Lineare Algebra

freundlich und gründlich

erkennen. beweisen. anwenden.

Prof. Dr. Michael Eisermann eiserm.de/lehre/LinA

Universität Stuttgart

WiSe 2020/21 und SoSe 2021 Stand 5. März 2022

Habe Mut, dich deines eigenen Verstandes zu bedienen! Much to learn, you still have. This is just the beginning.

Für die Mitteilung von Unklarheiten und Fehlern aller Art sowie für Verbesserungsvorschläge bin ich stets dankbar!

Herzlich willkommen zur Linearen Algebra!

003 Überblick

Alles Wichtige zur *Organisation* und alle Angebote der diesjährigen Linearen Algebra finden Sie in unserem liebevoll gestalteten Ilias-Kurs. Dieses Skript dient als Grundlage meiner Vorlesung, derzeit als Videos. Es wird während des Semesters fortgeschrieben und vervollständigt.

Die *Vortragsfolien* sind dabei durch blaue Titelbalken leicht zu erkennen. Hier finden Sie alles Wesentliche, darauf sollten Sie sich konzentrieren. Die *Hintergrundfolien* bieten Erläuterungen, Übungen, Vertiefungen, etc. Diese sollten sie überfliegen und sich heraussuchen, was Ihnen hilft.

In der Vorlesung entwickle ich für Sie die zentralen Ideen und führe die wesentlichen Definitionen, Sätze, Beweise und Techniken präzise aus. Diese Darstellung ist so ausführlich wie nötig und so knapp wie möglich; einiges verstehen Sie sofort, für anderes benötigen Sie Zeit und Muße.

Um diese Ideen und Werkzeuge wirklich zu begreifen, müssen Sie alles selbst in die Hand nehmen, erproben, anwenden, vertiefen, kurz: üben! Das Skript bietet Ihnen hierzu passende Übungen mit Lösungen sowie zahlreiche weitere Illustrationen, Erläuterungen und Ergänzungen.

Urheberrecht und Haftungsausschluss

002 Überblick

Die hier angebotenen Inhalte sind urheberrechtlich geschützt. Sie dürfen zu nicht-kommerziellen Zwecken in der Lehre verwendet werden, sofern die Quelle wie folgt vollständig angegeben wird.

Prof. Dr. Michael Eisermann: Vorlesungsunterlagen zur Linearen Algebra, Institut für Geometrie und Topologie (IGT), Universität Stuttgart, michael-eisermann.de/lehre/LinA

Diese Unterlagen werden genutzt zur Vorlesung *Lineare Algebra*. Sie sind für das Grundstudium der Mathematik konzipiert und vermitteln einschlägiges mathematisches Basiswissen.

Die Inhalte wurden vom Autor mit größter Sorgfalt für die Präsentation in der Lehre erstellt. Sie werden allein zu Lehrzwecken zur Verfügung gestellt, in der Hoffnung, dass sie zum Lernen und Üben nützen mögen, ohne jeden Anspruch auf Eignung zu irgendeinem anderen Zweck. Sie sind keine Handlungsanweisung oder Empfehlung. Nur eigenständiges Denken hilft!

Kunst und Wissenschaft, Forschung und Lehre sind frei. (GG Art. 5.3.1) Der Autor übernimmt keinerlei Gewähr für die angebotenen Informationen und Daten, deren Aktualität, Korrektheit, Vollständigkeit, Qualität oder irgendeine Nutzbarkeit außerhalb der Lehre. Haftungsansprüche für mögliche Schäden, materieller oder immaterieller Art, sind grundsätzlich ausgeschlossen.

Für Inhalte externer Quellen, insb. verlinkter Webseiten, ist stets deren Anbieter verantwortlich.

Herzlich willkommen zur Linearen Algebra!

004 Überblick

Diese Vorlesung ist eine Einführung, zwar gründlich doch begrenzt. Sie ist in sich geschlossen und zugleich offen, ein solider Anfang, sie soll Ihnen später insbesondere eine Brücke zur Literatur bieten. Bitte lesen Sie Lehrbücher, sobald Sie sich sicher genug fühlen!

Zur Linearen Algebra gibt es viele gute Lehrbücher. Alle behandeln als Kernprogramm die klassischen Themen, die in den ersten Semestern eines Mathematikstudiums erworben werden müssen und anschließend die Grundlage für alles Weitere bilden. Lehrbücher unterscheiden sich jedoch in Breite oder Kürze der Darstellung, in zusätzlichen Themen, Anwendungen oder historischen Einschüben, sowie in der Menge an Beispielen und Aufgaben. Eine kurze Liste an Empfehlungen finden Sie auf der öffentlichen Vorlesungswebseite eiserm.de/lehre/2020/LinA.

Nur durch eigenständige Lektüre lernen Sie verschiedene Sichtweisen kennen in mathematischem Stil und Inhalt, Auswahl und Aufbau, Selbst wenn Sie manche Lehrbücher zunächst nur anlesen, sind dies doch wichtige Kondensationskeime, um später darauf zurückzukommen.

007

Studieren bereitet Freude und erfordert Disziplin!

- Erstellen Sie einen realistischen Zeitplan.
- Führen Sie ein ehrliches Logbuch.
- Arbeiten Sie gewissenhaft mit.

Wir unterstützen Sie dabei!

- Lehrvideos mit Skript, ergänzend Lehrbücher
- Gut abgestimmte Vorlesung und Übungen
- Ein erfahrenes und hochmotiviertes Team

Dieses weitgehend digitale Semester ist eine immense Herausforderung für uns alle, Lernende und Lehrend-Lernende, insbesondere in Fragen der umsichtigen Organisation und vorausschauenden Kommunikation.

Gemeinsam wird dieses Vorhaben gelingen, indem wir uns gegenseitig stützen und motivieren, aktiv und konstruktiv aufeinander zugehen. Sprechen Sie mit uns! Nutzen Sie die vielfältigen Kontaktmöglichkeiten!

Wo finden Sie Materialien und Unterstützung?

Alle Angebote finden Sie in unserem liebevoll gestalteten Ilias-Kurs.

Die Distanzlehre verschiebt die Kommunikationsformen und -medien, ändert jedoch nicht die Ziele und Inhalte Ihrer universitären Ausbildung. Die Universität Stuttgart sichert die hohe Qualität ihrer Studiengänge. Speziell wir im Fachbereich Mathematik, Dozenten und Studierende, tun gemeinsam alles, um dieses Semester erfolgreich zu gestalten, sodass Sie trotz der widrigen Umstände regulär studieren können.

Für die Vorlesungen in der Mathematik ist das relativ gut möglich: Abgesehen von medientechnischen Änderungen ist unsere Lehrform weiterhin bewährt und robust gegen die meisten äußeren Änderung: Was zählt ist Ihre dauerhafte Aktivierung und hochwertige Anregung.

Für Sie als Studierende gelten dieselben Hinweise und Regeln wie immer: Arbeiten Sie engagiert mit! Mehr denn je sind Ihr Engagement und Ihre individuelle Lernfreude der Schlüssel zu Ihrem Studienerfolg. Die Universität lehrt kritisches Denken und eigenständiges Arbeiten. Genau diese Grundtugenden fordert (und fördert) die aktuelle Krise. Nehmen Sie, und wir gemeinsam, diese Herausforderungen an!

Wo finden Sie Materialien und Unterstützung?

008 Erläuterung

Bitte machen Sie sich früh und gründlich mit dem Ilias-Kurs vertraut, sodass Sie ab der ersten Vorlesungswoche voll mitarbeiten können. Manche gehen es halbherzig an, vertrödeln den Einstieg, können dies nicht mehr aufholen und geben frustriert auf. Machen Sie es besser!

Der Ilias-Kurs bündelt alle Angebote und wird für die gesamte Lineare Algebra Ihre zentrale Anlaufstelle sein. Nutzen Sie die gut durchdachte Struktur und die zahlreichen Hilfestellungen der Linearen Algebra. So erleichtern Sie sich spürbar den Einstieg in Ihr Studium.

Zunächst einmal finden Sie im Kurs alle Materialien zur Vorlesung. Bitte nutzen Sie vor allem die vielfältigen Kontaktmöglichkeiten, um untereinander und mit Ihrem LinA-Team ins Gespräch zu kommen. Sich alleine durchzukämpfen ist schwer bis unmöglich.

Der Übergang von der Schule zur Hochschule ist ein enormer Sprung. Viele Ihrer bisherigen Gewohnheiten genügen nun nicht mehr, und Sie müssen sich an neue Situationen und Herausforderungen anpassen. Das ist gut und richtig so, und wir unterstützen Sie dabei.

blauer Titelbalken = Vorlesung

So nutzen Sie das Vorlesungsskript richtig.

blauer Titelbalken
= Vorlesung

so niesen Titelbalken
= Vorlesung

so niesen Titelbalken
= Vorlesung

so niesen Titelbalken
= Hintergrund

so niesen Titelbalken
= Hintergrund

so niesen Titelbalken
- Hintergrund

so niesen Titelbalken Titelbalken Titelbalken
- Hintergrund
- Hintergrund
- Hintergrund
-

In jeder Vorlesung werden etwa 20 bis 25 Vorlesungsfolien besprochen; diese bilden den blauen Faden, das Kernprogramm, das Grundgerüst. Zu jeder Vorlesungsfolie gehören etwa drei Hintergrundfolien; sie bieten hilfreiche Erläuterungen und Ergänzungen, Anwendungen und Beispiele. Aufgaben und Lösungen, usw. Dosieren Sie selbst nach Ihrem Bedarf!

weißer Titelbalken = Hintergrund

So nutzen Sie das Vorlesungsskript richtig.

