Seminar im 3./4. Semester!	Seite (und dam nuglichi allei in the lipsyaden Seiten geringerer Dime- einesmall) preminsun have, forbigen als et keinen gerennichtellichen Prakt besitzen, während in joden Edpankte die dashite maxamen- ntodesden Remente in dermalten Weise, wie die Samphene sinen gereinem. Nachdem gezeigt ist, daß zu <i>keidatens eine</i> Kiases von Abhildungen
© Uns genügt im Folgenden die axiomatische Definition von deg. Die Eindeutigkeit von deg ist unmittelbar klar aufgrund der Definition. Daraus werden wir alle für uns interessanten Eigenschaften ableiten.	Contraction Sector Se
Die Konstruktion verschiebe ich auf die Algebraische Topologie.	Hopf bewies 1927 die Bijektivität per Induktion über die Dimension <i>n</i> .
Die axiomatische Methode: <i>Theft or honest toil?</i>	Analogie zur Signatur: Definition und Eigenschaften
Satz J3A garantiert Existenz und Eindeutigkeit des Abbildungsgrades. Wie in der Informatik erklärt dies eine <i>black box</i> mit wohldefinierter Schnittstelle. Der erhoffte didaktische Vorteil ist, möglichst schnell zu interessanten Anwendungen vorzudringen. Dinge zu <i>postulieren</i> , ohne sie zu beweisen, ist natürlich nicht die feine mathematische Art. Laut Bertrand Russell hat diese Methode dennoch viele Vorteile, und zwar dieselben wie Diebstahl gegenüber ehrlicher Arbeit.	Für $n = 0$ gilt $\mathbb{S}^0 = \{\pm 1\}$. Der Abbildungsgrad deg : $[\mathbb{S}^0, \mathbb{S}^0] \to \{\pm 1, 0\}$ ist das Signum / die Signatur, mit deg $(\pm id) = \pm 1$ und deg $(\text{const}_{\mathbb{S}^0}^{\pm 1}) = 0$. Zu jeder endlichen Menge $X \subseteq \mathbb{R}$ und Abbildung $f : X \to X$ haben wir $\operatorname{sign}(f) = \prod_{\{i < j\} \subseteq X} \frac{f(i) - f(j)}{i - j} = \prod_{\{i \neq j\} \subseteq X} \frac{f(i) - f(j)}{i - j} \in \{\pm 1, 0\}.$
The method of "postulating" what we want has many advantages;	Es gilt sign(f) = 0, falls f nicht bijektiv ist, und sign(f) = ±1, falls f eine gerade / ungerade Permutation ist. Die Abbildung sign : $X^X \rightarrow \{\pm 1, 0\}$ ist
Bertrand Russel (1872–1970)	in unitplicativ, das neuts $\operatorname{sign}(f \circ g) = \operatorname{sign}(f) \cdot \operatorname{sign}(g)$ für alle $f, g: X \to X$. \bigcirc Diese Eigenschaft <i>charakterisiert</i> die Signatur eindeutig: Für $ X \ge 2$
Versöhnlicher will ich es so sagen: Ich nehme hier einen Kredit auf, den ich später begleichen muss, indem ich den Abbildungsgrad nachträglich	ist sign die einzige multiplikative Surjektion $(X^{\wedge}, \circ, id_X) \twoheadrightarrow (\{\pm 1, 0\}, \cdot, 1).$ \bigcirc Die Signatur dient zur <i>Konstruktion</i> der Determinante det : $\mathbb{K}^{n \times n} \to \mathbb{K}$.
konstruiere und die gewünschten Eigenschaften sorgsam nachweise, (1) in der Algebraischen Topologie / Homologie, (2) in der Analysis oder	Dies ist die einzige multilineare, alternierende, normierte Abbildung. \bigcirc Der Abbildungsgrad deg(f) stetiger Abbildungen $f : \mathbb{S}^n \to \mathbb{S}^n$ (J0A) ist
(3) in der Differentialtopologie. Einstweilen nutzen wir ihn als <i>Werkzeug</i> . Life is uncertain. Eat dessert first!	ebenso grundlegend wie die Signatur sign(f) von Abbildungen $f: X \to X$ und die Determinante det(f) linearer Abbildungen $f: \mathbb{K}^n \to \mathbb{K}^n$.
Analogie zur Determinante: Definition und Eigenschaften Erläuterung	Analogie zur Determinante: Definition und Eigenschaften Erläuterung
Satz B1y: Definition und Eigenschaften der Determinante	Der Satz besteht aus drei wichtigen Aussagen: Zunächst (1) Existenz
Sei K ein kommutativer Ring. In jeder Dimension $n \in \mathbb{N}$ existiert genau eine multilingere alterniorande normierte Abbildung det ⁿ $\in \mathbb{K}^{n,n} \to \mathbb{K}$	und (2) Eindeutigkeit, dann erst (3) zahlreiche gute Eigenschaften wie Formeln, Symmetrien, Multiplikativität, verschiedene Algorithmen,
Diese Determinante erfreut sich folgender Eigenschaften:	Unsere obige Liste ist dabei noch keineswegs abschließend! Um hier Ordnung und Klarheit zu schaffen, ist es sinnvoll
 Es gilt det A = ∑_{σ∈S_n} sign(σ) · a_{σ(1),1} · a_{σ(2),2} ··· a_{σ(n),n}. (Leibniz) Die Determinante ist transpositionsinvariant: det(A^T) = det(A). 	zu allererst zu definieren, was die Determinante genau <i>ist</i> , und dann nach und nach auszuführen was Sie für uns <i>tut</i>
 3 Die Determinante ist multiplikativ: det(AB) = det(A) det(B). 4 Genau dann ist A ∈ K^{n×n} invertierbar wenn det(A) ∈ K dies ist 	Die Anwendungen sind überaus vielfältig, wie sie wissen: vom charakteristischen Polynom in der Linearen Algebra bis
5 Genauer gilt $AA' = A'A = \det(A)E$, also $A^{-1} = \det(A)^{-1}A'$. (Cramer)	zur Volumenverzerrung bei der mehrdimensionalen Integration. Wir hauen unsere Definition und Sätze auf Josiach und didalttisch!
Zu $A = (a_1,, a_n) \in \mathbb{K}^{n \times n}$ definieren wir hierbei die adjunkte Matrix A' durch ihre Koeffizienten $a'_{ij} := \det(a_1,, a_{i-1}, e_j, a_{i+1},, a_n).$	Nachdem wir uns die Formulierung der Ziele genau überlegt haben, müssen wir die Aussagen beweisen: (1) Existenz: Die Leibniz-Formel definiert eine Abbildung und erfüllt alle Forderungen! (2) Eindeutigkeit:
 Solor plattisch für Keine n. Naive Anwendung der Leibniz-Formel ist für große n aufwändig (n!). Eine effiziente Berechnung gelingt mit dem Gauß-Algorithmus (n³). 	Jede multilineare, alternierende, normierte Abbildung det ⁿ _K : $\mathbb{K}^{n \times n} \to \mathbb{K}$ erfüllt die Leibniz-Formel! (3) Eigenschaften: sorgfältiges Nachrechnen!

Der Abbildungsgrad ist multiplikativ.	Der Abbildungsgrad erkennt Homotopie-Äquivalenzen.
Die folgenden Sätze verdanken wir den nützlichen Modellabbildungen φ_k^n und der vollständigen Homotopieklassifikation J3A nach Brouwer–Hopf.	Korollar J3D: Homotopie-Äquivalenzen
Korollar J38: Surjektivität Ist $f: \mathbb{S}^n \to \mathbb{S}^n$ stetig und $\deg(f) \neq 0$, so ist f surjektiv.	Vorgelegt sei eine stetige Abbildung $f : \mathbb{S}^n \to \mathbb{S}^n$ in Dimension $n \in \mathbb{N}_{\geq 1}$. (1) Genau dann ist f eine Homotopie-Äquivalenz, wenn $\deg(f) = \pm 1$ gilt. (2) Speziell für jeden Homöomorphismus $f : \mathbb{S}^n \Rightarrow \mathbb{S}^n$ folgt $\deg(f) = \pm 1$.
$ \textbf{Beweis: Aus } f: \mathbb{S}^n \to \mathbb{S}^n \smallsetminus \{y\} \text{ folgt } f \simeq * \simeq \varphi_0^n, \text{ also } \deg(f) = 0. \qquad \text{QED} $	Beweis: (1) ", \Rightarrow ": Aus $f \circ g \simeq \operatorname{id}_{\mathbb{S}^n}$ folgt $\operatorname{deg}(f) \cdot \operatorname{deg}(g) = \operatorname{deg}(\operatorname{id}_{\mathbb{S}^n}) = 1$.
Korollar J3c: Multiplikativität Für $f, g: \mathbb{S}^n \to \mathbb{S}^n$ stetig gilt $\deg(f \circ g) = \deg(f) \cdot \deg(g)$. Somit ist der Abbildungsgrad ($[\mathbb{S}^n, \mathbb{S}^n], \circ, \operatorname{id}) \simeq (\mathbb{Z}, \cdot, 1)$ ein Monoidisomorphismus.	Auch ungekehr aus $g \circ f \cong \operatorname{log}_{S^n}$ folgt $\operatorname{deg}(g) \cdot \operatorname{deg}(f) = \operatorname{deg}(\operatorname{d}_{S^n}) = 1$. In $(\mathbb{Z}, \cdot, 1)$ hat die Gleichung $a \cdot b = 1$ nur die Lösungen $a = b = \pm 1$. Aus Topologie wird Algebra, und letztere ist hier viel einfacher!
Beweis: Für $k = \deg(f)$ und $\ell = \deg(g)$ gilt $f \simeq \varphi_k^n$ und $g \simeq \varphi_\ell^n$ dank J3A. Hieraus folgt $f \circ g \simeq \varphi_k^n \circ \varphi_\ell^n = \varphi_{k\ell}^n$, also $\deg(f \circ g) = k\ell$ erneut dank J3A.	
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	Ein Homöomorphismus $f : \mathbb{S}^n \simeq \mathbb{S}^n$ heißt orientierungserhaltend, falls $\deg(f) = +1$, und orientierungsumkehrend, falls $\deg(f) = -1$. Orientierung untersuchen wir zum Ende des Kapitels noch genauer.
Abbildungsgrad und Determinante	Abbildungsgrad und Determinante
Korollar J3E: lineare Isomorphismen Für $A \in GL_{n+1}(\mathbb{R})$ definieren wir $f_A : \mathbb{S}^n \to \mathbb{S}^n : x \mapsto Ax/ Ax $. Dank $Ax \neq 0$ für alle $x \neq 0$ ist f_A wohldefiniert und stetig.	\bigcirc Mit diesen Rechenregeln können wir den Abbildungsgrad $\deg(f)$ unmittelbar für viele relevante Abbildungen $f : \mathbb{S}^n \to \mathbb{S}^n$ berechnen! Das folgt, Schritt für Schritt, allein aus der axiomatischen Definition. Diese ist bereits handfest genug für alle nötigen Rechnungen.
