Lineare Algebra

#### Kapitel B

# Lineare Gleichungssysteme, Matrixkalkül und Gauß-Algorithmus

Give someone a fish and they can eat for a day.

Teach them to fish and they can eat for life.

(anonyme Weisheit)

Vollversion

eiserm.de/lehre/LinA

05.03.2022

B003

#### Motivation und Vorgehensweise

Wie soll man Probleme angehen, insbesondere in der Mathematik? Konkret oder abstrakt? Am besten. Sie beherrschen beides!

- Viele Aufgaben sind ohne passende Theorie schwer bis unlösbar, zur systematischen Lösung entwickeln wir die nötigen Werkzeuge.
- Wenn Sie die allgemein-abstrakten Zusammenhänge gut verstehen, dann können Sie auch speziell-konkrete Probleme effizienter lösen.

Wir erleben dies hier eindrücklich an einem zentralen Thema: Lineare Gleichungssysteme, Matrixkalkül und Gauß-Algorithmus.

Mathematik ist immer beides: sowohl abstrakte Theorie als auch konkrete Anwendung; sie sind keine Gegensätze, sie ergänzen sich, die eine kann nur mit der anderen dauerhaft erfolgreich sein.

Unser treues Arbeitspferd ist der extrem nützliche Gauß-Algorithmus. Mathematik findet nicht nur, aber eben auch auf dem Computer statt. Ich präzisiere dazu Datenstrukturen und Algorithmen soweit möglich.

⚠ Nehmen Sie sich Stift und Papier und arbeiten Sie aktiv mit. An vielen Stellen wollen Sie vermutlich Nebenrechnungen machen.

### Inhalt dieses Kapitels B

1 Der Matrixkalkül

- Vom Gleichungssystem zur Matrix
- Matrixaddition und Skalarmultiplikation
- Multiplikation von Matrizen passender Größe
- Invertierbare Matrizen und ihre Inversen
- Inversion im Ring der 2 × 2–Matrizen
- Komplexe Zahlen und Quaternionen als Matrizen
- 2 Der Gauß-Algorithmus
  - Zeilenstufenform
  - Der Gauß–Algorithmus
  - Zeilenoperation als Matrixmultiplikation
  - Invertierbarkeitskriterien für Matrizen
- 3 Erste Anwendungen: drei schöne Beispiele
  - Es werde Licht! ... mit Linearer Algebra
  - Lagrange—Interpolation und Vandermonde—Matrix
  - Zufällige Irrfahrt und harmonische Gewinnerwartung

## Motivation und Vorgehensweise

B004 Überblick

Der Matrixkalkül ist unglaublich vielseitig und flexibel: Matrizen helfen nahezu überall, wo Daten systematisch strukturiert und genutzt werden, in Physik (von Drehmatrizen bis Quantenmechanik) und Informatik (von Computergraphik bis Computeralgebra), allgemein in den Natur- und Ingenieurwissenschaften, ebenso in Ökonometrie und Statistik.

In der Mathematik beginnen Sie im ersten Semester mit der Linearen Algebra (Matrizen für Gleichungssysteme, lineare Abbildungen und quadratische Formen). Dies nutzen Sie im zweiten Semester in der Analysis (als Jacobi–Matrix, Hesse–Matrix, usw.). Ab dem dritten Semester führt die Numerik viele Probleme auf numerische lineare Algebra zurück, dazu entwickelt und untersucht sie Algorithmen zur Matrizenrechnung auf dem Computer. Ebenso werden Matrizen genutzt in der Stochastik (etwa stochastische Matrizen für Markov–Ketten). Nicht zuletzt spielen Matrizen eine wichtige Rolle in der Algebra, etwa Darstellungstheorie, homologische Algebra, algebraische Topologie....

⚠ Der Plural von "die Matrix" lautet "die Matrizen", nicht "Matrixen". Umgekehrt lautet der Singular "die Matrix" und nicht "die Matrize".

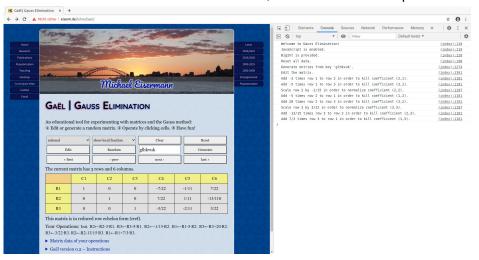
B00

B005 Erläuterung

Panorama: Einige der wichtigsten Algorithmen

B006 Ausblick

Das Online-Tool Gaël ist intuitiv klickbar, damit können Sie spielen!



Damit lösen Sie lineare Gleichungssysteme, invertieren Matrizen und experimentieren mit Umformungen. Gaël übernimmt die Buchführung.

Panorama: Einige der wichtigsten Algorithmen

B007 Ausblick

Ich würde mir für Sie wünschen, dass Sie möglichst viele dieser Techniken in Ihrem Studium kennen, nutzen und schätzen lernen.

Meine Liste ist nicht ganz willkürlich, aber naturgemäß subjektiv. Inspiriert wurde sie von einer ähnlichen Top-10-Liste in *Computing in Science and Engineering* (2000), dem *Princeton Companion to Applied Mathematics* (2016) und dem Buch *Modern Computer Algebra* (2013).

Euklid (um 300 v.Chr.) nutzte seinen Algorithmus für natürliche Zahlen, er gilt ebenso für Polynome und allgemein in jedem euklidischen Ring. Die Methode von Newton (1643–1727) zur Nullstellennäherung nutzte bereits Heron von Alexandria (10–70 n.Chr.) in einfachen Spezialfällen.

Alle weiteren Algorithmen sind Entdeckungen des 20. Jahrhunderts und boomen seit Entwicklung und durch Einsatz elektronischer Computer.

Kryptographie, Datenkompression, PageRank und Data Mining erblühen insbesondere durch die rasante Popularisierung des Internets seit 1990. In diesen Bereichen ist die Mathematik auch im Alltag direkt spürbar und deutlich sichtbar für alle, die unter die Oberfläche schauen.

Welche Algorithmen scheinen die wichtigsten? Hier meine Vorschläge: (Diese Liste können Sie durch viele würdige Kandidaten fortsetzen.)

**Euklidischer Algorithmus** zur Berechnung des ggT **Gröbner–Basen** zur Lösung polynomieller Gleichungssysteme **Schnelle Primzahltests** und Public Key Cryptography (PKC)

Newtons Methode zur iterativen Nullstellennäherung Matrixzerlegung, Gauß (LU), Householder-Givens (QR), Cholesky Lineare Optimierung, Simplexverfahren, Innere-Punkt-Methode

Schnelles Suchen und Sortieren, Quick-/Merge-/Heap-sort Schnelle Fourier-Transformation (FFT) zur Signalverarbeitung Datenkompression mittels JPEG, MPEG, MP3, Wavelets, etc.

Monte-Carlo-Methode zur Erwartungsschätzung durch Sampling Kalman-Filter zur Zeitreihenanalyse und Zustandsschätzung Googles PageRank zur Popularitätswertung von Internetseiten

Panorama: Einige der wichtigsten Algorithmen

B008 Ausblick

Jede große Entwicklung des 20. Jahrhunderts, etwa die Raumfahrt, benötigte diese algorithmischen Grundlagen – und noch viele weitere. Zu Beginn des 21. Jahrhunderts ist absehbar, dass auch die nächsten großen Entwicklungen darauf aufbauen und die Werkzeuge erweitern. Durch Data Science und Machine Learning werden die algorithmischen Grundlagen nicht ersetzt oder überflüssig, sondern weiter ausgebaut.

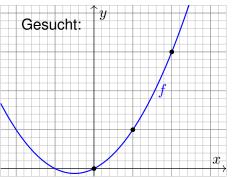
Schon heute ist es kaum möglich, sich auf eine "Top-Ten" zu einigen. In Zukunft wird dies noch schwieriger, da die diversen Teilgebiete der Computational Mathematics weiter gedeihen und expandieren werden. Vielleicht sollte ich daher besser von der "Top-one-hundred" sprechen, noch fairer von Top-Algorithmen je nach Gebiet und Problemstellung. Differenzierung und Spezialisierung werden weiter fortschreiten.

In diesem Kapitel geht es um einen ersten dieser Top-Algorithmen: Das Gauß-Verfahren zur Lösung linearer Gleichungssysteme. Dies gehört zweifellos zu den Top-Ten der wichtigsten Algorithmen. Zur würdigen Einordnung habe ich das Gesamtpanorama skizziert.

### Beispiel: Kurve durch Datenpunkte



Gegeben: y
Gesucht



Aufgabe: Finden Sie alle Parabeln, also Polynomfunktionen

$$f: \mathbb{R} \to \mathbb{R}: f(x) = ax^2 + bx + c,$$

die durch die Punkte f(0) = 0 und f(1) = 1 und f(2) = 3 laufen.

Wir wollen mindestens eine Lösung finden, am besten alle Lösungen! Gibt es überhaupt mindestens eine Lösung? Ist sie zudem eindeutig?

# Erste Lösung durch Lagrange-Interpolation

**Erste Lösung:** Sei  $\mathbb{K}$  ein Körper, etwa  $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$  oder  $\mathbb{Q}[\sqrt{2}], \mathbb{Q}[\mathrm{i}], \ldots$ Vorgegeben seien n+1 verschiedene Stützstellen  $x_0, x_1, \ldots, x_n \in \mathbb{K}$ . Zu jedem  $j=0,1,\ldots,n$  definieren wir das **Lagrange–Polynom** 

$$L_j(X) := \prod_{i \neq j} \frac{X - x_i}{x_j - x_i} \in \mathbb{K}[X]_n$$

Dieses Polynom erfüllt  $L_j(x_j)=1$  und  $L_j(x_i)=0$  für alle  $i\neq j$ . Zu den Werten  $y_0,y_1,\ldots,y_n\in\mathbb{K}$  betrachten wir die Linearkombination

$$L(X) := \sum_{j=0}^{n} y_j L_j(X) \in \mathbb{K}[X]_{\leq n}.$$

Diese erfüllt  $L(x_j) = y_j$  für alle  $j = 0, 1, \dots, n$ , wie gewünscht.

 $\bigcirc$  Dies konstruiert *eine* Lösung. Es könnte noch *weitere* geben! **Übung:** Rechnen Sie dies konkret aus für x=(0,1,2) und y=(0,1,3). Vergleichen Sie Ihr Ergebnis mit der folgenden zweiten Lösung. Beispiel: Kurve durch Datenpunkte

B102 Erläuterung

Diese Aufgabe ist sehr einfach, doch in vielerlei Hinsicht typisch. In der **Geometrie** betrachten wir Geraden, Kreise, Ellipsen, Parabeln, Hyperbeln, etc. Klassisch konstruieren wir diese mit Lineal, Zirkel und weiteren Werkzeugen. Die geniale Idee der **Analytischen Geometrie** ist es, Punkte durch **Koordinaten** zu beschreiben. Das gibt uns ein Universalwerkzeug an die Hand: Mit Koordinaten können wir rechnen!

Die **Polynominterpolation** durch vorgegebene Datenpunkte ist ein grundlegendes Hilfsmittel in der **Numerik**. In vielen Anwendungen sind diese Datenpunkte gemessene Werte und daher mit Fehlern behaftet. In diesem Falle wollen wir nicht exakt durch alle Punkte gehen, sondern suchen eine gute Näherung. Das ist ein Grundwerkzeug der **Statistik**: Ausgleichsgerade, Fehler minimieren, Methode der kleinsten Quadrate. Allgemein im **Maschinellen Lernen** will man Datenpunkte möglichst effizient und sinnvoll beschreiben, auswerten, bündeln, interpretieren.

Zur Vereinfachung betrachten wir hier ein Minimalbeispiel mit drei exakten Datenpunkten, durch die wir eine Parabel legen wollen.

## Erste Lösung durch Lagrange-Interpolation

B104 Erläuterung

Diese Lösung können wir direkt hinschreiben, als explizite Formel, ohne weitere Rechnung. Bitte führen Sie dies hier konkret aus!

Dies klärt noch nicht, ob es vielleicht noch weitere Lösungen gibt: Wir haben die Existenz einer Lösung, aber noch nicht ihre Eindeutigkeit.

Zur Eindeutigkeit benötigen wir ein weiteres Werkzeug:

♦ Satz B3A: Polynom vom Grad  $\leq n$  auf n+1 Punkten festlegen Sei  $\mathbb{K}$  ein Körper oder allgemein ein kommutativer Ring ohne Nullteiler. Jedes Polynom  $P \in \mathbb{K}[X]$  vom Grad  $\deg P \leq n$  wird bereits durch seine Werte an n+1 Stellen  $x_0, x_1, \ldots, x_n \in \mathbb{K}$  eindeutig festgelegt.

Ausführlich: Erfüllen die Polynome  $P,Q\in\mathbb{K}[X]_{\leq n}$  die Bedingungen  $P(x_i)=Q(x_i)$  für alle  $i=0,1,\ldots,n$ , so folgt P=Q.

Diesen schönen und grundlegenden Satz behandeln wir ausführlich im Kapitel über Polynome durch die Abspaltung von Nullstellen durch euklidische Division. Wir erhalten die Eindeutigkeit auch bereits am Ende dieses Kapitels als Folgerung aus dem Gauß–Algorithmus.

**Zweite Lösung:** Wir haben den Ansatz  $f(x) = ax^2 + bx + c$ . Gesucht sind die Koeffizienten  $a,b,c\in\mathbb{R}$ , sodass gilt:

$$f(0) = 0$$
  $\Leftrightarrow$   $R_1: 0 \cdot a + 0 \cdot b + 1 \cdot c = 0$   
 $f(1) = 1$   $\Leftrightarrow$   $R_2: 1 \cdot a + 1 \cdot b + 1 \cdot c = 1$   
 $f(2) = 3$   $\Leftrightarrow$   $R_3: 4 \cdot a + 2 \cdot b + 1 \cdot c = 3$ 

Wir formen solche Systeme um durch **elementare Zeilenoperationen**: Permutation  $P_{ij}$ :  $R_i \leftrightarrow R_j$ , vertausche die Zeilen i und j. Skalierung  $S_i(\mu)$ :  $R_i \leftarrow \mu R_i$ , multipliziere Zeile i mit  $\mu \neq 0$ . Transvektion  $T_{ij}(\lambda)$ :  $R_j \leftarrow R_j + \lambda R_i$ , addiere  $\lambda$  mal Zeile i zur Zeile j.

- Jede dieser Zeilenoperationen können wir verlustfrei umkehren, jeweils durch die inverse Operation  $P_{ij}$  und  $S_i(\mu^{-1})$  und  $T_{ij}(-\lambda)$ .
- Jede Lösung vor der Operation ist auch Lösung nach der Operation.
   Inversion zeigt umgekehrt: Jede Lösung danach ist auch eine davor.
- O Alle Lösungen bleiben erhalten, und es kommen keine dazu.

# Zweite Lösung durch lineares Gleichungssystem

Unser Gleichungssystem lautet nun:

$$\begin{cases} 1a + 1b + 1c = 1 \\ 0a - 2b - 3c = -1 \\ 0a + 0b + 1c = 0 \end{cases}$$

Zeilenoperation  $S_2(-1/2)$ : Wir skalieren die Zeile 2.

$$\begin{cases} 1a + 1b + 1c = 1\\ 0a + 1b + \frac{3}{2}c = \frac{1}{2}\\ 0a + 0b + 1c = 0 \end{cases}$$

Zeilenoperation  $T_{21}(-1)$ : Wir addieren (-1) mal Zeile 2 zu Zeile 1.

$$\begin{cases} 1a + 0b - \frac{1}{2}c = \frac{1}{2} \\ 0a + 1b + \frac{3}{2}c = \frac{1}{2} \\ 0a + 0b + 1c = 0 \end{cases}$$

Zeilenoperation  $T_{31}(1/2)$  und  $T_{32}(-3/2)$  zum guten Schluss:

$$\begin{cases} 1a + 0b + 0c = \frac{1}{2} \\ 0a + 1b + 0c = \frac{1}{2} \\ 0a + 0b + 1c = 0 \end{cases}$$

# Zweite Lösung durch lineares Gleichungssystem

Wir wollen folgendes Gleichungssystem lösen:

$$\begin{cases} 0a + 0b + 1c = 0 \\ 1a + 1b + 1c = 1 \\ 4a + 2b + 1c = 3 \end{cases}$$

Zeilenoperation  $P_{12}$ : Wir vertauschen die Zeilen 1 und 2.

$$\begin{cases} 1a + 1b + 1c = 1 \\ 0a + 0b + 1c = 0 \\ 4a + 2b + 1c = 3 \end{cases}$$

Zeilenoperation  $T_{13}(-4)$ : Wir addieren (-4) mal Zeile 1 zu Zeile 3.

$$\begin{cases} 1a + 1b + 1c = 1 \\ 0a + 0b + 1c = 0 \\ 0a - 2b - 3c = -1 \end{cases}$$

Zeilenoperation  $P_{23}$ : Wir vertauschen die Zeilen 2 und 3.

$$\begin{cases} 1a + 1b + 1c = 1 \\ 0a - 2b - 3c = -1 \\ 0a + 0b + 1c = 0 \end{cases}$$

# Von linearen Gleichungssystemen zu Matrizen

 $\bigcirc$  Unser Gleichungssystem hat die Lösung (a,b,c)=(1/2,1/2,0). Unser ursprüngliches Interpolationsproblem wird also gelöst durch

$$f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{1}{2}x^2 + \frac{1}{2}x + 0 = \frac{x(x+1)}{2}.$$

**Probe:** Es gilt f(0) = 0 und f(1) = 1 und f(2) = 3, wie gefordert.

Unsere Rechnung zeigt zudem, dass dies die einzige Lösung ist. Diese Gewissheit ist ebenfalls wichtig, und hier Teil der Frage!

Was lernen wir an dieser vorbildlichen Notation und Rechnung?

- In der jten Spalte steht immer die jte Variable. Dabei ist es egal, wie die Variablen heißen, etwa a, b, c oder x, y, z oder  $x_1, x_2, x_3$ .
- Wir wollen die Variablen nicht immer mitschleppen und wiederholen. Es genügt, die Koeffizienten zu notieren, um mit diesen zu arbeiten.

Wir trennen daher im Folgenden Koeffizienten und Variablen.
 Wir rechnen allein mit der Koeffizientenmatrix, das ist effizienter!
 Wir nutzen die vier Grundrechenarten, nicht mehr und nicht weniger.

B108

B112

Sei  $\mathbb{K}$  ein Körper, wie  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ , oder allgemein ein Ring, wie  $\mathbb{Z}$ ,  $\mathbb{Z}_n$ ,  $\mathbb{H}$ . Für Addition und Multiplikation allein genügt sogar ein Halbring, wie  $\mathbb{N}$ . Wir erklären, was **Matrizen über**  $\mathbb{K}$  sind und wie man damit rechnet.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \quad \text{oder} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Gegeben sei die Zeilenzahl  $m \in \mathbb{N}$  und die Spaltenzahl  $n \in \mathbb{N}$ . Als Indexmengen nutzen wir  $I = \{1, 2, \dots, m\}$  und  $J = \{1, 2, \dots, n\}$ . Jedem Indexpaar  $(i, j) \in I \times J$  wird ein Koeffizient  $a_{i,j} \in \mathbb{K}$  zugeordnet.

Eine Matrix A der Größe  $m \times n$  über  $\mathbb{K}$  ist demnach eine Abbildung

$$A: I \times J \to \mathbb{K}: (i,j) \mapsto A(i,j) = A_{i,j} = A_{i,j} = a_{i,j} = a_{i,j}$$

Die Matrix A schreiben wir bequem als rechteckiges Schema, wie oben, mit m Zeilen und n Spalten, kurz  $A=(a_{ij})_{i=1,\dots,n}^{j=1,\dots,n}$ , oder  $A=(a_{ij})_{ij}$  oder  $A=(a_{ij})$ , wenn die Dimensionen m und n aus dem Kontext klar sind.

#### Matrixkalkül: Transposition

Zu  $A = (a_{ij})_{ij}$  definieren wir die **transponierte Matrix**  $A^{T} = (a_{ij})_{ji}$ :

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \iff A^{\mathsf{T}} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$A: I \times J \to \mathbb{K}: (i,j) \mapsto a_{ij} \iff A^{\mathsf{T}}: J \times I \to \mathbb{K}: (j,i) \mapsto a_{ii}^{\mathsf{T}} = a_{ij}$$

Dies definiert die **Transposition**  $\mathbb{K}^{m \times n} \to \mathbb{K}^{n \times m} : A \mapsto A^{\mathsf{T}}$  für alle  $m, n \in \mathbb{N}_{>1}$ . Offensichtlich gilt dabei  $(A^{\mathsf{T}})^{\mathsf{T}} = A$ .