Die Folien erfüllen eine doppelte Funktion. Für meinen Vortrag erstelle ich die Folien zur visuellen Unterstützung und nutze sie als Grundlage. Diese Vortragsfolien sind durch blaue Titelbalken leicht zu erkennen. Hier finden Sie alles Wesentliche, darauf sollten Sie sich konzentrieren

Dieses Grundgerüst ergänze ich durch Hintergrundinformation in Form von Erlätuterungen und Ausführungen, Erinnerungen und Ergänzungen, Aufgaben mit Lösungen, weiteren Beispielen und Rechnungen, etc. Dies folgt der bewährten Erfahrung, dass die Leserin und der Leser leichter eine vorhandene Übung, Erklärung oder Illustration übergehen können, als eine fehlende selbst (er)finden. Möge es beiden nützen!

Ich versuche, jedes Thema so klar und einfach wie möglich darzustellen, doch so präzise und ausführlich wie für ein solides Verständnis nötig ist Erklärungen und Hinweise, die ich in der Vorlesung mündlich gebe, finden Sie hier zum Nachlesen noch einmal schriftlich ausgeführt; sie nützen mir als Erinnerung und beiden Lesern als Erläuterung.

Tipp: Ein fettgesetztes Stichwort kann mit "#Stichwort" gesucht werden.

In jeder Vorlesung werden etwa 20 bis 25 Vorlesungsfolien besprochen; diese bilden den blauen Faden, das Kernprogramm, unser Grundgerüst. Zu jeder Vorlesungsfolie gehören etwa drei Hintergrundfolien; sie bieten hilfreiche Erläuterungen und Ergänzungen, Anwendungen und Beispiele, Aufgaben und Lösungen, usw. Dosieren Sie selbst nach Ihrem Bedarf!

Wie nutzen Sie Vorlesung, Videos und Folien?

011 Erläuterung

Bei einer Tafelvorlesung schreibe ich nur das Nötigste, alles Weitere wird mündlich erklärt. Mitschreiben ist eine knifflige, aber gute Übung. Ein Skript hingegen kann ich ausführen, ich muss es sogar, da manche TeilnehmerInnen sich dann vorrangig oder gänzlich darauf stützen.

Die Vorlesungsfolien erfüllen, wie oben erklärt, eine doppelte Funktion. Für das Mitschreiben bzw. Abschreiben sind sie eher nicht gedacht, da neben dem absolut nötigen Kern auch freundliche Erläuterungen angefügt sind, und da ist der individuelle Bedarf sehr verschieden.

Die Folien dienen Ihnen sehr gut als Unterlage parallel zur Vorlesung. Die hilfreiche Aktivität des Mitschreibens verlagert sich dabei wie folgt:

- 1 Markieren Sie wichtige oder noch unklare Stellen zur Nacharbeit.
- Exzerpieren Sie das Wichtigste als Ihre eigene Zusammenfassung.

Speziell für die Arbeit mit Vorlesungsvideos gilt:

- 3 Pausieren und wiederholen Sie das Video nach Ihrem Bedarf.
- 4 Halten Sie immer Stift und Papier für Nebenrechnungen parat.

Die Folien erfüllen eine doppelte Funktion. Für meinen Vortrag erstelle ich die Folien zur visuellen Unterstützung und nutze sie als Grundlage. Diese Vortragsfolien sind durch blaue Titelbalken leicht zu erkennen. Hier finden Sie alles Wesentliche, darauf sollten Sie sich konzentrieren.

Dieses Grundgerüst ergänze ich durch Hintergrundinformation in Form von Erläuterungen und Ausführungen, Erinnerungen und Ergänzungen, Aufgaben mit Lösungen, weiteren Beispielen und Rechnungen, etc. Dies folgt der bewährten Erfahrung, dass die Leserin und der Leser leichter eine vorhandene Übung, Erklärung oder Illustration übergehen können, als eine fehlende selbst (er)finden. Möge es beiden nützen!

Ich versuche, jedes Thema so klar und einfach wie möglich darzustellen, doch so präzise und ausführlich wie für ein solides Verständnis nötig ist. Erklärungen und Hinweise, die ich in der Vorlesung mündlich gebe, finden Sie hier zum Nachlesen noch einmal schriftlich ausgeführt; sie nützen mir als Erinnerung und beiden Lesern als Erläuterung.

Tipp: Ein fettgesetztes **Stichwort** kann mit "#Stichwort" gesucht werden.

Wie nutzen Sie Vorlesung, Videos und Folien?

So nutzen Sie das Vorlesungsskript richtig.

012 Erläuterung

Ich führe eine ungewöhnlich große Zahl von Nebenrechnungen aus, gemäß dem Motto "freundlich und gründlich". Manche Rechnungen überlasse ich Ihnen. Die allermeisten davon sind leichte Routine, das sehen und verstehen Sie aber erst, wenn Sie sie selbst ausführen.

Sie werden vorerst nicht alles durchrechnen können / wollen / müssen, aber möglichst viele Stichproben sollten Sie dennoch selbst versuchen, um sicher zu gehen, dass Sie das Prinzip wirklich verstanden haben. Auch in der Mathematik gilt: Rechnen reinigt die Seele.

Es ist unmöglich, im ersten Durchgang alles zu 100% zu verstehen. Lernen ist iterativ, mit mehreren Ansätzen und Wiederholungen. Die Vorlesung bietet Ihnen dazu gute Anleitung und viel Anregung, doch Ihren Bedarf kennen nur Sie, hier ist Ihre Eigenarbeit gefragt!

Mit der Vorlesung verschaffen Sie sich zunächst einen guten Überblick, anschließend verfestigen Sie Ihr Verständnis und vertiefen es im Detail. Hierbei helfen Quizze und Übungen. Arbeiten Sie die Vorlesung nach, tauschen Sie sich aus, stellen Sie sich und uns Fragen!

013 Erläuterung

Weniger ist mehr? Ignorant ist klug?

014 Erläuterung

Erwarten Sie nicht, dass irgendjemand Ihnen irgendetwas beibringen könnte — ohne Ihr Zutun. Ich kann Ihnen viel Spannendes erzählen, doch nur Sie selbst können sich Verständnis erarbeiten. Letztlich müssen Sie selbst dieses Material eigenständig durcharbeiten, um es zu beherrschen. Zwei Faktoren bestimmen Ihren Lernerfolg: extrinsische Anregung und intrisische Motivation!

015 Erläuterung

Besser mehr als weniger

Versöhnen Sie kurzfristigen und langfristigen Nutzen! Ihr Studium ist nicht nur Konsum, sondern auch Investition. Dabei kommt es wesentlich auf die richtige Balance an. Ihre Investition von heute ist Ihr Ertrag von morgen!

Das erste Studienjahr ist entscheidend für die soliden Grundlagen, auf denen Sie anschließend Ihr weiteres Studium aufbauen können. Die Lineare Algebra bietet hierzu eine breite und solide Fundierung. Daher das obige Motto dieser Vorlesung: *freundlich und gründlich*.

In dieser Vorlesung nehme ich mir die Zeit für anschauliche Motivation, für mathematische Präzision sowie einige Beispiele und Anwendungen. Das alles kostet viel Mühe, für Sie wie für mich, doch es lohnt sich! Betrachten Sie es nicht als Belastung, sondern als Bereicherung.

Sie haben sich in der Schule bereits gut auf Ihr Studium vorbereitet, und zwar auf zwei Ebenen: erstens inhaltlich, zweitens methodisch. Sie wissen aus eigener Erfahrung, das passives (Auswendig)Lernen nur sehr kurzfristig hilft. Für komplexe Zusammenhänge ist es nutzlos. Sie studieren an einer Universität, weil Sie *verstehen* wollen, und dies gelingt allein durch aktives, selbständiges, erarbeitendes Lernen.

Manch eine/r wünscht sich Vorlesung und Skript möglichst kurz, oft verbunden mit der verzweifelt-naiven Forderung, sich allein auf klausurrelevantes Material zu konzentrieren, am besten nur Beispiele, notfalls eine Liste von auswendig zu lernenden Formeln und Rezepten.

Das ist Bulimie-Lernen, von Studierenden zurecht angeprangert, doch zugleich von einigen implizit gefordert und explizit praktiziert: Stoff auswendig lernen, zur Klausur reproduzieren, dann vergessen. Schon als kurzfristige Notlösung ist dies eine freudlose Schinderei, und als langfristige Vermeidungsstrategie ist es unerträglich. Bitte, tun Sie sich das nicht an, es ist der falsche Weg.