(0) Für $E_{\pm} = \operatorname{diag}(1, \pm 1, 1,, 1)$ gilt $f_{E_{\pm}} = \varphi_{\pm 1}^n$, also $\operatorname{det}(f_{E_{\pm}}) = \pm 1$. (1) Allgemein gilt $\operatorname{deg}(f_A) = \operatorname{sign} \operatorname{det}(A)$, somit $\operatorname{deg}(-\operatorname{id}) = (-1)^{n+1}$. (2) Für $A \in \operatorname{GO}_{n+1}(\mathbb{R})$ gilt $f_A(x) = Ax$ und $\operatorname{deg}(A) = \operatorname{det}(A) \in \{\pm 1\}$.	Wir können den Abbildungsgrad präzise <i>definieren</i> , dieser Schritt ist leicht und sichert immerhin die <i>Eindeutigkeit</i> . Jedoch haben wir ihn nicht <i>konstruiert</i> , also seine <i>Existenz</i> noch nicht bewiesen. Dazu vertrauen wir einstweilen auf die Homotopieklassifikation J3A nach Brouwer-Hopf.
Wir nutzen die Zerlegung in Wegkomponenten (G2N): $\pi_0(\operatorname{GL}_{n+1} \mathbb{R}) = \{ \operatorname{GL}_{n+1}^+ \mathbb{R} = [E_+], \operatorname{GL}_{n+1}^- \mathbb{R} = [E] \}$	Falls Ihnen diese Rechnungen noch Kopfzerbrechen bereiten, seien Sie voll Vorfreude und ohne Sorge, mutig und frohgemut:
Beweis: (1) Dank Gauß (G2N) existiert ein Weg $\gamma : [0, 1] \to \operatorname{GL}_{n+1} \mathbb{R}$ von $\gamma(0) = A$ nach $\gamma(1) = E_{\pm}$, somit eine Homotopie $\Gamma : f_A \simeq f_{E_{\pm}} : t \mapsto f_{\gamma(t)}$,	Auch an die Signatur sign : $(\operatorname{End}(X), \circ, \operatorname{id}_X) \to (\{\pm 1, 0\}, \cdot, 1)$ und die Determinante det : $(\operatorname{End}_K(V), \circ, \operatorname{id}_V) \to (K, \cdot, 1)$, ihre <i>Definition</i> und hilfreiche <i>Rechenregeln</i> mussten Sie sich am Anfang der Linearen Algebra
$\Gamma : [0,1] \times \mathbb{S}^n \to \mathbb{S}^n : (t,x) \mapsto \gamma(t)(x)/ \gamma(t)(x) .$ Hieraus folgt deg $(f) = \deg(f) = \pm 1 = \operatorname{sign} \det(A)$	erst gewöhnen, dann konnten Sie mit diesen Werkzeugen reich ernten. Für den Abbildungsgrad, seine Definition und seine Rechenregeln ist es
$\operatorname{Herads}\operatorname{Holge}\operatorname{deg}(f_A) = \operatorname{deg}(f_{E_{\pm}}) = \pm 1 = \operatorname{Sign}\operatorname{deg}(f_{H}).$	ganz genauso: Sie werden sich rasch gewöhnen und dann reich ernten.
Die Sphäre ist nicht zusammenziehbar.	Mehrdimensionaler Zwischenwertsatz J402 Erläuterung
Die Sphäre ist nicht zusammenziehbar. J401 Der Ball \mathbb{D}^n ist zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! Image: Comparison of the second	Mehrdimensionaler Zwischenwertsatz J402 Erläuterung Die anschaulich-geometrische Frage, ob ein "Loch" vorliegt oder nicht, ist nicht bloß Spielerei, sondern hat handfeste Konsequenzen für die Lösung von Gleichungssystemen. Zur Erinnerung:
Juine Juine Der Ball \mathbb{D}^n ist zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! $\mathbb{D}^n \simeq *$ $\mathbb{S}^{n-1} \not\simeq *$	Mehrdimensionaler Zwischenwertsatz J402 ErläuterungDie anschaulich-geometrische Frage, ob ein "Loch" vorliegt oder nicht, ist nicht bloß Spielerei, sondern hat handfeste Konsequenzen für die Lösung von Gleichungssystemen. Zur Erinnerung:Satz J4B: eindimensionaler Zwischenwertsatz (ZWS, C3A) Zu jeder stetigen Funktion $f: [-1, 1] \rightarrow \mathbb{R}$ mit $f(-1)f(1) < 0$ existiert (mindestens) ein Punkt $x \in]-1, 1[$ mit $f(x) = 0.$
Die Sphäre ist nicht zusammenziehbar.J***Der Ball \mathbb{D}^n ist zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! $\qquad \qquad $	Mehrdimensionaler Zwischenwertsatz J402 ErläuterungDie anschaulich-geometrische Frage, ob ein "Loch" vorliegt oder nicht, ist nicht bloß Spielerei, sondern hat handfeste Konsequenzen für die Lösung von Gleichungssystemen. Zur Erinnerung:Satz J4B: eindimensionaler Zwischenwertsatz (ZWS, C3A) Zu jeder stetigen Funktion $f : [-1, 1] \rightarrow \mathbb{R}$ mit $f(-1)f(1) < 0$ existiert (mindestens) ein Punkt $x \in]-1, 1[$ mit $f(x) = 0.$ Das ist klar für $f(x) = ax + b$, mit der expliziten Lösung $x = -b/a$. Schon für Polynomfunktionen $f(x) = a_0 + a_1x + + a_nx^n$ ist die Aussage über \mathbb{Q} falsch, und über \mathbb{R} äußerst bemerkenswert! Der Zwischenwertsatz ist äquivalent zur Vollständigkeit der reellen Zahlen (G1s).
JetDie Sphäre ist nicht zusammenziehbar.Der Ball \mathbb{D}^n ist zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! $\mathbb{D}^n \simeq *$ $\mathbb{D}^n \simeq *$ $\mathbb{S}^{n-1} \neq *$ Die Sphäre \mathbb{S}^n ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ ist nicht homotop zur konstanten Abbildung const : $\mathbb{S}^n \to \{*\} \subseteq \mathbb{S}^n$.Beweis: Wir wenden den Abbildungsgrad (J3A) an: Es gilt deg($id_{\mathbb{S}^n}$) = 1 und deg(const) = 0, also $id_{\mathbb{S}^n} \neq const$.Alternative: Wir wenden den Funktor $[\mathbb{S}^n, -]$ (G4L) an: Es gilt $[\mathbb{S}^n, \{*\}] = \{*\}$, aber $[\mathbb{S}^n, \mathbb{S}^n] \cong \mathbb{Z}$ dank J3A.	Mehrdimensionaler Zwischenwertsatz j402 ErlauterungDie anschaulich-geometrische Frage, ob ein "Loch" vorliegt oder nicht, ist nicht bloß Spielerei, sondern hat handfeste Konsequenzen für die Lösung von Gleichungssystemen. Zur Erinnerung:Satz J4B: eindimensionaler Zwischenwertsatz (ZWS, C3A) Zu jeder stetigen Funktion $f : [-1, 1] \rightarrow \mathbb{R}$ mit $f(-1)f(1) < 0$ existiert (mindestens) ein Punkt $x \in]-1, 1[$ mit $f(x) = 0.$ Das ist klar für $f(x) = ax + b$, mit der expliziten Lösung $x = -b/a$. Schon für Polynomfunktionen $f(x) = a_0 + a_1x + + a_nx^n$ ist die Aussage über \mathbb{Q} falsch, und über \mathbb{R} äußerst bemerkenswert! Der Zwischenwertsatz ist äquivalent zur Vollständigkeit der reellen Zahlen (G1s).Satz J4c: eindimensionaler Zwischenwertsatz (ZWS, C3A) Sei $f : \mathbb{D}^1 \rightarrow \mathbb{R}$ stetig. Für $y \in \mathbb{R}$ zwischen $a = f(-1)$ und $b = f(1)$ existiert $x \in \mathbb{B}^1$ mit $f(x) = y$, kurz $(y - a)(b - y) > 0 \Rightarrow y \in f(\mathbb{B}^1)$.
JøuDie Sphäre ist nicht zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! $\mathbb{D}^n \simeq *$ $\mathbb{S}^{n-1} \neq *$ Satz J4A: $\mathbb{S}^n \neq *$ Die Sphäre \mathbb{S}^n ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ Beweis: Wir wenden den Abbildung const : $\mathbb{S}^n \to \{*\} \subseteq \mathbb{S}^n$.Beweis: Wir wenden den Abbildungsgrad (J3A) an: Es gilt $\deg(id_{\mathbb{S}^n}) = 1$ und $\deg(const) = 0$, also $id_{\mathbb{S}^n} \neq const$.QEDAlternative: Wir wenden den Funktor $[\mathbb{S}^n, -]$ (G4L) an: Es gilt $[\mathbb{S}^n, \{*\}] = \{*\}$, aber $[\mathbb{S}^n, \mathbb{S}^n] \cong \mathbb{Z}$ dank J3A.Mehrdimensionaler Zwischenwertsatz	Mehrdimensionaler ZwischenwertsatzMain genännten and and reinferningMehrdimensionaler ZwischenwertsatzImage: State
JøuDie Sphäre ist nicht zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! $\mathbb{D}^n \simeq *$ $\mathbb{D}^n \simeq *$ $\mathbb{S}^{n-1} \neq *$ Die Sphäre \mathbb{S}^n ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ ist nicht zusammenziehbar: Die Identität $id_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ Beweis: Wir wenden den Abbildung const : $\mathbb{S}^n \to \{*\} \subseteq \mathbb{S}^n$.Beweis: Wir wenden den Abbildungsgrad (J3A) an:Es gilt $\deg(id_{\mathbb{S}^n}) = 1$ und $\deg(const) = 0$, also $id_{\mathbb{S}^n} \neq const$.QEDAlternative: Wir wenden den Funktor $[\mathbb{S}^n, -]$ (G4L) an:Es gilt $[\mathbb{S}^n, \{*\}] = \{*\}$, aber $[\mathbb{S}^n, \mathbb{S}^n] \cong \mathbb{Z}$ dank J3A.QEDMehrdimensionaler ZwischenwertsatzJøu EnducromFür stetige Funktionen $f : \mathbb{D}^1 \to \mathbb{R}$ auf dem Intervall $\mathbb{D}^1 = [-1, 1]$ kontrolliert demnach das Verhalten auf dem Rand $\mathbb{S}^0 = \{\pm 1\}$ das Verhalten im Inneren $\mathbb{B}^1 =]-1, 1[$: Alle Zwischenwerte müssen angenommen werden. (Weitere Werte können angenommen werden.)	Jana gen aus even version and den aus autor term and term and termMehrdimensionaler ZwischenwertsatzDie anschaulich-geometrische Frage, ob ein "Loch" vorliegt oder nicht, ist nicht bloß Spielerei, sondern hat handfeste Konsequenzen für die Lösung von Gleichungssystemen. Zur Erinnerung:Satz J4B: eindimensionaler Zwischenwertsatz (ZWS, C3A) Zu jeder stetigen Funktion $f: [-1, 1] \rightarrow \mathbb{R}$ mit $f(-1)f(1) < 0$ existiert (mindestens) ein Punkt $x \in]-1, 1[$ mit $f(x) = 0$.Das ist klar für $f(x) = ax + b$, mit der expliziten Lösung $x = -b/a$. Schon für Polynomfunktionen $f(x) = a_0 + a_1x + + a_nx^n$ ist die Aussage über \mathbb{Q} falsch, und über \mathbb{R} äußerst bemerkenswert! Der Zwischenwertsatz ist äquivalent zur Vollständigkeit der reellen Zahlen (G1s).Satz J4C: eindimensionaler Zwischenwertsatz (ZWS, C3A) Sei $f: \mathbb{D}^1 \rightarrow \mathbb{R}$ stetig. Für $y \in \mathbb{R}$ zwischen $a = f(-1)$ und $b = f(1)$ existiert $x \in \mathbb{B}^1$ mit $f(x) = y$, kurz $(y - a)(b - y) > 0 \Rightarrow y \in f(\mathbb{B}^1)$.Mehrdimensionaler Zwischenwertsatz (C3A) ist, wie Sie bereits wissen, ein allgegenwärtiges Werkzeug der reellen Analysis. Der Abbildungsgrad erweitert dies wie folgt zum mehrdimensionaler Zwischenwertsatz; dieser wird sich als ebenso vielseitig und nützlich erweisen.
