Kapitel Z

Zusammenfassung

Wir stehen selbst enttäuscht und sehn betroffen Den Vorhang zu und alle Fragen offen. Bertolt Brecht (1898–1956), Der gute Mensch von Sezuan (1940)

Vollversion

michael-eisermann.de/lehre/HM3

30.09.2023

Schlusswort (nach Richard P. Feynman)

Überblick

Nun habe ich ein Semester lang zu Ihnen gesprochen und werde jetzt damit aufhören. Einerseits möchte ich mich entschuldigen und andererseits wieder nicht. Ich hoffe – ja, ich weiß –, dass zwei oder drei Dutzend von Ihnen allem mit großer Spannung folgen konnten und eine angenehme Zeit damit verbracht haben. Aber ich weiß auch, dass die Kräfte der Lehre von sehr geringer Wirkung sind, außer unter jenen glücklichen Umständen, in denen sie praktisch überflüssig sind. Daher darf ich im Hinblick auf die zwei oder drei Dutzend, die alles verstanden haben, sagen, dass ich nichts anderes getan habe, als Ihnen die Dinge zu zeigen. Was die anderen betrifft, tut es mir leid, wenn ich Ihren Widerwillen gegen dieses Fachgebiet erregt habe. [...]

Ich hoffe nur, dass ich Sie nicht ernsthaft verwirrt habe, und dass Sie dieses interessante Geschäft nicht aufgeben. Ich hoffe, dass jemand anderes es Ihnen so beibringen kann, dass es Ihnen nicht im Magen liegt, und dass sie trotz allem eines Tages feststellen, dass es nicht so schrecklich ist, wie es aussieht. (nach R.P. Feynman, 1918–1988, Epilog seiner Vorlesungen über Physik)

Mathematische Methoden in den Ingenieurwissenschaften

Z005 Überblick

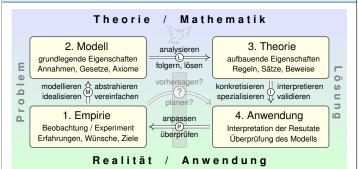
Als Ingenieur:in brauchen Sie Ihr methodisches Handwerkszeug. Dazu gehört als harter Kern und Grundlage die Höhere Mathematik. Je anspruchsvoller die Aufgabe, desto wichtiger wird die Mathematik.

Mathematik ist zugleich abstrakte Theorie und konkrete Anwendung. Sie erklärt und quantifiziert Zusammenhänge: Das ist ihr Nutzen! Dank Abstraktion ist sie universell anwendbar: Das ist ihre Stärke!

Abstraktion strukturiert und vereinfacht: Eine allgemeine Tatsache ist oft leichter zu verstehen und zu erklären als ihre zahlreichen Spezialfälle. Denkökonomie: Daten ändern sich, Methoden bleiben bestehen.

Warum ist Mathematik so erfolgreich?

Z007 Überblick



Konkrete Anwendung benötigt abstrakte Kenntnisse; je anspruchsvoller, desto mathematischer! Alles Denken beruht auf Modellen; diese können deskriptiv oder normativ eingesetzt werden. Deskriptiv: beschreibend (Kettenlinie), erklärend (Planetenbewegung), vorhersagend (Wetter). Normativ: vorschreibend (Bauplan), planend (Raumsonde), gesetzgebend (Klimaschutz). Ingenieur:innen wollen beides, nicht nur passiv vorhersagen, sondern auch aktiv steuern und beeinflussen. Hierzu benötigen Sie ausreichend starke mathematische Werkzeuge.

Inhalt dieses Kapitels Z

- 1 Integration in mehreren Dimensionen
- 2 Integralsätze in der Ebene und im Raum
- 3 Fourier-Analysis und Laplace-Transformation
- 4 Gewöhnliche Differentialgleichungen
- 5 Partielle Differentialgleichungen
- 6 Wahrscheinlichkeitsrechnung

Vorgehensweise

Z004 Üherblick

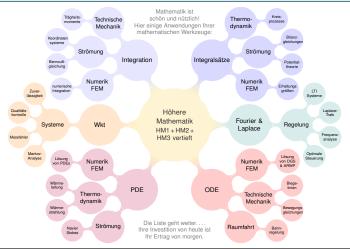
Dieses letzte Kapitel Z versammelt alle Kapitelzusammenfassungen. Es bietet eine konzise Bilanz der wichtigsten Ergebnisse und Techniken. Es nützt nur schwer als Einstieg, wohl als Übersicht und Erinnerung. Hierzu sind Rückverweise auf die einzelnen Themen angegeben. Diese Zusammenfassung dient nur im Rückblick als Gedächtnisstütze;

Diese Zusammentassung dient nur im Rückblick als Gedächtnisstütze; zum soliden Verständnis benötigen Sie alle Grundlagen und viel Übung! Dazu hat Ihr HM3-Team Sie das gesamte Semester umfassend betreut. Insbesondere wiederhole ich hier nur Definitionen und Sätze, aber kaum Beispiele und Übungen. Erfahrung, Umsicht und Verständnis lassen sich nicht eintrichtern, sondern nur durch Übung erwerben. Also: Üben Sie! Detaillierte Beispiele, Übungen und Erläuterungen zu jedem Thema bieten die zugehörigen Kapitel und die weiterführende Literatur.

Kafkas ganze Kunst besteht darin, den Leser zum Wiederlesen zu zwingen. [...] Genau das hat der Verfasser beabsichtigt. (Albert Camus, 1913–1960, Der Mythos des Sisyphos)

Einige Anwendungen Ihrer mathematischen Werkzeuge

Z006 Überblick



Warum ist Mathematik so erfolgreich?