Vertrauen und Zusammenarbeit

016 Erläuterung

Diese Lehr-und-Lern-Veranstaltung zur Linearen Algebra macht Ihnen ein gut durchdachtes und reichhaltiges Angebot. Bitte nutzen Sie es! Wir vertrauen Ihnen, dass Sie Mathematik lernen wollen und können. Bitte vertrauen Sie uns, dass wir Sie dazu anleiten und Ihnen helfen.

Wo dieses Grundvertrauen fehlt, wird die Universität zu einem müßigen Gegeneinander. Wir brauchen dagegen ein konstruktives Miteinander! Wir vermitteln Ideen, Verständnis und Begeisterung der Mathematik, dazu die handwerklichen Grundlagen und Methoden. Beides wirkt!

Tatsächlich springt dieser Funke oft über. Dazu muss ich voraussetzen, dass Sie bewusst und umsichtig ein Studium gewählt haben, für das Sie Neugier, Ernst und Freude empfinden und bereit sind hart zu arbeiten. Das sind die unabdingbaren Grundlagen, nur so kann es gelingen.

In Ihrem Studium sind Sie frei und eigenverantwortlich. Das ist etwas Wunderbares, aber erfahrungsgemäß auch eine große Schwierigkeit!

With great power comes great responsibility.

Anders als in der Schule prüft an der Uni zunächst niemand nach, ob Sie zur Vorlesung gehen und aufmerksam mitdenken, die Inhalte gründlich nacharbeiten und Ihre Hausaufgaben sorgfältig machen. Hierfür sind Sie selbst verantwortlich – mit allen Konsequenzen!

Ihre Leistung beweisen Sie in der Klausur am Ende des Semesters. Dieser weite Zeithorizont überfordert viele Studierende: Wissen und Können wachsen nur langsam. Wer nicht kontinuierlich mitarbeitet, kann seine Fehlplanung kurz vor Schluss nicht mehr korrigieren.

Als hilfreiche Zwischenetappen gibt es daher (je nach Veranstaltung) Quizze oder Hausaufgaben oder auch ein bis zwei Scheinklausuren. Manche Studierende empfinden kontinuierliche Kontrolle als Gängelung, andere sind für diese Strukturierung und Rückmeldung sehr dankbar. Ein typische Vorlesung mit Übung entspricht 9 LP: insgesamt 270h

- Präsenz: 15 Wochen à 2h Übung + 4h Vorlesung = 90h
- Individuelle Arbeit: ein weiterer Tag (8h) pro Woche = 120h
- Wiederholung zur Prüfungsvorbereitung: zwei Wochen = 60h

Das sind Erfahrungswerte der letzten Jahrzehnte. Ihr individueller Bedarf kann davon etwas abweichen, aber die Größenordnung ist realistisch: Sie benötigen mindestens doppelt soviel Eigenarbeit wie Präsenzzeit!

Sie können Ihre Zeit anders aufteilen, aber viel Spielraum bleibt nicht. Es gilt die Erhaltung der Arbeit: Die 270 Stunden werden Sie brauchen!

Beispiel: Wer beschließt, Vorlesung und Übung zu schwänzen, und jeweils nur das Übungsblatt in 2h abzuschreiben, der muss zur Klausur etwa 240h in Eigenregie nachholen, alleine! Das sind sechs Wochen konzentrierte Eigenarbeit . . . und wird erfahrungsgemäß scheitern.

Qui va lentement, va sûrement, et qui va sûrement, va loin.

Gemeinsames Arbeiten

019 Erläuterung

Ein typisches Semester hat etwa 15 Wochen, das klingt zunächst viel, vergeht aber andererseits sehr schnell. Wir müssen die Zeit gut nutzen! Dabei zeigt sich immer wieder, dass es für die meisten Studierenden viel besser ist, in Gemeinschaft zu arbeiten und zu lernen, als alleine.

Naiv könnte sich jede/r das Skript oder ein Buch nehmen, nach eigenem Rhythmus durchlesen, und so zur Klausur antreten. Doch weit gefehlt! Ein oft unterschätzter, aber erster zentraler Faktor ist die Interaktion! Gerade bei einem anspruchsvollen Studium wird dies entscheidend.

Wir Menschen lernen schrittweise, fragen, diskutieren, probieren, entwerfen vage Ideen, behalten die guten, verfestigen und vertiefen. Davon ausgehend entwickeln wir neue Ideen und Fragen, diskutieren, probieren, schreiten voran. Wissen und Können wachsen nur langsam!

Als Einzelkämpfer/in ist das unnötig schwer, meist sogar unmöglich. Es gelingt am besten in Gemeinschaft: Genau das bietet die Universität! Gut angeleitet durch Vorlesungen und Übungen, eingebettet in eine motivierte Arbeitsgruppe, nutzen Sie dieses produktive Umfeld!

Eigenständiges Arbeiten

020 Erläuterung

Universität bedeutet Gemeinschaft der Lehrenden und Lernenden.

Der zweite entscheidende Faktor für den Erfolg Ihres Studiums ist die eigenständige, intensive Auseinandersetzung mit den Inhalten. Sie werden insbesondere mit Ihren Übungsblättern viel Zeit verbringen. Das ist gut und richtig so, im Idealfall macht es Ihnen auch Freude.

Sie können nicht erwarten, dass Sie ein Übungsblatt in zwei Stunden lösen. Manche Aufgaben sind Routine, aber auch das erfordert zunächst Einarbeitung. Dabei entstehen Fragen, denen Sie nachgehen sollten, denn nur so verstehen und verfestigen Sie den Stoff der Vorlesung.

Andere Aufgaben sind kniffliger und erfordern eigenes Nachdenken und Ausprobieren und durchaus mehrere Anläufe. Insofern unterscheiden sich die Übungsaufgaben an der Uni von Hausaufgaben in der Schule. Das ist keine böswillige Schikane, sondern das unabdingbare Training!

Rechnen in der Schule ist Breitensport. Mathematik an der Uni ist Spitzensport.

Aus der Schule kennen Sie ein Fach namens "Mathematik". Manche hatten das Glück, dort sorgfältiges Rechnen zu lernen, andere nicht.

Derzeit sollte das Schulfach tatsächlich eher "Rechnen" heißen, um falsche Versprechungen, Enttäuschungen und Kummer zu vermeiden.

Lehrpläne kaschieren mangelnde Inhalte gerne mit großspurigen Buzzwords. Zubereitet wird daraus zwangsläufig ein dünnes Süppchen mit wenig Geschmack und geringem Nährwert. Schade!

Schulmathematik besteht leider allzu oft nur aus sturem Anwenden von fertigen Rezepten und stupidem Auswendiglernen von Formeln. Im Extrem wird sinnentleerte Formelgläubigkeit gelehrt und gedrillt: "Hier sind Zahlen x und y, setze sie in die magische x-y-Formel ein!" Handwerkliche Routine ist wichtig und nützlich, aber eben nur ein sehr kleiner Teil der Wahrheit. **Mathematik ist viel mehr als Rechnen!**

Warum sind Beweise so wichtig?

023 Erläuterung

Wir wollen unsere **Resultate** sorgfältig erarbeiten und kritisch prüfen. Wie können wir sicher sein, dass neu gefundene Ergebnisse korrekt sind, also unsere Sätze, Methoden, Algorithmen, ... wirklich leisten, was sie versprechen? Natürlich können wir eine allgemeine Aussage anhand von konkreten Beispielen testen, und so eventuell Fehler finden.

Leider genügen noch so viele erfolgreiche Beispiele noch nicht, um zu garantieren, dass die Aussage wirklich immer gilt. Wie können wir die Wahrheit sicher erkennen und nachvollziehbar vermitteln? Anders als andere Wissenschaften besitzt die Mathematik hierzu eine Geheimwaffe, von manchen gefürchtet, von anderen gefeiert: **Beweise**!

Um als Satz zu gelten, muss die behauptete Aussage bewiesen werden. Andernfalls ist sie bloß eine Vermutung und sollte ehrlicherweise auch so genannt werden. So hat jede Aussage einen unmissverständlichen Status: Sie ist entweder bewiesen oder widerlegt oder noch offen. Auch das steigert die Effizienz: **Prove once, apply everywhere.**

Zu vielen Problemen sind noch gar keine Lösungen bekannt!

Stur auswendiggelernte Rezepte helfen hier also kein Stück weiter. Gefragt sind im Gegenteil Kreativität, Umsicht und Einfallsreichtum, um überhaupt erst geeignete Methoden zu finden, maßgeschneiderte Algorithmen zu entwickeln, oder bekannte Methoden anzupassen.

Echte Mathematik ist viel umfassender und interessanter!

Meist geht es nicht nur um einzelne Beispiele, das wäre hoffnungslos ineffizient! Konkrete Daten und Problemstellungen ändern sich ständig, daher benötigen wir allgemeine Methoden, die möglichst universell einsetzbar sind. Dieser Werkzeugkasten erlaubt effizientes Arbeiten.