Genau dann gilt  $A^{\dagger} = A$ , wenn die Matrix A symmetrisch ist, also quadratisch ist (mit m = n) und  $a_{ij} = a_{ji}$  für alle i, j = 1, ..., n erfüllt.

$$S = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}, \qquad Q = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

**Beispiel:** Die hier gezeigte Matrix  $S \in \mathbb{Z}^{3 \times 3}$  ist symmetrisch, die Matrix  $Q \in \mathbb{Z}^{3 \times 3}$  ist zwar quadratisch, aber nicht symmetrisch. Eine Matrix A mit  $A^\intercal = -A$  heißt **antisymmetrisch**.

Wir schreiben kurz  $a_{ij}$ , wenn keine Verwechslung zu befürchten ist. Indizes werden nur selten multipliziert; falls nötig schreiben wir  $a_{i\cdot j}$ . In vielen Anwendungen, insbesondere auf dem Computer, werden auch andere Indexmengen verwendet, elegant ist  $m=\{0,1,\ldots,m-1\}$  und  $n=\{0,1,\ldots,n-1\}$ , aber das bringe ich hier noch nicht übers Herz. Zur Indizierung genügen beliebige Mengen  $I'=\{i_1< i_2<\cdots< i_m\}$  und  $J'=\{i_1< i_2<\cdots< i_n\}$ . Zur beguemen Darstellung als Rechteck

und  $J'=\{j_1< j_2< \cdots < j_n\}$ . Zur bequemen Darstellung als Rechteck benötigen wir die vorgegebene Anordnung. Damit können wir eindeutig zu unserm Standard  $I=\{1<2<\cdots < m\}$  und  $J=\{1<2<\cdots < n\}$  umnummerieren. Somit ist immer klar, was die ite Zeile und die jte Spalte ist. Genau darauf bauen nahezu alle folgenden Algorithmen.

Das nutzen wir, wenn wir zur Matrix  $A:I\times J\to \mathbb{K}$  eine Untermatrix  $A|_{I'\times J'}:I'\times J'\to \mathbb{K}$  betrachten mit Teilmengen  $I'\subseteq J$  und  $J'\subseteq J$ .

Zwei Matrizen  $A:I\times J\to \mathbb{K}$  und  $A':I'\times J'\to \mathbb{K}'$  sind gleich, wenn sie als Abbildungen gleich sind, also I=I' und J=J' und  $\mathbb{K}=\mathbb{K}'$  sowie  $a_{ij}=a'_{ij}$  für alle  $(i,j)\in I\times J$  gilt. Laxer erlauben wir meist monotone Umnummerierung  $I\cong I'$  und  $J\cong J'$  mit  $a_{ij}=a'_{i'j'}$  für  $(i,j)\leftrightarrow (i',j')$ .

#### Matrixkalkül: Einheitsmatrix

In dieser Schreibweise ist  $u \in \mathbb{K}^{1 \times n}$  ein **Zeilenvektor** mit n Spalten. Entsprechend ist  $v \in \mathbb{K}^{m \times 1}$  ein **Spaltenvektor** mit m Zeilen.

$$A = \begin{bmatrix} - u_1 - u_1 \\ \vdots \\ - u_m - u_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ v_1 \cdots v_n \\ 1 & 1 \end{bmatrix}, \quad A^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \\ u_1^{\mathsf{T}} \cdots u_m^{\mathsf{T}} \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} - v_1^{\mathsf{T}} - u_1^{\mathsf{T}} \\ \vdots \\ - v_n^{\mathsf{T}} - u_n^{\mathsf{T}} \end{bmatrix}$$

Die Transposition macht Zeilen zu Spalten und umgekehrt.

Die **Einheitsmatrix** der Größe  $n \times n$  ist

$$E = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \quad \text{mit} \quad e_{ij} = \begin{cases} 1 & \text{falls } i = j, \\ 0 & \text{falls } i \neq j. \end{cases}$$

Beliebte Schreibweisen sind  $E=E_n=I=I_n=1_n=1_{n\times n}$ . Sie hat als Spalten die **Spalten-Einheitsvektoren**  $e_1,\ldots,e_n\in\mathbb{K}^{n\times 1}$ , und als Zeilen die **Zeilen-Einheitsvektoren**  $e_1^\intercal,\ldots,e_n^\intercal\in\mathbb{K}^{1\times n}$ .

#### Matrixkalkül: Addition von Matrizen



Matrizen gleicher Größe können wir addieren:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1+0 & 2+2 & 3+0 \\ 4+2 & 5+0 & 6+0 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 3 \\ 6 & 5 & 9 \end{bmatrix}$$

Wir definieren dazu die Matrixaddition:

$$+: \mathbb{K}^{m \times n} \times \mathbb{K}^{m \times n} \to \mathbb{K}^{m \times n}: (A, B) \mapsto C = A + B, \ c_{ij} = a_{ij} + b_{ij}$$

Das ist die koeffizientenweise Addition + im Ring  $\mathbb{K}$ . Da  $(\mathbb{K}, +, 0, -)$  eine Gruppe ist, haben wir zudem

$$\mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad \mathbf{-} \begin{bmatrix} 0 & 1 & -2 \\ 3 & -5 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 2 \\ -3 & 5 & 0 \end{bmatrix}.$$

Wir nennen  $\mathbf{0} = 0_{m \times n} = (0)_{i=1,\dots,m}^{j=1,\dots,n}$  die **Nullmatrix** der Größe  $m \times n$ . Zur Matrix  $A = (a_{ij})$  nennen wir  $-A = (-a_{ij})_{ij}$  die **negative Matrix**.

 $\mathbb{C}$  Die Skalare  $(\mathbb{K}, +, 0, -)$  bilden eine **kommutative Gruppe**, daher auch die Matrizen  $(\mathbb{K}^{m \times n}, +, 0, -)$  der Größe  $m \times n$  über  $\mathbb{K}$ .

# Matrixkalkül: Multiplikation mit Skalaren

B115 Lineare Räume Vektorräume

$$2 \cdot \begin{bmatrix} 1 & 3 & 4 \\ 3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 & 2 \cdot 3 & 2 \cdot 4 \\ 2 \cdot 3 & 2 \cdot 4 & 2 \cdot 0 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 8 \\ 6 & 8 & 0 \end{bmatrix}$$

Wir definieren dazu die Skalarmultiplikation:

•: 
$$\mathbb{K} \times \mathbb{K}^{m \times n} \to \mathbb{K}^{m \times n}$$
:  $(\lambda, A) \mapsto B = \lambda \cdot A, \ b_{ij} = \lambda \cdot a_{ij}$ 

Übung: Für alle Skalare  $\lambda, \mu \in \mathbb{K}$  und Matrizen  $A, B \in \mathbb{K}^{m \times n}$  gilt:

$$\lambda \cdot (A + B) = \lambda \cdot A + \lambda \cdot B, \qquad 1 \cdot A = A,$$
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A, \qquad \lambda \cdot (\mu \cdot A) = (\lambda \cdot \mu) \cdot A$$

Zusammenfassend:  $(\mathbb{K}^{m\times n}, +, \cdot)$  ist ein **linearer Raum** über  $(\mathbb{K}, +, \cdot)$ . Ebenso können wir von rechts mit Skalaren multiplizieren:

•: 
$$\mathbb{K}^{m \times n} \times \mathbb{K} \to \mathbb{K}^{m \times n}$$
:  $(A, \lambda) \mapsto C = A \cdot \lambda, \ c_{ij} = a_{ij} \cdot \lambda$ 

Die obigen Regeln gelten dann von rechts. Ist  $(\mathbb{K},\cdot)$  kommutativ, so gilt  $\lambda \cdot A = A \cdot \lambda$ , andernfalls sind Links- und Rechtsoperation verschieden.

#### Matrixkalkül: Addition von Matrizen

B114 Gruppen

**Übung:** Die Matrizen ( $\mathbb{K}^{m\times n}$ , +, 0, -) bilden eine kommutative Gruppe. (0) Was muss geprüft werden? (1) Rechnen Sie es allgemein nach! **Lösung:** (0) Für alle Matrizen  $A, B, C \in \mathbb{K}^{m\times n}$  ist zu zeigen:

$$A + (B + C) = (A + B) + C,$$
  $\mathbf{0} + A = A + \mathbf{0} = A,$   
 $A + B = B + A,$   $A + (-A) = (-A) + A = \mathbf{0}$ 

(1) Wir rechnen die Assoziativität koordinatenweise nach:

$$[A + (B + C)]_{ij} \stackrel{\text{Def}}{=} a_{ij} + (B + C)_{ij}$$

$$\stackrel{\text{Def}}{=} a_{ij} + (b_{ij} + c_{ij})$$

$$\stackrel{\text{Ass}}{=} (a_{ij} + b_{ij}) + c_{ij}$$

$$\stackrel{\text{Def}}{=} (A + B)_{ij} + c_{ij} \stackrel{\text{Def}}{=} [(A + B) + C]_{ij}$$

Ebenso folgt Kommutativität, Neutrales und Negatives.

**QED** 

 $\bigcirc$  Die guten Eigenschaften von  $(\mathbb{K},+,0,-)$  übertragen sich koordinatenweise zu guten Eigenschaften von  $(\mathbb{K}^{m\times n},+,0,-)$ .

# Matrixkalkül: Addition und Skalarmultiplikation

B116 Erläuterung

Zur Betonung habe ich hier die Addition + und die Skalarmultiplikation  $\cdot$  für Matrizen fett hervorgehoben. So unterscheiden wir sie graphisch von der zugrundeliegenden Addition + und Multiplikation  $\cdot$  der Skalare im Koeffizientenring  $(\mathbb{K},+,\cdot)$ . Das ist insbesondere für die ersten Rechnungen didaktisch sinnvoll, wie hier ausgeführt.

Diese pedantische Unterscheidung ist mathematisch gerechtfertigt: Streng genommen sind + und + bzw.  $\cdot$  und  $\cdot$  verschiedene Operationen, daher verdienen sie zur Klarheit auch verschiedene Bezeichnungen.

Auf Dauer wird diese Schreibweise jedoch lästig. Aus dem Kontext ist ohnehin jeweils klar, was gemeint ist, daher schreiben wir später beide Additionen kurz + und beide Multiplikationen kurz  $\cdot$ . Das ist bequemer.

Für die grundlegenden Rechnungen dieses Abschnitts betone ich weiterhin den Unterschied. Ich hoffe, diese Genauigkeit hilft Ihnen. Die (fahr)lässige Ungenauigkeit kommt früh genug von ganz allein.

Zwei Matrizen passender Größe können wir multiplizieren vermöge

•: 
$$\mathbb{K}^{p \times q} \times \mathbb{K}^{q \times r} \to \mathbb{K}^{p \times r}$$
:  $(A, B) \mapsto C = A \cdot B$ ,  $c_{ik} = \sum_{j=1}^{q} a_{ij} \cdot b_{jk}$ .

$$\begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 \cdot v_1 + u_2 \cdot v_2 + \dots + u_n \cdot v_n$$

Ein einfaches Beispiel:

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix} = 1 \cdot 1 + 2 \cdot (-4) + 3 \cdot 2 = -1$$

⚠ Hierzu müssen beide Vektoren dieselbe Länge n haben!

#### Matrixkalkül: Reihenfolge der Multiplikation

Die Matrixmultiplikation ist nicht kommutativ: Für  $p \neq q$  und  $A \in \mathbb{K}^{p \times q}$  und  $B \in \mathbb{K}^{q \times p}$  sind  $A \cdot B \in \mathbb{K}^{p \times p}$  und  $B \cdot A \in \mathbb{K}^{q \times q}$  verschieden groß. Selbst für quadratische Matrizen, mit  $p = q \geq 2$ , gilt meist  $A \cdot B \neq B \cdot A$ :

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{vs} \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Übung: Wählen und prüfen Sie zufällige Beispiele, etwa:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix} \quad \text{vs} \quad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$$

Die Transposition kehrt die Reihenfolge um,  $(A \cdot B)^{\mathsf{T}} = B^{\mathsf{T}} \cdot A^{\mathsf{T}}$ .

$$(A \cdot B)_{ki}^{\mathsf{T}} = (A \cdot B)_{ik} = \sum_{j=1}^{q} a_{ij} \cdot b_{jk}$$
  
$$(B^{\mathsf{T}} \cdot A^{\mathsf{T}})_{ki} = \sum_{j=1}^{q} b_{kj}^{\mathsf{T}} \cdot a_{ji}^{\mathsf{T}} = \sum_{j=1}^{q} b_{jk} \cdot a_{ij}$$

Hierzu benötigen wir allerdings, dass der Ring  $(\mathbb{K},+,\cdot)$  kommutativ ist! Andernfalls müssten wir in  $\mathbb{K}$  die Multiplikationsreihenfolge umkehren.

## Matrixkalkül: Multiplikation von Matrizen

Zwei Matrizen passender Größe können wir multiplizieren vermöge

•: 
$$\mathbb{K}^{p \times q} \times \mathbb{K}^{q \times r} \to \mathbb{K}^{p \times r}$$
:  $(A, B) \mapsto C = A \cdot B$ ,  $c_{ik} = \sum_{j=1}^{q} a_{ij} \cdot b_{jk}$ .

Im Matrixprodukt  $A \cdot B$  multiplizieren wir demnach jede Zeile von A mit jeder Spalte von B. Das lässt sich graphisch geschickt darstellen:

$$A = \begin{bmatrix} 1 & 2 & 4 & 3 \\ -4 & 2 & 3 & -4 \\ 2 & -2 & -5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 0 & -5 & -2 \\ -4 & 6 & 1 & -2 \end{bmatrix} = A \cdot B$$

Übung: Rechnen Sie dieses Beispiel vollständig nach.

## Matrixkalkül: Distributivität der Multiplikation

B120

**Aufgabe:** Die Matrixmultiplikation ist distributiv über die Addition. (0) Was bedeutet das genau? (1) Rechnen Sie es allgemein nach! **Lösung:** (0) Für alle Matrizen  $A, A' \in \mathbb{K}^{p \times q}$  und  $B, B' \in \mathbb{K}^{q \times r}$  gilt:

DL: 
$$A \cdot (B + B') = A \cdot B + A \cdot B'$$
  
DR:  $(A + A') \cdot B = A \cdot B + A' \cdot B$ 

(1) Wir rechnen die Linksdistributivität koordinatenweise geduldig nach:

$$[A \cdot (B + B')]_{ik} \stackrel{\text{Def}}{=} \sum_{j=1}^{q} a_{ij} \cdot (B + B')_{jk}$$

$$\stackrel{\text{Def}}{=} \sum_{j=1}^{q} a_{ij} \cdot (b_{jk} + b'_{jk})$$

$$\stackrel{\text{DL}}{=} \sum_{j=1}^{q} a_{ij} \cdot b_{jk} + a_{ij} \cdot b'_{jk}$$

$$\stackrel{\text{Add}}{=} \sum_{j=1}^{q} a_{ij} \cdot b_{jk} + \sum_{j=1}^{q} a_{ij} \cdot b'_{jk}$$

$$\stackrel{\text{Def}}{=} (A \cdot B)_{ik} + (A \cdot B')_{ik}$$

$$\stackrel{\text{Def}}{=} [A \cdot B + A \cdot B']_{ik}$$

Genauso rechnet man auch die Rechtsdistributivität nach.

Zu jeder Matrix  $A \in \mathbb{K}^{m \times n}$  ist die Einheitsmatrix  $1_{m \times m}$  linksneutral, also  $1_{m \times m} \cdot A = A$ , und  $1_{n \times n}$  ist rechtsneutral, also  $A \cdot 1_{n \times n} = A$ :

$$(1_{m \times m} \cdot A)_{ik} = \sum_{j=1}^{m} e_{ij} \cdot a_{jk} = a_{ik}$$
$$(A \cdot 1_{n \times n})_{ik} = \sum_{j=1}^{n} a_{ij} \cdot e_{jk} = a_{ik}$$

**Aufgabe:** Die Matrixmultiplikation ist assoziativ, für alle Matrizen  $A \in \mathbb{K}^{p \times q}, \ B \in \mathbb{K}^{q \times r}, \ C \in \mathbb{K}^{r \times s}$  gilt  $(A \cdot B) \cdot C = A \cdot (B \cdot C)$  in  $\mathbb{K}^{p \times s}$ .

Lösung: Wir rechnen die Assoziativität koordinatenweise nach:

$$[A \cdot (B \cdot C)]_{i\ell} \stackrel{\text{Def}}{=} \sum_{j=1}^{q} a_{ij} \cdot (B \cdot C)_{j\ell}$$

$$\stackrel{\text{Def}}{=} \sum_{j=1}^{q} a_{ij} \cdot \left[ \sum_{k=1}^{r} b_{jk} \cdot c_{k\ell} \right]$$

$$\stackrel{\text{DL}}{=} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} \cdot (b_{jk} \cdot c_{k\ell})$$

$$\stackrel{\text{Ass}}{=} \sum_{j=1}^{q} \sum_{k=1}^{r} (a_{ij} \cdot b_{jk}) \cdot c_{k\ell}$$

$$\stackrel{\text{DR}}{=} \sum_{k=1}^{r} \sum_{j=1}^{q} (a_{ij} \cdot b_{jk}) \cdot c_{k\ell}$$

$$\stackrel{\text{DR}}{=} \sum_{k=1}^{r} \left[ \sum_{j=1}^{q} a_{ij} \cdot b_{jk} \right] \cdot c_{k\ell}$$

$$\stackrel{\text{Def}}{=} \sum_{k=1}^{r} (A \cdot B)_{ik} \cdot c_{k\ell} \stackrel{\text{Def}}{=} [(A \cdot B) \cdot C]_{i\ell}$$

#### Matrixkalkül: Zusammenfassung

B123 Erläuterung

Unsere Rechnungen sind handwerklich einfach und eine gute Übung: Sie lernen hier präzise Notation und sorgfältige Argumentation.

Ich sage bewusst "einfach", denn Sie müssen hier nichts selbst erfinden, keinen genialen Trick und keine neue Methode, nur geduldig rechnen.

Dennoch mag Ihnen unser Vorgehen am Anfang schwierig erscheinen. Ich sehe hierfür vor allem zwei mögliche Gründe:

- 1 Die Schreib- und Denkweise ist für Sie noch neu und ungewohnt. Ja, das ist richtig. Genau deshalb erkläre ich Ihnen hier alles detailliert und gehe alle Schritte mit Ihnen ausführlich durch. Mit etwas Gewöhnung und vor allem viel eigener Übung gelingen Ihnen solche Rechnungen dann bald selbst, leicht und routiniert.
- Die Mühe mag Ihnen übertrieben pedantisch vorkommen. Das ist ein allgemeiner Vorwurf an die Mathematik von Menschen, die auf Genauigkeit wenig Wert legen, sondern auf Intuition hoffen. Wir befinden uns jedoch häufig in Situationen, wo die Intuition uns verlässt oder gar täuscht. Hier helfen nur Präzision und Sorgfalt.

Zu Koeffizienten  $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$  definieren wir die **Diagonalmatrix** 

$$D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}, \ d_{ij} = \begin{cases} \lambda_i & \text{falls } i = j, \\ 0 & \text{falls } i \neq j. \end{cases}$$

Das Produkt  $D \cdot A$  multipliziert die ite Zeile von A mit  $\lambda_i$  von links. Das Produkt  $A \cdot D$  multipliziert die ite Spalte von A mit  $\lambda_i$  von rechts. Speziell für  $\Lambda = \operatorname{diag}(\lambda, \dots, \lambda) = \lambda \cdot 1_{n \times n} = 1_{n \times n} \cdot \lambda$  multipliziert  $\Lambda \cdot A = \lambda \cdot A$  bzw.  $A \cdot \Lambda = A \cdot \lambda$  jeden Eintrag von A mit  $\lambda$ . Somit gilt:

$$\lambda \cdot (A \cdot B) \stackrel{\text{Ass}}{=} (\lambda \cdot A) \cdot B \stackrel{\text{Com}}{=} A \cdot (\lambda \cdot B)$$
$$(A \cdot B) \cdot \lambda \stackrel{\text{Ass}}{=} A \cdot (B \cdot \lambda) \stackrel{\text{Com}}{=} (A \cdot \lambda) \cdot B$$

Assoziativität gilt immer, direkt für  $\lambda$  oder dank B121 für  $\Lambda = \lambda \cdot 1_{n \times n}$ , die rechte Gleichung gilt nur im kommutativen Fall, dank  $\lambda \cdot A = A \cdot \lambda$ . Auf diese Weise können wir den Grundring  $\mathbb{K}$  in jeden Matrixring  $\mathbb{K}^{n \times n}$  diagonal einbetten dank der Abbildung  $\iota : \mathbb{K} \hookrightarrow \mathbb{K}^{n \times n} : \lambda \mapsto \lambda \cdot 1_{n \times n}$ .