Z008 Überblick

Typische Anwendungen verlaufen in folgenden Schritten:

- 1. Grundlegendes Verständnis der vorliegenden Situation:
- Möglichst präzise Erfassung durch (passive) Beobachtungen, (aktive) Experimente, Formulierung von Naturgesetzen, Arbeitshypothesen, etc.
- 2. Mathematische Modellierung der vorliegenden Situation:

Vereinfachung und Abstraktion zu einem mathematischen Modell. Dieses besteht aus den relevanten Größen und ihren Beziehungen.

3. Lösung durch geeignete mathematische Werkzeuge:

Hierzu nutzen Sie die Techniken Ihrer HM und weitere nach Bedarf. Ziel: Sie kennen und nutzen die möglichen Methoden, Sie optimieren Aufwand und Genauigkeit, Sie entscheiden umsichtig und informiert.

4. Anpassung und Überprüfung anhand gegebener Daten:

Ist eine mathematische Lösung oder numerische Näherung gelungen, so passen Sie schließlich die noch freien Parameter des Modells den gegebenen Daten an und überprüfen soweit möglich die Vorhersagen des Modells durch Experimente, Messungen, Alternativmodelle, etc. Falls nötig muss erneut ab (1) ein besseres Modell erstellt werden.

 \bigcirc Das Integral $\int_{\Omega} f$ misst das Volumen unter dem Graphen von f. Hierzu sei $\Omega\subset\mathbb{R}^n$ ein Quader. Messbare Funktionen $f:\Omega\to[0,\infty]$ und ihr Integral $\int_\Omega f\in [0,\infty]$ definieren wir nach folgenden fünf Grundregeln:

(1) Normierung: Für jeden endlichen Quader $A\subset\Omega$ ist die Indikatorfunktion $I_A: \Omega \to [0, \infty]$ messbar, und es gilt $\int_{\Omega} I_A = \operatorname{vol}_n(A)$.

(2) Linearität: Sind f, g messbar, so auch jede Linearkombination $af+bg \ \mathrm{mit} \ a,b \in \mathbb{R}_{\geq 0}, \ \mathrm{und} \ \mathrm{es} \ \mathrm{gilt} \ \int_{\Omega} (af+bg) = a \int_{\Omega} f + b \int_{\Omega} g.$

(3) Monotonie: Sind f, g messbar, so auch $h = \max(g - f, 0)$.

Aus $f \leq g$ folgt h = g - f und $\int_{\Omega} f \leq \int_{\Omega} g$ dank Additivität.

(4) Einschachtelung: Gilt $f_0 \le f_1 \le f_2 \le \ldots \le h \le \ldots \le g_2 \le g_1 \le g_0$ mit f_k, g_k messbar und $\int_{\Omega} (g_k - f_k) \searrow 0$, so ist auch h messbar. Dank Monotonie gilt dann $\int_{\Omega} f_k \nearrow \int_{\Omega} h \swarrow \int_{\Omega} g_k$.

(5) **Ausschöpfung:** Sind $f_0 \le f_1 \le f_2 \le \ldots$ messbar mit $f_k \nearrow f$, so ist auch f messbar, und es gilt $\int_\Omega f_k \nearrow \int_\Omega f$.

U Diese Wünsche lassen sich erfüllen: Die kleinste Funktionenmenge, für die dies möglich ist, sind die Lebesgue-messbaren Funktionen $f:\Omega \to [0,\infty].$ Hierauf ist das Integral eindeutig durch (1–5) bestimmt.

Definition und erste Eigenschaften des Integrals

Das Integral von $f: \Omega \to [0, \infty]$ interpretieren wir als Volumen unter f. Zu integrieren sei nun eine Funktion $f:\Omega\to\mathbb{R}$, wobei $\mathbb{R}=\mathbb{R}\cup\{\pm\infty\}$. Wo immer f negativ ist, ist das Volumen negativ in Ansatz zu bringen. Wir zerlegen $f = f^+ - f^-$ in **Positivteil** f^+ und **Negativteil** f^- gemäß

$$f^+(x) = \begin{cases} f(x) & \text{falls } f(x) > 0, \\ 0 & \text{sonst,} \end{cases} \qquad f^-(x) = \begin{cases} -f(x) & \text{falls } f(x) < 0, \\ 0 & \text{sonst.} \end{cases}$$

Es gilt $f=f^+-f^-$ und $|f|=f^++f^-$ und umgekehrt $f^\pm=\frac{1}{2}(|f|\pm f).$ Genau dann ist f messbar, wenn $f^{\pm}: \Omega \to [0, \infty]$ messbar sind. In diesem Fall ist auch $|f| = f^+ + f^-$ messbar, und somit gilt

$$\int_{\Omega} |f(x)| \, \mathrm{d}x = \int_{\Omega} f^{+}(x) \, \mathrm{d}x + \int_{\Omega} f^{-}(x) \, \mathrm{d}x.$$

Ist dieser Wert endlich, so nennen wir f (absolut) integrierbar. In diesem Fall können wir das Integral von f definieren durch

$$\int_{\Omega} f(x) dx := \int_{\Omega} f^{+}(x) dx - \int_{\Omega} f^{-}(x) dx.$$

Hauptsatz der Differential- und Integralrechnung

Der Hauptsatz der Differential- und Integralrechnung B11 erklärt, in welchem Sinne Differenzieren und Integrieren einander umkehren: Jede stetige Funktion $f:[a,b]\to\mathbb{R}$ ist integrierbar. Ihre Integralfunktion

$$F:[a,b] \to \mathbb{R} \quad \text{mit} \quad F(x) := \int_a^x f(t) \, \mathrm{d}t$$

ist differenzierbar, und für die Ableitung gilt F'=f. Ist umgekehrt $F:[a,b]\to\mathbb{R}$ differenzierbar mit stetiger Ableitung f=F', so gilt

$$\int_a^b f(x) dx = \left[F \right]_a^b \quad \text{mit} \quad \left[F \right]_a^b := F(b) - F(a).$$