Abstraktion hilft und vereinfacht! Die Mathematik versucht, Ergebnisse zu bündeln, Muster zu erkennen, Gemeinsamkeiten zu nutzen, und so eine möglichst universelle Beschreibung von Problemen und Lösungen bereitzustellen. Das erhöht spürbar die Effizienz. Über Fallbeispiele hinaus wollen wir ein kohärentes Gesamtbild!

Wie lernen Sie beweisen?

024 Erläuterung

Ab Beginn Ihres Mathematikstudiums lernen Sie in Linearer Algebra und Analysis, wie Sie Beweise richtig ausführen. Erst kleine, dann größere.

Dazu benötigen Sie viel Übung und Erfahrung, zudem genaue Kenntnis erfolgreicher Beweismethoden. Als Ausblick nenne ich: direkter Beweis durch Rechnen oder Konstruktion, indirekter Beweis durch Widerspruch, Kontraposition, Fallunterscheidung, Ringschluss, vollständige Induktion, für Hartgesottene sogar die transfinite Induktion, . . . und vieles mehr!

Wenn Sie diese bewährten Techniken kennen, dann fällt Ihnen das Beweisen viel leichter. Das Ziel sind zwei sich ergänzende Fähigkeiten: **Lesen:** einen vorgelegten Beweis detailliert nachvollziehen und prüfen. **Schreiben:** einen neuen Beweis selbst finden und korrekt ausführen.

Im ersten Semester beginnen Sie dazu mit der **Logik**, aus der Sie alle nötigen Beweismethoden ableiten können. Sie lernen dabei, logisch schlüssig zu argumentieren, Behauptungen und Beweise genau zu formulieren, typische Fehler und Trugschlüsse zu vermeiden.

027

Zur Übersicht hier die 24 Buchstaben des griechischen Alphabets:

A	α	Alpha	Ι	ι	lota	Р	ρ, ϱ	Rho
В	β	Beta	K	κ	Kappa	Σ	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	Т	au	Tau
Δ	δ	Delta	M	μ	Mü	Υ	v	Ypsilon
Е	$arepsilon,\epsilon$	Epsilon	Ν	ν	Nü	Φ	φ, ϕ	Phi
Z	ζ	Zeta	Ξ	ξ	Xi	X	χ	Chi
Н	η	Eta	О	o	Omikron	Ψ	ψ	Psi
Θ	$\vartheta, heta$	Theta	П	π	Pi	Ω	ω	Omega

Die Variante ε (statt ϵ) unterscheidet sich besser vom Elementzeichen ϵ , ebenso ϑ (statt θ) und φ (statt ϕ) von ihren Großbuchstaben Θ und Φ . Unterscheide ζ und ξ : Wie Z hat ζ zwei Querzüge, wie Ξ hat ξ drei. Weitere Schriften (wie Skript $\mathscr{A}, \mathscr{B}, \mathscr{C}, \ldots$ oder Fraktur $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \ldots$) sind oft nützlich, selten auch weitere Alphabete (wie hebräisch $\aleph, \beth, \gimel, \ldots$).

Worum geht es in der Mathematik?

Mathematik (gr. μαθηματιχή τέχνη) ist die 'Kunst des Erkennens'; sie ist ein systematisch-schöpferischer Prozess zum Lösen von Problemen. Mathematik ist zugleich abstrakte Theorie und konkrete Anwendung. Diese beiden Pole begründen ihren Reiz, aber auch ihre Schwierigkeit. Sie ist schön und nützlich, ästhetische Kunst und praktisches Handwerk, rechnen und begründen, kritisch und korrekt, sorgfältig und effizient. Sie erklärt und quantifiziert Zusammenhänge: Das ist ihr Nutzen! Dank Abstraktion ist sie universell anwendbar: Das ist ihre Stärke! Mathematik verbindet Anschauung und Formalisierung:

- 1 Intuition / Anschauung / Motivation / Ziel: Was wollen wir?
- Präzision / formale Ausführung / Weg: Wie erreichen wir dies? Intuition ist hilfreich zur Motivation und wichtig zur Orientierung. Wir benötigen ebenso Präzision, also die detaillierte Ausführung.

C'est par la logique que l'on prouve, et par l'intuition que l'on découvre.

[Mit der Logik beweisen wir, mit der Intuition entdecken wir.]

Henri Poincaré (1854–1912)

Mathematische Notation nutzt über das lateinische Alphabet hinaus auch das griechische. Bitte üben Sie die griechischen Buchstaben, so dass Sie diese fehlerfrei lesen und sauber schreiben können. Das lohnt sich für diese und alle weiteren Vorlesungen!

Übung: Die griechische Bezeichnung für 'Mathematik' lautet:

μαθηματική τέχνη

Versuchen Sie dies fehlerfrei zu buchstabieren. Sie können dies sogar laut vorzulesen, wenn Sie die Lautwerte erraten oder nachschlagen.

Übung: Schreiben Sie das griechische Alphabet in Kleinbuchstaben mindestens einmal ab, besser mehrmals für eine fluide Handschrift.

Vielleicht erstaunt es Sie, dass Ihre erste Übung in dieser Vorlesung so etwas banales ist wie das Alphabet abzuschreiben. Es ist wie mit allen handwerklichen Übungen: früher oder später werden sie nötig. *Just do it.* Wann, wenn nicht jetzt? Wo, wenn nicht hier?

Wozu dient die Mathematik?

028 Erläuterung

High Technology is essentially mathematical technology. Enquete Commission of the American Academy of Science

Verständnis und Beherrschung komplexer Zusammenhänge benötigen neben Empirie auch Theorie, insbesondere quantitative Modelle und sorgfältige Planung. Diese beruhen im Wesentlichen auf Mathematik.

Sie ist die **Sprache** des systematischen logischen Denkens und damit unverzichtbare **Grundlage** für Naturwissenschaft und Technik. Sie ist

- Werkzeugkasten, um relevante Probleme eigenständig zu lösen,
- Wissensgebiet, allgemeine Kulturtechnik, Schlüsseltechnologie,
- Wissenschaft, Ideenschmiede, lebendiges Forschungsgebiet.

Mathematische Methoden sind häufig Voraussetzung für den Erfolg technischer Entwicklungen; das gilt auch, wenn sie beim Endprodukt im Inneren wirken und oberflächlich nicht offen sichtbar sind.

Mathematik ist spannend, herausfordernd, anstrengend doch lohnend. Sie ist eine natürliche menschliche Tätigkeit: Wir folgen unserer Neugier!

030

Jahrhunderte naturwissenschaftlicher und technischer Erfahrung lehren uns eindrücklich: **Mathematik ist die Sprache des Universums!**Wir können diese Sprache verstehen und sprechen lernen.
Wir können sie anwenden und damit gezielt Probleme lösen.
Wie jede Sprache lernt man Mathematik durch Üben! Üben! Üben!

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt. Ludwig Wittgenstein, 1889–1951, Tractatus Logico-Philosophicus

Als eindringliches Beispiel unter vielen nenne ich die Elektrodynamik. Faradays empirische Beobachtungen fasste Maxwell 1865 in knappen Formeln zusammen; diese sind elegant und zudem überaus nützlich: Maxwells einheitliche **Theorie** der Elektrodynamik eröffnete auch in der **Praxis** völlig neue Anwendungen. Dank seiner Gleichungen konnte er insbesondere die Möglichkeit elektromagnetischer Wellen vorhersagen. Diese waren 1865 noch unbekannt und experimentell nicht zugänglich; ihr Nachweis gelang Heinrich Hertz erst 1886. Wir nutzen sie bis heute!

Mathematik ist effizientes Werkzeug.

031 Ausführung

Dieselben mathematischen Strukturen und Techniken treten in immer neuen Zusammenhängen auf, sie beschreiben augenscheinlich völlig unterschiedliche Phänomene und lösen die verschiedensten Probleme. Der Kontext ändert sich, aber die Rechnung ist immer dieselbe!

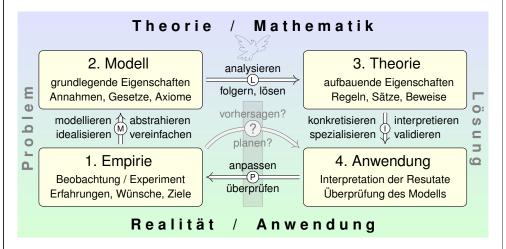
Abstraktion ist die Kunst. Wesentliches von Unwesentlichem zu trennen.

Mathematische Modelle haben somit ihre eigenständige Bedeutung und ihre Wichtigkeit, daher lohnt es sich, sie eigenständig und allgemein zu untersuchen. Genau dies wollen wir in dieser Vorlesung tun, damit Sie für alle Fälle gewappnet sind, auch für zukünftige Anwendungen!