## Matrixkalkül: Zusammenfassung

B124 algebraische Strukturen

Diese universelle Konstruktion gibt uns eine wunderschöne Struktur:

#### Satz B1A: Grundrechenarten für Matrizen

Wir betrachten Matrizen  $\mathbb{K}^{m\times n}$  über einem Ring  $(\mathbb{K},+,0,\cdot,1)$ . Matrizen passender Größe können wir addieren und multiplizieren:

$$+: \mathbb{K}^{m \times n} \times \mathbb{K}^{m \times n} \to \mathbb{K}^{m \times n}: (A, B) \mapsto C = A + B, \ c_{ij} = a_{ij} + b_{ij}$$

$$\cdot: \mathbb{K}^{p \times q} \times \mathbb{K}^{q \times r} \to \mathbb{K}^{p \times r} : (A, B) \mapsto C = A \cdot B, \ c_{ik} = \sum_{j=1}^{q} a_{ij} \cdot b_{jk}.$$

Die Matrixaddition bildet eine kommutative Gruppe  $(\mathbb{K}^{m\times n}, +, \mathbf{0})$  und zusammen mit der Skalarmultiplikation einen linearen Raum über  $\mathbb{K}$ .

Die Matrixmultiplikation • ist distributiv über +. Sie ist nicht kommutativ, aber assoziativ. Die passende Einheitsmatrix ist links-/rechtsneutral.

Die quadratischen Matrizen bilden den Ring ( $\mathbb{K}^{n\times n}$ , +,  $0_{n\times n}$ , •,  $1_{n\times n}$ ). Für  $n\geq 2$  ist dieser Matrixring nicht kommutativ und hat Nullteiler:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{\cdot} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{vs} \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{\cdot} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Vorgelegt seien Matrizen  $A \in \mathbb{K}^{m \times n}$  und  $B, C \in \mathbb{K}^{n \times m}$ .

$$\begin{bmatrix} 1 & 0 & * \\ -2 & 1 & * \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ * & * \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Wir nennen *B* linksinvers zu *A*, falls  $B \cdot A = 1_{n \times n}$  gilt.

Wir nennen C rechtsinvers zu A, falls  $A \cdot C = 1_{m \times m}$  gilt.

Ist B linksinvers zu A und C rechtsinvers zu A, so folgt B=C, denn

$$B \stackrel{\mathrm{rNtr}}{=} B \cdot 1_{m \times m} \stackrel{\mathrm{rInv}}{=} B \cdot (A \cdot C) \stackrel{\mathrm{Ass}}{=} (B \cdot A) \cdot C \stackrel{\mathrm{IInv}}{=} 1_{n \times n} \cdot C \stackrel{\mathrm{INtr}}{=} C.$$

Wir nennen B invers zu A, falls  $B \cdot A = 1_{n \times n}$  und  $A \cdot B = 1_{m \times m}$  gilt. Damit ist B eindeutig durch A bestimmt, und wir schreiben  $A^{-1} := B$ .

$$\begin{bmatrix} -4 & 9 \\ -3 & 7 \end{bmatrix} \cdot \begin{bmatrix} -7 & 9 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \begin{bmatrix} -7 & 9 \\ -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -4 & 9 \\ -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Die Matrix A heißt **invertierbar**, falls zu A eine inverse Matrix existiert.

#### Invertierbarkeit und Inverses in einem Monoid

Abstraktion Monoide

Wir wollen die invertierbaren Matrizen im Ring ( $\mathbb{K}^{n\times n}, +, \bullet$ ) verstehen. Als erster Schritt hilft die Klärung allgemeiner Begriffe und Techniken:

#### Definition B1B: Invertierbarkeit und Inverses

Sei  $(M,\cdot,1)$  ein Monoid, also eine Menge M mit assoziativer Verknüpfung  $\cdot: M \times M \to M$  und neutralem Element  $1 \in M$ .

Vorgelegt sei Elemente  $a, b, c \in M$ .

Wir nennen b linksinvers zu a, falls  $b \cdot a = 1$  gilt.

Wir nennen c rechtsinvers zu a, falls  $a \cdot c = 1$  gilt.

Ist b linksinvers zu a und c rechtsinvers zu a, so folgt b = c, denn

$$b \stackrel{\text{rNtr}}{=} b \cdot 1 \stackrel{\text{rInv}}{=} b \cdot (a \cdot c) \stackrel{\text{Ass}}{=} (b \cdot a) \cdot c \stackrel{\text{IInv}}{=} 1 \cdot c \stackrel{\text{INtr}}{=} c.$$

Wir nennen b **invers** zu a, falls sowohl  $b \cdot a = 1$  als auch  $a \cdot b = 1$  gilt. Damit ist b eindeutig durch a bestimmt, und wir schreiben  $a^{-1} := b$ .

Die Menge aller invertierbaren Elemente in  $(M,\cdot,1)$  bezeichnen wir mit

$$M^{\times} = (M, \cdot)^{\times} = (M, \cdot, 1)^{\times} := \{ a \in M \mid \exists b \in M : a \cdot b = b \cdot a = 1 \}.$$

#### Matrixkalkül: Inverse

Eines der Ziele in diesem Semester ist es, Invertierbarkeit zu verstehen. Wann ist eine Matrix invertierbar? Gibt es hierzu hilfreiche Kriterien? Wenn A invertierbar ist, wie berechnen wir die inverse Matrix  $A^{-1}$ ? Wie gelingt das möglichst effizient? Gibt es spezielle Werkzeuge?

**Aufgabe:** Sind die beiden folgenden Matrizen über  $\mathbb{Q}$  invertierbar? Was würden Sie vermuten? Können Sie es beweisen?

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \end{bmatrix}$$

**Lösung:** Nein, weder A noch B ist invertierbar, wie oben gesehen: Die Matrix A hat mehrere Linksinverse und daher kein Rechtsinverses. Die Matrix B hat mehrere Rechtsinverse und daher kein Linksinverses.

Über jedem vernünftigen Ring (etwa einem Körper, CRing B1k oder DRing B2D) ist jede invertierbare Matrix auch quadratisch: Invertierbarkeit ist bestenfalls für quadratische Matrizen möglich. Das ist keineswegs offensichtlich und ein fundamental wichtiger Satz.

# Die invertierbaren Elemente bilden eine Gruppe.

B128 Abstraktion Gruppen

**Beispiele:** Im Halbring  $\mathbb{N}$  gilt  $(\mathbb{N},+,0)^{\times}=\{0\}$  und  $(\mathbb{N},\cdot,1)^{\times}=\{1\}$ . Im Ring  $\mathbb{Z}$  hingegen gilt  $(\mathbb{Z},+,0)^{\times}=\mathbb{Z}$  und  $(\mathbb{Z},\cdot,1)^{\times}=\{-1,1\}$ . Im Körper  $\mathbb{Q}$  gilt  $(\mathbb{Q},+,0)^{\times}=\mathbb{Q}$  und  $(\mathbb{Q},\cdot,1)^{\times}=\mathbb{Q}^{*}=\mathbb{Q}\setminus\{0\}$ . Im Ring  $\mathbb{Z}_n$  gilt  $\mathbb{Z}_n^{\times}=(\mathbb{Z}_n,\cdot,1)^{\times}=\{a\in\mathbb{Z}_n\mid \mathrm{ggT}(a,n)=1\}$ .

Satz B1c: Die invertierbaren Elemente bilden eine Gruppe.

Sei  $(M,\cdot,1)$  ein Monoid. Dann ist  $(M^{\times},\cdot,1,^{-1})$  ist eine Untergruppe.

**Beweis:** Zunächst gilt  $1 \cdot 1 = 1$ , also  $1 \in M^{\times}$  mit  $1^{-1} = 1$ . Für  $a \in M^{\times}$  gilt  $a \cdot a^{-1} = a^{-1} \cdot a = 1$ , also  $a^{-1} \in M^{\times}$  mit  $(a^{-1})^{-1} = a$ . Für je zwei Elemente  $a, b \in M^{\times}$  gilt  $a \cdot b \in M^{\times}$ , denn wir haben:

$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) \stackrel{\text{Ass}}{=} (a \cdot (b \cdot b^{-1})) \cdot a^{-1} \stackrel{\text{Inv}}{=} (a \cdot 1) \cdot a^{-1} \stackrel{\text{Ntr}}{=} a \cdot a^{-1} \stackrel{\text{Inv}}{=} 1$$

$$(b^{-1} \cdot a^{-1}) \cdot (a \cdot b) \stackrel{\text{Ass}}{=} (b^{-1} \cdot (a^{-1} \cdot a)) \cdot b \stackrel{\text{Inv}}{=} (b^{-1} \cdot 1) \cdot b \stackrel{\text{Ntr}}{=} b^{-1} \cdot b \stackrel{\text{Inv}}{=} 1$$

Also ist  $a \cdot b$  invertierbar mit dem Inversen  $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$ .

Das heißt,  $M^{\times}$  ist abgeschlossen unter Multiplikation und Inversion. Wir können diese auf  $M^{\times}$  einschränken und erben Assoziativität.  $\overline{\text{QED}}$ 

Wir wollen den kleinsten Matrixring ( $\mathbb{K}^{2\times 2}, +, \bullet$ ) genau untersuchen. Matrixaddition und -multiplikation sind hier besonders übersichtlich:

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} + \begin{bmatrix} a' & c' \\ b' & d' \end{bmatrix} = \begin{bmatrix} a+a' & c+c' \\ b+b' & d+d' \end{bmatrix}$$
$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot \begin{bmatrix} a' & c' \\ b' & d' \end{bmatrix} = \begin{bmatrix} aa'+cb' & ac'+cd' \\ ba'+db' & bc'+dd' \end{bmatrix}$$

Wenn Sie es konkret mögen, rechnen Sie die Ringaxiome erneut nach. Vergleichen Sie dies mit der oben ausgeführten allgemeinen Rechnung. Welche ist kürzer? eleganter? lehrreicher? Das ist eine gute Übung!

Wir sparen Klammern durch die übliche Konvention Punkt vor Strich. Wo möglich sparen wir auch Produktzeichen und schreiben  $ab=a \cdot b$ . Später schreiben wir + und  $\cdot$  auch für Matrizen, das ist bequemer.

Es ist nützlich, zunächst den kleinsten interessanten Fall zu verstehen! Der Gauß-Algorithmus beruht im Wesentlichen auf  $2 \times 2$ -Matrizen, deren Operation wir geschickt auf den allgemeinen Fall übertragen.

## Matrixkalkül: Der Ring der $2 \times 2$ -Matrizen

**Beispiel:** Wir wollen folgendes Gleichungssystem über  $\mathbb{Z}$  lösen:

$$\begin{array}{c} -4x_1 + 9x_2 = 3 \\ -3x_1 + 7x_2 = 2 \end{array} \iff Ax = b \text{ mit } A = \begin{bmatrix} -4 & 9 \\ -3 & 7 \end{bmatrix}, \ x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Hier gilt  $\det A = -1 \in \mathbb{Z}^{\times}$ , also ist A in  $\mathbb{Z}^{2 \times 2}$  invertierbar vermöge

$$A^{-1} = (-1)^{-1} \begin{bmatrix} 7 & -9 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} -7 & 9 \\ -3 & 4 \end{bmatrix}.$$

Probe: Multiplizieren Sie  $A \cdot A^{-1} = 1_{2 \times 2}$  und  $A^{-1} \cdot A = 1_{2 \times 2}$  direkt aus! Somit hat Ax = b für jede rechte Seite b genau eine Lösung:

$$Ax = b$$
  $\implies$   $A^{-1}b = A^{-1}(Ax) = (A^{-1}A)x = 1x = x$   
 $x = A^{-1}b$   $\implies$   $Ax = A(A^{-1}b) = (AA^{-1})b = 1b = b$ 

In unserem konkreten Beispiel finden wir so die eindeutige Lösung

$$x = A^{-1}b = \begin{bmatrix} -7 & 9 \\ -3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}.$$

Probe: Rechnen Sie Ax = b durch Einsetzen direkt nach! Alternative: Lösen Sie Ax = b mit dem Gauß-Verfahren über  $\mathbb{Q}$ .

Sei  $(\mathbb{K}, +, \cdot)$  ein kommutativer Ring. Wir beobachten folgendes Beispiel:

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \cdot \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} = (ad - bc) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} \cdot \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Ist also ad-bc in  $\mathbb K$  invertierbar, so auch unsere Matrix in  $\mathbb K^{2\times 2}$  vermöge

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1} = (ad - bc)^{-1} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}.$$

Für  $2 \times 2$ -Matrizen definieren wir daher die **Determinante** durch

$$\det : \mathbb{K}^{2 \times 2} \to \mathbb{K} : \begin{bmatrix} a & c \\ b & d \end{bmatrix} \mapsto \det \begin{bmatrix} a & c \\ b & d \end{bmatrix} = ad - bc.$$

Dies ist ein Polynom in den Matrixkoeffizienten und leicht zu berechnen. Wir entwickeln später eine ähnliche Formel für quadratische Matrizen beliebiger Größe. Das wird sich als sehr nützliches Werkzeug erweisen. Die Determinante bietet uns ein einfaches Kriterium um zu bestimmen, ob unsere Matrix invertierbar ist oder nicht, daher der gewichtige Name.

# Matrixkalkül: Der Ring der $2 \times 2$ –Matrizen

B132

### Definition B1D: allgemeine lineare Gruppe

Sei  $(\mathbb{K}, +, 0, \cdot, 1)$  ein Ring und  $(\mathbb{K}^{n \times n}, +, 0_{n \times n}, \cdot, 1_{n \times n})$  der Matrixring. Die invertierbaren Elemente bilden die **allgemeine lineare Gruppe** 

$$GL_n(\mathbb{K}) := (\mathbb{K}^{n \times n}, \bullet, 1_{n \times n})^{\times}$$
$$= \{ A \in \mathbb{K}^{n \times n} \mid \exists B \in \mathbb{K}^{n \times n} : A \bullet B = B \bullet A = 1_{n \times n} \}.$$

#### Satz B1E: Inversion von $2 \times 2$ -Matrizen

Sei  $(\mathbb{K},+,0,\cdot,1)$  ein kommutativer Ring. Dann ist die Determinante  $\det: \mathbb{K}^{2\times 2} \to \mathbb{K}$  multiplikativ, das heißt, sie erfüllt  $\det(1_{2\times 2}) = 1$  und

$$\det(A \cdot B) = \det(A) \cdot \det(B).$$

Genau dann ist A in  $\mathbb{K}^{2\times 2}$  invertierbar, wenn  $\det(A)$  in  $\mathbb{K}$  invertierbar ist. In diesem Falle gelingt die Inversion mit der einfachen rationalen Formel

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1} = (ad - bc)^{-1} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}.$$

Beispiel B1F: die komplexen Zahlen  $\mathbb C$  als Matrizen über  $\mathbb R$ 

Im Matrixring  $(\mathbb{R}^{2\times 2}, +, 0_{2\times 2}, \cdot, 1_{2\times 2})$  betrachten wir die Teilmenge

$$C := \left\{ z = \left[ \begin{smallmatrix} x & -y \\ y & x \end{smallmatrix} \right] \mid x, y \in \mathbb{R} \right\}.$$

Sie bildet einen Ring, denn sie enthält  $0_{2\times 2}$  und  $1_{2\times 2}$  und ist zudem abgeschlossen unter Matrixaddition, Negation und Multiplikation:

$$\left[ \begin{smallmatrix} x & -y \\ y & x \end{smallmatrix} \right] \cdot \left[ \begin{smallmatrix} u & -v \\ v & u \end{smallmatrix} \right] = \left[ \begin{smallmatrix} xu - yv & -(yu + xv) \\ yu + xv & xu - yv \end{smallmatrix} \right]$$

Jedes Element  $z \neq 0$  in  $(C, \cdot)$  ist invertierbar, denn  $\det(z) = x^2 + y^2 > 0$ :

$$\begin{bmatrix} x & -y \\ y & x \end{bmatrix}^{-1} = \frac{1}{x^2 + y^2} \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$$

Somit ist  $(C, +, \cdot)$  ein Divisionsring. Er ist zudem sogar kommutativ:

$$\left[ \begin{smallmatrix} u & -v \\ v & u \end{smallmatrix} \right] \cdot \left[ \begin{smallmatrix} x & -y \\ y & x \end{smallmatrix} \right] = \left[ \begin{smallmatrix} ux-vy & -(uy+vx) \\ uy+vx & ux-vy \end{smallmatrix} \right]$$

Somit ist  $(C, +, \cdot)$  ein Körper. Er entspricht den komplexen Zahlen A3B:

$$(\mathbb{C}, +, \cdot) \cong (C, +, \cdot) : x + iy \rightleftharpoons \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$$

#### Matrixkalkül: Quaternionen als $2 \times 2$ -Matrizen

B135 Teilring Isomorphie

Beispiel B1G: die Quaternionen  $\mathbb H$  als Matrizen über  $\mathbb C$ 

Im Matrixring  $(\mathbb{C}^{2\times 2}, +, 0_{2\times 2}, \cdot, 1_{2\times 2})$  betrachten wir die Teilmenge

$$H:=\big\{\,q=\left[\begin{smallmatrix} z&-w\\\overline{w}&\overline{z}\end{smallmatrix}\right]\,\big|\,z,w\in\mathbb{C}\,\big\}.$$

Sie bildet einen Ring, denn sie enthält  $0_{2\times 2}$  und  $1_{2\times 2}$  und ist zudem abgeschlossen unter Matrixaddition, Negation und Multiplikation:

$$\begin{bmatrix} z_1 & -w_1 \\ \overline{w_1} & \overline{z_1} \end{bmatrix} \cdot \begin{bmatrix} z_2 & -w_2 \\ \overline{w_2} & \overline{z_2} \end{bmatrix} = \begin{bmatrix} z_1 z_2 - w_1 \overline{w_2} & -z_1 w_2 - w_1 \overline{z_2} \\ \overline{w_1} z_2 + \overline{z_1} w_2 & -\overline{w_1} w_2 + \overline{z_1} \overline{z_2} \end{bmatrix}$$

Jedes Element  $q \neq 0$  in  $(H, \cdot)$  ist invertierbar,  $\det(q) = |z|^2 + |w|^2 > 0$ :

$$\begin{bmatrix} \frac{z}{w} & -w \\ \overline{z} \end{bmatrix}^{-1} = \frac{1}{z\overline{z} + w\overline{w}} \begin{bmatrix} \overline{z} & w \\ -\overline{w} & z \end{bmatrix}$$

Somit ist  $(H, +, \cdot)$  ein Divisionsring. Er ist jedoch nicht kommutativ:

$$E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ I = \begin{bmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{bmatrix}, \ J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ K = \begin{bmatrix} 0 & -\mathbf{i} \\ -\mathbf{i} & 0 \end{bmatrix} \ \Rightarrow \ \begin{bmatrix} \cdot & I & J & K \\ I & -E & K & -J \\ J & -K & -E & I \\ K & J & -I & -E \end{bmatrix}$$

Dieser Divisionsring entspricht Hamiltons Quaternionen A3D gemäß

$$(\mathbb{H}, +, \cdot) \cong (H, +, \cdot) : \alpha + \beta \mathbf{i} + \gamma \mathbf{j} + \delta \mathbf{k} \bowtie \alpha E + \beta I + \gamma J + \delta K.$$

Wir betrachten hier nicht die gesamte Menge  $\mathbb{R}^{2\times 2}$  aller reellen  $2\times 2$ -Matrizen, sondern nur eine spezielle Teilmenge  $C\subset\mathbb{R}^{2\times 2}$ .

Diese ist abgeschlossen unter Addition, Negation und Multiplikation: Für je zwei Matrizen  $z,w\in C$  gilt  $z+w\in C, -w\in C$  und  $z\cdot w\in C.$  Zudem gilt  $0_{2\times 2}\in C$  und  $1_{2\times 2}\in C.$  Wir nennen dies einen **Teilring**.

 $\bigcirc$  Allein daraus folgt bereits, dass  $(C, +, 0_{2\times 2}, \cdot, 1_{2\times 2})$  ein Ring ist.

Übung: Wiederholen Sie die acht Ringaxiome und prüfen Sie jedes einzelne hier nach. Sie werden sehen, dass es *trivialerweise* erfüllt ist.

| Struktur $(C, +, \cdot)$ | (C,+) |     |     |     | $(C,+,\cdot)$ |    | $(C,\cdot)$ |     |     |     |
|--------------------------|-------|-----|-----|-----|---------------|----|-------------|-----|-----|-----|
| Eigenschaft              | Ass   | Ntr | Inv | Com | DL            | DR | Ass         | Ntr | In* | Com |
| erben als Teilring       | ✓     | ✓   | ✓   | ✓   | ✓             | ✓  | ✓           | ✓   | _   | _   |
| extra nachrechnen        |       |     |     |     |               |    |             |     | ✓   | 1   |

Trivial bedeutet, es folgt ohne weiteres Zutun sofort aus der Definition. Erst nachdem Sie sich selbst diese notwendige und lehrreiche Mühe einmal gemacht haben, sind Sie berechtigt auszurufen: "Das ist trivial!"