Der HDI ist das Arbeitspferd der eindimensionalen Integration: die Berechnung vieler elementarer Integrale gelingt erst dank HDI. Dieser nützliche Zusammenhang gilt noch wesentlich allgemeiner:

B123 $\iff F$ stetig differenzierbar f stetig \iff F stückweise stetig differenzierbar $\stackrel{\text{B213}}{}$ f stückweise stetig

f absolut integrierbar \iff F absolut stetig

Partielle Integration und Substitution

Aus der Produktregel folgt dank HDI die partielle Integration B129: Für alle stetig differenzierbaren Funktionen $f, g : [a, b] \to \mathbb{R}$ gilt

$$\int_{x=a}^{b} f(x) g'(x) dx = \left[f(x) g(x) \right]_{x=a}^{b} - \int_{x=a}^{b} f'(x) g(x) dx.$$

Aus der Kettenregel folgt dank HDI die Substitutionsregel B131]: Für $g:[a,b] \to [c,d]$ stetig differenzierbar und $f:[c,d] \to \mathbb{R}$ stetig gilt

$$\int_{t=a}^{b} f(g(t)) g'(t) dt = \int_{u=g(a)}^{g(b)} f(u) du.$$

Damit lassen sich bereits viele Integrale elementar berechnen.

 \bigcirc Jede rationale Funktion r(x) = p(x)/q(x) ist elementar integrierbar durch Partialbruchzerlegung und unsere Grundintegrale. B135

Viele elementare Funktionen sind nicht elementar integrierbar! Prominenteste Beispiele sind die Glockenkurve $\exp(-x^2/2)$ B145 und die Spaltfunktion si(x) = sin(x)/x B149. Hier nutzen wir Potenzreihen o.ä.

Definition und erste Eigenschaften des Integrals

Ganz einfach: Alle für uns wichtigen Funktionen sind messbar! Alle Treppenfunktionen und alle stetigen Funktionen sind messbar. Mit f,g sind f+g und $f\cdot g$ sowie $\min(f,g)$ und $\max(f,g)$ messbar. Konvergiert $f_k \to f$ und sind alle f_k messbar, so ist auch f messbar.

Wir nennen $f:\mathbb{R}^n\supset A\to [0,\infty]$ messbar, wenn die triviale Fortsetzung $\tilde{f}: \mathbb{R}^n \to [0,\infty]$ messbar ist, wobei $\tilde{f}(x) = f(x)$ für $x \in A$ und $\tilde{f}(x) = 0$ sonst. Wir definieren dann das Integral von f durch

$$\int_A f(x) \, \mathrm{d}x := \int_{\mathbb{R}^n} \tilde{f}(x) \, \mathrm{d}x.$$

Genau dann ist eine Menge $A\subset\Omega$ messbar, wenn \mathbf{I}_A messbar ist, und

$$\operatorname{vol}_n(A) = \int_A 1 \, \mathrm{d}x = \int_\Omega \mathbf{I}_A(x) \, \mathrm{d}x.$$

Ist zudem die Funktion $f:\Omega\to[0,\infty]$ messbar, so auch $\mathbf{I}_A\cdot f$, und es gilt

$$\int_{A} f(x) dx = \int_{\Omega} \mathbf{I}_{A}(x) f(x) dx.$$

Definition und erste Eigenschaften des Integrals

Die Menge aller absolut integrierbaren Funktionen

$$L^{1}(\Omega) = \left\{ f : \Omega \to \mathbb{R} \mid \int_{\Omega} |f(x)| \, \mathrm{d}x < \infty \right\}$$

ist ein $\mathbb{R}-\text{Vektorraum}.$ Hierauf ist das Integral eine $\mathbb{R}-\text{lineare}$ Abbildung

$$L^1(\Omega) \to \mathbb{R}, \qquad f \mapsto \int_{\Omega} f(x) \, \mathrm{d}x.$$

Sie ist normiert, monoton, erfüllt Einschachtelung und Ausschöpfung. Durch diese Eigenschaften ist das Integral eindeutig bestimmt.

 $\stackrel{igorplus}{\bigcirc}$ Das Integral ist linear; dank $\mathbf{I}_A + \mathbf{I}_B = \mathbf{I}_{A \cup B} + \mathbf{I}_{A \cap B}$ folgt daher

$$\boxed{\int_A f(x)\,\mathrm{d}x + \int_B f(x)\,\mathrm{d}x = \int_{A\cup B} f(x)\,\mathrm{d}x + \int_{A\cap B} f(x)\,\mathrm{d}x}.$$
 Der letzte Term entfällt falls $\mathrm{vol}_n(A\cap B) = 0$, insb. falls $A\cap B = \emptyset$.

 \bigcirc Das Integral ist monoton; dank $-|f| \le f \le |f| \le \sup |f|$ folgt daher

$$\left| \int_A f(x) \, \mathrm{d}x \right| \leq \int_A |f(x)| \, \mathrm{d}x \leq \sup_A |f| \cdot \mathrm{vol}(A).$$

Zwei fast überall gleiche Funktionen verhalten sich bei Integration genau gleich. Wir dürfen und werden sie daher als gleich betrachten.

Elementare Grundintegrale / Stammfunktionen

$$\int x^a \, dx = \frac{x^{a+1}}{a+1} \quad (a \neq -1) \qquad \int \frac{1}{x} \, dx = \ln|x|$$

$$\int e^x \, dx = e^x \qquad \int \ln x \, dx = x \ln x - x$$

$$\int \cos x \, dx = \sin x \qquad \int \sin x \, dx = -\cos x$$

$$\int \cosh x \, dx = \sinh x \qquad \int \sinh x \, dx = \cosh x$$

$$\int \frac{1}{(\cos x)^2} \, dx = \tan x \qquad \int \frac{1}{(\sin x)^2} \, dx = -\cot x$$

$$\int \frac{1}{(\cosh x)^2} \, dx = \tanh x \qquad \int \frac{1}{(\sinh x)^2} \, dx = -\coth x$$

$$\int \frac{1}{1+x^2} \, dx = \arctan x \qquad \int \frac{1}{1-x^2} \, dx = \ln \sqrt{\left|\frac{x+1}{x-1}\right|}$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x \qquad \int \frac{1}{\sqrt{1+x^2}} \, dx = \arcsin x$$

🙂 Probe als Übung: Integrale sind durch Ableiten leicht nachzuprüfen!