The enormous usefulness of mathematics in the natural sciences is something bordering on the mysterious and there is no rational explanation for it. [...] The miracle of the appropriateness of the language of mathematics [...] is a wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future research. (Eugene Wigner, 1902–1995,

The unreasonable effectiveness of mathematics in the natural sciences)

Alles Leben ist Problemlösen. (Karl Popper)



Konkrete Anwendung benötigt abstrakte Kenntnisse; je anspruchsvoller, desto mathematischer! Alles Denken beruht auf Modellen; diese können *deskriptiv* oder *normativ* eingesetzt werden. Deskriptiv: beschreibend (Kettenlinie), erklärend (Planetenbewegung), vorhersagend (Wetter). Normativ: vorschreibend (Bauplan), planend (Raumsonde), gesetzgebend (Klimaschutz). Sie wollen beides. Hierzu benötigen Sie ausreichend starke mathematische Werkzeuge.

Mathematik ist Schlüsseltechnologie.

032 Ausführung

Mathematische Modelle und Methoden erlernen Sie zunächst unter vereinfachten *Laborbedingungen*, in kleinem Maßstab, sozusagen unter dem Mikroskop. Unter *Industriebedingungen* ist ihre Vielfalt oft nur mit Computerhilfe voll auszuschöpfen. Umso wichtiger ist es, die Zusammenhänge und Mechanismen grundlegend zu verstehen:

Algorithmen und Programme übersetzen mathematische Modelle!

Meist können Sie nicht in ein laufendes Programm eingreifen, um ad hoc mit "Intuition", "Anschauung" oder "gesundem Menschenverstand" zu korrigieren, was die "dumme Maschine" alleine nicht richtig macht. Im Gegenteil müssen Sie vorhersehen, wie ein Verfahren im Detail funktioniert, um korrekte Anweisungen zu formulieren. Hierzu müssen Sie sorgfältig arbeiten, akribisch jeden möglichen Fall berücksichtigen.

Sie müssen dem Computer genau sagen, was er tun soll, oft auch wie. Das Ergebnis müssen Sie kritisch prüfen, verstehen und interpretieren. Die Mathematik stellt hierzu alles Nötige zur Verfügung. — Sie wollen Computer korrekt und effizient nutzen? Dazu brauchen Sie Mathematik!

In der Linearen Algebra geht es zunächst um Zahlen und Vektoren, Matrizen und lineare Abbildungen. Diese Begriffe und die zugehörigen Techniken sind für die gesamte Mathematik grundlegend und werden Ihnen überall nützen, in der Mathematik und ihren Anwendungen.

Aus der Schule können Sie bereits lineare Gleichungssysteme lösen, zunächst mit wenigen Gleichungen und Unbekannten (meist bis drei). Lineare Gleichungssysteme sind überaus nützlich und interessant! Sie sind direkter Zugang und solide Grundlage der Linearen Algebra.

Als erstes werden wir die allgemeine Fragestellung systematisieren und zum Matrixkalkül ausbauen: Was sind Zahlen, vor allem: wie rechnen wir mit ihnen? (Kapitel A: Körper) Wie lösen wir strukturiert und effizient lineare Gleichungssysteme? (Kapitel B: Matrizen)

Auf dieser ganz handwerklichen Grundlage entwickeln wir die Theorie der Vektorräume und der linearen Abbildungen (Kapitel I: lineare Räume, J: Basis und Dimension, K: Matrixdarstellung, L: Determinanten. Daran schließt die Lineare Algebra 2 im Sommersemester an.)

Worum geht es in der Linearen Algebra?

035 Überblick

Solide Fundamente: Ein hoher Turm braucht eine breite Basis!

Bei dieser Entwicklung geht es einerseits um konkretes Rechnen und effiziente Algorithmen, für Sie selbst und für Computer. Darüber hinaus geht es um das Erlernen der zugehörigen Theorie: Die abstrakte Denkweise erweist sich als ebenso wichtig und nützlich!

Mit dem Studium der Mathematik verbinden Sie beides: praktische Anwendungen und theoretische Grundlagen.

Sie wollen hoch hinaus, daher handeln wir mit angemessener Weitsicht: Um Ihrem Vorhaben ein solides Fundament zu sichern, nehmen wir uns von Anfang an die nötige Zeit für die mathematischen Grundlagen. (Kapitel C: Logik und Beweistechniken, D: Mengen und Abbildungen, E: Kombinatorik und Quotienten, F: Ordnungen und Mächtigkeit)

Diese allgemeinen Grundlagen lohnen sich, denn sie klären und ordnen. Diese Werkzeuge der Logik und Mengenlehre bilden die Grundlage für die gesamte Mathematik. Damit ausgerüstet können wir insbesondere unser Programm der Linearen Algebra nun getrost ausführen. (G: Ringe und Körper, anschließend lineare Räume und lineare Abbildungen, etc.)

Worum geht es in der Linearen Algebra?

036 Überblick

Die Abstraktion ist wesentlich für das mathematische Arbeiten: Wir wollen Gemeinsamkeiten erkennen und zusammenfassen, über Fallbeispiele hinaus wollen wir ein kohärentes Gesamtbild. Erst die abstrakte Theorie öffnet den Weg zu neuen Anwendungen!

Diese Abstraktion bereitet erfahrungsgemäß gerade in den ersten Semestern große Schwierigkeiten. Als langfristige Investition kostet sie am Anfang viel Kraft und Durchhaltewillen, doch sie zahlt sich aus: Ihre Vorbereitung von heute ist Ihr Nutzen von morgen!

Haben Sie also die nötige Geduld mit sich und der Mathematik. Das Studium fördert Beharrlichkeit und Frustrationstoleranz. Sie werden schrittweise immer mehr sehen und verstehen: Die Mathematik ist wunderschön und nützlich. Bleiben Sie dran!

Dazu bieten wir Ihnen Hilfestellungen und einen schrittweisen Aufbau: Der Stoff wird hier vollständig für Sie entwickelt. Ganz wichtig ist daher die lückenlose Teilnahme an der Vorlesung und die ausdauernde Bearbeitung der Übungen: Arbeiten Sie mit, fragen Sie nach!

Die Lineare Algebra gehört zum Beginn der Mathematikstudiums wie das Erlernen der Buchstaben zum Anfang der Grundschule.

Sie behandelt das bewährte Kernprogramm klassischer Themen, die im ersten Jahr jedes Mathematikstudiums erworben werden müssen und die Grundlage für alles Weitere bilden.

- Aufbau des Zahlensystems und Matrizenkalkül
- Mathematische Logik und Beweistechniken
- Mengen, Relationen und Abbildungen
- Monoide und Gruppen, Ringe und Körper
- Vektorräume und lineare Abbildungen
- Determinanten und Eigenwerte
- Diagonalisierung und Jordanisierung
- Bilineare Algebra und euklidische Geometrie

Ich beginne mit dem Aufbau des Zahlensystems und Matrizenrechnung. Wir haben noch nicht alle Hilfsmittel (Logik, Mengen, Abbildungen, etc.), doch gewinnen schon reichlich Erfahrung, Anschauung und Motivation.

Das Ziel und der Weg

039 Überblick

Vor uns liegt ein langer Weg, manchmal steinig und steil, doch überall voller nützlicher Erkenntnisse, tiefer Einsichten und schöner Ausblicke. Ich erkläre Ihnen einmal alles Nötige, freundlich und gründlich. Danach sind Sie dran, den Stoff nachzuarbeiten und die Techniken einzuüben.

Die Vorlesung ist voll gepackt mit schöner und nützlicher Mathematik: Sie müssen voll konzentriert und fokussiert mitarbeiten. Dann haben Sie schon mal die Ideen verstanden. Für das Verständnis im Detail müssen Sie die Themen anschließend selbständig und gründlich durcharbeiten.

Dabei unterstützen wir Sie umfassend mit wöchentlichen Quizzen, gut abgestimmten Übungsaufgaben, Übungsgruppen und Vortragsübung. Das Café Matrice, Forum und Umfrage runden das Gesamtpaket ab. Wir sind für Sie da und freuen uns über Ihr Engagement.

Unser Vorhaben gleicht einer ambitionierten Wanderung: Jeder einzelne Schritt ist leicht, doch sehr viele sind nötig. Es ist Ihr Studium, engagieren Sie sich, bleiben Sie dran!

Das Ziel und der Weg

Mathematik ist schön und nützlich, zwar anstrengend doch lohnend!

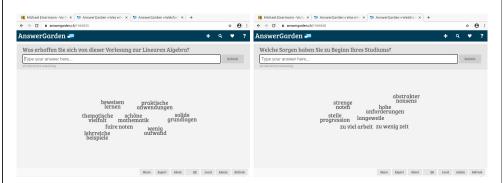
Five percent of the people think; ten percent of the people think they think; and the other eighty-five percent would rather die than think." Thomas A. Edison (1847–1931)

"Because in the end, you won't remember the time you spent working in the office or mowing your lawn. Climb that goddamn mountain!" Jack Kerouac (1922–1969)

Was sind Ihre Erwartungen?

040

Was erhoffen Sie sich von dieser Vorlesung zur Linearen Algebra? Welche Sorgen haben Sie zu Beginn Ihres Studiums?