Die Sphäre ist nicht zusammenziehbar. Der Ball \mathbb{D}^n ist zusammenziehbar, die Randsphäre \mathbb{S}^{n-1} hingegen nicht! $\mathbb{D}^n \simeq *$ $\mathbb{S}^{n-1} \neq *$ Die Sphäre \mathbb{S}^n ist nicht zusammenziehbar: Die Identität $\mathrm{id}_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{S}^n$ ist nicht homotop zur konstanten Abbildung const : $\mathbb{S}^n \to \{*\} \subseteq \mathbb{S}^n$. Beweis: Wir wenden den Abbildungsgrad (J3A) an: Es gilt deg(id_{\mathbb{S}^n}) = 1 und deg(const) = 0, also id_{\mathbb{S}^n} \neq const. QED Alternative: Wir wenden den Funktor $[\mathbb{S}^n, -]$ (G4L) an: Es gilt $[\mathbb{S}^n, \{*\}] = \{*\}$, aber $[\mathbb{S}^n, \mathbb{S}^n] \cong \mathbb{Z}$ dank J3A. $\mathbb{Q}ED$ Mehrdimensionaler Zwischenwertsatz Für stetige Funktionen $f: \mathbb{D}^1 \to \mathbb{R}$ auf dem Intervall $\mathbb{D}^1 = [-1, 1]$ kontrolliert demnach das Verhalten auf dem Rand $\mathbb{S}^0 = \{\pm 1\}$ das Verhalten im Inneren $\mathbb{B}^1 =]-1, 1[$: Alle Zwischenwerte müssen angenommen werden. (Weitere Werte können angenommen werden.) (+1) (-1) (-1) (-1) (+1) (+1) (+2) (+1) (+2) (+1) (+2) (+1) (+2) (+1) (+2) (+1) (+2) (+1) (+1) (+2) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+2) (+1) (+1) (+1) (+1) (+2) (+1)	Jet and the end of the end

QED

Das ist nur für ungerades n möglich.

 $f: M \to TM$, wenn die Euler–Charakteristik $\chi(M)$ verschwindet.

Gerade und ungerade Abbildungen	Gerade und ungerade Abbildungen
Eine Abbildung $f : \mathbb{R}^m \to \mathbb{R}^n$ oder $f : \mathbb{S}^m \to \mathbb{S}^n$ heißt 0 gerade, falls $f(-x) = +f(x)$ für alle x gilt, z.B. $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^{2k}$ und $\cos(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k}/(2k)!$, 1 ungerade, falls $f(-x) = -f(x)$ für alle x gilt, z.B. $f : \mathbb{R} \to \mathbb{R} : x \mapsto x^{2k+1}$ und $\sin(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k+1}/(2k+1)!$. Beispiel: Für $k \in \mathbb{Z}$ betrachten wir wie zuvor $\varphi_k^1 : \mathbb{S}^1 \to \mathbb{S}^1 : z \mapsto z^k$. 0 Ist k gerade, so ist φ_k^1 gerade: $\varphi_k^1(-z) = +\varphi_k^1(z)$ für alle $z \in \mathbb{S}^1$. 1 Ist k ungerade, so ist φ_k^1 ungerade: $\varphi_k^1(-z) = -\varphi_k^1(z)$ für alle $z \in \mathbb{S}^1$. 5 satz J6A: Borsuk–Ulam Sei $f : \mathbb{S}^n \to \mathbb{S}^n$ stetig. 0 Ist f gerade, $f(-x) = +f(x)$, dann ist deg (f) gerade; möglicherweise gilt deg $(f) = 0$ und somit $f \simeq *$. 1 Ist f ungerade, $f(-x) = -f(x)$, dann ist deg (f) ungerade; insbesondere gilt deg $(f) \neq 0$ und somit $f \not\cong *$.	$\begin{array}{l} & \textbf{Für } n \in \mathbb{N}_{\geq 1} \text{ haben wir die Modellabbildung } \varphi_k : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \text{ mit} \\ & \varphi_k(r\cos(t), r\sin(t), x_2, \ldots, x_n) = (r\cos(kt), r\sin(kt), x_2, \ldots, x_n). \\ & \textbf{Es gilt } \varphi_k(x) = x , \text{durch Einschränkung erhalten wir } \varphi_k^n : \mathbb{S}^n \to \mathbb{S}^n. \\ & \textbf{O} \text{ Ist } k \text{ gerade und } n \geq 2, \text{ so ist } \varphi_k^n \text{ weder gerade noch ungerade.} \\ & \textcircled{O} \text{ Der gerade Fall ist in Dimension } n \geq 2 \text{ leider widerspenstiger.} \\ & \textbf{I} \text{ Ist } k \text{ ungerade, so ist } \varphi_k^n \text{ ungerade: } \varphi_k^n(-x) = -\varphi_k^n(x) \text{ für alle } x \in \mathbb{S}^n. \\ & \textcircled{O} \text{ Der ungerade Fall gelingt in jeder Dimension } n \text{ genau gleich!} \\ & \textbf{Wir interessieren uns im Folgenden vor allem für ungerade Abbildungen } f : \mathbb{S}^n \to \mathbb{S}^n. \text{ Hier gilt } f \neq *, \text{ dies führt zu erstaunlichen Anwendungen.} \\ & \textbf{Gerade Abbildungen nennen ich hier zur didaktischen Abrundung.} \\ & \textbf{Statt } f : \mathbb{S}^n \to \mathbb{S}^n \text{ betrachte ich homotopie-äquivalent } f : \mathbb{S}^n \to \mathbb{R}^{n+1} \setminus \{0\}: \\ & \textbf{Das lässt sich leichter visualisieren, wie im Folgenden für } n = 1 \text{ gezeigt.} \\ & \textbf{Allgemein sei } f : X \to Y \text{ stetig mit } X \subseteq \mathbb{R}^m \text{ und } Y \subseteq \mathbb{R}^n \text{ mit} - X = X \text{ und} \\ & -Y = Y. \text{ Wir nennen } f \text{ un/gerade, falls } f(-x) = \mp f(x) \text{ für alle } x \in X \text{ gilt.} \\ \end{array}$
Der Satz von Borsuk-Ulam	Der Satz von Borsuk–Ulam
Der Fall $n = 0$ ist klar: Hier gilt $\mathbb{S}^0 = \{\pm 1\}$, und $\deg(f)$ ist die Signatur: (0) Für $f = \operatorname{const}_{\mathbb{S}^0}^{\pm 1}$ gilt $\deg(f) = 0$. (1) Für $f = \pm \operatorname{id}$ gilt $\deg(f) = \pm 1$. $\boxed{\operatorname{Zeichnen Sie}_{\operatorname{beidhändig}}}$ $\boxed{\operatorname{Beispiele!}_{(1/2)} = -\gamma(0)}$ $\qquad \qquad $	Alternativer Beweis im Fall $n = 1$: Wir wählen eine Richtung $s \in \mathbb{S}^1$, so dass die Gerade $A = \mathbb{R}s$ die beiden Punkte $\pm \gamma(0)$ nicht enthält. (1) Wir haben $\gamma(t + 1/2) = -\gamma(t)$. Der Weg $\gamma _{[0,1/2]}$ überquert somit die Gerade $2k + 1$ mal, da sich $\gamma(0)$ und $\gamma(1/2) = -\gamma(0)$ gegenüberliegen. Dank Symmetrie überquert auch $\gamma _{[1/2,1]}$ die Gerade $2k + 1$ mal. Die Umlaufzahl von γ ist die halbe Summe, also deg $(\gamma) = 2k + 1$. (0) Für $f : \mathbb{S}^1 \to \mathbb{S}^1$ gerade haben wir $\gamma(t + 1/2) = \gamma(t)$ für alle t . Der Weg $\gamma _{[0,1/2]}$ überquert die Gerade $2k$ mal, da $\gamma(1/2) = \gamma(0)$. Dank Symmetrie überquert auch $\gamma _{[1/2,1]}$ die Gerade $2k$ mal. Die Umlaufzahl von γ ist die halbe Summe, also deg $(\gamma) = 2k$. Der Weg $\gamma _{[0,1/2]}$ überquert die Gerade $2k$ mal, da $\gamma(1/2) = \gamma(0)$. Dank Symmetrie überquert auch $\gamma _{[1/2,1]}$ die Gerade $2k$ mal. Die Umlaufzahl von γ ist die halbe Summe, also deg $(\gamma) = 2k$. Deweise im allgemeinen Fall $n \in \mathbb{N}$ verlaufen sinngemäß genauso, erfordern allerdings genaue Buchführung und sind aufwändiger. Übung: Ist n gerade und $f : \mathbb{S}^n \to \mathbb{S}^n$ gerade, so folgt $f \simeq *$. Lösung: Für $\sigma : \mathbb{S}^n \to \mathbb{S}^n : x \mapsto -x$ gilt deg $(\sigma) = (-1)^{n+1} = -1$. (J3E) Aus $f = f \circ \sigma$ folgt deg $(f) = \text{deg}(f \circ \sigma) = \text{deg}(f) \cdot \text{deg}(\sigma) = -\text{deg}(f)$. (J3c) In der Gruppe $(\mathbb{Z}, +, 0)$ impliziert dies deg $(f) = 0$. Somit gilt $f \simeq *$. (J3A)
Ungerade Abbildungen zwischen Sphären	Ungerade Abbildungen zwischen Sphären
Für $p < q$ in \mathbb{N} gibt es ungerade stetige Abbildungen $\mathbb{S}^p \to \mathbb{S}^q$, etwa $\iota : (x_0, \dots, x_p) \mapsto (x_0, \dots, x_p, 0, \dots, 0).$ Umgekehrt ist dies für $f : \mathbb{S}^q \to \mathbb{S}^p$ nicht möglich! $\overbrace{l}^{g} \xrightarrow{h=\iota \circ f} \overbrace{l}^{g} \xrightarrow{f} \overbrace{l}^{g}$ $\overbrace{l}^{g} \xrightarrow{g=f \circ \iota} \overbrace{\mathbb{S}^p}^{g}$ Korollar J68: Für $p < q$ in \mathbb{N} gibt es keine ungerade stetige Abbildung $f : \mathbb{S}^q \to \mathbb{S}^p$. Beweis: Ist $f : \mathbb{S}^q \to \mathbb{S}^p$ stetig und ungerade, so auch $g = f \circ \iota : \mathbb{S}^p \to \mathbb{S}^p$. Dank J6A ist deg(g) ungerade. Andererseits gilt $\iota \simeq * (G4p)$, also $g \simeq *$ und somit deg(g) = 0 (J3A). Daran zerbricht unsere Annahme. QED	Alternative: Auch $h = \iota \circ f : \mathbb{S}^q \to \mathbb{S}^q$ ist ungerade. Dank J6A ist deg (h) ungerade. Andererseits ist mit ι auch h zusammenziehbar, also $h \simeq *$ und deg $(h) = 0$. An diesem Widerspruch zerbricht unsere Annahme. QED Das erste Argument nutzt nur den Abbildungsgrad $[\mathbb{S}^p, \mathbb{S}^p] \to \mathbb{Z}$, das zweite dagegen nutzt ihn höherdimensional für $[\mathbb{S}^q, \mathbb{S}^q] \to \mathbb{Z}$. Wenn man nur mit der Umlaufzahl arbeiten möchte, also $p = 1$, etwa aus didaktischen Gründen, so bietet sich der erste Beweis an. Daher habe ich den einfacheren und sparsameren Beweis vorangestellt. Allein mit der Umlaufzahl deg : $[\mathbb{S}^1, \mathbb{S}^1] \to \mathbb{Z}$ erhalten wir immerhin: Für $1 = p < q$ in \mathbb{N} gibt es keine ungerade stetige Abbildung $f : \mathbb{S}^q \to \mathbb{S}^1$. Diese technische Beschränkung scheint mir unnatürlich und willkürlich. Ich nutze daher den Abbildungsgrad, als Kredit, wie oben erklärt. Das macht unsere Argumente nicht schwerer, sondern einfacher: Sätze und Beweise lauten so in allen Dimensionen gleich.