Uneigentliche Integrale und Cauchy-Hauptwert

B214

Zur Integration über ganz \mathbb{R} haben wir drei nützliche Möglichkeiten:

(1) Bei **absoluter Integration** zerlegen wir $f = f^+ - f^-$ und setzen

$$\int_{\mathbb{R}} f(x) dx := \int_{\mathbb{R}} f^{+}(x) dx - \int_{\mathbb{R}} f^{-}(x) dx.$$

⚠ Hierzu müssen rechts beide Integrale endlich sein.

 \bigcirc Dieser Integrationsbegriff gilt allgemein über $\Omega \subseteq \mathbb{R}^n$ (A3K).

(2) Das uneigentliche Integral von f ist die Summe der Grenzwerte

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x := \lim_{a \to -\infty} \int_{a}^{z} f(x) \, \mathrm{d}x + \lim_{b \to +\infty} \int_{z}^{b} f(x) \, \mathrm{d}x.$$

Hierzu müssen beide Grenzwerte existieren und endlich sein.

Existiert das Integral (1) so auch (2) und beide sind gleich. B221

(3) Der Cauchy-Hauptwert von f ist der Grenzwert (falls existent)

(CH)
$$\int_{-\infty}^{\infty} f(x) dx := \lim_{r \to \infty} \int_{-r}^{r} f(x) dx.$$

Existiert das Integral (2) so auch (3) und beide sind gleich. B223

 $\underline{ \wedge}$ Die Umkehrungen (3) \Rightarrow (2) \Rightarrow (1) gelten im Allgemeinen nicht. B417

Sei $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ monoton fallend. Für alle $a \leq b$ in \mathbb{N} gilt dann

$$\int_{x=a}^{b+1} f(x) \, \mathrm{d}x \quad \le \quad \sum_{k=a}^{b} f(k) \quad \le \quad f(a) + \int_{x=a}^{b} f(x) \, \mathrm{d}x.$$

Das ist oft eine nützliche Näherung: Wir ersetzen mühsame Summen durch bequeme Integral, oder auch umgekehrt je nach Anwendung. Durch Grenzübergang $b \to \infty$ erhalten wir

$$\int_{x=a}^{\infty} f(x) \, \mathrm{d}x \quad \leq \quad \sum_{k=a}^{\infty} f(k) \quad \leq \quad f(a) + \int_{x=a}^{\infty} f(x) \, \mathrm{d}x.$$

Insbesondere haben Reihe und Integral gleiches Konvergenzverhalten.

Beispiel: Für die Funktion f(x) = 1/x erhalten wir

$$\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le 1 + \ln(n)$$

Die harmonische Reihe wächst wie der natürliche Logarithmus! Insbesondere erkennen wir die Divergenz $\sum_{k=1}^n \frac{1}{k} \to \infty$ für $n \to \infty$.

Konvergenzkriterium von Leibniz

Wir untersuchen die Konvergenz von Reihen und Integralen der Form

(1)
$$\sum_{k=0}^{\infty} (-1)^k a_k := \lim_{n \to \infty} \sum_{k=0}^{n-1} (-1)^k a_k,$$

(1)
$$\sum_{k=0}^{\infty} (-1)^k a_k := \lim_{n \to \infty} \sum_{k=0}^{n-1} (-1)^k a_k,$$
(2)
$$\int_{x=0}^{\infty} e^{i\omega x} a(x) dx := \lim_{r \to \infty} \int_{x=0}^{r} e^{i\omega x} a(x) dx, \quad \omega \neq 0.$$

- (1) Die Folge $a_k \in \mathbb{R}$ sei monoton fallend gegen 0, kurz $a_k \searrow 0$ also $a_0 \geq a_1 \geq a_2 \geq \dots$ und $a_k \rightarrow 0$. Dann konvergiert die Reihe (1), und wir haben die Fehlerabschätzung $|\sum_{k=n}^{\infty} (-1)^k a_k| \le a_n \searrow 0$.
- (2) Die Funktion $a: \mathbb{R}_{\geq 0} \to \mathbb{R}$ sei monoton fallend gegen 0, kurz $a(x) \searrow 0$, Dann konvergiert das Integral (2), ebenso mit $\cos(\omega x)$ und $\sin(\omega x)$.

Beispiel: Das Leibniz-Kriterium sichert die Konvergenz von Reihen wie den beiden obigen $\sum_{k=0}^{\infty} (-1)^k/(k+1)$ und $\sum_{k=0}^{\infty} (-1)^k/(2k+1)$.

- Über den Grenzwert macht das Leibniz-Kriterium keine Aussage.
- Immerhin erlaubt es praktische N\u00e4herungen mit Fehlerabsch\u00e4tzung!
- Für die Konvergenz trigonometrischer Reihen wie $\sum_{k=1}^\infty \mathrm{e}^{\mathrm{i}kx}/k^a$ oder $\sum_{k=1}^\infty \cos(kx)/k^a$ oder $\sum_{k=1}^\infty \sin(kx)/k^a$ nutzen wir folgendes Kriterium.

Komplexe Funktionen und ihr Integral

Auf $\Omega \subset \mathbb{R}^n$ betrachten wir neben reellen auch komplexe Funktionen. Jede komplexe Funktion $f:\Omega\to\mathbb{C}$ können wir zerlegen in ihren

> Realteil $\operatorname{Re} f: \Omega \to \mathbb{R}: x \mapsto \operatorname{Re} f(x),$ und **Imaginärteil** Im $f: \Omega \to \mathbb{R}: x \mapsto \text{Im } f(x)$.