Siehe Ilias, verlinkt zu answergarden.ch/1464835 und 1464848. Wir laden Sie ein zum Austausch über Mathematik und drumherum! Manche/r Lehramtsstudierende beklagt und behauptet: "Die Mathematik an der Uni ist nicht relevant für die Schule." Das ist ein oft wiederholter und schwerwiegender Vorwurf. Ich nehme die Klage ernst und muss dazu einiges klarstellen:

- 1. Verstehen Sie Ihr Mathematikstudium richtig?
- 2. Verstehen Sie wirklich die Schulmathematik?
- 3. Warum ist Ihr Mathematikstudium relevant?
- 4. Was brauchen Sie als zukünftige/r Lehrer/in?

Das sind wichtige Fragen, und hierzu gibt es klare Antworten! Allzu viele Studierende verrennen sich in unrealistische Vorstellungen, entfremden sich von ihrem Studium und blockieren sich damit selbst. Ich möchte Ihnen helfen und Sie vor den typischen Fehlern bewahren.

(Meine nachfolgenden Erläuterungen sind wie immer gänzlich unnütz: Wer sie liest, ist wohl nicht betroffen. Wer betroffen ist, liest sie nicht. Engagierte Hochschullehrer/innen sind verflucht wie einst Kassandra, die das drohende Unheil zwar voraussieht, aber kein Gehör findet.)

Mathematik und Schule

043 Erläuterung

2. Zu den Bildungszielen der Universität gehören wissenschaftliche Neugier und Sorgfalt sowie intellektuelle Offenheit und Ehrlichkeit. Leider fördert unser Schulsystem oft nicht Neugier und Lernfreude, sondern erzwingt Auswendiglernen und Nachbeten. Das ist fatal.

Wer mit solch falsch geprägten Vorstellungen an die Universität kommt, wird zurecht gründlich enttäuscht. In der Wissenschaft, insbesondere der Mathematik, geht es nicht nur ums Auswendiglernen, sondern vielmehr ums Verstehen, nicht um Nachbeten, sondern um eigenes Denken.

Wenn Sie also glauben "Die Uni macht die Lehrerausbildung falsch.", dann sollten Sie sich zuerst fragen: "Verstehe ich die Schule richtig?" Sie sollten sich klar werden, was die Schule soll und was ein/e Lehrer/in dazu braucht. Daraus folgen die Ansprüche an das Lehramtsstudium.

Wenn Ihre Wünsche und Vorstellungen unvereinbar bleiben mit den Angeboten und Anforderungen Ihrer Studienwahl, dann werden Sie an Ihrem Studium leiden und letztlich scheitern. Bringen Sie daher beides schnell in Einklang: Ändern Sie Ihre Einstellung oder Ihr Studienfach! 1. Es ist richtig und wichtig, die Anliegen der Studierenden zu verstehen, konstruktiv über das Studium zu diskutieren und Inhalte zu entwickeln. Andererseits sind "die Studierenden" gerade im Lehramt eine reichlich heterogene Gruppe, mit unterschiedlichen Ansichten und Bedürfnissen:

Manche studieren Mathematik aus ehrlichem Interesse, persönlicher Neigung, gar Leidenschaft, andere aus Not und irregeleitetem Kalkül. Letztere folgen keiner Berufung, suchen weder Wissen noch Können, sondern einen sicheren und vermeintlich ruhigen Job. Und scheitern!

Der pauschale Vorwurf der Irrelevanz wird oft erhoben von Studierenden, die ihr Fach eigentlich kaum kennen und daher nicht wirklich verstehen, daher ist ihr Urteil wenig aussagekräftig. Das gilt auch und gerade in der Mathematik, findet sich aber ebenso in vielen anderen Studiengängen.

Pauschale Vorwürfe entspringen daher meist nicht der kritischen Auseinandersetzung mit dem Studium, sondern der Flucht davor. Sie sind keine Aussage über die Studieninhalte, sondern Ausdruck der eigenen Hilflosigkeit und Überforderung. Das ist hart, aber ehrlich.

Mathematik und Schule

044 Erläuterung

Schule und Universität handeln zwar auf verschiedenen Ebenen, doch sie verfolgen grundsätzlich dieselben, gemeinsamen Lernziele!

So wie in der Schule ist auf höherem Niveau auch im Studium Ihr Ziel, Mathematik zu verstehen und die behandelten Methoden selbstständig, sicher, kritisch, korrekt und kreativ anzuwenden. Das heißt ausführlich:

- Selbstständig: Es geht nicht nur um Auswendiglernen, sondern um Verstehen und unabhängige Urteilsfähigkeit.
- Sicher: Es geht nicht nur um Intuition oder Spekulieren, sondern um nachvollziehbare Argumente und Rechnungen.
- Kritisch: Es geht nicht nur um Glauben oder (Auto)Suggestion, sondern um (selbst)kritische Fragen und sorgfältige Antworten.
- Korrekt: Sie beherrschen Definitionen, Sätze, Methoden, Proben. Gegenbeispiele zeigen Fehlerquellen, die es zu vermeiden gilt.
- **Kreativ:** Es geht nicht nur um fertige Rezepte, sondern um eigenständige Anwendung.

3. Ich bin zutiefst überzeugt: Die Mathematik, wie Sie sie bei uns an der Universität lernen, ist absolut relevant für Sie als zukünftige/r Lehrer/in! (Über die Dosierung einzelner Themen können wir gerne diskutieren, wenn Sie wollen auch streiten, doch am Grundsatz besteht kein Zweifel.)

Mathematische Erkenntnis kommt nicht durch Propheten vom Berg, sondern sie wird erklärt und begründet, erarbeitet und gepflegt. Sie ist keine Sammlung einzelner zusammenhangloser Fakten, sondern ein kohärentes Gebäude von Ideen und Methoden.

Genau diese logischen Zusammenhänge lernen Sie im Studium! Hier verstehen Sie, wie Sie Mathematik aufbauen, Erkenntnisse finden, präzise formulieren und sorgsam begründen. Das nützt ein Leben lang, insbesondere als Lehrer/in bei der Strukturierung und Vermittlung.

Wenn Sie immer noch glauben, stupides Auswendiglernen genügt, dann bedeutet das nur, dass die Schule es falsch gemacht hat und Ihre Sichtweise völlig falsch geprägt wurde. Nochmal, bringen Sie beides in Einklang: Ändern Sie Ihre Einstellung oder Ihr Studienfach!

Mathematik und Schule

047 Erläuterung

4. Hoffentlich hatten Sie in Ihrer Schulzeit das Glück, begeisternde Lehrer/innen und guten Unterricht kennen zu lernen, auch und gerade in Mathematik. Vermutlich haben Sie davon profitiert, und vielleicht hat dies Ihre Entscheidung geformt, nun selbst Mathematik zu studieren.

Vermutlich kennen Sie auch Gegenbeispiele, sicherlich haben Sie sich geärgert über manch uninspirierte Lehrer/innen, die weder anschaulich motivieren noch präzise erklären, weder begeistern noch vermitteln, und die insgesamt mehr verwirren als helfen. Leider gibt es auch das.

Das drängt uns die Frage auf: Warum gibt es schlechte Lehrer/innen? Wenn das Studium so irrelevant ist, wie behauptet, dann sollte doch das Verstehen und das Vermitteln ohne langwierige Mühen möglich sein. So leicht ist es aber nicht! Das Studium wirkt. Langsam aber sicher.

Provokant gesagt: Wenn Sie ein/e schlechte/r Lehrer/in werden wollen, dann ist das Mathematikstudium für Sie wohl tatsächlich irrelevant. Wir wollen jedoch dafür sorgen, dass Sie es wesentlich besser machen! Hierzu legt Ihr Studium die fachlich-didaktischen Grundlagen.

Zur Illustration nenne ich einige einfache, aber grundlegende Fragen. Sie stellen sich bereits in der Schule, und zwar ganz konkret und dringend, doch meist werden sie erfolgreich verdrängt. Das ist fatal, denn so gewöhnen sich Schüler/innen ans Glauben statt ans Fragen!

Was sind natürliche, ganze, rationale, reelle (und komplexe) Zahlen? Welche Rechenregeln gelten, welche nicht? Woher kommen diese Regeln? Was ist Definition, was ist Folgerung? Wie erkennen wir wahr und falsch? Was ist der Nenner von $\frac{4}{6}$? Warum ist 0.99999... gleich 1?

Wie löst man Gleichungen? Wie nutzt man Äquivalenzumformungen? Wie prüft man eine vermeintliche Lösung? Was ist die Lösungsmenge? Wie garantiert man ihre Vollständigkeit? Was bedeuten Existenz und Eindeutigkeit? Wie lässt sich die Folge 1, 2, 4, 8, 16, 32 fortsetzen?

Was ist eine Funktion? Warum ist der Definitionsbereich so wichtig? Was ist die Zielmenge? Wie beschreiben wir die Zuordnung $f: x \mapsto y$? Wann erlaubt die Gleichung f(x) = y eine Lösung? mindestens eine? höchstens eine? Wie lösen wir lineare Gleichungssysteme Ax = y?