Einbettungsdimension von Sphären	Einbettungsdimension euklidischer Gebiete
Existieren zu jedem Zeitpunkt auf der Erde $\cong \mathbb{S}^2$ gegenüberliegende Punkte $\pm x$ mit derselben Temperatur f_1 und demselben Luftdruck f_2 ? Für $f : \mathbb{S}^1 \to \mathbb{R}$ genügt bereits der Zwischenwertsatz, siehe Übung E2K. Korollar J6c: Borsuk–Ulam Ist $f : \mathbb{S}^n \to \mathbb{R}^n$ stetig, so existiert ein Punkt $x \in \mathbb{S}^n$ mit $f(x) = f(-x)$. Insbesondere gilt $\mathbb{S}^n \hookrightarrow \mathbb{R}^n$: Es existiert keine Einbettung $f : \mathbb{S}^n \hookrightarrow \mathbb{R}^n$. Beweis: Angenommen, es gälte $f(x) \neq f(-x)$ für alle $x \in \mathbb{S}^n$. Dann wäre $g : \mathbb{S}^n \to \mathbb{S}^{n-1} : x \mapsto \frac{f(x) - f(-x)}{ f(x) - f(-x) }$ wohldefiniert und stetig und ungerade. Dies widerspricht J6B. QED	Jedes Gebiet $V \subseteq \mathbb{R}^q$ hat die Einbettungsdimension q . Genauer: Korollar J6D: Einbettungsdimension euklidischer Gebiete Sei $p < q$. Zu $V \subseteq \mathbb{R}^q$ offen, $a \in V$, existiert keine stetige Injektion $V \hookrightarrow \mathbb{R}^p$. Beweis: Es gibt $r \in \mathbb{R}_{>0}$ mit $B(a, 2r) \subseteq V$, also $\mathbb{S}^{q-1} \hookrightarrow V : s \mapsto a + rs$. Die Komposition $\mathbb{S}^{q-1} \hookrightarrow V \hookrightarrow \mathbb{R}^p \hookrightarrow \mathbb{R}^{q-1}$ widerspricht J6c. Anwendungsbeispiel: Sind M und N nicht-leere Mannigfaltigkeiten mit dim $M = p < q = \dim N$, so existiert keine stetige Injektion $f : N \hookrightarrow M$. Zu $f(a) = b$ existieren offene Umgebungen $U \cong \mathbb{R}^p$ von b und $V \cong \mathbb{R}^q$ von a mit $f(V) \subseteq U$. Wäre f injektiv, so hätten wir $\mathbb{R}^q \cong V \hookrightarrow U \cong \mathbb{R}^p$. Als direkte Folgerung erhalten wir den folgenden wichtigen Satz: Satz J7c: topologische Invarianz der Dimension, Brouwer 1911
Die Einbettungsdimension $\operatorname{edim}(X) := \inf\{n \in \mathbb{N} \mid \exists f : X \hookrightarrow \mathbb{R}^n\}$	Seien $U \subseteq \mathbb{R}^p$ und $V \subseteq \mathbb{R}^q$ nicht-leere offene Teilmengen, wobei $p, q \in \mathbb{N}$.

Die Determinante misst Volumen und Orientierung.	Die Determinante misst Volumen und Orientierung.
Wie wirken die folgenden Matrizen auf Flächeninhalt und Orientierung?	Die Verzerrung des Volumens wird gemessen durch den Betrag
$A = \begin{bmatrix} 1.3 & -0.2 \\ -0.4 & 1.6 \end{bmatrix} \text{vs} B = \begin{bmatrix} -0.1 & 1.2 \\ 0.8 & 0.4 \end{bmatrix}$	$\begin{array}{c} v:(\mathbb{R}^{n\times n},\cdot,1_{n\times n}) \xrightarrow{\operatorname{det}} (\mathbb{R},\cdot,1) \xrightarrow{\operatorname{abs}} (\mathbb{R}_{\geq 0},\cdot,1):A\mapsto \mathrm{det}(A) ,\\ (\operatorname{GL}_n\mathbb{R},\cdot,1_{n\times n}) \xrightarrow{\operatorname{det}} (\mathbb{R}^{\times},\cdot,1) \xrightarrow{\operatorname{abs}} (\mathbb{R}_{>0},\cdot,1). \end{array}$
$Y = f_A(X)$	Der Kern dieses Gruppenhomomorphismus v ist die Gruppe
$X \subseteq \mathbb{R}^2 \qquad \qquad \qquad Z = f_B(X)$	$\operatorname{SL}_{n}^{\pm}(\mathbb{R}) := \operatorname{Ker}(v) = \{ A \in \mathbb{R}^{n \times n} \det(A) = \pm 1 \}.$
TELEVER OF THE TELEVER	Das Orientierungsverhalten wird gemessen durch das Vorzeichen
	$\varepsilon : (\mathbb{R}^{n \times n}, \cdot, 1_{n \times n}) \xrightarrow{\det} (\mathbb{R}, \cdot, 1) \xrightarrow{\operatorname{sign}} (\{\pm 1, 0\}, \cdot, 1),$
	$(\operatorname{GL}_n \mathbb{R}, \cdot, 1_{n \times n}) \xrightarrow{\operatorname{det}} (\mathbb{R}^{\times}, \cdot, 1) \xrightarrow{\operatorname{sign}} (\{\pm 1\}, \cdot, 1).$
	Es zerlegt die allgemeine lineare Gruppe $\operatorname{GL}_n(\mathbb{R})$ in zwei Klassen:
Wir finden hier $dot(f) = dot(A) = \pm 2$ und $dot(f) = dot(B) = \pm 1$	$\operatorname{GL}_n^+(\mathbb{R}) := \left\{ A \in \mathbb{R}^{n \times n} \big \det(A) > 0 \right\} = \operatorname{Ker}(\varepsilon)$
Der Flächeninhalt wird von f_A verdoppelt, aber von f_B beibehalten.	$\operatorname{GL}_n^-(\mathbb{R}) := \left\{ A \in \mathbb{R}^{n \times n} \big \det(A) < 0 \right\} \; \; \text{Nebenklasse!}$
Die Orientierung wird von f_A beibehalten, aber von f_B umgekehrt.	Es gilt $\operatorname{GL}_n = \operatorname{GL}_n^+ \sqcup \operatorname{GL}_n^-$ und $\operatorname{GL}_n^- = B \cdot \operatorname{GL}_n^+$ für jede Matrix $B \in \operatorname{GL}_n^-$.
Orientierung erhalten vs umkehren	Was bedeutet (R-lineare) Orientierung?
Beispiele: Wir haben oben $A \in \operatorname{GL}_n^+(\mathbb{R})$ und $B \in \operatorname{GL}_n^-(\mathbb{R})$ gesehen. Zu $\operatorname{GL}_n^+(\mathbb{R})$ gehören alle Drehungen (vorerst noch anschaulich). Zu $\operatorname{GL}_n^-(\mathbb{R})$ gehören alle Spiegelungen (vorerst nur anschaulich).	Anschaulich: Die reelle Gerade \mathbb{R} wird orientiert durch ihre Ordnung \leq . Doch wie orientieren wir die Ebene \mathbb{R}^2 ? oder den Raum \mathbb{R}^3 ? allgemein V ? Das ist zunächst keineswegs offensichtlich. Es erfordert Scharfsinn! Nach längerer Überlegung bieten sich folgende Möglichkeiten:
Ist V ein \mathbb{R} -linearer Raum endlicher Dimension, so setzen wir:	(1) Geometrische Sichtweise: Gegeben seien zwei Basen $\mathcal{B}=(b_1,\ldots,b_n)$
$\begin{aligned} \operatorname{GL}^{-}(V) &:= \left\{ f : V \to V \det_{V}(f) > 0 \right\} \\ \operatorname{GL}^{-}(V) &:= \left\{ f : V \to V \det_{V}(f) < 0 \right\} \end{aligned}$	und $\mathcal{C} = (c_1,, c_n)$ des \mathbb{R}^n . Sie sind gleichsinnig orientiert, wenn es einen Weg $\gamma : [0, 1] \rightarrow \operatorname{GL}_n \mathbb{R}$ von \mathcal{B} nach \mathcal{C} gibt: Die Spalten von $\gamma(t)$ sind zu jedem Zeitpunkt $t \in [0, 1]$ eine Basis des \mathbb{R}^n .
Jeder Automorphismus $f \in GL^+(V)$ heißt orientierungserhaltend. Jeder Automorphismus $f \in GL^-(V)$ heißt orientierungsumkehrend.	(2) Algebraische Sichtweise: Gauß-Algorithmus und Determinante zeigen:
Hierbei sind $\operatorname{GL}_n^+(\mathbb{R}) \trianglelefteq \operatorname{GL}_n(\mathbb{R})$ und $\operatorname{GL}^+(V) \trianglelefteq \operatorname{GL}(V)$ Untergruppen, nicht jedoch $\operatorname{GL}_n^-(\mathbb{R})$ und $\operatorname{GL}^-(V)$. Letztere sind nur die Nebenklassen!	Genau dann ist (1) möglich, wenn die Basiswechselmatrix $T_{\mathscr{B}}^{\mathscr{B}} \in \operatorname{GL}_{n}(\mathbb{R})$ von \mathscr{B} nach \mathscr{C} positive Determinante hat, also det $T_{\mathscr{B}}^{\mathscr{D}} > 0$ erfüllt. Diese algebraische Eigenschaft nutzen wir in der Definition J70.