Hieraus lässt sich f zusammensetzen gemäß $f = \operatorname{Re} f + \operatorname{i} \operatorname{Im} f$. Es gilt $|f|^2 = |\operatorname{Re} f|^2 + |\operatorname{Im} f|^2$ und $|\operatorname{Re} f|, |\operatorname{Im} f| \le |f| \le |\operatorname{Re} f| + |\operatorname{Im} f|.$

Wir nennen $f:\Omega\to\mathbb{C}$ messbar, wenn $\operatorname{Re} f$ und $\operatorname{Im} f$ messbar sind. Wir nennen f integrierbar, wenn $\operatorname{Re} f$ und $\operatorname{Im} f$ integrierbar sind. Äquivalent hierzu: die Funktion f ist messbar und $\int_{\Omega} \lvert f \rvert < \infty.$ In diesem Fall können wir das Integral von f definieren durch

$$\int_{\Omega} f := \int_{\Omega} \operatorname{Re} f + i \int_{\Omega} \operatorname{Im} f.$$

- Linearität überträgt unsere Rechenregeln aufs komplexe Integral.

Der Satz von Fubini

Seien $X\subset\mathbb{R}^p$ und $Y\subset\mathbb{R}^q$ messbare Teilmengen, zum Beispiel Quader. Der Satz von Fubini C1E führt die Integration über $X \times Y$ zurück auf die (iterierte aber jeweils einfache) Integration über X und über Y. Das hilft. Absolute Integration: Für jede messbare Funktion $f: X \times Y \to \mathbb{C}$ gilt

$$\int_{X\times Y} \left| f(x,y) \right| \mathrm{d}(x,y) = \int_X \int_Y \left| f(x,y) \right| \mathrm{d}y \, \mathrm{d}x = \int_Y \int_X \left| f(x,y) \right| \mathrm{d}x \, \mathrm{d}y.$$

Ist dieser Wert endlich, so ist f absolut integrierbar, und dann gilt

$$\int_{X \times Y} f(x, y) d(x, y) = \int_X \int_Y f(x, y) dy dx = \int_Y \int_X f(x, y) dx dy.$$

⚠ Hierzu ist die absolute Integrierbarkeit wesentlich! Andernfalls ist das erste Integral nicht definiert und die letzten beiden evtl. verschieden. Für einfache, aber drastische Gegenbeispiele siehe C117, C409, C413.

Diese Vorsichtsmaßnahme ist also nötig, die müssen Sie beherrschen. O Absolute Integrierbarkeit und somit Vertauschbarkeit gilt, wenn X, Y und f beschränkt sind, also insbesondere für X, Y kompakt und f stetig Abelscher Grenzwertsatz

Jede Potenzreihe ist stetig im Inneren ihres Konvergenzkreises. Abels Grenzwertsatz ergänzt dies zur Stetigkeit in Randpunkten:

Sei $\sum_{k=0}^{\infty} a_k$ eine konvergente Reihe komplexer Zahlen $a_k \in \mathbb{C}$. Dann konvergiert die Potenzreihe $f(x) = \sum_{k=0}^{\infty} a_k x^k$ für alle $x \in [0, 1]$ und die so definierte Funktion $f:[0,1]\to\mathbb{C}$ ist stetig, sogar in x=1. Für $x\nearrow 1$ konvergiert also $f(x)=\sum_{k=0}^\infty a_k x^k$ gegen $f(1)=\sum_{k=0}^\infty a_k$.

Beispiel: Für alle $x \in [0,1]$ gilt die Reihenentwicklung

$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \dots$$

$$\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \frac{x^{11}}{11} + \dots$$

Für $x \nearrow 1$ erhalten wir dank Abel die beiden berühmten Reihen

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} = \ln(2) \qquad \text{ and } \qquad \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$$

Konvergenzkriterium von Dirichlet

Wir untersuchen die Konvergenz von Reihen und Integralen der Form

(1)
$$\sum_{k=0}^{\infty} a_k b_k = \lim_{n \to \infty} \sum_{k=0}^{n-1} a_k b_k,$$
(2)
$$\int_{x=0}^{\infty} a(x) b(x) dx = \lim_{r \to \infty} \int_{x=0}^{r} a(x) b(x) dx.$$

- (1) Die Folge $a_k \in \mathbb{R}$ sei monoton fallend gegen 0, kurz $a_k \searrow 0$. Die Folge $b_k \in \mathbb{C}$ habe beschränkte Partialsummen $B_n = \sum_{k=0}^{n-1} b_k$, das heißt $|B_n| \leq M$ für eine Konstante $M \in \mathbb{R}$ und alle Indizes $n \in \mathbb{N}$. Dann konvergiert die Reihe (1) mit Fehler $\leq 2Ma_n \searrow 0$ für $n \to \infty$.
- (2) Die Funktion $a: \mathbb{R}_{\geq 0} \to \mathbb{R}$ sei monoton fallend gegen 0, kurz $a(x) \searrow 0$. Die Funktion $b: \mathbb{R}_{\geq 0} \to \mathbb{C}$ sei auf jedem Intervall [0, r] integrierbar mit beschränkter Integralfunktion $B(r) = \int_0^r b(x) \, \mathrm{d}x$, das heißt $|B(r)| \leq M$. Dann konvergiert das Integral (2) mit Fehler $\leq 2Ma(r) \searrow 0$ für $r \to \infty$.
- Über den Grenzwert macht das Dirichlet-Kriterium keine Aussage. Ummerhin erlaubt es praktische Näherungen mit Fehlerabschätzung!