#### Matrixkalkül: Quaternionen als $2 \times 2$ -Matrizen

B136 Ring und Teilring

Die Teilmenge  $H \subset \mathbb{C}^{2 \times 2}$  ist ein Teilring: Es gilt  $0_{2 \times 2} \in H$  und  $1_{2 \times 2} \in H$ . Für je zwei Matrizen  $z, w \in H$  gilt  $z + w \in H$ ,  $-w \in H$  und  $z \cdot w \in H$ .

 $\bigcirc$  Allein daraus folgt bereits, dass  $(H, +, 0_{2\times 2}, \cdot, 1_{2\times 2})$  ein Ring ist.

| Struktur $(H,+,\cdot)$ | (H,+) |     |     |     | $(H,+,\cdot)$ |    | $(H,\cdot)$ |     |     |     |
|------------------------|-------|-----|-----|-----|---------------|----|-------------|-----|-----|-----|
| Eigenschaft            | Ass   | Ntr | Inv | Com | DL            | DR | Ass         | Ntr | In* | Com |
| erben als Teilring     | ✓     | ✓   | ✓   | ✓   | ✓             | ✓  | 1           | ✓   | _   | _   |
| extra nachrechnen      |       |     |     |     |               |    |             |     | ✓   | -   |

Unsere sorgsame Vorbereitung zum Matrixkalkül zahlt sich hier aus! Die Ringaxiome haben wir für  $(\mathbb{K}^{n\times n},+,\cdot)$  allgemein nachgewiesen. Das können wir immer wieder wunderbar nutzen, so auch hier.

 $\odot$  Ohne weitere Mühe sehen wir sofort, dass H ein Schiefkörper ist. Das ist eine explizite doch sparsame Konstruktion der Quaternionen. Die naive, direkte Konstruktion A3D ist möglich, aber eher mühsamer. Ich finde den Weg über Matrizen recht elegant und besonders effizient:

Der allgemeine Matrixkalkül beschert uns alle relevanten Eigenschaften!

In Kapitel A haben wir den Körper  $\mathbb{C}=\mathbb{R}[i]$  der komplexen Zahlen und den Schiefkörper  $\mathbb{H}=\mathbb{R}[i,j,k]$  der Quaternionen definiert, aber nicht sofort die Körperaxiome nachgerechnet. Ohne weitere Hilfsmittel ist die Rechnung leider länglich. Dies gelingt in B1F und B1G nun mühelos!

Warum ist das auf einmal so leicht? Weil wir für Matrizen alles Nötige allgemein vorbereitet und dazu die Ringaxiome nachgerechnet haben. Zudem sind Matrizen sehr handlich, effizient und übersichtlich und bieten uns eine erfreuliche Vielfalt an Struktur und Rechentechnik.

Abstraktion strukturiert und vereinfacht: Eine allgemeine Tatsache ist oft leichter zu verstehen und zu erklären als ihre zahlreichen Spezialfälle.

Dieser Trick für  $\mathbb C$  und  $\mathbb H$  ist tatsächlich eine allgemeine Methode: Die **Darstellungstheorie** untersucht Ringe, genauer: Algebren über einem Körper  $\mathbb K$ , durch geeignete Darstellungen als Matrizen über  $\mathbb K$ . Das ist sehr flexibel und überaus nützlich, zum Beispiel in der Physik. Wir können zunächst *abstrakt* scheinende Objekte (Gruppen, Algebren) ganz *konkret* durch Matrizen darstellen und so effizient untersuchen.

## Matrixkalkül: Darstellung durch Matrizen

B139 Ergänzung

**Lösung:** (1) Die Teilmenge  $E \subset \mathbb{K}^{2 \times 2}$  ist abgeschlossen unter Addition und Multiplikation: Für alle  $z, w \in E$  gilt  $z + w \in E$  und  $z \cdot w \in E$ , denn

$$\begin{bmatrix} x & \alpha y \\ y & x \end{bmatrix} + \begin{bmatrix} u & \alpha v \\ v & u \end{bmatrix} = \begin{bmatrix} x + u & \alpha(y + v) \\ y + v & x + u \end{bmatrix},$$
$$\begin{bmatrix} x & \alpha y \\ y & x \end{bmatrix} \cdot \begin{bmatrix} u & \alpha v \\ v & u \end{bmatrix} = \begin{bmatrix} xu + \alpha yv & \alpha(yu + xv) \\ yu + xv & xu + \alpha yv \end{bmatrix}.$$

Ebenso gilt  $-E \subseteq E$  sowie  $0_{2\times 2} \in E$  und  $1_{2\times 2} \in E$ .

- (2) Somit ist E ein Ring, genauer gesagt ein Teilring von  $\mathbb{K}^{2\times 2}$ : Alle Ringaxiome vererben sich vom Matrixring  $\mathbb{K}^{2\times 2}$  auf E.
- (3) Invertierbarkeit von z in E ist äquivalent zur Invertierbarkeit von  $\det(z)=x^2-\alpha y^2$  in  $\mathbb{K}$ , siehe Satz B1E. Dies gilt für alle  $z\neq 0$  genau dann, wenn die Konstante  $\alpha\in\mathbb{K}$  keine Quadratwurzel in  $\mathbb{K}$  hat. In diesem Falle ist E ein Körper, geschrieben  $E=\mathbb{K}[\sqrt{\alpha}]$ .

Für  $\mathbb{K} = \mathbb{Q}$  und  $\alpha = -1, 2, 3$  erhalten wir unsere obigen drei Körper. Für  $\mathbb{K} = \mathbb{R}$  und  $\alpha = -1$  erhalten wir die komplexen Zahlen  $\mathbb{C} = \mathbb{R}[i]$ .

Wir wollen diese schöne Technik weiter illustrieren.

**Aufgabe:** Stellen Sie die Körper  $\mathbb{Q}[i]$  aus A1H und  $\mathbb{Q}[\sqrt{2}]$  aus A1G sowie  $\mathbb{Q}[\sqrt{3}]$  durch  $2\times 2$ –Matrizen über  $\mathbb{Q}$  dar, nach obigem Vorbild.

Allgemein: Sei  $\mathbb K$  ein Körper. Untersuchen Sie Matrizen der Form

$$E = E_{\alpha} = \left\{ z = \begin{bmatrix} x & \alpha y \\ y & x \end{bmatrix} \mid x, y \in \mathbb{K} \right\}$$

wobei  $\alpha \in \mathbb{K}$  eine Konstante ist und  $x, y \in \mathbb{K}$  beliebig sind. Ist die Teilmenge  $E_{\alpha} \subset \mathbb{K}^{2 \times 2}$  ein Teilring im Matrixring  $\mathbb{K}^{2 \times 2}$ ?

- (1) Welche Eigenschaften müssen Sie für  $E_{\alpha} \subset \mathbb{K}^{2\times 2}$  hier nachprüfen?
- (2) Welche Ringaxiome bekommen Sie für  $E_{\alpha}$  dadurch geschenkt?
- (3) Für welche Konstanten  $\alpha \in \mathbb{K}$  ist  $E_{\alpha}$  ein Körper?
- $\mathbb{Q}[i]$  Damit beweisen Sie die Körperaxiome für  $\mathbb{Q}[i]$  und  $\mathbb{Q}[\sqrt{2}]$  und  $\mathbb{Q}[\sqrt{3}]$ , ganz nebenbei ohne weitere Mühe. Zudem erhalten Sie eine Familie  $E_{\alpha}$  interessanter Beispiele über  $\mathbb{K}$ , eines für jede Konstante  $\alpha \in \mathbb{K}$ .

Matrixkalkül: Darstellung durch Matrizen

B140 Ergänzung

Übung: Wir betrachten die Menge der oberen Dreiecksmatrizen

$$U = \begin{bmatrix} \mathbb{R} & \mathbb{R} \\ 0 & \mathbb{R} \end{bmatrix} := \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$

Ist diese abgeschlossen unter Matrixaddition und Matrixmultiplikation? In diesem Falle erhalten wir eine Addition bzw. Multiplikation auf U. Welche der Ringaxiome sind für U erfüllt? Ist U ein Körper? Beantworten Sie dieselben Fragen für folgende Beispiele:

$$\begin{bmatrix} \mathbb{R} & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \mathbb{R} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \mathbb{R} & 0 \\ 0 & \mathbb{R} \end{bmatrix}, \begin{bmatrix} \mathbb{R} & \mathbb{R} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \mathbb{R} \\ \mathbb{R} & 0 \end{bmatrix}$$

Für  $2 \times 2$ -Matrizen gibt es insgesamt  $2^4 = 16$  Beispiele dieser Art. Wenn Sie möchten, können Sie systematisch alle untersuchen.

Für  $3 \times 3$ -Matrizen mit  $2^9 = 512$  Beispielen wird das schwieriger. Sie können sich aber einige der schönsten Beispiele aussuchen.

Zu jeder Zahl  $n \in \mathbb{N}_{\geq 1}$  kennen wir den Ring  $\mathbb{Z}_n$  mit n Elementen (A2o). Die invertierbaren Elemente hierin sind  $\mathbb{Z}_n^{\times} = \{ a \in \mathbb{Z}_n \mid \operatorname{ggT}(a,n) = 1 \}$ .

Wir interessieren uns für den schönsten Fall: Ist  $p \in \mathbb{N}_{\geq 2}$  eine Primzahl, so erhalten wir auf diese Weise den Körper  $\mathbb{F}_p = \mathbb{Z}_p$  mit p Elementen

Gibt es weitere endliche Körper? In Satz J2G werden wir zeigen: Ist K ein endlicher Körper, so gilt  $\sharp K=p^d$  mit  $p\in\mathbb{N}_{\geq 2}$  prim und  $d\in\mathbb{N}_{\geq 1}$ . Es gibt insbesondere keinen Körper mit 6 oder 10 Elementen.

Wir kennen bereits Körper mit  $2, 3, 5, 7, \ldots$  Elementen, und es wäre interessant, auch Körper mit  $4, 8, 9, \ldots$  Elementen zu konstruieren. Der Ring  $\mathbb{Z}_4$  hat vier Elemente, ist aber kein Körper. Was tun?

Das folgende Beispiel zeigt explizit einen Körper  $F_4$  mit vier Elementen. Im Prinzip genügt es dazu, die Addition und die Multiplikation als Tabelle auszuführen, doch dann ist der Nachweis der Körperaxiome leider recht mühselig. Es ist effizienter,  $F_4$  durch geeignete Matrizen darzustellen!

## Konstruktion eines Körpers mit vier Elementen

B143 Übung

(1) Addition und Multiplikation auf  $F_2$  bzw.  $F_4$  ergeben folgende Tabellen:

| + | 0 | I | X | Y |
|---|---|---|---|---|
| O | О | I | X | Y |
| I | I | _ | Y | X |
| X | X | Y | O | I |
| Y | Y | X | I | O |

|   | O | I | X | Y |
|---|---|---|---|---|
| O | О | O | O | O |
| I | O |   | X | Y |
| X | 0 | X | Y | I |
| Y | O | Y | I | X |

Zum Beispiel gilt  $X \cdot Y = \left[ \begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix} \right] \cdot \left[ \begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix} \right] = \left[ \begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] = I.$  Rechnen Sie es nach! Somit sind  $F_2$  und  $F_4$  abgeschlossen unter Addition und Multiplikation, zudem unter Negation, und es gilt  $0_{2\times 2} = O \in F_4$  und  $1_{2\times 2} = I \in F_4$ .

(2) Die Körperaxiome folgern wir direkt aus den Tabellen oder erben sie als Teilring von  $\mathbb{F}_2^{2\times 2}$ : Wir nutzen jeweils geschickt, was leichter ist!

| Struktur $(F_4, +, \cdot)$ | $(F_4, +)$ |     |     | $(F_4,+,\cdot)$ |    | $(F_4,\cdot)$ |     |     |     |     |
|----------------------------|------------|-----|-----|-----------------|----|---------------|-----|-----|-----|-----|
| Eigenschaft                | Ass        | Ntr | Inv | Com             | DL | DR            | Ass | Ntr | In* | Com |
| direkt aus Tabelle         |            | ✓   | ✓   | ✓               |    |               |     | ✓   | ✓   | ✓   |
| erben als Teilring         | 1          | 1   | ✓   | ✓               | 1  | 1             | 1   | 1   | _   | -   |

### Beispiel B1H: ein Körper mit vier Elementen

Im Matrixring  $(\mathbb{F}_2^{2\times 2},+,0_{2\times 2},\cdot,1_{2\times 2})$  betrachten wir die Teilmengen

$$F_2 := \left\{ O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \quad F_4 := F_2 \cup \left\{ X = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \ Y = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

Diese bilden jeweils Teilringe  $F_2 \subset F_4 \subset \mathbb{F}_2^{2 \times 2}$  und sind sogar Körper.

Aufgabe: (0) Wie können Sie dies möglichst effizient beweisen?

- (1) Schreiben Sie Addition und Multiplikation als Tabellen aus.
- (2) Weisen Sie dann für  $(F_4, +, \cdot)$  alle zehn Körperaxiome nach.
- (3) Wie berechnen Sie die Inversion mit Hilfe der Determinante?

**Lösung:** (0) Die Körperaxiome zu *nutzen* ist hilfreich und effizient, sie *nachzuweisen* ist meist aufwändig, doch eine gute Investition.

Wir können uns Arbeit ersparen, indem wir den Matrixring nutzen, hier  $\mathbb{F}_2^{2\times 2}$ , denn für diesen Ring haben wir alle erforderlichen Axiome bereits allgemein nachgewiesen (Satz B1A). Dazu folgen wir der raffinierten Argumentation der vorigen Beispiele B1F und B1G.

# Konstruktion eines Körpers mit vier Elementen

B144 Übung

(3) Multiplikative Inverse können wir direkt aus der Tabelle ablesen oder mit der Determinante und der Inversionsformel B1E berechnen. Speziell über  $\mathbb{F}_2$  ist  $A = \left[ \begin{smallmatrix} a & c \\ b & d \end{smallmatrix} \right] \in \mathbb{F}_2^{2 \times 2}$  genau dann invertierbar, wenn  $\det A = ac - bd = 1$  gilt, und das Inverse ist dann  $\left[ \begin{smallmatrix} a & c \\ b & d \end{smallmatrix} \right]^{-1} = \left[ \begin{smallmatrix} d & c \\ b & a \end{smallmatrix} \right].$  Damit finden wir  $X^{-1} = \left[ \begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix} \right]^{-1} = \left[ \begin{smallmatrix} 1 & 1 \\ 1 & 0 \end{smallmatrix} \right] = Y$  und ebenso  $Y^{-1} = X$ . Genau so lesen wir es auch aus der Multiplikationstabelle ab. Insbesondere ist  $F_4 \setminus \{O\}$  abgeschlossen unter Inversion.

- Unsere sorgsame Vorbereitung zum Matrixkalkül zahlt sich hier aus! Die Matrizenrechnung ist ein Universalwerkzeug und ungemein nützlich für konkrete Rechnungen, insbesondere für lineare Gleichungssysteme. Dazu führen wir im Folgenden den Gauß-Algorithmus detailliert aus.
- $\bigcirc$  Die vorigen Beispiele illustrieren sehr eindrücklich und elegant, dass Matrixringe ebenso praktisch wie theoretisch interessant sind. So können wir die Teilringe  $C \subset \mathbb{R}^{2\times 2}$  und  $H \subset \mathbb{C}^{2\times 2}$  und  $F_4 \subset \mathbb{F}_2^{2\times 2}$  effizient konstruieren und anschließend als Schief/Körper nachweisen.

#### Definition B11: die Spur einer quadratischen Matrix

Die **Spur**, engl. *trace*, einer quadratischen Matrix  $A \in \mathbb{K}^{n \times n}$  ist die Summe ihrer Diagonaleinträge. Als Formel ausgeschrieben:

$${\rm tr} = {\rm tr}_n : \mathbb{K}^{n \times n} \to \mathbb{K} : A \mapsto \sum_{k=1}^n a_{kk} = a_{11} + a_{22} + \dots + a_{nn}$$

**Aufgabe:** Gilt tr(AB) = tr(BA) für alle  $A \in \mathbb{K}^{p \times q}$  und  $B \in \mathbb{K}^{q \times p}$ ?

**Lösung:** Wir haben die Produkte  $AB \in \mathbb{K}^{p \times p}$  und  $BA \in \mathbb{K}^{q \times q}$ . Wir setzen die Definition der Spur ein und vergleichen die Summen:

$$\operatorname{tr}_{p}(AB) = \sum_{i=1}^{p} (AB)_{ii} = \sum_{i=1}^{p} \sum_{j=1}^{q} a_{ij} b_{ji} = \sum_{(i,j)} a_{ij} b_{ji}$$
  
$$\operatorname{tr}_{q}(BA) = \sum_{j=1}^{q} (AB)_{jj} = \sum_{j=1}^{q} \sum_{i=1}^{p} b_{ji} a_{ij} = \sum_{(i,j)} b_{ji} a_{ij}$$

Summiert wird hierbei jeweils über alle Indexpaare  $(i, j) \in I \times J$ . Ist der Ring  $\mathbb K$  kommutativ, so sind die Summanden jeweils gleich.

Daraus erhalten wir unmittelbar den folgenden nützlichen Satz, in dem wir erste Eigenschaften der Spur zusammenstellen.

#### Ist jede invertierbare Matrix quadratisch?

Sie kennen bereits rechteckige Matrizen, die einseitig invertierbar sind. All unsere Beispiele invertierbarer Matrizen waren bislang quadratisch. Muss das so sein? Nein, nicht immer (siehe J10), aber doch recht oft:

Satz B1 $\kappa$ : invertierbare Matrizen über  $\mathbb Z$  sind quadratisch.

Sei  $\mathbb{K}=\mathbb{Z}$  oder allgemein  $\mathbb{K}\supseteq\mathbb{Z}$  ein kommutativer Ring, der  $\mathbb{Z}$  enthält. Dann ist über dem Ring  $\mathbb{K}$  jede invertierbare Matrix quadratisch.

Ausführlich: Gegeben seien zwei Matrizen  $A \in \mathbb{K}^{p \times q}$  und  $B \in \mathbb{K}^{q \times p}$ . Gilt sowohl  $AB = 1_{p \times p}$  als auch  $BA = 1_{q \times q}$ , so folgt daraus p = q.

 $\odot$  Dies gilt demnach insbesondere für die Körper  $\mathbb{K} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ .

Aufgabe: Beweisen Sie dies! Genialer Trick: Nutzen Sie die Spur!

**Lösung:** Mit der Spur  $\operatorname{tr}: \mathbb{K}^{n \times n} \to \mathbb{K}$  und Satz B1J gelingt dies leicht:

Aus  $AB = 1_{p \times p}$  berechnen wir die Spur  $\operatorname{tr}(AB) = p \in \mathbb{Z} \subseteq \mathbb{K}$ .

Aus  $BA = 1_{q \times q}$  berechnen wir die Spur  $\operatorname{tr}(BA) = q \in \mathbb{Z} \subseteq \mathbb{K}$ .

Da  $\mathbb{K}$  kommutativ ist, gilt tr(AB) = tr(BA), also p = q.

**QED** 

#### Satz B1<sub>J</sub>: erste Eigenschaften der Spur

(1) Die Spur erfüllt  $tr(1_{n \times n}) = n$  und ist invariant unter Transposition:

$$\operatorname{tr}(A) = \operatorname{tr}(A^{\mathsf{T}})$$

(2) Die Spur ist eine (beidseitig) lineare Abbildung über  $\mathbb{K}$ : Für alle Matrizen  $A, B \in \mathbb{K}^{n \times n}$  und alle Skalare  $\lambda \in \mathbb{K}$  gilt

$$\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B), \qquad \operatorname{tr}(\lambda A) = \lambda \operatorname{tr}(A),$$
  
 $\operatorname{tr}(A\lambda) = \operatorname{tr}(A)\lambda.$ 

(3) Ist der Ring  $\mathbb K$  zudem kommutativ, so ist die Spur invariant unter zyklischer Vertauschung: Für alle Matrizen  $A \in \mathbb K^{p \times q}$  und  $B \in \mathbb K^{q \times p}$  gilt

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

(4) Speziell für alle  $A, B \in \mathbb{K}^{n \times n}$  mit B invertierbar folgt daraus

$$\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A).$$

## Ist jede invertierbare Matrix quadratisch?

B148 Übung

Satz B1 $\kappa$  ist beruhigend und unser Beweis sehr elegant. Unsere Voraussetzung  $\mathbb{Z} \subseteq \mathbb{K}$  ist leider technisch notwendig, nicht für die Gültigkeit des Satzes, sondern für unseren Beweis:

**Beispiel:** Wenn wir über dem kommutativen Ring  $\mathbb{K} = \mathbb{Z}_n$  rechnen, so erhalten wir hier nur  $p \operatorname{rem} n = q \operatorname{rem} n$  in  $\mathbb{Z}_n$ . Daraus folgt p = q immerhin für alle kleinen Dimensionen p, q < n, aber nicht allgemein.