\bigcirc Wir haben nun erklärt, wann ein \mathbb{R} -Automorphismus $f: V \to V$ die Orientierung erhält" oder hingegen die Orientierung umkehrt"	(3) Pragmatische Sichtweise: Wir benötigen ein Entscheidungsverfahren.
 Ø Dabei haben wir noch nicht definiert, was "die Orientierung" ist. Das ist kein Versehen, sondern die logisch richtige Reihenfolge! 	Eine Orientierung sagt zu jeder Basis, ob sie positiv oder negativ ist, wobei gleichsinnig orientierte Basen denselben Wert bekommen und gegensinnig orientierte Basen entgegengesetzte Werte, siehe J70.
Wie orientieren wir einen \mathbb{R} -Vektorraum?	Wie orientieren wir einen R–Vektorraum?
Wie orientieren wir einen \mathbb{R} -Vektorraum? 3717 Definition 170: Orientierungen eines \mathbb{R} -Vektorraums	Wie orientieren wir einen R-Vektorraum? J718 Erläuterung ③ Beachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig!
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathcal{I}^{j_{117}}$ Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.	Wie orientieren wir einen \mathbb{R} -Vektorraum? $\frac{7718}{Erläuterung}$ ③ Beachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig! Lösung: (0) Dies ist eine Äquivalenzrelation, denn $\varepsilon = sign \circ det$ ist
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{P}^{117} Definition J70: Orientierungen eines \mathbb{R} -Vektorraums Sei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$. (0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T_{\mathcal{B}}^{\mathcal{C}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv symmetrisch transitiv	^{J718} Wie orientieren wir einen \mathbb{R} -Vektorraum? ^{J718} Edäuderung © Beachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig! Lösung: (0) Dies ist eine Äquivalenzrelation, denn $\varepsilon = \operatorname{sign} \circ \operatorname{det}$ ist ein Gruppenhomomorphismus, kurz $\varepsilon : (\operatorname{GL}_n \mathbb{R}, \cdot, E) \to (\{\pm 1\}, \cdot, 1).$ (0a) Reflexivität: Es gilt $T_{\mathcal{B}}^{\mathcal{B}} = E$ also det $T_{\mathcal{B}}^{\mathcal{B}} = 1 > 0.$ (0b) Transitivität: Es gilt $T_{\mathcal{C}}^{\mathcal{B}} T_{\mathcal{B}}^{\mathcal{C}} = T_{\mathcal{B}}^{\mathcal{D}}.$ Aus det $T_{\mathcal{B}}^{\mathcal{B}} > 0$ und det $T_{\mathcal{C}}^{\mathcal{D}} > 0$ folgt det $T_{\mathcal{B}}^{\mathcal{D}} > 0.$
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{I}^{717} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension dim $_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow {+1}	$\label{eq:constraint} \begin{array}{c} \hline & \mathbb{R}^{\text{J718}} \\ \hline & \mathbb{E}_{\text{relatering}} \\ \hline & \mathbb{E}_{\text{relative}} \\$
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathcal{I}^{\eta_{17}}$ Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung $\alpha : \{Basen\} \rightarrow \{\pm 1\}$ mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} .	The Second Seco
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{I}^{717} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow {±1} mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $c : \mathcal{B} \mapsto cim det(\mathcal{B})$	Image: The problem of
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathfrak{I}^{\eta_1 \eta_2}$ Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V \operatorname{ein} \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow {±1} mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum. (2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \operatorname{sign} \det(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv.	The Second Seco
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{P}^{717} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow {±1} mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \text{sign det}(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$.	$ \begin{array}{c} \hline & & \\ \hline \hline \\ \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \hline \hline & \\ \hline \hline & \\ \hline \hline \hline & \\ \hline \hline & \\ \hline \hline \hline & \\ \hline \hline \hline \\ \hline \hline \hline & \\ \hline \hline \hline \hline$
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathfrak{P}nr$ Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V \operatorname{ein} \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow { \pm 1} mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \operatorname{sign} \det(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .	The Second Seco
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathfrak{I}^{\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}\mathfrak{I}I$	$ \begin{array}{c} \hline & & & & & & & & & & & & & & & & & & $
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathfrak{I}^{\eta_1 \eta_2}$ Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V \operatorname{ein} \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T_{\mathcal{B}}^{\mathcal{C}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow { \pm 1} mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T_{\mathcal{B}}^{\mathcal{C}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \operatorname{sign} \det(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen. W ie orientieren wir einen \mathbb{R} -Vektorraum?	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{I}^{717} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V \operatorname{ein} \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{B}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow { ± 1 } mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \text{sign det}(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen. $\mathbb{V}^{1/9}$ Beispiele: (0) Auf $\mathbb{R}^0 = \{0\}$ ist die Standardorientierung $\varepsilon : () \mapsto \pm 1$. ε	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathfrak{I}^{\mathfrak{I}\mathfrak{I}\mathfrak{I}}$ Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{C}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} \rightarrow { \pm 1} mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum. (2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \text{sign det}(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen.Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathfrak{P}^{\mathfrak{I}\mathfrak{P}}$ Beispiele: (0) Auf $\mathbb{R}^0 = \{0\}$ ist die Standardorientierung $\varepsilon : () \mapsto +1$. (1) Die Gerade \mathbb{R}^1 teilt $\varepsilon = \text{sign} : \mathbb{R}^{\times} \to \{\pm 1\}$ in "links" und "rechts". (2) Auf der Ebene \mathbb{R}^2 besagt $\varepsilon(b_1, b_2) = \pm 1$, ob wir b_1 auf b_2 drehen "entgegen" oder "im Uhrzeigersinn". (Rechte-/Linke-Hand-Regel)	Vie orientieren wir einen \mathbb{R} -Vektorraum?Tite ErlauterungWie orientieren wir einen \mathbb{R} -Vektorraum? \mathbb{E} Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathbb{E} Seachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig! \mathbb{L} Lösung: (0) Dies ist eine Äquivalenzrelation, denn $\varepsilon = \operatorname{sign} \circ \operatorname{det}$ ist ein Gruppenhomomorphismus, kurz $\varepsilon : (\operatorname{GL}_n \mathbb{R}, \cdot, E) \to (\{\pm 1\}, \cdot, 1).$ (0a) Reflexivität: Es gilt $T_{\mathcal{B}}^{\mathcal{B}} = E$ also det $T_{\mathcal{B}}^{\mathcal{B}} = 1 > 0.$ (0b) Transitivität:Es gilt $T_{\mathcal{C}}^{\mathcal{D}} T_{\mathcal{B}}^{\mathcal{B}} = T_{\mathcal{B}}^{\mathcal{B}}.$ Aus det $T_{\mathcal{B}}^{\mathcal{B}} > 0$ ind det $T_{\mathcal{C}}^{\mathcal{D}} > 0$ folgt det $T_{\mathcal{B}}^{\mathcal{B}} > 0.$ (0c) Symmetrie: Es folgt $T_{\mathcal{C}}^{\mathcal{B}} T_{\mathcal{B}}^{\mathcal{C}} = E.$ Aus det $T_{\mathcal{B}}^{\mathcal{D}} > 0$ folgt det $T_{\mathcal{C}}^{\mathcal{B}} > 0.$ (2a) Die Abbildung ε ist eine Orientierung, denn die Determinante ist multiplikativ. Auf \mathbb{R}^n gibt es genau zwei Orientierungen, nämlich $\pm \varepsilon.$ (2b) Jeder \mathbb{R} -Isomorphismus $h : V \cong V'$ transportiert jede Orientierung α auf V zur Orientierung $h_*(\alpha) := \alpha \circ h^{-1}$ auf $V',$ mit $h_*(-\alpha) = -h_*(\alpha).$ (2c) Jede Basis \mathcal{B} von V über \mathbb{R} stiftet einen Isomorphismus $\Phi_{\mathcal{B}} : \mathbb{R}^n \cong V.$ Auf V erhalten wir genau zwei Orientierungen, nämlich $\pm (\Phi_{\mathcal{B})_*(\varepsilon).$ Genau dann sind Basen \mathcal{B}, \mathcal{C} von V über \mathbb{R} gleichsinnig/gegensinnig, wenn $\varepsilon(T_{\mathcal{B}}^{\mathcal{C}}) = \pm 1,$ also $\alpha(\mathcal{B}) = \pm \alpha(\mathcal{C}).$ Somit ist $(1,2)$ äquivalent zu $(0).$ Auf der Menge aller Basen von V operiert $\operatorname{GL}_n(\mathbb{R})$ von rechts frei und transitiv (durch Basiswechsel), ebenso $\operatorname{GL}(V)$ von links (dank PLF).Wie orientieren wir einen \mathbb{R} -Vektorraum? $\mathbb{P}^{\mathbb{Z}}$ $(1) U = \{x \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0\}$ <
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{P}^{177} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei V ein \mathbb{R} -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T^{\mathcal{B}}_{\mathcal{B}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung $\alpha : \{Basen\} \rightarrow \{\pm 1\}$ mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T^{\mathcal{C}}_{\mathcal{B}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \text{sign det}(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen.Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{P}^{179} Beispiele: (0) Auf $\mathbb{R}^0 = \{0\}$ ist die Standardorientierung $\varepsilon : () \mapsto +1$. (1) Die Gerade \mathbb{R}^1 teilt $\varepsilon = \text{sign} : \mathbb{R}^{\times} \to \{\pm 1\}$ in "links" und "rechts". (2) Auf der Ebene \mathbb{R}^2 besagt $\varepsilon(b_1, b_2) = \pm 1$, ob wir b_1 auf b_2 drehen "entgegen" oder "im Uhrzeigersinn". (Rechte-/Linke-Hand-Regel)Auf dem Raum \mathbb{R}^n teilt ε alle Basen in "rechtshändig" und "linkshändig".	The second second system is a second system in the second system is the
Wie orientieren wir einen \mathbb{R} -Vektorraum? p_{177} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V \text{ ein } \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T_{\mathcal{B}}^{\mathcal{C}}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung $\alpha : \{\text{Basen}\} \rightarrow \{\pm 1\}$ mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T_{\mathcal{B}}^{\mathcal{C}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto \text{sign det}(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen.Wie orientieren wir einen \mathbb{R} -Vektorraum? p_{199} Beispiele: (0) Auf $\mathbb{R}^0 = \{0\}$ ist die Standardorientierung $\varepsilon : () \mapsto +1$. (1) Die Gerade \mathbb{R}^1 teilt $\varepsilon = \text{sign} : \mathbb{R}^{\times} \to \{\pm 1\}$ in "links" und "rechts". (2) Auf der Eben \mathbb{R}^2 besagt $\varepsilon(b_1, b_2) = \pm 1$, ob wir b_1 auf b_2 drehen "entgegen" oder "im Uhrzeigersinn". (Rechte-/Linke-Hand-Regel)Auf dem Raum \mathbb{R}^n teilt ε alle Basen in "rechtshändig" und "linkshändig". Jede Basis \mathcal{B} von V definiert eindeutig eine Orientierung $[\mathcal{B}] := \alpha_{\mathcal{B}}$ mit $\alpha_{\mathcal{B}}(\mathcal{B}) = +1$; diese ist demnach explizit gegeben durch $\alpha_{\mathcal{B}}(\mathcal{C}) := \varepsilon(T_{$	Wie orientieren wir einen \mathbb{R} -Vektorraum?Tister and the set of the s
Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathbb{P}^{177} Definition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V \in in \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(T_{\mathcal{B}}^{\mathcal{C}}) = +1$.Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung α : {Basen} $\rightarrow \{\pm 1\}$ mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(T_{\mathcal{B}}^{\mathcal{D}})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} .Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto sign det(\mathcal{B})$.Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv.Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$.(3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen.Wie orientieren wir einen \mathbb{R} -Vektorraum? \mathcal{P}^{199} Beispiele: (0) Auf $\mathbb{R}^0 = \{0\}$ ist die Standardorientierung $\varepsilon : () \mapsto +1$.(1) Die Gerade \mathbb{R}^1 teilt ε alge Basen in "rechtshändig" und "inkshändig".(2) Auf der Ebene \mathbb{R}^2 besagt $\varepsilon(b_1, b_2) = \pm 1$, ob wir b_1 auf b_2 drehen "entgegen" oder "im Uhrzeigersinn". (Rechte-/Linke-Hand-Regel)Auf dem Raum \mathbb{R}^n teilt ε alle Basen in "rechtshändig" und "linkshändig".Jede Basis \mathcal{B} von V definiert eindeutig eine Orientierung $[\mathcal{B}] :$	Vie orientieren wir einen \mathbb{R} -Vektorraum?Tist Entanterung \mathbb{O} Beachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig!Lösung: (0) Dies ist eine Äquivalenzrelation, denn $\varepsilon = sign \circ det ist ein Gruppenhomomorphismus, kurz \varepsilon : (GL_n \mathbb{R}, \cdot, E) \to (\{\pm 1\}, \cdot, 1).(0a) Reflexivität: Es gilt T_B^{\mathcal{B}} = E also det T_B^{\mathcal{B}} = 1 > 0. (0b) Transitivität:Es gilt T_C^{\mathcal{D}} T_B^{\mathcal{B}} = T_B^{\mathcal{B}}. Aus det T_B^{\mathcal{C}} > 0 und det T_B^{\mathcal{D}} > 0 folgt det T_B^{\mathcal{D}} > 0.(0c) Symmetrie: Es folgt T_B^{\mathcal{B}} T_B^{\mathcal{B}} = E. Aus det T_B^{\mathcal{D}} > 0 folgt det T_B^{\mathcal{D}} > 0.(2a) Die Abbildung \varepsilon ist eine Orientierung, denn die Determinante ist multiplikativ. Auf \mathbb{R}^n gibt es genau zwei Orientierungen, nämlich \pm \varepsilon.(2b) Jeder \mathbb{R}-Isomorphismus h : V \hookrightarrow V' transportiert jede Orientierung \alpha auf V zur Orientierung h_*(\alpha) := \alpha \circ h^{-1} auf V', mit h_*(-\alpha) = -h_*(\alpha).(2c) Jede Basis \mathcal{B} von V über \mathbb{R} stiftet einen Isomorphismus \Phi_B : \mathbb{R}^n \cong V.Auf V erhalten wir genau zwei Orientierungen, nämlich \pm (\Phi_B)_*(\varepsilon).Genau dann sind Basen \mathcal{B}, \mathcal{C} von V über \mathbb{R} gleichsinnig/gegensinig, wenn \varepsilon(T_B^{\mathcal{C}}) = \pm 1, also \alpha(\mathcal{B}) = \pm \alpha(\mathcal{C}). Somit ist (1,2) äquivalent zu (0).Auf gabe: Wie orientieren Sie folgende Vektorräume?(1) U = \{x \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0\} \leq \mathbb{R}^4(2) V = \langle 1, \cos, \sini \rangle_{\mathbb{R}}^1 \leq \mathbb{R}^2Ist sie orientierungserhaltend oder -umkehrend? zudem volumentreu?Lösung: (1) Es gibt zwei Orientierungen, keine ist schöner als die andere.Wir müssen eine Basis \mathcal{B} = (b_1, b_2, b_3) wählen, um eine Orientierung [\mathcal{B}]auf U zu vereinbaren. (2) Die beiden möglichen Orientierungen sind $
Wie orientieren wir einen \mathbb{R} -Vektorraum?Improvement StateDefinition J70: Orientierungen eines \mathbb{R} -VektorraumsSei $V ein \mathbb{R}$ -Vektorraum endlicher Dimension $\dim_{\mathbb{R}}(V) = n \in \mathbb{N}$.(0) Zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} heißen gleichsinnig orientiert, wenn die Basiswechselmatrix positive Determinante hat, $\varepsilon(\Pi_{\mathcal{B}}^{e}) = +1$. Dies ist eine Äquivalenzrelation: reflexiv, symmetrisch, transitiv.(1) Eine Orientierung von V ist eine Zuordnung $\alpha : \{Basen\} \to \{\pm 1\}$ mit $\alpha(\mathcal{C}) = \alpha(\mathcal{B}) \cdot \varepsilon(\Pi_{\mathcal{B}}^{e})$ für je zwei Basen \mathcal{B} und \mathcal{C} von V über \mathbb{R} . Das Paar (V, α) nennen wir einen orientierten \mathbb{R} -Vektorraum.(2) Die Standardorientierung auf \mathbb{R}^n ist $\varepsilon : \mathcal{B} \mapsto sign det(\mathcal{B})$. Mit dieser Orientierung ist die Standardbasis (e_1, \dots, e_n) positiv. Auf jedem \mathbb{R} -Vektorraum V gibt es genau zwei Orientierungen, $\pm \alpha$. (3) Ein \mathbb{R} -linearer Isomorphismus $h : (V, \alpha) \cong (V', \alpha')$ heißt orientierungserhaltend/umkehrend, falls $\alpha' \circ h = \pm \alpha$ gilt, also $\alpha'(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ für jede Basis b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen.Wie orientieren wir einen \mathbb{R} -Vektorraum?TrieDrieOut $\Omega_{\alpha}(h(b_1), \dots, h(b_n)) = \pm \alpha(b_1, \dots, b_n)$ tilt je also b_1, \dots, b_n von V .Aufgabe: Beweisen Sie sorgsam alle hier gemachten Behauptungen.Wie orientieren wir einen \mathbb{R} -Vektorraum?TrieDieDie Grade \mathbb{R}^1 teilt $\varepsilon = sign : \mathbb{R}^n \to \{\pm 1\}$ in ", links" und ", rechts".<td colspan="</th> <th>Wie orientieren wir einen \mathbb{R}-Vektorraum?Tist Ethaterung(\bigcirc)Beachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig!Lösung: (0)Dies ist eine Äquivalenzrelation, denn $\varepsilon = \operatorname{sign} \circ \det$ ist ein Gruppenhomomorphismus, kur $\varepsilon : (\operatorname{GL}_n \mathbb{R}, \cdot, E) \to (\{\pm 1\}, \cdot, 1).$(0a)Reflexivität: Es gilt $T_{\mathcal{B}}^{\mathcal{B}} = E$ also $\det T_{\mathcal{B}}^{\mathcal{B}} = 1 > 0.$ (0b) Transitivität:Es gilt $T_{\mathcal{C}}^{\mathcal{D}} T_{\mathcal{B}}^{\mathcal{B}} = T_{\mathcal{B}}^{\mathcal{D}}.$ Aus $\det T_{\mathcal{C}}^{\mathcal{B}} > 0$ und $\det T_{\mathcal{C}}^{\mathcal{D}} > 0$ folgt $\det T_{\mathcal{C}}^{\mathcal{D}} > 0.$(0c)Symmetrie: Es folgt $T_{\mathcal{C}}^{\mathcal{B}} T_{\mathcal{B}}^{\mathcal{C}} = E.$ Aus $\det T_{\mathcal{B}}^{\mathcal{C}} > 0$ folgt $\det T_{\mathcal{C}}^{\mathcal{D}} > 0.$(2a)Die Abbildung ε ist eine Orientierung, denn die Determinante ist multiplikativ. Auf \mathbb{R}^n gibt es genau zwei Orientierungen, nämlich $\pm \varepsilon.$(2b)Jeder \mathbb{R}-Isomorphismus $h : V \Rightarrow V'$ transportiert jede Orientierung α auf V zur Orientierung $h_*(\alpha) := \alpha \circ h^{-1}$ auf <math>V', \operatorname{mit} $h_*(-\alpha) = -h_*(\alpha).$(2c)Jede Basis \mathcal{B} von V über \mathbb{R} gleichsinnig/gegensinnig, wenn $\varepsilon(T_{\mathcal{B}}^{\mathcal{O}}) = \pm 1$, also $\alpha(\mathcal{B}) = \pm \alpha(\mathcal{C}).$ Somti ist $(1,2)$ äquivalent zu $(0).$Auf der Menge aller Basen von V operiert $\operatorname{GL}_n(\mathbb{R})$ von rechts frei und transitiv (durch Basiswechsel), ebenso $\operatorname{GL}(V)$ von links (dank PLF).Wie orientieren wir einen \mathbb{R}-Vektorraum?Y^{20}(3)Wie verhält sich die Ableitung $\partial : W \to W$ auf $W = \langle \cos, \sin h _{\mathbb{R}}^2$?Ist sie orientierungserhalten oder -umkehrend? zudem volumentreu?Lösung: (1) Es gibt zwei Orientierungen, keine ist schöner als die andere.Wir müssen eine Basis $\mathcal{B} = (h_1, h_2, h_3)$ wählen, um eine Orientierunge \mathcal{B}auf U zu vereinbaren. (2) Die bei</math></th>	Wie orientieren wir einen \mathbb{R} -Vektorraum?Tist Ethaterung(\bigcirc)Beachten Sie, dieses raffinierte Vorgehen ist korrekt und notwendig!Lösung: (0)Dies ist eine Äquivalenzrelation, denn $\varepsilon = \operatorname{sign} \circ \det$ ist ein Gruppenhomomorphismus, kur $\varepsilon : (\operatorname{GL}_n \mathbb{R}, \cdot, E) \to (\{\pm 1\}, \cdot, 1).$ (0a)Reflexivität: Es gilt $T_{\mathcal{B}}^{\mathcal{B}} = E$ also $\det T_{\mathcal{B}}^{\mathcal{B}} = 1 > 0.$ (0b) Transitivität:Es gilt $T_{\mathcal{C}}^{\mathcal{D}} T_{\mathcal{B}}^{\mathcal{B}} = T_{\mathcal{B}}^{\mathcal{D}}.$ Aus $\det T_{\mathcal{C}}^{\mathcal{B}} > 0$ und $\det T_{\mathcal{C}}^{\mathcal{D}} > 0$ folgt $\det T_{\mathcal{C}}^{\mathcal{D}} > 0.$ (0c)Symmetrie: Es folgt $T_{\mathcal{C}}^{\mathcal{B}} T_{\mathcal{B}}^{\mathcal{C}} = E.$ Aus $\det T_{\mathcal{B}}^{\mathcal{C}} > 0$ folgt $\det T_{\mathcal{C}}^{\mathcal{D}} > 0.$ (2a)Die Abbildung ε ist eine Orientierung, denn die Determinante ist multiplikativ. Auf \mathbb{R}^n gibt es genau zwei Orientierungen, nämlich $\pm \varepsilon.$ (2b)Jeder \mathbb{R} -Isomorphismus $h : V \Rightarrow V'$ transportiert jede Orientierung α auf V zur Orientierung $h_*(\alpha) := \alpha \circ h^{-1}$ auf $V', \operatorname{mit} h_*(-\alpha) = -h_*(\alpha).(2c)Jede Basis \mathcal{B} von V über \mathbb{R} gleichsinnig/gegensinnig, wenn \varepsilon(T_{\mathcal{B}}^{\mathcal{O}}) = \pm 1, also \alpha(\mathcal{B}) = \pm \alpha(\mathcal{C}). Somti ist (1,2) äquivalent zu (0).Auf der Menge aller Basen von V operiert \operatorname{GL}_n(\mathbb{R}) von rechts frei und transitiv (durch Basiswechsel), ebenso \operatorname{GL}(V) von links (dank PLF).Wie orientieren wir einen \mathbb{R}-Vektorraum?Y^{20}(3)Wie verhält sich die Ableitung \partial : W \to W auf W = \langle \cos, \sin h _{\mathbb{R}}^2?Ist sie orientierungserhalten oder -umkehrend? zudem volumentreu?Lösung: (1) Es gibt zwei Orientierungen, keine ist schöner als die andere.Wir müssen eine Basis \mathcal{B} = (h_1, h_2, h_3) wählen, um eine Orientierunge \mathcal{B} auf U zu vereinbaren. (2) Die bei$

Topologische Definition des Orientierungsverhaltens	Topologische Definition des Orientierungsverhaltens
Für jeden Diffeomorphismus $h : (U \subseteq \mathbb{R}^n, a) \cong (V \subseteq \mathbb{R}^n, b)$ entscheidet das Vorzeichen sign det $h'(a) \in \{\pm 1\}$ über das Orientierungsverhalten. Allgemein für Homöomorphismen? Hier rettet uns der Abbildungsgrad! $\underbrace{\begin{array}{c} & & \\ $	Beachten Sie die Progression der begrifflichen Verallgemeinerung: (1) Schon linear ist die Definition des Orientierungsbegriffs raffiniert: Sie benötigen alle Techniken der Linearen Algebra und präzise Begriffe! (2) Für differenzierbare Abbildungen nutzen wir dankend die Ableitung (als Funktor) und führen das Problem auf lineare Abbildungen zurück! (3) Topologisch wird die technische Schwierigkeit offenbar: Wir haben noch weniger Struktur, insbesondere keine linearen Abbildungsmehr! Die obige Skizze erklärt, wie wir hierzu den Abbildungsgrad einsetzen: Wir betrachten eine Sphäre um <i>a</i> und ihr Bild unter $h : (U, a) \cong (V, b)$. Dies ergibt eine kleine Sphäre um <i>b</i> , und wir messen ihre Orientierung. Hierzu genügen uns stetige Abbildungen und der Abbildungsgrad! Das ist geometrisch wunderbar anschaulich, aber technisch aufwändig. Der größte Aufwand steckt in der Konstruktion des Abbildungsgrades. Wir fügen nun die Puzzleteile zusammen und übersetzen, wieder einmal, die anschauliche Skizze in präzise Formeln. Voilà, alles wird gut.