Der Hauptsatz (HDI) für komplexe Integrale

Wir formulieren allgemeine Rechenregeln gleich reell und komplex. Der HDI gilt wörtlich für komplexe genauso wie für reelle Funktionen: Jede stetige Funktion $f:[a,b]\to\mathbb{C}$ ist integrierbar. Ihre Integralfunktion

$$F:[a,b]\to\mathbb{C}$$
 mit $F(x):=\int_a^x f(t)\,\mathrm{d}t$

ist differenzierbar, und für die Ableitung gilt F'=f. Ist umgekehrt $F:[a,b]\to\mathbb{C}$ differenzierbar mit stetiger Ableitung f=F', so gilt

$$\int_a^b f(x) dx = \left[F \right]_a^b \quad \text{mit} \quad \left[F \right]_a^b := F(b) - F(a).$$

Beispiel: Für alle $a, b \in \mathbb{R}$ und $\omega \in \mathbb{R} \setminus \{0\}$ gilt:

$$\int_{t=a}^{b} e^{i\omega t} dt = \left[\frac{1}{i\omega} e^{i\omega t}\right]_{t=a}^{b}$$

 $\stackrel{\textstyle \bigcirc}{\textstyle \bigcirc}$ Alles gilt ebenso für $f:[a,b]
ightarrow \mathbb{C}^n$ und $f:[a,b]
ightarrow \mathbb{C}^{n imes n}$, wobei komponentenweise integriert und differenziert wird.

Integration über Normalbereiche

Integration über Normalbereiche ist ein wichtiger Spezialfall und die wohl häufigste Anwendung des Satzes von Fubini:

Das Integral einer absolut integrierbaren Funktion $f: B \to \mathbb{C}$ über

$$B = \left\{ \left. x \in \mathbb{R}^n \;\middle|\; a_k(x_1, \dots, x_{k-1}) \le x_k \le b_k(x_1, \dots, x_{k-1}) \text{ für alle } k \right. \right\}$$

lässt sich durch iterierte eindimensionale Integrale berechnen:

$$\int_{B} f(x) dx = \int_{x_{1}=a_{1}}^{b_{1}} \int_{x_{2}=a_{2}(x_{1})}^{b_{2}(x_{1})} \dots \int_{x_{n}=a_{n}(x_{1},\dots,x_{n-1})}^{b_{n}(x_{1},\dots,x_{n-1})} f(x_{1},x_{2},\dots,x_{n}) dx_{n} \dots dx_{2} dx_{1}$$

- Dies gilt ebenso bei jeder anderen Reihenfolge der Variablen. Sie haben hier also die Wahl der Integrationsreihenfolge.
- Geometrische Hilfe: Das gelingt einfach und sicher anhand einer Skizze.
- ⚠ Das Ergebnis ist dasselbe, aber der Rechenweg kann verschieden schwierig sein. Für ein bemerkenswertes Beispiel siehe C133.

Zylinderkoordinaten

Der Transformationssatz C2B verallgemeinert die eindimensionale Substitution: Wir wählen neue Variablen als geschickte Koordinaten. Seien $X,Y\subset\mathbb{R}^n$ messbar und $\Phi\colon\! X\to Y$ bijektiv und stetig diff'bar. Ist $f: Y \to \mathbb{C}$ messbar, so auch $(f \circ \Phi) \cdot \det \Phi': X \to \mathbb{C}$, und es gilt

$$\int_Y |f(y)| \, \mathrm{d}y = \int_X |f(\Phi(x))| \cdot |\det \Phi'(x)| \, \mathrm{d}x.$$

Ist dieser Wert endlich, so ist f absolut integrierbar, und dann gilt

$$\int_{Y} f(y) \, dy = \int_{X} f(\Phi(x)) \cdot |\det \Phi'(x)| \, dx.$$

▲ Auch hier ist die absolute Integrierbarkeit wesentlich! ©413 Die Ableitung $\Phi'\colon X\to\mathbb{R}^{n\times n}$ ist die Jacobi-Matrix, $\Phi'=(\partial_j\Phi_i)_{ij}.$ Die Funktion $\det \Phi' : X \to \mathbb{R}$ ist hierzu die **Funktionaldeterminante**. Ihr Betrag $|\det \Phi'|$ misst die durch Φ bewirkte Volumenverzerrung.

C Für eindimensionale Integrale entspricht dies der Substitutionsregel. Allerdings nehmen wir hier den Betrag und vergessen die Orientierung. Allgemeiner formuliert Satz C2c die orientierte Version mit Vorzeichen.

Kugelkoordinaten

Fubini und Transformation sind zwei häufig genutzte Techniken. Zylinderkoordinaten sind eine einfache und häufige Anwendung.

Zu Radien
$$r_0, r_1 : [a, b] \to \mathbb{R}_{>0}$$
 betrachten wir den Rotationskörper $K = \{ (x, y, z) \in \mathbb{R}^3 \mid a \le z \le b, \ r_0(z)^2 \le x^2 + y^2 \le r_1(z)^2 \}.$

Diesen können wir durch Zylinderkoordinaten parametrisieren:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} =: \Phi \begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix}$$

mit den Grenzen $a \le z \le b$ und $0 \le \varphi \le 2\pi$ sowie $r_0(z) \le \rho \le r_1(z)$. Die Funktionaldeterminante ist hier wie zuvor $\det \Phi' = \rho$. (Übung!) Für jede absolut integrierbare Funktion $f: K \to \mathbb{C}$ gilt somit:

$$\int_K f \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathrm{d}(x,y,z) \stackrel{\mathrm{Trafo}}{\underset{\mathrm{Fub}}{=}} \int_{z=a}^b \int_{\rho=r_0(z)}^{p} \int_{\varphi=0}^{2\pi} f \begin{pmatrix} \rho\cos\varphi \\ \rho\sin\varphi \\ z \end{pmatrix} \underbrace{\frac{\rho}{\mathrm{Fu'det}}} \mathrm{d}\varphi \, \mathrm{d}\rho \, \mathrm{d}z$$

Wann vertauschen Integral und Reihe?