 $\stackrel{\bigodot}{\bigcirc}$  Wir werden die Aussage im nächsten Abschnitt für jeden Körper  $\mathbb{K}$  und ganz allgemein für jeden Divisionsring beweisen, siehe Satz B2D. Somit gilt sie insbesondere für  $\mathbb{Z}_p = \mathbb{F}_p$  und jede Primzahl  $p \in \mathbb{N}_{\geq 2}$ .

Es gibt auch exotische Beispiele von Matrizen, die nicht quadratisch und dennoch invertierbar sind, siehe Beispiel J10. Die hier diskutierte Eigenschaft ist also keineswegs "trivial" oder "selbstverständlich".

Sei  $\mathbb{K}$  ein Körper, wie  $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ ; es genügt ein Divisionsring, wie  $\mathbb{H}$ . Zu lösen sei ein **lineares Gleichungssystem** über  $\mathbb{K}$ , kurz LGS:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Dies bündeln wir prägnant und effizient zu einer einzigen Gleichung

$$Ax = b$$

mit der Koeffizientenmatrix  $A \in \mathbb{K}^{m \times n}$  und der rechten Seite  $b \in \mathbb{K}^m$ . Gesucht ist  $x \in \mathbb{K}^n$ . Wir schreiben kurz  $\mathbb{K}^n$  für  $\mathbb{K}^{n \times 1}$  (Spaltenvektoren).

Bequeme Schreibweise strukturiert Daten und vereinfacht Lösung. Ein sehr effizientes Lösungsverfahren ist der Gauß-Algorithmus.

Wichtiger Spezialfall: Ist die Matrix A invertierbar, so wird unser LGS Ax = b gelöst durch  $x = A^{-1}b$ , und dies ist die einzige Lösung.

### Lineare Gleichungssysteme lösen: Dreiecksform

Ebenso leicht zu lösen ist Ax = b in **oberer Dreiecksform**:

$$\begin{bmatrix} \blacksquare & * & * & * & * & * \\ 0 & \blacksquare & * & * & * & * \\ 0 & 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

Wir setzen voraus, dass  $a_{ii} \neq 0$  für i = 1, 2, ..., n und  $a_{ij} = 0$  für i > j. Notation: \* = beliebig;  $\blacksquare =$  beliebig, aber ungleich 0, also invertierbar.

Wir erhalten die Lösung  $x_n, \ldots, x_2, x_1$  durch **Rückwärtseinsetzen**:

$$a_{ii}x_i + \sum_{k=i+1}^n a_{ik}x_k = b_i \iff x_i = a_{ii}^{-1} (b_i - \sum_{k=i+1}^n a_{ik}x_k)$$

Dabei nutzen wir für  $x_i$  die bereits berechneten Werte  $x_{i+1},\ldots,x_n$ . Unsere Gleichungen sind zwar gekoppelt, aber zum Glück gestuft. In diesem günstigen Falle existiert genau eine Lösung.

# Lineare Gleichungssysteme lösen: Diagonalform

Besonders leicht zu lösen ist Ax = b in **Diagonalform**:

$$\begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 0 \\ 0 & 0 & a_{33} & 0 & 0 \\ 0 & 0 & 0 & a_{44} & 0 \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \end{bmatrix}$$

Hier sind alle n Gleichungen **entkoppelt**, wir können sie separat lösen. Wir setzen dazu  $a_{ii} \neq 0$  voraus, somit ist  $a_{ii}$  invertierbar in  $\mathbb{K}$ :

$$a_{ii}x_i = b_i \iff x_i = a_{ii}^{-1}b_i$$

Hier nutzen wir, dass  $\mathbb{K}$  ein Divisionsring ist, also  $\mathbb{K}^{\times} = \mathbb{K} \setminus \{0\}$ . Über dem Ring  $\mathbb{Z}$  zum Beispiel können wir 3x = 5 nicht lösen.

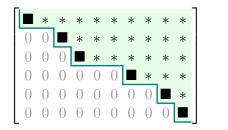
Das ist der typische Fall, die Sonderfälle sind ebenso leicht: Im Falle  $a_{ii} = b_i = 0$  kann  $x_i$  beliebig gewählt werden.

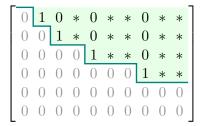
Im Falle  $a_{ii} = 0$  und  $b_i \neq 0$  gibt es keine Lösung.

# Zeilenstufenform, allgemein und reduziert

B204

Ebenso lösen wir Ax = b in **Zeilenstufenform**:





Notation: \* = beliebig;  $\blacksquare$  = beliebig, aber ungleich 0, also invertierbar.

In jeder Zeile heißt das erste Nicht-Null-Element der Leitkoeffizient (engl. *leading coefficient*) oder der Pivot (frz. 'Dreh- und Angelpunkt').

Die linke Matrix ist in **Zeilenstufenform** mit Stufen s = (1, 3, 4, 7, 9, 10), die rechte in **reduzierter Zeilenstufenform** mit Stufen s = (2, 3, 5, 8).

 $\bigcirc$  In Zeilenstufenform können wir alle Lösungen direkt ablesen! Zu jeder **freien Spalte** k können wir die Koordinate  $x_k \in \mathbb{K}$  frei wählen. Zu jeder **Pivotspalte**  $j = s_n, \ldots, s_2, s_1$  folgt daraus die Koordinate  $x_i$ .

Gegeben sei eine Matrix  $A \in \mathbb{K}^{m \times n}$  mit Koeffizienten in  $(\mathbb{K}, +, 0, \cdot, 1)$ . Im Falle einer Nullzeile  $a_i = (0, 0, \dots, 0)$  setzen wir  $s_i := \infty$ , andernfalls

$$s_i := \min \{ j \in \{1, 2, \dots, n\} \mid a_{ij} \neq 0 \}.$$

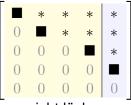
Die Matrix A hat **Zeilenstufenform** (ZSF, engl. row echelon form, REF) falls  $s_1 < s_2 < \cdots < s_r < n$ , und alle Zeilen  $i = r + 1, \dots, m$  sind Null. Wir nennen dies eine ZSF vom Rang r mit Stufen  $s = (s_1, s_2, \dots, s_r)$ .

Die Matrix A hat reduzierte Zeilenstufenform (RZSF, engl. RREF), falls zudem gilt: Jeder Pivot ist Eins, und darüber stehen nur Nullen, d.h. in jeder Pivotspalte  $j = s_i$  gilt  $a_{ij} = 1$  und  $a_{kj} = 0$  für alle  $k \neq i$ .

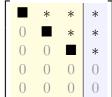
**Beispiel:** Die Diagonalmatrix diag $(d_1,\ldots,d_r,0,\ldots,0)$  mit  $d_1,\ldots,d_r\neq 0$ ist in Zeilenstufenform, und zudem reduziert, falls  $d_1 = \cdots = d_r = 1$  gilt. Die Einheitsmatrix  $1_{n \times n}$  ist in reduzierter Zeilenstufenform vom Rang n. Die Nullmatrix  $0_{m \times n}$  ist in reduzierter Zeilenstufenform vom Rang r = 0.

### Lineare Gleichungssysteme in Zeilenstufenform

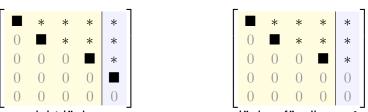
In Zeilenstufenform können wir alle Lösungen leicht ablesen:



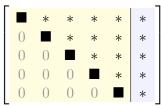
nicht lösbar für dieses b



lösbar für dieses b und zudem eindeutig



lösbar für dieses b aber nicht eindeutig



eindeutig lösbar für jedes b

## Lineare Gleichungssysteme: erweiterte Koeffizientenmatrix

Wir betrachten ein lineares Gleichungssystem Ax = b, ausgeschrieben

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

mit der Koeffizientenmatrix  $A \in \mathbb{K}^{m \times n}$  und der rechten Seite  $b \in \mathbb{K}^m$ . Die erweiterte Koeffizientenmatrix ist

$$(A,b) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{bmatrix}.$$

 $\bigcirc$  Das geht auch mit mehreren rechten Seiten  $b^{(1)}, \ldots, b^{(\ell)}$  gleichzeitig. Diese Matrix bringen wir durch Zeilenoperationen in Zeilenstufenform.

# Lineare Gleichungssysteme in Zeilenstufenform

Erläuterung

Wir werden gleich anschließend mit dem Gauß-Algorithmus erklären. wie wir die (reduzierte) Zeilenstufenform herstellen. Doch zuvor möchte ich zeigen, wie man aus der RZSF alle Lösungen leicht ablesen kann.

Wir wollen zuerst das Ziel fixieren, dann einen möglichen Weg finden. Die (reduzierte) Zeilenstufenform erweist sich als extrem hilfreich, und der Gauß-Algorithmus erreicht sie routiniert und effizient.

**Aufgabe:** Gegeben ist (A, b) in (reduzierter) Zeilenstufenform. Explizieren Sie die Lösungsmenge  $L(A, b) = \{ x \in \mathbb{R}^n \mid Ax = b \}.$ 

Lösung: Dieses LGS hat genau eine Lösung:

$$L(A,b) = \left\{ \begin{bmatrix} -1\\4\\9\\1\\0 \end{bmatrix} \right\}$$

In reduzierter Zeilenstufenform ist das Ablesen trivial. In unreduzierter Form genügt Rückwärtseinsetzen.

### Lineare Gleichungssysteme in Zeilenstufenform

Struktur des ösungsraums

**Aufgabe:** Gegeben ist (A, b) in reduzierter Zeilenstufenform. Explizieren Sie die Lösungsmenge  $L(A,b) = \{ x \in \mathbb{R}^n \mid Ax = b \}.$ 

**Lösung:** Freie Variablen sind  $s = -x_2$ ,  $t = -x_4$ . Rückwärtseinsetzen ergibt  $x_5 = 9$ ,  $x_4 = -t$ ,  $x_3 = 4 + 7t$ ,  $x_2 = -s$ ,  $x_1 = -1 - 2s + 3t$ . Also:

$$L = \left\{ \begin{bmatrix} -1 - 2s + 3t \\ -s \\ 4 + 7t \\ -t \\ 0 \end{bmatrix} \middle| s, t \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} -1 \\ 0 \\ 4 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 7 \\ -1 \\ 0 \end{bmatrix} \middle| s, t \in \mathbb{R} \right\}$$

 $\bigcirc$  Diese drei Spaltenvektoren können wir leicht aus (A, b) ablesen: Wir fügen Nullzeilen so ein, dass jeder Pivot auf der Diagonale steht; jede Null auf der Diagonalen ersetzen wir gedanklich durch -1. Voilà!

# Lineare Gleichungssysteme in Zeilenstufenform

**Aufgabe:** Gegeben ist (A, b) in (reduzierter) Zeilenstufenform. Explizieren Sie die Lösungsmenge  $L(A,b) = \{ x \in \mathbb{R}^n \mid Ax = b \}.$ 

Lösung: Dieses LGS hat keine Lösung! Also:

$$L(A,b) = \emptyset = \{ \}$$

In jeder Zeilenstufenform ist das leicht abzulesen! Der Reduktionsschritt ist in diesem speziellen Falle unnötig.

Reduktion kann aber dennoch sinnvoll sein, zum Beispiel wenn wir mehrere rechte Seiten gleichzeitig bearbeiten.

# Lineare Gleichungssysteme lösen in Zeilenstufenform

#### Satz B2B: Lösung in Zeilenstufenform

Sei  $\mathbb{K}$  ein Körper, wie  $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ ; es genügt ein Divisionsring, wie  $\mathbb{H}$ .

Gegeben seien  $A \in \mathbb{K}^{m \times n}$  und  $b \in \mathbb{K}^m$ . Wir setzen voraus, dass (A, b) in einer Zeilenstufenform vorliegt mit Stufen  $s = (s_1, s_2, \dots, s_r)$ .

Das Gleichungssystem Ax = b ist

- Das Gleichungssystem Ax=b ist 1 unlösbar genau dann, wenn  $s_r=n+1$  gilt, 2 lösbar genau dann. wenn  $s_r\leq n$  gilt, sowie
- **3** eindeutig lösbar genau dann, wenn s = (1, 2, ..., n).

Im lösbaren Fall  $s_r \leq n$  gibt es genau d = n - r freie Variablen, der Lösungsraum von Ax = b hat also die affine Dimension d.

Ausführlich: Zu jeder freien Spalte  $k \in \{1, 2, ..., n\} \setminus \{s_1, s_2, ..., s_r\}$ können wir die Koordinate  $x_k \in \mathbb{K}$  frei wählen. Zu jeder Pivotspalte  $j = s_r, \dots, s_2, s_1$  folgt die Koordinate  $x_i \in \mathbb{K}$  daraus eindeutig.

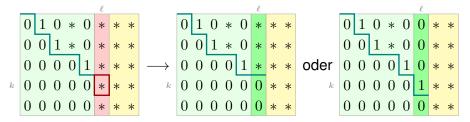
Beweis: Diese Rechnung haben wir oben bereits ausgeführt.

**QED** 

B213 Ausprobieren mit Gaël!

**Eingabe:**  $A \in \mathbb{K}^{m \times n}$  mit Stufen  $s = (s_1, \dots, s_r)$  bis Spalte  $\ell \in \{1, 2, \dots, n\}$  Voraussetzung: Alle Spalten  $< \ell$  liegen in RZSF vor mit Stufen s.

**Ausgabe:**  $A' \in \mathbb{K}^{m \times n}$  zeilenumgeformt aus A mit Stufen  $s' = (s'_1, \dots, s'_{r'})$  Zusicherung: Alle Spalten  $\leq \ell$  liegen in RZSF vor mit Stufen s'.



**Methode:** Betrachte die neue Spalte  $\ell$  und die nächste Zeile k=r+1. Gilt  $a_{i\ell}=0$  für alle  $i\geq k$ , so sind wir fertig. Andernfalls  $s\leftarrow(s_1,\ldots,s_r,\ell)$ . Tausche Zeile k und die erste Zeile  $i\geq k$  mit  $a_{i\ell}\neq 0$ . Somit gilt  $a_{k\ell}\neq 0$ . Multipliziere Zeile k mit dem Inversen  $a_{k\ell}^{-1}$ . Anschließend gilt  $a_{k\ell}=1$ .

 $\bigcirc$  Dies können wir für alle Spalten  $\ell = 1, 2, \dots, n$  durchführen.

Subtrahiere von jeder Zeile  $i \neq k$  das  $a_{i\ell}$ -Fache der Zeile k. Fertig!

# Der Gauß-Algorithmus

B215 Erläuterung

Der Gauß-Algorithmus wird auch Gauß-Verfahren genannt oder Gauß-Elimination, da schrittweise Koeffizienten gelöscht werden.

Die Methode ist sehr einfach: Sie können sie leicht implementieren. Versuchen Sie es! Das ist eine lehrreiche Fingerübung, insbesondere wenn Ihr Programm möglichst schnell und nachweislich korrekt sein soll.

Der Gauß-Algorithmus ist mit  $\leq n^3$  Operationen erstaunlich effizient. Für eine Matrix mit ein paar Tausend Zeilen und Spalten benötigt er ein paar Milliarden Operationen in  $\mathbb{K}$ . Für einen endlichen Körper wie  $\mathbb{Z}_p$  dürfen wir hier konstante Kosten annehmen; das ist der Idealfall.

Für nicht-endliche Körper wie  $\mathbb Q$  müssen wir mit Koeffizientenexplosion rechnen. Fließkommazahlen haben zwar feste Länge und sind schnell, produzieren dafür aber Rundungsfehler. Hierzu lernen Sie Numerik!

Moderne PCs schaffen knapp eine Billion Operationen in einer Sekunde, TerraFlops =  $10^{12}$  floating point operations per second. Europas derzeit schnellster Supercomputer (Stand 2020) mit rund 26 PetaFlops, also  $26 \cdot 10^{15}$  floating point operations per second, ist das System Hawk im Höchstleistungsrechenzentrum Stuttgart (HLRS).

### Gauß-Algorithmus zur reduzierten Zeilenstufenform

Satz B2c: Gauß-Algorithmus zur reduzierten Zeilenstufenform Sei  $\mathbb{K}$  ein Körper, wie  $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ ; es genügt ein Divisionsring, wie  $\mathbb{H}$ . Jede Matrix  $A \in \mathbb{K}^{m \times n}$  können wir durch elementare Zeilenoperationen in reduzierte Zeilenstufenform A' überführen. (Diese ist eindeutig: K2K)

Systematisch gelingt dies mit dem Gauß-Algorithmus, indem wir die obige Methode für  $\ell=1,2,\dots,n$  anwenden. Benötigt werden dazu

- höchstens mr Zeilenoperationen, wobei  $r \leq \min\{m, n\}$  der Rang ist,
- somit höchstens mnr arithmetische Operationen im Körper  $\mathbb{K}$ .

Speziell für jede quadratische Matrix, mit m=n, genügen demnach  $\leq n^2$  Zeilenoperationen, somit  $\leq n^3$  arithmetische Operationen in  $\mathbb{K}$ .

Permutationen sind vernachlässigbar und werden hier nicht mitgezählt. Zur Vereinfachung zählen wir  $a_{ij} \leftarrow a_{ij} - a_{i\ell} a_{kj}$  als eine Operation in  $\mathbb{K}$ .

**Übung:** Ist statt der reduzierten nur irgendeine Zeilenstufenform verlangt, so können wir etwa die Hälfte der Operationen sparen. Formulieren Sie sorgsam diesen Algorithmus und zählen Sie seine Zeilenoperationen.

# Der Gauß-Algorithmus

B216

| Größe n  | Operationen in K (feste Kosten) | Zeit bei $10^9  \mathrm{op/s}$ (Standard PC) | Zeit bei $10^{15}  \mathrm{op/s}$ (Supercomputer) |  |  |
|----------|---------------------------------|----------------------------------------------|---------------------------------------------------|--|--|
| 1        | ,                               | ,                                            | (Oupercomputer)                                   |  |  |
| $10^{1}$ | $< 10^{3}$                      | $< 1 \mu s$                                  |                                                   |  |  |
| $10^{2}$ | $< 10^{6}$                      | $< 1 \mathrm{ms}$                            |                                                   |  |  |
| $10^{3}$ | $< 10^9$                        | < 1 s                                        |                                                   |  |  |
| $10^{4}$ | $< 10^{12}$                     | $< 30  \mathrm{min}$                         |                                                   |  |  |
| $10^{5}$ | $< 10^{15}$                     | $< 12\mathrm{Tage}$                          | < 1 s                                             |  |  |
| $10^{6}$ | $< 10^{18}$                     | $< 32  \mathrm{Jahre}$                       | $< 30  \mathrm{min}$                              |  |  |
| $10^{7}$ | $< 10^{21}$                     | $< 32000  \mathrm{Jahre}$                    | $< 12 \mathrm{Tage}$                              |  |  |
| $10^{8}$ | $< 10^{24}$                     |                                              | $< 32  \mathrm{Jahre}$                            |  |  |
| $10^{9}$ | $< 10^{27}$                     |                                              | $< 32000  \mathrm{Jahre}$                         |  |  |

In datenintensiven Anwendungen und realen Modellen (wie Googles PageRank oder Wettersimulationen) entstehen noch größere Matrizen. Glücklicherweise sind diese meist dünn besetzt, mit nur sehr wenigen Einträgen ungleich Null. Hierzu gibt es hochspezialisierte Verfahren. Die Numerik erklärt Ihnen, wie Sie Fehler und Laufzeit klein halten.

### Zeilenoperation als Matrixmultiplikation von links

Wir betrachten Zeilenoperationen auf einer Matrix  $A \in \mathbb{K}^{m \times n}$ . Zunächst illustrieren wir diese für m=2 sowie i=1 und j=2.