Mathematik und Schule

048 Erläuterung

Zu Ihrem Erfolg als Lehrer/in tragen mehrere Faktoren bei:

- Inhalte erfordern umfassendes und sicheres Fachwissen: Nur wer sein Fach wirklich versteht, kann es gut vermitteln.
- Vermittlung benötigt umfassende didaktische Fähigkeiten: Kommunikation, Verständnis, Aktivierung sind die Schlüssel.
- 3 Ebenso hilfreich sind eine wirksame Lehrpersönlichkeit, interessierte Schüler/innen, ein konstruktives Kollegium, ein positives Umfeld, etc.

Diese Faktoren interagieren miteinander auf höchst komplexe Weise. Klar ist, dass Sie alle drei benötigen werden, auch wenn das genaue Verhältnis schwer zu präzisieren ist und sicherlich nicht für alle gleich. Das ist genau die Schwierigkeit: Keiner dieser drei Faktoren darf fehlen!

Als Lehrer/in wird man nicht geboren, es ist ein Beruf, den man erlernen muss und kann! In Ihrem Studium erwerben Sie dazu zunächst und vor allem (1) mathematische Inhalte und (2) didaktische Grundlagen, später komplettieren Sie diese durch Referendariat und Berufserfahrung.

Der Weg ist lang, doch das Ziel ist hehr!

Legende / Leseanleitung: Folien zur Linearen Algebra

Vortrag und Skript haben verschiedene Ziele und ergänzen sich: Der Vortrag gibt einen Überblick, das Skript dient zur Vertiefung. Die Vortragsfolien sind durch blaue Titelbalken leicht zu erkennen; dies kennzeichnet die Folien, die in der Vorlesung behandelt werden.

Ich möchte Vortrag und Skript synchron halten, soweit dies möglich ist. Die Nummerierung der Folien, Abschnitte, Definitionen, Sätze usw. ist daher dieselbe, auch wenn dadurch im Video der Zähler springt. Der Übergang zwischen Vortrag und Skript wird dadurch nahtlos.

Aufbau der Vorlesung

Ich präsentiere hier Ideen, Techniken und Anwendungen, Definitionen und Sätze, Aufgaben und Lösungen. Dabei versuche ich, jedes Thema so einfach wie möglich darzustellen, doch so präzise und ausführlich wie es für ein solides Verständnis nötig ist. Möge es nützen!

Wir beginnen diese Vorlesung mit zwei Kapiteln zur Vorschau; diese geben einen Einblick in zentrale Themen der Linearen Algebra und dienen somit zur frühen Orientierung, als Ausblick und Motivation. Diese Versprechen werde ich in den nächsten Wochen einlösen.

Kapitel A: Aufbau des Zahlensystems

- A1 Natürliche, ganze und rationale Zahlen
 - A1.1 Was sind und was sollen die Zahlen?
 - A1.2 Der Halbring $(\mathbb{N}, +, \cdot)$ der natürlichen Zahlen
 - A1.3 Der Ring $(\mathbb{Z}, +, \cdot)$ der ganzen Zahlen
 - A1.4 Der Körper $(\mathbb{Q}, +, \cdot)$ der rationalen Zahlen
 - A1.5 Die Körpererweiterungen $\mathbb{Q}[\sqrt{2}]$ und $\mathbb{Q}[i]$
 - A1.6 Der Ring K[X] der Polynome über K
- A2 Arithmetik in \mathbb{Z} und der Restklassenring \mathbb{Z}_n
 - A2.1 Division mit Rest und euklidischer Algorithmus
 - A2.2 Der Fundamentalsatz der Arithmetik
 - A2.3 Der Restklassenring $(\mathbb{Z}_n, +_n, \cdot_n)$
- A3 Reelle und komplexe Zahlen
 - A3.1 Der Körper $(\mathbb{R}, +, \cdot)$ der reellen Zahlen
 - A3.2 Der Körper $(\mathbb{C},+,\cdot)$ der komplexen Zahlen
 - A3.3 Der Schiefkörper $(\mathbb{H}, +, \cdot)$ der Quaternionen

Kapitel B: Matrixkalkül und Gauß-Algorithmus

- B1 Der Matrixkalkül
 - B1.1 Vom Gleichungssystem zur Matrix
 - B1.2 Matrixaddition und Skalarmultiplikation
 - B1.3 Multiplikation von Matrizen passender Größe
 - B1.4 Invertierbare Matrizen und ihre Inversen
 - B1.5 Inversion im Ring der $2\times2\text{--Matrizen}$
 - B1.6 Komplexe Zahlen und Quaternionen als Matrizen
- B2 Der Gauß-Algorithmus
 - B2.1 Zeilenstufenform
 - B2.2 Der Gauß-Algorithmus
 - B2.3 Zeilenoperation als Matrixmultiplikation
 - B2.4 Invertierbarkeitskriterien für Matrizen
- B3 Erste Anwendungen: drei schöne Beispiele
 - B3.1 Es werde Licht! ... mit Linearer Algebra
 - B3.2 Lagrange-Interpolation und Vandermonde-Matrix
 - B3.3 Zufällige Irrfahrt und harmonische Gewinnerwartung

Kapitel C: Mathematische Logik und Beweistechniken

- C1 Aussagenlogik
 - C1.1 Aussagen und Wahrheitswerte
 - C1.2 Aussagenlogische Formeln und Tautologien
 - C1.3 Nützliche Rechenregeln der Aussagenlogik
 - C1.4 Aussagenlogische Formeln und Junktoren
- C2 Schlussregeln und Beweisverfahren
 - C2.1 Schnittregel, Kettenschluss, Fallunterscheidung
 - C2.2 Kontraposition und Beweis durch Widerspruch
- C3 Prädikate und Quantoren
 - C3.1 Rechenregeln für Existenz- und Allquantor
 - C3.2 Existenz und Eindeutigkeit
- C4 Induktion: the road to infinity!
 - C4.1 Das Prinzip der vollständigen Induktion
 - C4.2 Starke Induktion als nützliche Variante

Kapitel D: Mengen, Abbildungen und Relationen

- D1 Die Sprache der Mengen
 - D1.1 Elemente, Teilmengen und Potenzmenge
 - D1.2 Aussonderung und Ersetzungsmenge
 - D1.3 Schnittmenge und Vereinigungsmenge
 - D1.4 Zerlegungen und Repräsentantensysteme
 - D1.5 Tupel und kartesische Produktmenge
- D2 Relationen und Abbildungen
 - D2.1 Motivation und erste Beispiele
 - D2.2 Relationen und Abbildungen
 - D2.3 Bildmenge und Urbildmenge
- D3 Invertierbarkeit von Abbildungen
 - D3.1 Komposition und Einschränkung
 - D3.2 Invertierbarkeit von Abbildungen
 - D3.3 Beispiele und erste Anwendungen

Kapitel E: Kombinatorik und Quotienten

- E1 Endliche Mengen und Elementezahl
 - E1.1 Permutationen und Zykelzerlegung
 - E1.2 Der Zählsatz: Wie messen wir Mengen?
 - E1.3 Invarianzsatz und Dirichlets Schubfachprinzip
- E2 Kombinatorische Abzählformeln
 - E2.1 Grundrechenarten für endliche Mengen
 - E2.2 Teilmengen und Binomialkoeffizienten
 - E2.3 Zerlegungen und Stirling-Zahlen
- E3 Zerlegungen, Äquivalenzrelationen und Quotienten
 - E3.1 Zerlegung und Quotient, die Klassengleichung
 - E3.2 Äquivalenzrelationen und Faktorisierung
 - E3.3 Konstruktion der rationalen Zahlen Q
 - E3.4 Konstruktion des Restklassenrings $\mathbb{Z}/n\mathbb{Z}$

Kapitel F: Ordnungsrelationen und Mächtigkeit

- F1 Ordnungsrelationen
 - F1.1 Grundbegriffe zu Ordnungsrelationen
 - F1.2 Kleine Beispiele, Warnung vor Intransitivität
 - F1.3 Kleinstes/größtes Element versus Minima/Maxima
 - F1.4 Infimum und Supremum, untere und obere Grenze
 - F1.5 Monotone Abbildungen und Isomorphismen
 - F1.6 Wohlordnungssatz und Lemma von Zorn
- F2 Die Mächtigkeit von Mengen
 - F2.1 Dedekinds Rekursionssatz, un/endliche Mengen
 - F2.2 Die Mächtigkeit von Mengen, erste Beispiele
 - F2.3 Abzählbare Vereinigungen, Hilberts Hotel
 - F2.4 Der Äquivalenzsatz von Cantor-Bernstein
 - F2.5 Die Mächtigkeit der reellen Zahlen

Kapitel G: Ringe und Körper

- G1 Monoide und Gruppen
 - G1.1 Verknüpfungen
 - G1.2 Monoide und Gruppen
 - G1.3 Lösung von Gleichungen
 - G1.4 Untergruppen und -monoide
 - G1.5 Homomorphismen
 - G1.6 Erzeugte Untergruppen
 - G1.7 Kartesische Produkte
- G2 Ringe und Körper
 - G2.1 Definition und erste Rechenregeln
 - G2.2 Homomorphismen und Unterringe
 - G2.3 Matrixringe und Funktionenringe
- G3 Polynomringe
 - G3.1 Definition und erste Rechenregeln
 - G3.2 Die universelle Abbildungseigenschaft
 - G3.3 Euklidische Division und Nullstellen von Polynomen
 - G3.4 Arithmetik in \mathbb{Z} und K[X] und euklidischen Ringen

Kapitel H: Halbzeit

- H1 Halbzeit geschafft.
- H2 Frohe Weihnachten!