Für $f = \sum_{k=0}^{\infty} f_k$ möchten wir Integral und Reihe vertauschen:

$$\int_{\Omega} \left(\sum_{k=0}^{\infty} f_k(x) \right) \mathrm{d}x \quad \stackrel{?}{=} \quad \sum_{k=0}^{\infty} \left(\int_{\Omega} f_k(x) \, \mathrm{d}x \right)$$

Einfache Gegenbeispiele zeigen: Vertauschbarkeit gilt nicht immer!

Für die Vertauschbarkeit haben wir folgende hinreichende Kriterien:

- Gleichheit gilt für $f_k \ge 0$: monotone Konvergenz! A309
- ullet Gleichheit gilt für $\int \sum |f_k| < \infty$ bzw. für $\sum \int |f_k| < \infty$, D106
- insbesondere für konvergente Potenzreihen, $f_k(x) = a_k x^k$. D107

Dieses einfache Kriterium ist in vielen Anwendungen nützlich. Es verhindert insbesondere, dass Masse nach Unendlich verschwindet.

⚠ Andernfalls ist Vorsicht geboten: Vertauschbarkeit gilt nicht immer! Schon in einfachsten Gegenbeispielen gilt $\sum \int f_k \neq \int \sum f_k$. D101

⚠ Diese Kriterien sind hinreichend, aber i.A. nicht notwendig. D429 Die majorisierte Konvergenz erlaubt genauere Aussagen.

Stetigkeit von Parameterintegralen

Wir wollen Stetigkeit nutzen und Grenzwerte unter das Integral ziehen:

$$\lim_{x \to x_0} \int_Y f(x, y) \, dy \stackrel{?}{=} \int_Y \lim_{x \to x_0} f(x, y) \, dy = \int_Y f(x_0, y) \, dy$$

Einfache Gegenbeispiele zeigen: Vertauschbarkeit gilt nicht immer!

Sei $f: X \times Y \to \mathbb{C}$ mit $X \subset \mathbb{R}^p$ offen und $Y \subset \mathbb{R}^q$. Zudem existiere

$$F: X \to \mathbb{C} \quad \mathsf{mit} \quad F(x) := \int_Y f(x, y) \, \mathrm{d}y.$$

Für die Stetigkeit von F haben wir folgende hinreichende Kriterien:

- ullet Sie gilt, wenn f stetig ist und Y kompakt, oder allgemeiner,
- wenn f bezüglich x stetig ist und über Y majorisiert integrierbar. In diesem Fall dürfen wir den Grenzwert unter das Integral ziehen:

$$\lim_{x \to x_0} \int_Y f(x, y) \, \mathrm{d}y \ \stackrel{!}{=} \ \int_Y \lim_{x \to x_0} f(x, y) \, \mathrm{d}y = \int_Y f(x_0, y) \, \mathrm{d}y.$$

Fubini und Transformation sind zwei häufig genutzte Techniken. Polarkoordinaten sind eine einfache und häufige Anwendung.

Zu Radien $0 \le r_0 < r_1 < \infty$ betrachten wir den Kreisring

$$K = \{ (x, y) \in \mathbb{R}^2 \mid r_0^2 \le x^2 + y^2 \le r_1^2 \}.$$

Diesen können wir durch Polarkoordinaten parametrisieren:

$$\Phi: [r_0, r_1] \times [0, 2\pi] \to K \quad \text{mit} \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \end{pmatrix} =: \Phi \begin{pmatrix} \rho \\ \varphi \end{pmatrix}$$

Jacobi-Matrix und Funktionaldeterminante sind hier:

$$\Phi' = \frac{\partial(x,y)}{\partial(\rho,\varphi)} = \begin{pmatrix} \cos\varphi & -\rho\sin\varphi \\ \sin\varphi & \rho\cos\varphi \end{pmatrix} \quad \Longrightarrow \quad \det\Phi' = \rho$$

$$\int_K f \binom{x}{y} \; \mathrm{d}(x,y) \stackrel{\mathrm{Tmfo}}{\underset{\mathrm{Fub}}{\overset{}{=}}} \int_{\rho=r_0}^{r_1} \int_{\varphi=0}^{2\pi} f \binom{\rho\cos\varphi}{\rho\sin\varphi} \underbrace{\rho}_{\text{Fudet}} \; \mathrm{d}\varphi \, \mathrm{d}\rho$$

Fubini und Transformation sind zwei häufig genutzte Techniken. Kugelkoordinaten sind eine einfache und häufige Anwendung.

Zum Radius r > 0 betrachten wir die Kugelschale

$$K = \{ (x, y, z) \in \mathbb{R}^3 \mid r_0^2 \le x^2 + y^2 + z^2 \le r_1^2 \}.$$

Diese können wir durch Kugelkoordinaten parametrisieren:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \sin \theta \\ \rho \sin \varphi \sin \theta \\ \rho \cos \theta \end{pmatrix} =: \Phi \begin{pmatrix} \rho \\ \theta \\ \varphi \end{pmatrix}$$

mit den Grenzen $r_0 \le \rho \le r_1$ und $0 \le \theta \le \pi$ sowie $0 \le \varphi \le 2\pi$. Die Funktionaldeterminante ist hier $\det \Phi' = \rho^2 \sin \theta$. (Übung!) Für jede absolut integrierbare Funktion $f: K \to \mathbb{C}$ gilt somit:

$$\int_{K} f \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathrm{d}(x,y,z) \underset{\text{Fub}}{\overset{\text{Traffo}}{=}} \int_{\rho=r_{0}}^{r_{1}} \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} f \begin{pmatrix} \rho \cos \varphi \sin \theta \\ \rho \sin \varphi \sin \theta \\ \rho \cos \theta \end{pmatrix} \underbrace{\rho^{2} \sin \theta}_{\text{Fudet}} \mathrm{d}\varphi \, \mathrm{d}\theta \, \mathrm{d}\rho$$

Wann vertauschen Integral und Limes?