Alle elementaren Zeilenoperationen sind Linksmultiplikationen:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_{i1} & \dots & a_{in} \\ a_{j1} & \dots & a_{jn} \end{bmatrix} = \begin{bmatrix} a_{j1} & \dots & a_{jn} \\ a_{i1} & \dots & a_{in} \end{bmatrix}$$

$$\begin{bmatrix} \mu & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{i1} & \dots & a_{in} \\ a_{j1} & \dots & a_{jn} \end{bmatrix} = \begin{bmatrix} \mu a_{i1} & \dots & \mu a_{in} \\ a_{j1} & \dots & a_{jn} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{i1} & \dots & a_{in} \\ a_{j1} & \dots & a_{jn} \end{bmatrix} = \begin{bmatrix} a_{i1} & \dots & a_{in} \\ \lambda a_{i1} + a_{j1} & \dots & \lambda a_{in} + a_{jn} \end{bmatrix}$$

Wir schreiben dies zusammenfassend als Elementarmatrizen:

$$P_{12} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad S_1(\mu) = \begin{bmatrix} \mu & 0 \\ 0 & 1 \end{bmatrix}, \quad T_{12}(\lambda) = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$$

Ihre inversen Matrizen haben glücklicherweise dieselbe Form:

$$P_{12}^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad S_1(\mu)^{-1} = \begin{bmatrix} \mu^{-1} & 0 \\ 0 & 1 \end{bmatrix}, \quad T_{12}(\lambda)^{-1} = \begin{bmatrix} 1 & 0 \\ -\lambda & 1 \end{bmatrix}$$

# Zeilenoperation als Matrixmultiplikation von links

Die Matrix  $A \in \mathbb{K}^{m \times n}$  formen wir um zu A' durch die Zeilenoperationen  $B_1, B_2, \ldots, B_\ell \in \{P_{ij}, S_i(\mu), T_{ij}(\lambda)\} \subset \operatorname{GL}_m \mathbb{K}$ . Somit erhalten wir

$$A' = B_{\ell}(\cdots(B_2(B_1A))\cdots) = B_{\ell}\cdots B_2B_1A.$$

Assoziativität sei Dank! Dieses Produkt fassen wir zusammen zu

$$A' = BA$$
 mit  $B = B_{\ell} \cdots B_2 B_1$ .

Jede der Operationen  $B_1, B_2, \ldots, B_\ell$  können wir umkehren, also gilt:

$$B_1^{-1}B_2^{-1}\dots B_{\ell}^{-1}A'=A$$

Auch dieses Produkt können wir zusammenfassen zu

$$B^{-1}A' = A$$
 mit  $B^{-1} = B_1^{-1}B_2^{-1} \dots B_{\ell}^{-1}$ .

 $\bigcirc$  Jede Zeilenoperation entspricht einer Elementarmatrix  $B_i$ . Ihre Komposition entspricht der Linksmultiplikation mit  $B \in GL_m \mathbb{K}$ .

 $\square$  Im Spezialfall  $A' = 1_{m \times m}$  finden wir  $A = B^{-1}$ , und somit  $A^{-1} = B$ . Das ist ein elegant-effizienter Algorithmus zur Inversion von Matrizen.

# Zeilenoperation als Matrixmultiplikation von links

Wir definieren  $S_i: \mathbb{K} \hookrightarrow \mathbb{K}^{m \times m}: a \mapsto B = S_i(a)$ . Die Matrix B ist gleich  $1_{m \times m}$  mit der Ausnahme  $b_{ii} = a$ . Somit ist  $A \mapsto S_i(\mu)A$  die Multiplikation der iten Zeile mit  $\mu$ .

Wir definieren die Einbettung  $\Psi_{ij}: \mathbb{K}^{2\times 2} \hookrightarrow \mathbb{K}^{m\times m}: A \mapsto B = \Psi_{ij}(A)$ . Die Matrix B ist gleich der Einheitsmatrix  $1_{m \times m}$  mit den vier Ausnahmen

$$\begin{bmatrix} b_{ii} & b_{ij} \\ b_{ji} & b_{jj} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

Damit erhalten wir die Permutation  $P_{ij}$  und die Transvektion  $T_{ij}(\lambda)$ :

$$P_{ij} = \Psi_{ij} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad T_{ij}(\lambda) = \Psi_{ij} \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$$

Ihre inversen Matrizen haben glücklicherweise dieselbe Form:

$$P_{ij}^{-1} = P_{ij}, \quad S_i(\mu)^{-1} = S_i(\mu^{-1}), \quad T_{ij}(\lambda)^{-1} = T_{ij}(-\lambda)$$

Dies definiert unsere **Elementarmatrizen**  $P_{ij}, S_i(\mu), T_{ij}(\lambda) \in GL_m \mathbb{K}$ .

## Zeilenoperation als Matrixmultiplikation von links

Erläuterung

Wir erleben hier ein erstes nützliches Wunder des Matrixkalküls. Wir können jedes lineare Gleichungssystem bündeln zu Ax = b. Zudem können wir elementare Zeilenoperationen elegant als Linksmultiplikation mit einer Elementarmatrix interpretieren.

Alles fügt sich wunderbar zusammen, elegant und effizient!

**Übung:** Wir können lineare Gleichungssysteme auch xA = b schreiben mit der Matrix  $A \in \mathbb{K}^{m \times n}$  und Zeilenvektoren  $x \in \mathbb{K}^{1 \times m}$  und  $b \in \mathbb{K}^{1 \times n}$ . In diesem Falle nutzen wir Spaltenoperationen, und diese entsprechen der Rechtsmultiplikation mit einer geeigneten Elementarmatrix. Führen Sie dies zur Übung bzw. Wiederholung sorgfältig aus!

 $\bigcirc$  Die Unbekannte x steht in Ax = b bzw. xA = b auf der einen Seite, wir operieren auf der Matrix A jeweils von der anderen Seite.

In einem Körper oder allgemein CRing ist die Multiplikation kommutativ, daher sind Ax = b und  $x^{\mathsf{T}}A^{\mathsf{T}} = b^{\mathsf{T}}$  äquivalent durch Transposition (B119). In einem Schiefkörper oder allgemein nicht-kommutativem Ring müssen wir im Allgemeinen links und rechts sorgsam auseinanderhalten.

#### Invertierbarkeitskriterien für Matrizen



#### Satz B2D: Invertierbarkeitskriterien für Matrizen

Sei  $\mathbb{K}$  ein Körper, wie  $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ ; es genügt ein Divisionsring, wie  $\mathbb{H}$ . Zur Matrix  $A \in \mathbb{K}^{m \times n}$  untersuchen wir das Gleichungssystem Ax = b. Dazu bringen wir A auf Zeilenstufenform A', mit Rang  $r \leq \min\{m, n\}$ .

- (1) Surjektivität. Die folgenden drei Aussagen sind äquivalent:
- (a) Zu jedem  $b \in \mathbb{K}^m$  existiert mindestens ein  $x \in \mathbb{K}^n$  mit Ax = b.
- (b) Die Matrix A ist rechtsinvertierbar,  $\exists C \in \mathbb{K}^{n \times m} : AC = 1_{m \times m}$ .
- (c) Es gilt  $r = m \le n$ , also Rang gleich Zeilenzahl.
- (2) Injektivität. Die folgenden drei Aussagen sind äguivalent:
- (a) Zu jedem  $b \in \mathbb{K}^m$  existiert höchstens ein  $x \in \mathbb{K}^n$  mit Ax = b.
- (b) Die Matrix A ist linksinvertierbar,  $\exists B \in \mathbb{K}^{n \times m} : BA = 1_{n \times n}$ .
- (c) Es gilt  $r = n \le m$ , also Rang gleich Spaltenzahl.
- (3) Bijektivität. Die folgenden drei Aussagen sind äquivalent:
- (a) Zu jedem  $b \in \mathbb{K}^m$  existiert genau ein  $x \in \mathbb{K}^n$  mit Ax = b.
- (b) Die Matrix A ist invertierbar,  $\exists B \in \mathbb{K}^{n \times m} : BA = 1_{n \times n}, AB = 1_{m \times m}$ .
- (c) Es gilt r = m = n, also A quadratisch mit vollem Rang.

#### Invertierbarkeitskriterien für Matrizen



Behauptung (2): Die folgenden drei Aussagen sind äquivalent:

- (a) Zu jedem  $b \in \mathbb{K}^m$  existiert höchstens ein  $x \in \mathbb{K}^n$  mit Ax = b.
- (b) Die Matrix A ist linksinvertierbar,  $\exists B \in \mathbb{K}^{n \times m} : BA = 1_{n \times n}$ .
- (c) Es gilt  $r = n \le m$ , also Rang gleich Spaltenzahl.

**Beweis:** "(c)  $\Leftrightarrow$  (a)": Wir nutzen Satz B2B. Gilt r=n, so hat Ax=b für jedes  $b\in\mathbb{K}^m$  höchstens eine Lösung  $x\in\mathbb{K}^n$ . Gilt r< n, so haben wir für Ax=0 genau n-r freie Variablen, also mehrere Lösungen  $x\in\mathbb{K}^n$ .

"(b)  $\Rightarrow$  (a)": Wir haben  $BA = 1_{n \times n}$ . Gilt Ax = Ax' = b, so folgt

$$x = 1_{n \times n} x = (BA)x = B(Ax) = B(Ax') = (BA)x' = 1_{n \times n} x' = x'.$$

"(a)  $\Rightarrow$  (b)": Wir haben die reduzierte Zeilenstufenform A' = SA mit  $S \in \operatorname{GL}_m \mathbb{K}$ . Wegen r = n beginnt A' mit den Zeilen  $e_1^\intercal, \ldots, e_n^\intercal$ . Seien  $b_1^\intercal, \ldots, b_n^\intercal \in \mathbb{K}^m$  die ersten Zeilen von S, also  $b_i^\intercal A = e_i^\intercal$ . Die daraus gebildete Matrix  $B \in \mathbb{K}^{n \times m}$  erfüllt  $BA = 1_{n \times n}$ .

Aufgabe: Behauptung (3) folgt aus (1) und (2). Erklären Sie wie!

#### Invertierbarkeitskriterien für Matrizen



Behauptung (1): Die folgenden drei Aussagen sind äquivalent:

- (a) Zu jedem  $b \in \mathbb{K}^m$  existiert mindestens ein  $x \in \mathbb{K}^n$  mit Ax = b.
- (b) Die Matrix A ist rechtsinvertierbar:  $\exists C \in \mathbb{K}^{n \times m} : AC = 1_{m \times m}$ .
- (c) Es gilt  $r = m \le n$ , also Rang gleich Zeilenzahl.

**Beweis:** "(a)  $\Rightarrow$  (b)": Zu  $e_1, \ldots, e_m \in \mathbb{K}^m$  existieren  $c_1, \ldots, c_m \in \mathbb{K}^n$  mit  $Ac_i = e_i$ . Die Matrix  $C = (c_1, \ldots, c_m) \in \mathbb{K}^{n \times m}$  erfüllt also

$$AC = (Ac_1, \dots Ac_m) = (e_1, \dots, e_m) = 1_{m \times m}.$$

"(b)  $\Rightarrow$  (a)": Zu  $b \in \mathbb{K}^m$  erfüllt  $x = Cb \in \mathbb{K}^n$  die gewünschte Gleichung

$$Ax = A(Cb) = (AC)b = 1_{m \times m}b = b.$$

"(c)  $\Leftrightarrow$  (a)": Gilt r=m, so ist Ax=b für jedes  $b\in\mathbb{K}^m$  lösbar (Satz B2B). Umgekehrt, gilt r< m, so ist Ax=b für manche  $b\in\mathbb{K}^m$  unlösbar:

Wir betrachten zu A die Zeilenstufenform A' = SA mit  $S \in \operatorname{GL}_m \mathbb{K}$ . Die Gleichungen Ax = b und A'x = b' mit A' = SA und b' = Sb sind äquivalent, haben also dieselbe Lösungsmenge L(A,b) = L(A',b'). Wegen r < m ist  $A'x = e_m$  unlösbar, somit auch Ax = b für  $b = S^{-1}e_m$ .

#### Invertierbarkeitskriterien für Matrizen

B224 Erläuterung

Lösung: Dies ist eine Übung der Logik und des genauen Lesens:

- Bijektivität (3a) ist nach Definition äquivalent zu Surjektivität (1a) und Injektivität (2a).
- Invertierbarkeit (3b) ist nach Definition äquivalent zu Rechtsinvertierbarkeit (1b) und Linksinvertierbarkeit (2b).

Dazu haben wir oben bereits gezeigt:

- Surjektivität (1a) ist äquivalent zu Rechtsinvertierbarkeit (1b).
- Injektivität (2a) ist äquivalent zu Linksinvertierbarkeit (2b).

Somit ist Aussage (3a) äquivalent zu Aussage (3b). Genauso folgt: Aussage (3b) ist äquivalent zu (3c).

Wenn Sie möchten, können Sie zur Übung die Äquivalenzen "(3a) ⇔ (3b)" und "(3b) ⇔ (3c)" erneut beweisen, indem Sie alle obigen Argumente wiederholen und hier noch einmal ausführen. Didaktisch gesehen ist Wiederholung meist eine gute Übung.

Wenn Sie jedoch Zeit sparen wollen, dann können Sie diese Arbeit effizient abkürzen. Die Logik hilft Ihnen. Abstraktion wirkt ganz konkret. Nach getaner Arbeit ist es ratsam und hilfreich zurückzublicken:
 Wie sehen konkrete Anwendungen, Beispiele und Gegenbeispiele aus?
 Was lässt sich noch vereinfachen? Was lässt sich verallgemeinern?

Zusatz B2D: Invertierbarkeit über einem beliebigen Ring Wichtige Teile des Satzes B2D gelten über jedem Ring 账:

- 1 Die Äquivalenz "(1a)  $\Leftrightarrow$  (1b)" gilt über jedem Ring  $\mathbb{K}$ .
- 2 Die Implikation "(2b)  $\Rightarrow$  (2a)" gilt über jedem Ring  $\mathbb{K}$ , doch die Umkehrung "(2a)  $\Rightarrow$  (2b)" gilt nicht über dem Ring  $\mathbb{Z}$ .
- 3 Die Äquivalenz "(3a)  $\Leftrightarrow$  (3b)" hingegen gilt über jedem Ring  $\mathbb{K}$ .

Aufgabe: Beweisen Sie dies nach dem Muster des vorigen Satzes.

**Lösung:** (1) In unserem obigen Beweis der Äquivalenz "(1a)  $\Leftrightarrow$  (1b)" haben wir nur benutzt, dass  $\mathbb K$  ein Ring ist; damit stehen uns alle hierzu benötigten Rechenregeln für Matrizen über  $\mathbb K$  weiterhin zur Verfügung.

 $\bigcirc$  Den Gauß-Algorithmus haben wir nur für "(1c)  $\Leftrightarrow$  (1a)" eingesetzt. Die Äquivalenz "(1a)  $\Leftrightarrow$  (1b)" kommt wunderbar ohne aus.

#### Invertierbarkeitskriterien für Matrizen

B227 Erläuterung

(3) Die Äquivalenz "(3a)  $\Leftrightarrow$  (3b)" gilt über jedem Ring  $\mathbb{K}$ . Zum Beweis müssen wir jedoch etwas genauer hinsehen!

Die Implikation "(3b)  $\Rightarrow$  (3a)" gilt weiterhin, wie oben gezeigt: Die Invertierbarkeit (3b) ist nach Definition äquivalent zu Rechtsinvertierbarkeit (1b) und Linksinvertierbarkeit (2b). Daraus folgt Surjektivität (1a) und Injektivität (2a) wie zuvor, und dies ist nach Definition äquivalent zu Bijektivität (3a).

Die Umkehrung "(3a)  $\Rightarrow$  (3b)" hingegen ist etwas raffinierter, da wir nun nicht mehr "(2a)  $\Rightarrow$  (2b)" nutzen können, wie oben über  $\mathbb Z$  illustriert. Dank "(3a)  $\Rightarrow$  (1a)  $\Rightarrow$  (1b)" ist A rechtsinvertierbar, zu A existiert demnach eine rechtsinverse Matrix  $C \in \mathbb K^{n \times m}$  mit  $AC = 1_{m \times m}$ . Dank "(3a)  $\Rightarrow$  (2a)" ist die Matrix A zudem linkskürzbar. Wir haben A1 = A = 1A = (AC)A = A(CA), nach Kürzen also 1 = CA. Demnach ist die Matrix A invertierbar durch C, denn AC = 1 = CA.

(2) In unserem obigen Beweis der Implikation "(2b)  $\Rightarrow$  (2a)" haben wir nur benutzt, dass  $\mathbb K$  ein Ring ist; damit stehen uns alle hierzu benötigten Rechenregeln für Matrizen über  $\mathbb K$  weiterhin zur Verfügung.

 $\triangle$  Zur Umkehrung "(2a)  $\Rightarrow$  (2b)" nutzen wir den Gauß-Algorithmus, und dieser beruht wesentlich darauf, dass wir in  $\mathbb{K}$  invertieren können. Ohne diese Voraussetzung schlägt der Beweis tatsächlich fehl!

Zur Illustration betrachten wir den Ring  $\mathbb Z$  der ganzen Zahlen. Wir betrachten  $1 \times 1$ -Matrizen, also Ringelemente  $a \in \mathbb Z^{1 \times 1} = \mathbb Z$ . Ein ganz konkretes und sehr einfaches Gegenbeispiel ist a=2:

- (a) Zu jedem  $b \in \mathbb{Z}$  existiert höchstens ein  $x \in \mathbb{Z}$  mit 2x = b.
- (b) Dennoch ist das Element a=2 in  $\mathbb{Z}$  nicht (links)invertierbar.

 $\bigcirc$  In Satz B2D tritt dieses Problem nicht auf, da wir dort  $\mathbb K$  als Divisionsring voraussetzen. Wenn wir statt des Rings  $\mathbb Z$  den Körper  $\mathbb Q$  betrachten, so ist das Element a=2 in  $\mathbb Q$  invertierbar, und alles wird gut.

#### Wie lernen Sie Mathematik?

B228 Erläuterung

Dieser Satz ist überaus praktisch, aber zugegeben nicht ganz leicht. Was lernen Sie aus seinem Beweis und den zugehörigen Übungen?

- Theoretische Grundlagen und praktische Algorithmen sind eng verzahnt, sie stützen sich gegenseitig und arbeiten zusammen.
   Bei der Lösung linearer Gleichungen ist dies besonders eindrücklich.
- Es lohnt sich, die zentralen Probleme allgemein zu lösen und dabei genau zu formulieren: Was sind die Voraussetzungen? Was sind die Folgerungen? Wie verlaufen die Beweise und die Algorithmen?

Zudem sehen Sie die angestrebte Arbeitsteilung zwischen Vorlesung, eigener Nacharbeit und konkreten Anwendungen, etwa in den Übungen:

- Vorlesung / Skript erklären Ihnen die wesentlichen Ideen, Begriffe und Techniken, insb. Definitionen und Sätze, Beweise und Beispiele.
- Ihre eigene Nacharbeit sichert Ihnen das Verständnis in den Details. In den Anwendungen führen Sie dies an konkreten Beispielen aus.

Die Abgrenzung dieser Phasen ist nicht leicht und keinesfalls eindeutig. In jedem Falle beruht Ihr Lernerfolg auf Ihrer individuellen Investition.

#### Invertierbarkeit quadratischer Matrizen

Ausprobieren mit Gaël!

Korollar B2E: Invertierbarkeit quadratischer Matrizen

Sei  $\mathbb{K}$  ein Körper, wie  $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ ; es genügt ein Divisionsring, wie  $\mathbb{H}$ .

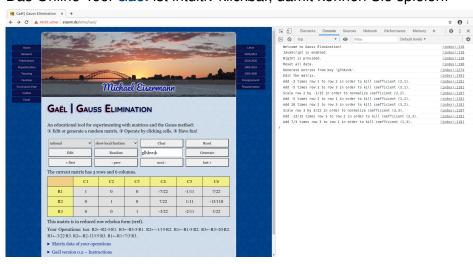
- (0) Für jede quadratische Matrix  $A \in \mathbb{K}^{n \times n}$  gilt dank Satz B2D: A ist linksinvertierbar  $\Leftrightarrow A$  ist rechtsinvertierbar  $\Leftrightarrow A$  ist invertierbar. Jede Linksinverse zu A ist eine Rechtsinverse zu A und umgekehrt.
- Damit können wir jeweils die Hälfte der Arbeit einsparen!

Wir gewinnen zwei praktische Verfahren zur Inversion von  $A \in \mathbb{K}^{n \times n}$ :

- (1) Bringe A in reduzierte Zeilenstufenform A'=SA, mit  $S\in \operatorname{GL}_n\mathbb{K}$ . Gilt dabei  $A'=1_{n\times n}$ , so ist die Matrix A invertierbar und  $A^{-1}=S$ . Andernfalls gilt r< n und A ist nicht invertierbar.
- (2) Beginne mit der erweiterten Matrix  $X=(A,1_{n\times n})$ . Bringe X in reduzierte Zeilenstufenform X'. Sind die Stufen  $(1,2,\ldots,n)$ , so ist A invertierbar und  $X'=(1_{n\times n},A^{-1})$ . Andernfalls ist A nicht invertierbar.
- (3) Jede invertierbare Matrix  $A \in GL_n \mathbb{K}$  ist demnach ein Produkt von elementaren Matrizen  $\{P_{ij}, S_i(\mu), T_{ij}(\lambda)\} \subset GL_n \mathbb{K}$ .