Kapitel I: Lineare Räume und lineare Abbildungen

- I1 Grundbegriffe
 - I1.1 Lineare Räume
 - 11.2 Lineare Abbildungen
 - I1.3 Lineare Räume über \mathbb{Z} , \mathbb{Z}/p und \mathbb{Q}
 - 11.4 Lineare Unterräume
 - I1.5 Bild und Kern einer linearen Abbildung
 - I1.6 Beispiele aus der Analysis
 - I1.7 Erzeugte Unterräume
- 12 Universelle Werkzeuge
 - 12.1 Quotientenraum und kanonische Faktorisierung
 - I2.2 Korrespondenzsatz und Isomorphiesatz
 - 12.3 Exakte Sequenzen, Anwendungsbeispiele
 - I2.4 Direkte Summen, extern und intern

Kapitel J: Basis und Dimension

- J1 Basis und Dimension
 - J1.1 Basis, erzeugend und linear unabhängig
 - J1.2 Anwendung des Gauß-Algorithmus
 - J1.3 Invarianz der Dimension über Divisionsringen
 - J1.4 Bild und Kern und Dimensionsformel
- J2 Konstruktion von Basen
 - J2.1 Existenz von Basen
 - J2.2 Erste Anwendungen
 - J2.3 Exakte Sequenzen
- J3 Aufgaben und Ergänzungen

Kapitel K: Darstellung linearer Abbildungen durch Matrizen

- K1 Lineare Abbildungen und Matrizen
 - K1.1 Das Prinzip der linearen Fortsetzung
 - K1.2 Darstellung linearer Abbildungen durch Matrizen
 - K1.3 Anwendungsbeispiel: Ableitung von Polynomen
 - K1.4 Anwendungsbeispiel: Ableitung von \cos , \sin , \exp
 - K1.5 Verträglichkeit mit Addition und Komposition
- K2 Kanonische Darstellung und Basiswechsel
 - K2.1 Kanonische Darstellung einer linearen Abbildung
 - K2.2 Matrixdualität: Zeilenrang gleich Spaltenrang
 - K2.3 Basiswechsel und Koordinatentransformation
 - K2.4 Anwendungsbeispiele, erste Diagonalisierungen
- K3 Aufgaben und Ergänzungen

Kapitel L: Signatur und Determinante

- L1 Die Signatur
 - L1.1 Permutationen, Inversionen und Parität
 - L1.2 Die Signatur einer Selbstabbildung
 - L1.3 Die alternierende Gruppe
- L2 Die Determinante
 - L2.1 Geometrische Motivation als orientiertes Volumen
 - L2.2 Die drei Axiome: multilinear, alternierend, normiert
 - L2.3 Der Hauptsatz zu Determinanten und erste Beispiele
 - L2.4 Existenz und Eindeutigkeit und Multiplikativität
 - L2.5 Cramersche Regel, Adjunkte und Inverse
 - L2.6 Effiziente Berechnung der Determinante
 - L2.7 Die rekursive Laplace-Entwicklung
- L3 Erste Anwendungen
 - L3.1 Invarianz der Dimension über kommutativen Ringen
 - L3.2 Die Determinante eines Endomorphismus
 - L3.3 Die spezielle lineare Gruppe
 - L3.4 Volumen und Orientierung

Kapitel M: Eigenvektoren und Diagonalisierung

- M1 Einführung und Grundbegriffe
 - M1.1 Kanonische Darstellung eines Homomorphismus
 - M1.2 Diagonalisierung eines Endomorphismus
 - M1.3 Eigenwerte, Eigenräume, Eigenvektoren, Eigenbasen
 - M1.4 Erste Beispiele zur Eigenraumzerlegung
- M2 Determinante und charakteristisches Polynom
 - M2.1 Das charakteristische Polynom einer Matrix
 - M2.2 Eigenschaften des charakteristischen Polynoms
 - M2.3 Das Standardverfahren zur Diagonalisierung
 - M2.4 Anwendung auf Rekursionsgleichungen
- M3 Trigonalisierung und Diagonalisierung
 - M3.1 Trigonalisierung eines Endomorphismus
 - M3.2 Lokales Minimalpolynom und Cayley-Hamilton
 - M3.3 Minimalpolynom und charakteristisches Polynom
 - M3.4 Äquivalente Kriterien zur Diagonalisierung
- M4 Anwendungsbeispiele und Übungen

Kapitel N: Hauptvektoren und Jordanisierung

- N1 Hauptvektoren und Jordanisierung
 - N1.1 Die Jordan-Normalform: Existenz und Eindeutigkeit
 - N1.2 Erste Beispiele und Anwendungen
 - N1.3 Beweis des Satzes von Jordan
- N2 Differenzengleichungen und Differentialgleichungen
 - N2.1 Diskrete Ableitung und Verschiebeoperator
 - N2.2 Ableitung und lineare Differentialgleichungen
 - N2.3 Inhomogene lineare Differentialgleichungen
 - N2.4 Freie und erzwungene harmonische Schwingung
- N3 Lineare Differentialgleichungssysteme
 - N3.1 Gekoppelte Oszillatoren und Eigenfrequenzen
 - N3.2 Matrix-Exponentialfunktion und Jordanisierung
 - N3.3 Linearisierung um Fixpunkte und In/Stabilität

Kapitel O: Bilinearformen und Quadriken

- O1 Bilinearformen und darstellende Matrizen
- O2 Diagonalisierung symmetrischer Bilinearformen O2.1 Zusammenfassung zur Klassifikation
- O3 Quadriken und ihre affine Klassifikation O3.1 Zusammenfassung zur Klassifikation

Kapitel P: Vektorräume mit Skalarprodukt

- P1 Skalarprodukte
 - P1.1 Skalarprodukte über \mathbb{R} , euklidische Vektorräume
 - P1.2 Skalarprodukte über C, unitäre Vektorräume
 - P1.3 Erste Anwendungen, von Pythagoras zu Fourier
- P2 Orthonormalisierung
 - P2.1 Gram-Schmidt-Verfahren und QR-Zerlegung
 - P2.2 Bestapproximation und Methode der kleinsten Quadrate
 - P2.3 Näherungslösung eines überbestimmten Gleichungssystems
- P3 Orthogonale und unitäre Endomorphismen
 - P3.1 Orthogonale und unitäre Endomorphismen
 - P3.2 Orthogonale und unitäre Gruppen
 - P3.3 Geometrie des dreidimensionalen Raumes

Kapitel Q: Spektralsatz und Anwendungen

Kapitel R: Linearformen und Dualität

- R1 Dualräume
 - R1.1 Der Dualraum V^* zu V
 - R1.2 Duale Familien in V^* und V
 - R1.3 Die duale Familie $(b_i^*)_{i \in I}$ einer Basis $(b_i)_{i \in I}$
 - R1.4 Der natürliche Homomorphismus von V zum Bidual V^{**}
- R2 Dualität und Bilinearformen
 - R2.1 Der Annulator $X^{\circ} \leq V^*$ einer Teilmenge $X \subseteq V$
 - R2.2 Bilinearformen und Dualität
 - R2.3 Normen und Dualität
- R3 Duale Homomorphismen
 - R3.1 Der duale Homomorphismus $f^*:V^*\to U^*$ zu $f:U\to V$
 - R3.2 Matrizen und duale Abbildungen $f: v \mapsto Av$ und $f^*: u \mapsto uA$
 - R3.3 Bild und Kern und exakte Sequenzen

Kapitel S: Tensorprodukt	
S1 Das Tensorprodukt für Eilige	
S1.1 Tensorprodukte über einem Körper	
S1.2 Matrizen und Polynome als vertraute Modelle	
S1.3 Anwendung: No-Cloning-Theorem und EPR-Paradox	
S2 Tensorprodukte über beliebigen Ringen	
S2.1 Motivation: Produkte sind bilineare Abbildungen.	
S2.2 Das Tensorprodukt und seine universelle Eigenschaft	
S2.3 Assoziativität, Kommutativität, Neutrales, Distributivität	
S2.4 Funktorialität des Tensorprodukts und Kronecker–Produkt	
S2.5 Das mehrfache Tensorprodukt	
S3 Erste Anwendungen und Beispiele	
S3.1 Erweiterung des Grundrings	
S3.2 Darstellung von Homomorphismen	