Einfachster Fall: Dimension $n = 1$	Höhere Dimension: $n \ge 2$
☺ Besonders schön und einfach ist die Situation in Dimension $n = 1$: Hier sind Stetigkeit und Monotonie engstens verbunden, siehe Satz D2F. Der Abbildungsgrad deg : $[\mathbb{S}^0, \mathbb{S}^0] \rightarrow \{\pm 1, 0\}$ ist die Signatur, siehe J306. Wir haben $\mathbb{S}^0 = \{-1, +1\}$ und deg = sign : $[\mathbb{S}^0, \mathbb{S}^0] \rightarrow \{\pm 1, 0\}$:	Für diesen einfachsten Fall benötigen wir den Abbildungsgrad nicht wirklich, er ist nur eine wunderlich komplizierte (oder doch elegante?) Formulierung der Monotonie. Dennoch ist es sehr schön und beruhigend, dass unsere allgemeine Betrachtung in diesem Spezialfall die vertrauten Begriffe "wachsend" vs "fallend" für $h : \mathbb{R} \supseteq U \cong V \subseteq \mathbb{R}$ ergibt.
$\deg(\mathrm{id}) = +1, \qquad \deg(-\mathrm{id}) = -1, \qquad \deg(\mathrm{const}) = 0.$	▲ Ab Dimension $n \ge 2$ benötigen wir stärkere Werkzeuge!
$\begin{array}{l} \textbf{Aufgabe: Was bedeutet} \ \mathrm{sign}(h,a) := \mathrm{deg}(\varphi_{a,r}) \ \mathrm{im} \ \mathrm{Fall} \ n = 1? \ \mathrm{Lösung:} \\ \mathrm{Seien} \ U, V \subseteq \mathbb{R} \ \mathrm{offen.} \ \mathrm{Jeder} \ \mathrm{Hom\"oomorphismus} \ h: (U,a) \cong (V,b) \\ \mathrm{ist} \ \mathrm{um} \ a \ \mathrm{streng} \ \mathrm{monoton}, \ \mathrm{entweder} \ (1) \ \mathrm{wachsend} \ \mathrm{oder} \ (2) \ \mathrm{fallend}. \\ \mathrm{Global:} \ \mathrm{Auf} \ \mathrm{jeder} \ \mathrm{Komponente} \ \mathrm{ist} \ h \ \mathrm{streng} \ \mathrm{wachsend} \ / \ \mathrm{fallend}. \\ \mathrm{Global:} \ \mathrm{Auf} \ \mathrm{jeder} \ \mathrm{Komponente} \ \mathrm{ist} \ h \ \mathrm{streng} \ \mathrm{wachsend} \ / \ \mathrm{fallend}. \\ \mathrm{Global:} \ \mathrm{Auf} \ \mathrm{jeder} \ \mathrm{Komponente} \ \mathrm{ist} \ h \ \mathrm{streng} \ \mathrm{wachsend} \ / \ \mathrm{fallend}. \\ \mathrm{(Auf} \ \mathrm{verschiedenen} \ \mathrm{Komponente} \ \mathrm{ist} \ h \ \mathrm{streng} \ \mathrm{wachsend} \ / \ \mathrm{fallend}. \\ \mathrm{(Auf} \ \mathrm{verschiedenen} \ \mathrm{Komponente} \ \mathrm{ist} \ \mathrm{ds} \ \mathrm{Verhalten} \ \mathrm{unabhangig.}) \\ \mathrm{Ist} \ h \ \mathrm{ent} \ \mathrm{Diffeomorphismus}, \ \mathrm{so} \ \mathrm{folgt} \ (1) \ h'(a) > 0 \ \mathrm{oder} \ (2) \ h'(a) < 0. \\ (\mathrm{Wachsend} \ \mathrm{impliziert} \ h' \ge 0, \ \mathrm{fallend} \ h' \le 0, \ \mathrm{zudem} \ \mathrm{gilt} \ h'(a) \neq 0.) \\ \mathrm{Allgemein}, \ \mathrm{falls} \ h \ \mathrm{nur} \ \mathrm{ent} \ \mathrm{Hom\"oomorphismus} \ \mathrm{ist}, \ \mathrm{so} \ \mathrm{finden} \ \mathrm{wir:} \\ (1) \ \varphi_{a,r} \ \colon \ \pm 1 \ \mapsto \ a \pm r \ \mapsto \ h(a \pm r) \ge b \ \ \pm 1, \ \ \mathrm{also} \ \mathrm{deg}(\varphi_{a,r}) = +1. \end{array}$	 ② In der Analysis setzt man h als Diffeomorphismus voraus und nutzt die Jacobi-Matrix h'(a) ∈ ℝ^{n×n}. Die Volumenverzerrung det h'(a) spielt eine wichtige Rolle in der Integration, speziell im Transformationssatz. Das Vorzeichen sign det h'(a) ∈ {±1} misst das Orientierungsverhalten. Hier arbeiten Analysis (Differential- und Integralrechnung im ℝⁿ) und Lineare Algebra (Determinante) wieder einmal wunderbar zusammen! ③ Oft haben wir den Luxus der Differenzierbarkeit nicht, oder wollen vielleicht gar nicht erst die Last auf uns nehmen, sie nachzuweisen. Die Volumenverzerrung können wir nun nicht mehr kontrollieren, das
(2) $\varphi_{a,r}: \pm 1 \mapsto a \pm r \mapsto h(a \pm r) \leq b \mapsto \mp 1$, also $\deg(\varphi_{a,r}) = -1$.	Orientierungsverhalten hingegen immer noch dank Abbildungsgrad!
Topologische Definition des Orientierungsverhaltens J725 Erläuterung	Topologische Definition des Orientierungsverhaltens
$\begin{array}{l} \operatorname{Aufgabe:}_{r}\operatorname{Formulieren}\operatorname{Sie}\operatorname{die}\operatorname{obige}\operatorname{Konstruktion}\operatorname{nun}\operatorname{allgemein}_{f \operatorname{ur}} \operatorname{iden}\operatorname{Homöomorphismus}h:(U,a) \cong (V,b) \operatorname{mit} U,V \subseteq \mathbb{R}^n \operatorname{offen}.\\ (1) \operatorname{Warum}\operatorname{ist}\operatorname{sign}(h,a) \in \{\pm 1\} \operatorname{wohldefiniert}, \operatorname{unabhängig}\operatorname{von} r?\\ (2) \operatorname{Warum}\operatorname{ist} a \mapsto \operatorname{sign}(h,a) \operatorname{lokal}\operatorname{konstant}? \operatorname{anschaulich}? \operatorname{formal}?\\ \operatorname{Lösung:}_{s}(1) \operatorname{Wir} \operatorname{nutzen}\operatorname{die}\operatorname{obigen}\operatorname{Abbildungen}\operatorname{und}\operatorname{schauen}\operatorname{genau}\operatorname{hin}.\\ \operatorname{Sei} \bar{B}(a,r_0) \subseteq U \operatorname{und} r \in]0,r_0]. \operatorname{Dank}\operatorname{Homotopie-Invarianz}\operatorname{ist}\operatorname{deg}(\varphi_{a,r})\\ \operatorname{unabhängig}\operatorname{von} r. \operatorname{Ebenso}\operatorname{für}\psi_{b,r'}\operatorname{und}\bar{B}(b,r'_0) \subseteq V\operatorname{und} r' \in]0,r'_0].\\ \operatorname{Es} \operatorname{gilt} f_a \circ g_{a,r} = \operatorname{id}_{\mathbb{S}^{n-1}}, \operatorname{zudem} g_{a,r} \circ f_a \simeq \operatorname{id}_{U'}\operatorname{auf} U' = \bar{B}(a,r_0) \setminus \{a\}.\\ \operatorname{Es} \operatorname{gilt} f_b \circ g_{b,r'} = \operatorname{id}_{\mathbb{S}^{n-1}}, \operatorname{zudem} g_{b,r'} \circ f_b \simeq \operatorname{id}_{V'}\operatorname{uf} r' \in [0,r_1] \operatorname{gilt}\operatorname{dann}\\ \psi_{b,r'} \circ \varphi_{a,r} = f_a \circ h^{-1} \circ g_{b,r'} \circ f_b \circ h \circ g_{a,r} \simeq f_a \circ h^{-1} \circ h \circ g_{a,r} = f_a \circ g_{a,r} = \operatorname{id}_{\mathbb{S}^{n-1}}.\\ \operatorname{Daraus} \operatorname{folgt} 1 = \operatorname{deg}(\operatorname{id}_{\mathbb{S}^{n-1}}) = \operatorname{deg}(\psi_{b,r'} \circ \varphi_{a,r}) = \operatorname{deg}(\psi_{b,r'}) \cdot \operatorname{deg}(\varphi_{a,r})\\ \operatorname{dank}\operatorname{Multiplikativitat}(J3c), \operatorname{also}\operatorname{deg}(\varphi_{a,r}) = \operatorname{deg}(\psi_{b,r'}) \in \{\pm 1\}$ (J3D).\\ \end{array}	Nach diesen sorgfältigen Vorbereitungen können wir nun feierlich und erfreulich allgemein das Orientierungsverhalten erklären: Definition J7p: Orientierungsverhalten, topologisch Seien $U, V \subseteq \mathbb{R}^n$ offen und $h : (U, a) \cong (V, b)$ ein Homöomorphismus. Das Orientierungsverhalten von $h : (U, a) \cong (V, b)$ definieren wir durch $\operatorname{sign}(h, a) := \operatorname{deg}(\varphi_{a,r})$ wobei $r \in \mathbb{R}_{>0}$ mit $\overline{B}(a, r) \subseteq U$. Dies ist wohldefiniert, also unabhängig vom gewählten Radius r . Nach obiger Rechnung ist der Abbildungsgrad entweder $+1$ oder -1 . Im Falle $\operatorname{sign}(h, a) = +1$ nennen wir h in a orientierungserhaltend, im Falle $\operatorname{sign}(h, a) = -1$ nennen wir h in a orientierungsumkehrend. Die Abbildung $a \mapsto \operatorname{sign}(h, a)$ ist zudem lokal konstant. Ist sie global konstant, etwa für U zshgd, so schreiben wir diesen Wert kurz $\operatorname{sign}(h)$.