#### Gaël: Experimentieren Sie mit dem Gauß-Verfahren!

Das Online-Tool Gaël ist intuitiv klickbar, damit können Sie spielen!



Damit lösen Sie lineare Gleichungssysteme, invertieren Matrizen und experimentieren mit Umformungen. Gaël übernimmt die Buchführung.

#### Invertierbarkeit quadratischer Matrizen

B230 Erläuterung

**Aufgabe:** Führen Sie den Beweis dieses Korollars sorgsam aus. Sie müssen hierzu nichts Neues erfinden, alles liegt vor Ihnen.

**Lösung:** Die Aussage (0) ist ein einfacher aber wichtiger Spezialfall der Äquivalenz "(b)  $\Leftrightarrow$  (c)" im obigen Invertierbarkeitskriterium (Satz B2D): Genau dann ist  $A \in \mathbb{K}^{n \times n}$  links-/rechts-/invertierbar, wenn r = n gilt. Die Aussagen (1) und (2) sowie (3) fassen unsere vorhergehenden Überlegungen zum Gauß-Algorithmus zusammen. Zur Krönung unserer Mühen habe ich dies als Korollar an den Schluss gestellt.

Bemerkung: Ein Korollar ist eine Aussage, die sich aus einem vorigen Satz oder Beweis ohne großen Aufwand folgern lässt (lat. *corollarium* 'Zugabe', 'Geschenk', von *corona* 'Kranz' zu *corolla* 'Kränzchen'). Korollare sind demnach einfache Schlussfolgerungen, manchmal auch Umformulierungen oder Spezialisierungen. Die Abgrenzung zwischen Lemma und Satz und Korollar ist weitgehend subjektiv und dient vor allem der Betonung und relativen Gewichtung der Ergebnisse.

#### Gaël: Experimentieren Sie mit dem Gauß-Verfahren!

B232 Erläuterung

Sie kennen nun die theoretischen Grundlagen und erste Methoden zu Matrizen und linearen Gleichungssystemen. Sie lernen Neues und verfestigen Ihr Wissen im Wechselspiel von zwei Aktivitäten:

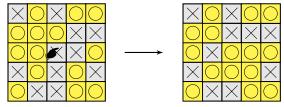
- 1 Wiederholen Sie die wesentlichen Ideen, Begriffe und Techniken, also die Definitionen und Sätze sowie Beweise und Beispiele.
- Wenden Sie diese möglichst vielfältig in neuen Aufgaben an und führen Sie diese an konkreten Beispielen aus.

In konkreten Aufgaben (2), etwa in unseren wöchentlichen Quizzen und Übungen, werden Sie immer wieder auf Verständnisfragen (1) stoßen. Das gilt bereits für die folgenden Anwendungen und Illustrationen. Theorie und Anwendung helfen beide Ihrem Verständnis.

U Lernen ist kein strikt linearer Prozess, sondern eher zyklisch.

Es ist gut und richtig, dass Sie auf die Grundlagen später immer wieder zurückkommen und jedesmal etwas besser und umfassender verstehen. Dadurch erkennen Sie auch in konkreten Anwendungen nützliche Zusammenhänge und können diese dann effizient nutzen.

Sie spielen auf einem rechteckigen Spielbrett der Größe  $n=a\times b$ . An jeder Position befindet sich eine Lampe, entweder an oder aus.



Wenn Sie eine Lampe umschalten, dann schalten sich automatisch auch alle Nachbarn um: oben, unten, links, rechts, soweit vorhanden.

Alternativ als Spiel für unterwegs mit Münzen, Kopf 0 oder Zahl 1. Probieren Sie es selbst aus! Es macht Spaß und ist lehrreich...

Aufgabe: (a) Alle Lampen sind aus. Können Sie alle anschalten? Wie?

- (b) Können Sie jede beliebige Konfiguration erreichen? Falls ja, wie?
- (0) Untersuchen Sie kleine Spielfelder wie  $1 \times 3$ ,  $1 \times 4$ ,  $1 \times 5$ ,  $2 \times 2$ .
- (1) Wie lösen Sie dies systematisch? Tipp: als Gleichungssystem!

### Es werde Licht! ... mit Linearer Algebra

Wir überführen  $X = (A, 1_{n \times n})$  in reduzierte Zeilenstufenform X':

### Es werde Licht! ... mit Linearer Algebra

1 2 3 4 5 6 7 8 9 **Lösung:** (1) Die Reihenfolge der Aktionen ist egal. Für jede Lampe  $i \in \{1, \dots, n\}$  zählt allein, ob die Anzahl der Umschaltungen gerade oder ungerade war, also der Rest  $x_i \in \mathbb{Z}_2$ . Die Umschaltungen codieren wir als Vektor  $x = (x_1, \dots, x_n) \in \mathbb{Z}_2^n$ .

Welche Lampen brennen am Ende? Dies codieren wir durch  $y \in \mathbb{Z}_2^n$ . Den Zusammenhang y = Ax beschreiben wir durch die Matrix

Ist jede Konfiguration y erreichbar? Ist A invertierbar? Gauß hilft!

# Es werde Licht! ... mit Linearer Algebra

B304

Mit welcher Umschaltung x gelangen wir von "alle aus" zu "alle an"? Dies können wir nun leicht ausrechnen gemäß  $x=A^{-1}y$  mit

$$A^{-1} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}.$$

Probieren Sie es aus! Unsere Rechnung findet diese Lösung routiniert und systematisch und zeigt zudem, dass dies die einzige Lösung ist.

 $\odot$  Auf dem  $3 \times 3$ -Spielbrett sind alle Konfigurationen erreichbar!

 $\bigcirc$  Auf  $4 \times 4$  und  $5 \times 5$  lässt sich alles umschalten, aber nicht eindeutig, und manche Konfigurationen sind unerreichbar. Das passt zu Satz B2D! Mehr Infos unter mathworld.wolfram.com/LightsOutPuzzle.html.

B306 Erläuterung

**Übung:** Denken Sie sich eine beliebige Konfiguration  $y \in \mathbb{Z}_2^n$  aus. Versuchen Sie, diese vom Ausgangszustand  $(0,\dots,0)$  zu erreichen: Wie gelingt Ihnen dies? zudem mit möglichst wenig Zügen? Beispiel:

$$A^{-1} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}, \quad y = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

Versuchen Sie es zunächst selbst, dann mit den obigen Matrizen. Nur durch mutiges Ausprobieren und eigene Erfahrung lernen Sie die Klarheit und Eleganz der algebraischen Methode schätzen.

Es werde Licht! ... mit Linearer Algebra

B307 Erläuterung

Varianten dieses Spiels wurden sehr erfolgreich vermarktet:

- Merlin 1978 als 3 × 3-Version. Dieses frühe handheld electronic game wurde mehr als fünf Millionen mal verkauft!
   en.wikipedia.org/wiki/Merlin\_(console)
- Lights Out 1995 als 5 × 5-Version. Heutzutage würde man eine Weboder Handy-App schreiben... Die gibt es tatsächlich!
   en.wikipedia.org/wiki/Lights\_Out\_(game)

 Bitte beachten Sie: Weder die Spielregeln noch die Strategien sprechen von Linearer Algebra oder überhaupt von Mathematik.
 Problem und Lösung lassen sich ganz anschaulich formulieren.

Die dahinter liegende Mathematik ist versteckt, doch überaus spannend: Zur systematischen Lösung erweisen sich lineare Gleichungssysteme und der Gauß–Algorithmus als Schlüssel zum Erfolg.

Ich habe die Schritte des Gauß-Algorithmus hier nicht ausgeführt. Sie wissen im Prinzip, wie es geht, und ich empfehle es als Übung.

**Übung:** Invertieren Sie die Matrix  $A \in \mathbb{Z}_2^{9 \times 9}$ . Die Matrix ist zwar nicht ganz klein, doch zum Glück sind die Rechnungen in  $\mathbb{Z}_2$  extrem einfach. Das Wichtigste sind hierzu eine gute Notation und sorgsame Arbeit. Mit Mut und Sorgfalt ist es möglich. Respekt, wenn es Ihnen gelingt!

**Tipp:** Versuchen Sie, möglichst wenig Schreibarbeit zu erzeugen. Auf Karopapier genügt es, die Einsen zu markieren, Nullen bleiben leer. Die vollständige Rechnung benötigt dann etwa drei DIN-A4-Seiten: Jeder einzelne Schritt ist leicht, aber viele sind nötig.

**Alternative:** Vielleicht möchten Sie das Verfahren programmieren? Das liegt in Ihrer Reichweite und Sie können sehr viel dabei lernen. Es ist ideal für einen Computer: einfache Schritte, davon sehr viele. Sie können dies sogar gleich über dem Körper  $\mathbb{Z}_p$  implementieren, dazu kennen Sie bereits alle nötigen Methoden. Mathematik wirkt!

Es werde Licht! ... mit Linearer Algebra

B308 Erläuterung

Mathematische Methoden sind häufig Voraussetzung für den Erfolg, auch wenn sie im Inneren wirken und oberflächlich nicht sichtbar sind.

Auch die nächsten beiden Anwendungsbeispiele sind von dieser Art: Frage und Antwort sprechen vordergründig nicht von Linearer Algebra. Diese erweist sich jedoch als effizientes Werkzeug zur Lösung!

Deshalb studieren Sie Mathematik, deshalb beginnen wir mit Linearer Algebra und Analysis: Es lohnt sich, diese universellen Methoden zu erlernen und in die mathematischen Grundlagen zu investieren:

Damit erkennen Sie Zusammenhänge und Lösungen, wo andernfalls nur heillose Verwirrung und planloses Herumprobieren möglich wären. **Aufgabe:** Sei  $\mathbb{K}$  ein Körper, etwa  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{Z}_p$ . Gegeben seien Punkte  $(x_0, y_0), \dots, (x_n, y_n) \in \mathbb{K}^2$  mit  $x_i \neq x_j$  für  $i \neq j$ . Gesucht ist ein Polynom  $P(X) = c_0 + c_1 X + \cdots + c_n X^n$  in  $\mathbb{K}[X]$  mit  $P(x_i) = y_i$  für alle i. (B101)

- (1) Schreiben Sie dies als ein lineares Gleichungssystem.
- (2) Gibt es immer mindestens eine Lösung  $P \in \mathbb{K}[X]_{\leq n}$ ?
- (3) Gibt es immer genau eine Lösung  $P \in \mathbb{K}[X]_{\leq n}$ ?

**Lösung:** (1) Wir suchen c, sodass Vc = y mit der Vandermonde–Matrix

$$V = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \text{ sowie } c = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} \text{ und } y = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

(2) Zu jeder Problemstellung y existiert die Lagrange-Interpolation

$$L(X):=\sum_{j=0}^n y_j L_j(X) \in \mathbb{K}[X]_{\leq n} \quad \text{mit} \quad L_j(X):=\prod_{i\neq j} \frac{X-x_i}{x_j-x_i} \in \mathbb{K}[X]_n.$$

(3) Dank B2D ist V invertierbar, also  $c = V^{-1}y$  die eindeutige Lösung!

#### Anwendungsbeispiel: Vandermonde-Matrix

Satz B3A: Die Vandermonde-Matrix ist invertierbar.

(0) Sei  $\mathbb{K}$  ein Körper und  $x_0, x_1, \ldots, x_n \in \mathbb{K}$ . Wir definieren die Vandermonde-Matrix

Vir definieren die **Vandermonde–Matrix**

$$VDM(x_0, x_1, \ldots, x_n) := (x_i^j)_{i,j=0,1,\ldots,n} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix}$$
Diese ist genau dann invertierbar.

Diese ist genau dann invertierbar, wenn  $x_i \neq x_j$  für alle  $i \neq j$  gilt.

- (1) Durch beliebige Datenpunkte  $(x_0, y_0), \dots, (x_n, y_n) \in \mathbb{K}^2$  mit  $x_i \neq x_i$ für alle  $i \neq j$  verläuft demnach genau ein Polynom  $P \in \mathbb{K}[X]_{\leq n}$ .
- (2) Je zwei Polynome  $P, Q \in \mathbb{K}[X]_{\leq n}$  sind bereits dann gleich, wenn sie an n+1 Stellen  $x_0, x_1, \ldots, x_n \in \mathbb{K}$  übereinstimmen.
- (3) Über jedem unendlichen Körper  $\mathbb{K}$  ist die Abbildung  $\delta_0 : \mathbb{K} \to \mathbb{K}$ mit  $\delta_0(0) = 1$  und  $\delta_0(x) = 0$  für  $x \neq 0$  keine Polynomfunktion.
- (4) Über jedem endlichen Körper  $\mathbb{K}$  ist jede Abbildung  $f: \mathbb{K} \to \mathbb{K}$ eine Polynomfunktion; es gilt  $f = f_P$  für genau ein  $P \in \mathbb{K}[X]_{\leq H\mathbb{K}}$ .

Ausführlich: (1) Wir schreiben das Gleichungssystem aus, hier Vc = y. Die Matrix V ist quadratisch, hier von der Größe  $(n+1) \times (n+1)$ .

- $\bigcirc$  Übrigens ist dies ein schönes Beispiel, wo die Indizierung  $0, 1, \ldots, n$ natürlicher ist als die Standardindizierung  $1, 2, \dots, n+1$  (siehe B110). Es ist daher beguem und nützlich, auch diese Indizes zuzulassen.
- (2) Die Lagrange-Interpolation können wir explizit ausschreiben. Zu jeder rechten Seite y existiert demnach mindestens eine Lösung c.
- Dazu mussten wir nicht wirklich rechnen oder Gauß bemühen: Diese Lösung fällt uns anderweitig in den Schoß, dank Polynomring!
- (3) Nun der Clou: Dank Satz B2D ist unsere Matrix V invertierbar!
- $\odot$  Zu dieser Erkenntnis mussten wir die inverse Matrix  $V^{-1}$  nicht explizit ausrechnen. Im Moment interessiert sie uns auch gar nicht, denn eine Lösung L haben wir ja schon, es geht uns lediglich um die noch fehlende Eindeutigkeit. Abstrakte Theorie wirkt ganz konkret!
- Um nächsten Beispiel "harmonische Gewinnerwartung" nutzen wir Satz B2D umgekehrt, das heißt, aus Eindeutigkeit folgern wir Existenz.

#### Anwendungsbeispiel: Polynomvergleich

Erläuterung

Übung: Beweisen Sie diesen Satz nach Vorbild der vorigen Aufgabe. Hinweis: Die Inverse von V ist hier nicht gefragt. Wenn Sie möchten, können Sie kleine Beispiele per Hand oder mit Gaël ausrechnen.

⚠ Das praktische Vergleichskriterium (2) gilt für alle Polynome über einem Körper, aber nicht über jedem kommutativen Ring! **Beispiel:** Im Ring  $\mathbb{Z}_8$  hat das Polynom  $P = X^2 - 1 \in \mathbb{Z}_8[X]$  genau vier Nullstellen: 1, 3, 5, 7. Es stimmt dort mit dem Nullpolynom 0 überein. Wir würden daher P=0 erwarten, es gilt aber  $P\neq 0$ .

Dieses praktische Vergleichskriterium (2) lässt sich retten über Integritätsringen, also kommutativen Ringen ohne Nullteiler, wie  $\mathbb{Z}$ . Leider können wir in  $\mathbb{Z}$  nicht invertieren, und daher für Matrizen über  $\mathbb{Z}$ nicht den Gauß-Algorithmus anwenden. Aber über  $\mathbb{Q} \supset \mathbb{Z}$  gelingt dies!

Übung: (a) Für je zwei Polynome  $P, Q \in \mathbb{Q}[X]_{\leq n}$  gilt das Kriterium (2). Also gilt es auch für je zwei Polynome  $P,Q\in\mathbb{Z}[X]_{\leq n}$  über  $\mathbb{Z}\subset\mathbb{R}$ . (b) Allgemein: Ist R ein Integritätsring, so können wir im Bruchkörper

 $K \supset R$  rechnen (A1J). Das Argument (a) gilt dann wörtlich genauso.

Aufgabe: Ihre Spielfigur startet auf einem gelben Spielfeld im Inneren. In jedem Zug rückt sie auf ein Nachbarfeld, zufällig und gleichverteilt. Das Spiel endet am Rand  $\partial X = \{0, 8\}$  mit dem gezeigten Gewinn.

- (a) Welche Gewinnerwartung u(x) hat jedes Feld  $x \in X = \{0, \dots, 8\}$ ?
- (b) Variante: Jeder Zug kostet, sagen wir  $c(1) = \cdots = c(7) = -1$ €. Das Spiel startet in der Mitte, x = 4. Würden Sie dies spielen?
- (0) Schätzen Sie zunächst! Wie treffsicher ist Ihre intuitive Erwartung?
- (1) Formulieren Sie allgemeine Gleichungen und Lösungsmethoden!

**Lösung:** (1) Für jedes innere Feld  $x \in X^{\circ} = \{1, \dots, 7\}$  gilt

$$u(x) = \frac{1}{2}u(x-1) + \frac{1}{2}u(x+1) + c(x).$$

Damit finden wir folgende Lösungen (alle Angaben in €):

| 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 |
|---|---|----|----|----|----|----|----|----|
| 7 | 2 | -1 | -2 | -1 | 2  | 7  | 14 | 23 |

## Zufällige Irrfahrt und harmonische Gewinnerwartung

Ausprobieren mit Gaël! 6 7 11 13 15 17 19 21 23

Aufgabe: (1a) Wie berechnen Sie die Gewinnerwartung?

**Lösung:** Für  $x \in X = \{0, 1, \dots, 8\}$  suchen wir  $u_x = u(x)$ . Wir haben:

Lineare Gleichungssysteme können Sie lösen: Gauß geht immer. Vereinfachung: Für  $d_x = u_x - u_{x-1}$  erhalten wir  $d_1 = d_2 = \cdots = d_8 = d$ und 8d = 23 - 7 = 16, also d = 2 und  $u_x = 7 + d \cdot x$  für alle  $x \in X$ .

# Zufällige Irrfahrt und harmonische Gewinnerwartung

Erläuterung

Hier ist (a) ein extrem einfaches Spiel, schon (b) dürfte Sie überraschen: Ungeschult haben wir herzlich wenig Erfahrung mit zufälligen Irrfahrten. Erfahrungsgemäß fällt Menschen rekursives Denken recht schwer, doch gerade dies ist für rationale Entscheidungen wesentlich!

Bevor wir die Lösung diskutieren, schätzen Sie bitte die Erwartung. Ist Ihre Intuition präzise und treffsicher, oder allzu vage und irrig?

Diese quantitativen Schätzfragen sind ein aufschlussreicher Test der vielzitierten Schwarmintelligenz und mahnen eindringlich zur Vorsicht: Betrügerische Geschäftspraktiken beruhen darauf, dass das Gegenüber die Situation schlecht einschätzen kann und Fehlentscheidungen trifft.

Es ist schön und gut, die eigene Intuition zu nutzen und zu entwickeln. Leider hilft es wenig, eine Antwort ohne Begründung anzugeben. Wir wollen begründete, nachvollziehbar, tragfähige Argumente! Auch das ist ein Qualitätsmerkmal rationalen Handelns.

Bilden die oben angegebenen Zahlen eine Lösung? sogar die einzige? Mehrdeutigkeiten müssen wir erkennen und nötigenfalls auch beheben.

# Zufällige Irrfahrt und harmonische Gewinnerwartung

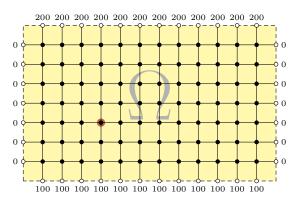
Ausprobieren

| 9. |   |    |    |    | • • • • • • • • • • • • • • • • • • • • |   | 9  | mit Gaël |
|----|---|----|----|----|-----------------------------------------|---|----|----------|
| 0  | 1 | 2  | 3  | 4  | 5                                       | 6 | 7  | 8        |
| 7  | 2 | -1 | -2 | -1 | 2                                       | 7 | 14 | 23       |

Aufgabe: (1b) Wie berechnen Sie die Gewinnerwartung bei Zugkosten? **Lösung:** Für  $x \in X = \{0, 1, \dots, 8\}$  suchen wir  $u_x = u(x)$ . Wir haben:

Lösung: Für 
$$x \in X = \{0, 1, \dots, 8\}$$
 suchen wir  $u_x = u(x)$ . Wir haben  $u_0 = 7$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 = 1$   $0 =$ 

Allgemeine Faustregel: Ausrechnen ist mühsam. Prüfen ist leicht! Wir vermuten anschaulich, dass die Lösung eindeutig ist... Beweis? Negative Gewinnerwartung bedeutet: Ab hier besser nicht spielen!





Auf einem Spielfeld  $\Omega\subset\mathbb{Z}^2$  ziehen Sie mit Wkt  $^1/_4$  nach links / rechts / oben / unten. Das Spiel endet am Rand mit dem gezeigten Gewinn. Wie viel würden Sie setzen beim Start im roten Punkt?

**Aufgabe:** (1) Wie groß ist die Gewinnerwartung u(x,y) auf jedem Feld? Wo ist sie maximal? Ist die gesuchte Lösung  $u:\Omega\to\mathbb{R}$  eindeutig? Wie berechnet man sie? möglichst effizient? näherungsweise? Kontext und Anwendung ändern sich, die Rechnung bleibt dieselbe! (2) Hooke: Netz aus Massen und Federn. (3) Kirchhoff: Spannung einer elektrischen Schaltung. (4) Fourier: diskrete Wärmeleitung / Diffusion.

#### Irrfahrten und Potentiale: das Dirichlet-Problem

B319

**Lösung:** (1) Sei u(x,y) die Gewinnerwartung auf dem Feld  $(x,y) \in \Omega$ . In jedem Randpunkt  $(x,y) \in \partial \Omega$  ist der Gewinn u(x,y) fest vorgegeben. In jedem inneren Punkt  $(x,y) \in \Omega^{\circ}$  gilt die **Mittelwerteigenschaft**:

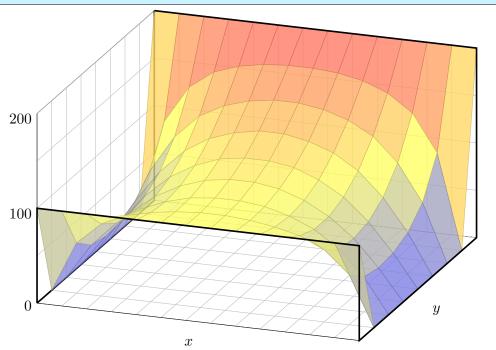
$$u(x,y) = \frac{1}{4}u(x-1,y) + \frac{1}{4}u(x+1,y) + \frac{1}{4}u(x,y-1) + \frac{1}{4}u(x,y+1)$$

Eine solche diskrete Funktion  $u: \mathbb{Z}^2 \supset \Omega \to \mathbb{R}$  nennen wir **harmonisch**.

|     | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 000 | 100 | 139 | 158 | 167 | 172 | 174 | 174 | 172 | 167 | 157 | 139 | 100 | 000 |
| 000 | 061 | 100 | 125 | 139 | 147 | 151 | 151 | 147 | 139 | 125 | 100 | 061 | 000 |
| 000 | 043 | 077 | 102 | 118 | 127 | 132 | 132 | 127 | 118 | 102 | 077 | 043 | 000 |
| 000 | 035 | 065 | 088 | 103 | 113 | 117 | 117 | 113 | 103 | 088 | 065 | 035 | 000 |
| 000 | 033 | 061 | 081 | 095 | 104 | 108 | 108 | 104 | 095 | 081 | 061 | 033 | 000 |
| 000 | 037 | 063 | 081 | 092 | 099 | 102 | 102 | 099 | 092 | 081 | 063 | 037 | 000 |
| 000 | 053 | 076 | 088 | 094 | 098 | 100 | 100 | 098 | 094 | 088 | 076 | 053 | 000 |
|     | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |     |

Harmonische Funktionen sind ein wunderschönes Thema in Analysis, Numerik, WTheorie, ....





Irrfahrten und Potentiale: das Dirichlet-Problem

B320 Erläuterung

Wir betrachten eine endliche Teilmenge  $\Omega\subset\mathbb{Z}^2$ . Innere Punkte  $z\in\Omega^\circ$  sind solche, deren vier Nachbarn ebenfalls in  $\Omega$  liegen. Bei einem Randpunkt  $z\in\partial\Omega$  liegt mindestens ein Nachbar außerhalb von  $\Omega$ .

**Dirichlet–Problem**: In jedem Randpunkt  $z\in\partial\Omega$  ist der Wert u(z) festgelegt durch die vorgegebene Randfunktion  $v=u|_{\partial\Omega}:\partial\Omega\to\mathbb{R}$ . Gesucht sind alle harmonischen Funktion  $u:\Omega\to\mathbb{R}$  mit  $u|_{\partial\Omega}=v$ . Existiert eine Lösung? Ist sie eindeutig? Wie können wir sie berechnen bzw. annähern? Kurzum: Ist das Dirichlet–Problem **gut gestellt**?

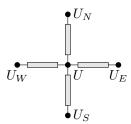
Die Aufgabe führt uns zu einem **linearen Gleichungssystem** mit  $7 \times 12 = 84$  Unbekannten. Für diese haben wir genau 84 Gleichungen. Das sieht vernünftig aus, bedeutet aber noch nicht, dass es genau eine Lösung gibt. Hierzu müssen wir genauer hinschauen und begründen!

Diese Anwendung ist faszinierend, sie fördert sowohl die physikalische Anschauung als auch die mathematisch-methodische Vorgehensweise. Hier gilt das Minimum-Maximum-Prinzip (Satz B3B). Daraus können wir die Eindeutigkeit und sodann die Existenz einer Lösung ableiten!

Context und Anwendung ändern sich, die Rechnung bleibt dieselbe!

(2) Wir betrachten Massenpunkte in  $(x,y,u(x,y))\in\mathbb{R}^3$  in Ruhelage. Jeder ist durch gleich starke Federn mit seinen Nachbarn verbunden. Es gilt: Ruhelage = Kräftegleichgewicht  $\approx$  Mittelwerteigenschaft!

Sie können es nachrechnen! Genauer gesagt ist dies die Näherung bei geringer Krümmung.



(3) Wir betrachten die gezeigte Schaltung mit vier gleichen Widerstände. An den Nachbarpunkten liegen die Potentiale  $U_E, U_N, U_W, U_S$  an.

Ohmsches Gesetz und Kirchhoffsche Regel:

$$U = \frac{U_E + U_N + U_W + U_S}{4}$$

Ausführlich: Es gilt das Ohmsche Gesetz  $I_E = (U_E - U)/R$ . Die Kirchhoffsche Regel besagt hier  $I_E + I_N + I_W + I_S = 0$ . Einsetzen und Auflösen nach U ergibt die Mittelwerteigenschaft!

O Wir können  $\Omega$  als Schaltung realisieren und am Rand die genannten Spannungen anlegen. Mit einem Voltmeter messen wir das Potential u(x,y) im Inneren und finden obige Lösung. Physikalische Intuition suggeriert Existenz und Eindeutigkeit der Lösung, siehe Satz B3B.

#### Harmonische Funktionen: Minimum-Maximum-Prinzip

B323 geordnete Körper

Satz B3B: Minimum-Maximum-Prinzip, Eindeutigkeit, Existenz

(1) Jede harmonische Funktion  $u:\Omega\to\mathbb{R}$  nimmt ihr Minimum und ihr Maximum am Rand  $\partial\Omega$  an:  $\min_{\Omega}u=\min_{\partial\Omega}u$  und  $\max_{\Omega}u=\max_{\partial\Omega}u$ . Für je zwei harmonische Funktionen  $u,\tilde{u}:\Omega\to\mathbb{R}$  gilt demnach:

(2) Eindeutigkeit: Aus  $u = \tilde{u}$  auf dem Rand  $\partial \Omega$  folgt  $u = \tilde{u}$  auf ganz  $\Omega$ .

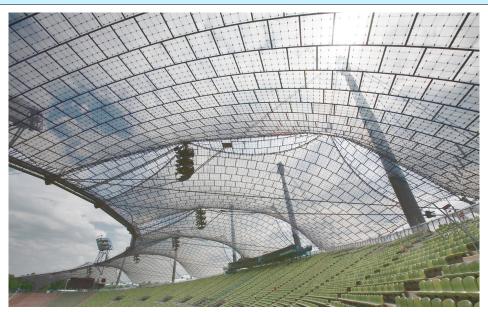
Aus der Eindeutigkeit gewinnen wir die Existenz dank Satz B2D:

(3) Existenz: Zu jeder vorgegebenen Randfunktion  $v:\partial\Omega\to\mathbb{R}$  existiert genau eine harmonische Funktion  $u:\Omega\to\mathbb{R}$  mit  $u|_{\partial\Omega}=v$ .

**Beweis:** (1) Sei  $z\in\Omega$  eine Minimalstelle. Für  $z\in\partial\Omega$  sind wir fertig. Für  $z\in\Omega^\circ$  gilt die Mittelwerteigenschaft, also sind alle Nachbarn von z ebenfalls Minimalstellen. Es gibt einen Weg von z zu einem Randpunkt  $z'\in\partial\Omega$ , also ist auch z' eine Minimalstelle. (Ebenso für das Maximum.)

(2) Auch die Differenz  $v=\tilde{u}-u$  ist harmonisch. Sie erfüllt v=0 auf  $\partial\Omega$ . Dank (1) folgt v=0 auf ganz  $\Omega$ . (3) Unsere Matrix ist quadratisch, und für jede rechte Seite existiert höchstens eine Lösung.

#### Minimalflächen in der Architektur



Das Zeltdach des Olympiastadions in München ist eine Minimalfläche. Es beruht auf Ideen von Frei Paul Otto (1925–2015) vom Institut für Leichte Flächentragwerke der Universität Stuttgart.

Harmonische Funktionen: Eindeutigkeit und Existenz

B324 Erläuterung

Das ist ein trickreich-eleganter Beweis! Wir zeigen, dass es für jede rechte Seite *höchstens* eine Lösung gibt. Daraus folgern wir dank Satz B2D, dass für jede rechte Seite (genau) eine Lösung existiert.

Harmonische Funktionen sind wichtig in der Mathematik, der Physik und den Ingenieurwissenschaften. Die Analysis erklärt Ihnen hierzu das kontinuierliche Modell und zugehörige partielle Differentialgleichungen.

Wir betrachten hier ein endliches Modell und erhalten ein tendenziell großes, aber einfaches lineares Gleichungssystem. Wir haben bereits geeignete Werkzeuge! Dies schult, wie gesagt, wunderbar unsere physikalische Anschauung und unsere mathematische Methodik.

Wir sehen zudem, dass unsere Koeffizientenmatrix hier dünn besetzt ist; das ist typisch für Anwendungen, in denen jeder Punkt nur mit wenigen Nachbarn interagiert. Für so strukturierte Probleme bietet die Numerik spezialisierte und besonders effiziente (Näherungs-)Verfahren.

Wenn Ihnen partout nichts Besseres einfällt: Gauß geht immer... und für kleine Matrizen auch ausreichend schnell, siehe B216.

Das wichtigste Ziel für dieses Kapitel ist, dass Sie sicher mit Matrizen rechnen können, insbesondere den Gauß-Algorithmus beherrschen und in all seinen Aspekten anwenden können, korrekt und routiniert. Sobald es etwas zu rechnen gibt, wird dies nahezu überall benötigt.

Es lohnt sich daher, die Techniken, Beispiele und Anwendungen dieses Kapitels gründlich zu verstehen. Dazu sollten Sie diese Ergebnisse nicht (nur) auswendiglernen, sondern sie vielmehr nachvollziehen, aktiv erarbeiten und beständig in Ihrem Repertoire einüben.

Zum aktiven Erinnern helfen Ihnen insbesondere die Übungen! Ein Instrument lernt man nicht durch den Besuch von Konzerten.

Versuchen Sie nach einem ersten Durchgang, sich den Inhalt dieses Kapitels selbst zu erklären, noch besser: sich gegenseitig zu erklären, genaue zu formulieren, kritisch zu hinterfragen, um so die neue Materie zu durchdringen und wirklich zu verstehen. Was wollen wir erreichen? Wie definieren wir die nötigen Begriffe? Was besagen die Sätze? Wie beweisen wir sie? Wie wenden wir dies auf Beispiele an?

#### Rückblick: einige Fragen zum Verständnis

B327 Erinnerung

Um Ihr Verständnis zu fördern und selbst Sicherheit zu gewinnen, sollten Sie sich immer wieder Fragen und eigene Aufgaben stellen! Selbst scheinbar banale Fragen helfen ungemein, insbesondere wenn Sie von Ihnen kommen. Ich gebe ein paar Beispiele zur Inspiration:

Lassen sich je zwei beliebige Matrizen addieren? und multiplizieren? Welche Größen passen zusammen? Dürfen dabei die Matrixeinträge / Koeffizienten beliebig sein? sogar auch in verschiedenen Ringen?

Solche Fragen müssen Sie insbesondere dann dringend klären, sobald Sie diese mathematische Techniken auf einem Computer nutzen oder implementieren möchten. Das zwingt zu Klarheit und Präzision!

Kommutieren je zwei Matrizen? Können sich Matrizen  $A \neq 0$  und  $B \neq 0$  zu AB = 0 multiplizieren? Wie prüft / berechnet man Inverse? Welcher Zusammenhang besteht zwischen Nullteilern und Invertierbarkeit?

Solche und viele ähnliche Fragen müssen Sie grundlegend klären, wenn Sie selbst effizient rechnen und sicher schließen wollen. Fassen Sie Mut, stellen Sie sich (gegenseitig) Fragen!

### Grundrechenarten für Matrizen (B1A) und Matrixkalkül: transponierte Matrix, symmetrisch und antisymmetrisch, Zeilen- und Spaltenvektoren als wichtiger Spezialfall, Einheitsmatrix und Einheitsvektoren, Addition von Matrizen, skalare Multiplikation, Multiplikation von Matrizen

- inverse Matrizen, linksinvers und rechtsinvers, Invertierbarkeit (B1B)
- die allgemeine lineare Gruppe  $\operatorname{GL}_n \mathbb{K}$  (B1c, B1d)
- 2 × 2-Matrizen: Determinante, Multiplikativität und Inversion (B1E)
- Zeilenstufenform, allgemein und reduziert, Rang (B2A)
- Lösung eines linearen Gleichungssystems (B2B)
- Gauß–Algorithmus zur Zeilenstufenform (B2c)
- Zeilen-/Spaltenoperationen durch Matrizenmultiplikation (B219)
- Invertierbarkeitskriterien für Matrizen (B2D)
- Algorithmus zur Inversion (B2E)

Rückblick: einige Fragen zum Verständnis

B328 Erinnerung

Wie hängen lineare Gleichungssysteme und Matrixkalkül zusammen? Zeilenumformungen und Matrixmultiplikationen? Welche Operationen im Koeffizientenbereich  $\mathbb{K}$  benötigen Sie für den Gauß-Algorithmus? Wie implementieren Sie dieses Verfahren auf einem Computer? Denken Sie dabei insbesondere an konkrete Beispiele wie  $\mathbb{Z}_n, \mathbb{Z}, \mathbb{Q}$ . Welche Schwierigkeiten können auftreten? Wie lösen Sie diese? Wie können Sie garantieren, dass das Gauß-Verfahren (gerade auf einem Computer) immer zum Ziel führt? Was ist überhaupt das Ziel? Welche Rechenregeln benötigen Sie zum Nachweis der Korrektheit?  $\odot$  So entdecken Sie erneut den Begriff des Körpers / Divisionsrings!

Diese einfachen Grundlagenfragen mögen Ihnen allzu naiv vorkommen, doch nur genau so verstehen Sie, wie Mathematik funktioniert, warum die Definitionen und Sätze so sind, wie Sie sie vorgefunden haben. Nur durch aktives Erinnern, Nachvollziehen, Hinterfragen verstehen Sie im Nachgang, wie alles zusammenhängt. Ich kann es für Sie erklären, aber ich kann es nicht für Sie verstehen; das können nur Sie selbst.

### Rückblick auf Kapitel A & B und Ausblick

Überblick

Die Grundlage aller Mathematik ist das Zahlensystem:

$$\mathbb{N} \longleftrightarrow \mathbb{Z} \longleftrightarrow \mathbb{Q} \longleftrightarrow \mathbb{R} \longleftrightarrow \mathbb{C} \longleftrightarrow \mathbb{H}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$

$$\mathbb{Z}_n \qquad \mathbb{Q}[\sqrt{2}] \cdots \mathbb{Q}[\sqrt{3}] \cdots \mathbb{Q}[i]$$

Zum korrekten Rechnen benötigen wir die Grundbegriffe zu Ringen. Unsere ersten Beobachtungen werden in der Algebra fortgeführt, doch die Grundlagen benötigen wir bereits jetzt in der Linearen Algebra.

- Der Ring  $\mathbb{Z}$  ist kommutativ und hat keine Nullteiler (A1c). Dies nennen wir einen Integritätsring, kurz IRing.
- Im Ring Z haben wir eine euklidische Division mit Rest (A2A). Dies nennen wir einen euklidischen Ring, kurz ERing.
- Im Ring ℤ gilt "unzerlegbar impliziert prim", und jedes Element lässt sich eindeutig zerlegen in ein Produkt unzerlegbarer Elemente (A2J). Dies nennen wir einen faktoriellen Ring, kurz FRing.

### Rückblick auf Kapitel A & B und Ausblick

Überblick

Die stärksten Strukturen sind Körper, doch Ringe sind unvermeidbar. Dies gilt bereits, wenn wir über Polynomringen (A11) arbeiten wollen:

$$\mathbb{K} \hookrightarrow \mathbb{K}[X]$$
 $\mathsf{CRing} \Longrightarrow \mathsf{CRing}$ 
 $\mathsf{IRing} \Longrightarrow \mathsf{IRing}$ 
 $\mathsf{FRing} \Longrightarrow \mathsf{FRing}$ 
 $\mathsf{K\"{o}rper} \Longrightarrow \mathsf{ERing}$ 

Use mehr wir hineinstecken, desto mehr bekommen wir heraus. Jeder IRing lässt sich in seinen Bruchkörper einbetten (A1J):

$$R \hookrightarrow \operatorname{Frac}(R)$$

$$\mathsf{IRing} \Longrightarrow \mathsf{K\"{o}rper}$$

So erhalten wir insbesondere  $\mathbb{Q} = \operatorname{Frac}(\mathbb{Z})$  und  $\mathbb{Q}(X) = \operatorname{Frac}(\mathbb{Q}[X])$ .

Es lohnt sich, Gemeinsamkeiten zu erkennen und zu nutzen. Konkret oder abstrakt? Am besten, Sie beherrschen beides!

## Rückblick auf Kapitel A & B und Ausblick

Überblick

In Kapitel A zum Aufbau des Zahlensystems treffen Sie mit  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ gute, alte Bekannte aus der Schule. Neu ist, dass wir uns diese Objekte wesentlich genauer anschauen: Dazu definieren wir präzise Begriffe, formulieren grundlegende Sätze und führen erste schöne Beweise.

Darüber hinaus lernen Sie einige neue nützliche Zahlbereiche kennen, insbesondere den Restklassenring  $\mathbb{Z}_n$  und die komplexen Zahlen  $\mathbb{C}$ . Es gibt auch "nicht-kommutative Körper", kurz Schiefkörper genannt, das erste und wichtigste Beispiel sind Hamiltons Quaternionen H.

Mit Kapitel B zur Matrizenrechnung erweitern wir unser mathematisches Repertoire durch zahlreiche schöne Objekte und effiziente Methoden. Matrizen sind ein Universalwerkzeug und werden uns überall nützen. Unser treues Arbeitspferd ist der extrem nützliche Gauß-Algorithmus.

Zu diesem frühen Zeitpunkt fehlen uns noch die nötigen Grundlagen: Logik und Beweistechniken, Mengen und Abbildungen, sowie Monoide und Gruppen, dann Ringe und Körper. Dies führen wir nachfolgend aus. Die Mathematik ist reich und großzügig, darüber dürfen Sie sich freuen.

## Rückblick auf Kapitel A & B und Ausblick

Überblick

Die stärksten Strukturen sind Körper, doch Ringe sind unvermeidbar. begegnen uns doch sofort Polynomringe  $\mathbb{K}[X]$  und Matrixringe  $\mathbb{K}^{n\times n}$ .

$$\mathbb{K} \longrightarrow \mathbb{K}^{n \times n}$$
Ring  $\Longrightarrow$  Ring
CRing  $\Longrightarrow$  Ring + Determinante
DRing  $\Longrightarrow$  Ring + Gauß-Algorithmus
Körper  $\Longrightarrow$  Ring + Det und Gauß!

U Je mehr wir hineinstecken, desto mehr bekommen wir heraus. Die invertierbaren Matrizen bilden die allgemeine lineare Gruppe

$$\operatorname{GL}_n(\mathbb{K}) = \{ A \in \mathbb{K}^{n \times n} \mid \exists B \in \mathbb{K}^{n \times n} : AB = BA = 1_{n \times n} \}.$$

Diese beschreibt insbesondere die Zeilenumformungen à la Gauß. Gruppen erweisen sich für die Mathematik als fundamentaler Begriff.