(2) Weiterhin sei $\overline{B}(a, r_0) \subseteq U$ für ein $r_0 > 0$. Wir fixieren nun $r = r_0/2$. Für alle $\tilde{a} \in B(a, r)$ gilt $\varphi_{a,r} \simeq \varphi_{\tilde{a},r}$ und somit $\operatorname{sign}(h, a) = \operatorname{sign}(h, \tilde{a})$.	Im letzten Falle ist $h: U \cong V$ nicht nur lokal um jeden Punkt, sondern global orientierungserhaltend oder global orientierungsumkehrend.
Verbindung zum linearen / glatten Fall	Verbindung zum linearen / glatten Fall
Unsere allgemeine, topologische Definition deckt sich mit den speziellen, einfacheren Definitionen aus der Linearen Algebra und der Analysis: Übung J7q: Verbindung zum linearen / glatten Fall (1) Für $A \in GL_n \mathbb{R}$ und $h : \mathbb{R}^n \cong \mathbb{R}^n : x \mapsto Ax$ gilt $sign(A, 0) = sign det A$. (2) Seien $U, V \subseteq \mathbb{R}^n$ offen und $h : (U, a) \cong (V, b)$ ein Homöomorphismus. Ist h in a diff bar mit $h'(a) \in GL_n \mathbb{R}$, so gilt $sign(h, a) = sign det h'(a)$. Lösung: (1) Nach Satz G2N zerfällt $GL_n \mathbb{R}$ in zwei Wegkomponenten: $\pi_0(GL_n \mathbb{R}) = \{GL_n^{\pm} \mathbb{R}\}$. Für det $A \ge 0$ ist A mit $E_{\pm} = \text{diag}(1, \pm 1, 1,, 1)$ verbindbar durch einen Weg $\gamma : [0, 1] \to GL_n \mathbb{R}$, dank Gauß-Algorithmus. Das Orientierungsverhalten ändert sich nicht während der Homotopie $H : [0, 1] \times \mathbb{S}^{n-1} \to \mathbb{S}^{n-1} : (t, x) \mapsto (\gamma(t) x)/ \gamma(t) x $. Für E_{\pm} können wir es schließlich leicht ablessen und arhalten sim $(4, 0) = sim(E_{\pm}, 0) = +1$	(2) Durch Verschiebung erreichen wir $a = 0$ und $b = 0$, das ist bequemer. Differenzierbarkeit im Punkt $a = 0$ mit Ableitung $h'(0) = A \in \operatorname{GL}_n \mathbb{R}$ bedeutet $ h(x) - Ax / x \to 0$ für $ x \to 0$. Dank Kompaktheit von \mathbb{S}^{n-1} gilt $c := \min\{ Ax \mid x = 1\} > 0$, also $ Ax \ge c \cdot x $ für alle $x \in \mathbb{R}^n$. Dank des vorausgesetzten Grenzwerts existiert ein Radius $r \in \mathbb{R}_{>0}$ mit $\overline{B}(0, r) \subseteq U$ und hierauf die Approximation $ h(x) - Ax < c \cdot x $. Gemäß Definition J7P berechnen wir nun den Abbildungsgrad von $\varphi = h \circ g : \mathbb{S}^{n-1} \hookrightarrow U \setminus \{0\} \to V \setminus \{0\} \hookrightarrow \mathbb{R}^n \setminus \{0\} : s \mapsto h(rs)$. Die Komposition $\varphi = h \circ g$ ist homotop zu $A \circ g$ vermöge der affinen Homotopie $H : [0, 1] \times \mathbb{S}^n \to \mathbb{R}^n \setminus \{0\}$ mit $H(t, s) = th(rs) + (1 - t)A(rs)$. Unsere obige Abschätzung $ h(x) - Ax < c \cdot x \le Ax $ garantiert nun H(t, s) = A(rs) + t[h(rs) - A(rs)] > A(rs) - t[h(rs) - A(rs)] > 0
scincebicn feicht ablesen und ernalten $\operatorname{sign}(A, 0) = \operatorname{sign}(E_{\pm}, 0) = \pm 1$. ⁽²⁾ Den linearen Fall (1) nutzen wir auch glatt (2): Differenzierbarkeit bedeutet (affin-)lineare Approximation mit vernachlässigbaren Fehler	Demnach haben h und A um 0 dasselbe Orientierungsverhalten! Dank (1) schließen wir sign(h, 0) = $\deg(H_1) = \deg(H_0) = sign \det A$. OED

hier bereits bewiesenspäter verallgemeinernAbbildungsgrad (deg, φ) : $[\mathbb{S}^n, \mathbb{S}^n] \cong \mathbb{Z}$ Die Umlaufzahl deg(γ) eines (geschlossenen) Weges $\gamma : [0, 1] \to \mathbb{C}^*$ anschaulich sofort verständlich, Konstruktion und Beweis gelingen Polygonal genügt dafür etwas Trigonometrie, im bescheidenen Un der Schulmathematik, das scheint mir bemerkenswert und attrakt In der Analysis begegnet Ihnen die Umlaufzahl als Wegintegral von Vektorfeldern in der Ebene, siehe J118, ebenso in der komplexen Am (aka Funktionentheorie) als Cauchy–Index geschlossener Wege.	ist leicht: mfang iv.
Jordan-Brouwer: Trennungssatz für $\mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$ $n \le 1$: Satz J2vIn der Analysis begegnet Ihnen die Umlaufzahl als Wegintegral von Vektorfeldern in der Ebene, siehe J118, ebenso in der komplexen An (aka Funktionentheorie) als Cauchy-Index geschlossener Wege.	
	on nalysis
Schoenflies: Entknotung von $\mathbb{S}^1 \hookrightarrow \mathbb{R}^2$ (glatt $\mathbb{S}^2 \hookrightarrow \mathbb{R}^3$) polygonal: Satz J2jMit dem so erstellten Werkzeug deg : $[\mathbb{S}^1, \mathbb{S}^1] \hookrightarrow \mathbb{Z}$ konnen wir scho erstaunliche und erfreuliche Vielfalt von Sätzen beweisen, allen vo den Fundamentalsatz der Algebra in effektiver Formulierung! Sod ershalten wir alle Aussagen dieses Kapitels für die Topologie der EboBereukUlami let f. $\mathbb{S}^n \to \mathbb{S}^n$ ungegrade ge auch deg (f)	on eine oran lann ene \mathbb{R}^2 .
Borsuk=Orani. Ist $f: \mathbb{S} \to \mathbb{S}$ ungerade, so auch deg(f). $n \leq 1$: Satz J6A $n \geq 2$: Algebraische TopologieHomotopie–Invarianz der Euler–CharakteristikAuch in höherer Dimension $n \geq 2$ können wir jeder stetigen AbbiGraphen und Flächen: π_1 Algebraische Topologie: H_*	ldung seine ch ite
Zuirkonstruktion dieses werkzeugs werden technisch auf wahunge	2 1. J73
Zwischenblianz unserer Topologie: Soil und Haben Erläuterung Zwischenblianz unserer Topologie: Soil und Haben	Erläuterun
The folge dem Mittelweg (3). Den allgemeinen Satz (deg, φ) : [S ⁿ , S (1) Bei einer ersten Präsentation in der Vorlesung (oder bei einer ersten Lektüre) kann man sich auf den Fall $n = 1$ konzentrieren und nur diesen beweisen. Die hiermit erreichbaren Anwendungen genügen bereits für alles, was wir für die Flächenklassifikation in Kapitel K benötigen. Leider lässt dies alle naheliegenden Fragen für $n \ge 2$ offen.	$[n] \cong \mathbb{Z}$ = 1 utzen. in J2. ech
(2) Die vollständige Konstruktion des Abbildungsgrades in Dimension $n \ge 2$ ist etwas aufwändiger, und ihr Kosten-Nutzen-Verhältnis hängt vom Kontext der Vorlesung ab. Am effizientesten gelingt dies in der Algebraischen Topologie im Rahmen der Homologie und Homotopie, durch die erfolgreiche Berechnung von $\pi_n(\mathbb{S}^n) \cong H_n(\mathbb{S}^n) \cong \mathbb{Z}$. Für Brouwer–Hopf gibt es schöne und elementare Beweise, sie sin geometrisch erhellend, aber doch mühevoll. Es scheint mir effizien diesen Satz später aus Homologie- und Homotopietheorie zu gewei Differentialtopologisch kann man dem Büchlein von Milnor folger Der Aufbau der Maschinerie ist umfangreich, doch jedenfalls lohr und die Säta von Brouwer und Homotopietheorie zu geweiten her Aufbau der Maschinerie ist umfangreich, doch jedenfalls lohr	nd nter, innen. n. nend,
(3) Als Mittelweg können wir die Eigenschaften des Abbildungsgrades für $n = 1$ beweisen, und ohne Mehrkosten für $n \ge 1$ bereits formulieren. Mit dieser axiomatischen Einführung können wir die geometrischen Folgerungen ernten. Die Beweise unserer Anwendungen sind dieselben, der allgemeine Fall scheint mir sogar einfacher und durchsichtiger.	den enden. dit auf,