Für $f_n \to f$ möchten wir Integral und Limes vertauschen:

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx \quad \stackrel{?}{=} \quad \int_{\Omega} \lim_{n \to \infty} f_n(x) dx$$

Einfache Gegenbeispiele zeigen: Vertauschbarkeit gilt nicht immer!

Für die Vertauschbarkeit haben wir folgende hinreichende Kriterien:

- Gleichheit gilt bei monotoner Konvergenz $0 \le f_n \nearrow f$ A309,
- bei majorisierter Konvergenz $f_n \to f$ mit $|f_n| \le h$ und $\int_{\Omega} h < \infty$,
- insbesondere, wenn $\operatorname{vol}(\Omega) < \infty$ und $|f_n| \leq M \in \mathbb{R}$ für alle $n \in \mathbb{N}$.
- Dies verhindert, dass Masse nach Unendlich verschwindet.
- \bigcirc Sei $h: \Omega \to [0,\infty]$ integrierbar. Auf der Teilmenge aller messbaren Funktionen $f:\Omega \to \hat{\mathbb{C}}$ mit Schranke $|f| \leq h$ ist die Zuordnung $f \mapsto \int_{\Omega} f$ folgenstetig: Aus punktweiser Konvergenz $f_n \to f$ folgt $\int_{\Omega} f_n \to \int_{\Omega} \widetilde{f}$. Dies ist eine starke und nützliche Stetigkeitseigenschaft des Integrals!
- Andernfalls ist Vorsicht geboten: Vertauschbarkeit gilt nicht immer! Wie zuvor gesehen können selbst einfache Beispiele fehlschlagen.

Ableitung von Parameterintegralen

Wir wollen differenzieren und die Ableitung unter das Integral ziehen:

$$F(x) = \int_Y f(x,y) \, \mathrm{d}y \quad \Longrightarrow \quad \frac{\partial}{\partial x_j} F(x) \stackrel{?}{=} \int_Y \frac{\partial}{\partial x_j} f(x,y) \, \mathrm{d}y$$

▲ Einfache Gegenbeispiele zeigen: Vertauschbarkeit gilt nicht immer! Sei $f: X \times Y \to \mathbb{C}$ mit $X \subset \mathbb{R}^p$ offen und $Y \subset \mathbb{R}^q$. Zudem existiere

$$F: X \to \mathbb{C}$$
 mit $F(x) := \int_{Y} f(x, y) \, \mathrm{d}y$.

Für die stetige Differenzierbarkeit von F haben wir folgende Kriterien:

- \bullet Sie gilt, wenn $\frac{\partial f}{\partial x_i}$ stetig ist und Y kompakt, oder allgemeiner,
- wenn $rac{\partial f}{\partial x_j}$ bezüglich x_j stetig ist und über Y majorisiert int'bar.

$$\frac{\partial}{\partial x_j} F(x) = \frac{\partial}{\partial x_j} \int_Y f(x, y) \, \mathrm{d}y \ \stackrel{!}{=} \ \int_Y \frac{\partial}{\partial x_j} f(x, y) \, \mathrm{d}y.$$

Ein **Weg** ist eine stetige Abbildung $\gamma:[a,b]\to\mathbb{R}^n$, hier meist $n\in\{2,3\}$. Er parametrisiert die **Kurve** $\Gamma=\{\,\gamma(t)\mid a\le t\le b\,\}\subset\mathbb{R}^n$ als Bildmenge. Der Weg heißt **regulär**, wenn γ injektiv ist und stetig differenzierbar mit $\gamma'(t)\ne 0$ für alle $t\in[a,b]$. Seine Bildmenge Γ heißt dann **glatte Kurve**. Am Punkt $s=\gamma(t)$ heftet das infinitesimale **Wegelement** $\mathrm{d} s=\gamma'(t)\,\mathrm{d} t$. Das **Kurvenintegral** eines Skalarfeldes $g:\mathbb{R}^n\supset\Gamma\to\mathbb{R}$ entlang γ ist

$$\int_{\Gamma} g |\mathrm{d}\Gamma| = \int_{s \in \Gamma} g(s) |\mathrm{d}s| := \int_{t=a}^{b} g(\gamma(t)) \cdot |\gamma'(t)| \,\mathrm{d}t.$$

Speziell für g=1 erhalten wir so die Länge $\mathrm{vol}_1(\Gamma)=\ell(\gamma)$ der Kurve Γ . Das **Arbeitsintegral** eines Vektorfeldes $f:\mathbb{R}^n\supset\Gamma\to\mathbb{R}^n$ entlang γ ist

$$\int_{\Gamma} f \cdot d\Gamma = \int_{s \in \Gamma} f(s) \cdot ds := \int_{t=a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt.$$

Das Arbeitsintegral wechselt das Vorzeichen bei Orientierungsumkehr.

© Diese Integrale sind invariant bei (positiver) Umparametrisierung und somit wohldefiniert für jede (orientierte) stückweise glatte Kurve Γ.

Flächenintegrale

Flächen $S\subset\mathbb{R}^3$ parametrisieren wir (stückweise) durch $\Phi:\mathbb{R}^2\supset D\to S$. An $s=\Phi(x,y)$ heftet das inf. Flächenelement $\mathrm{d} S=(\partial_x\Phi\times\partial_y\Phi)\,\mathrm{d}(x,y)$. Das **Flächenintegral** eines Skalarfeldes $g:\mathbb{R}^3\supset S\to\mathbb{R}$ entlang Φ ist

$$\int_{s \in S} g(s) |dS| := \int_{(x,y) \in D} g(\Phi(x,y)) \cdot \left| \partial_x \Phi(x,y) \times \partial_y \Phi(x,y) \right| d(x,y).$$

Speziell für g=1 erhalten wir den Inhalt $\mathrm{vol}_2(\Phi)=\mathrm{vol}_2(S)$ der Fläche S. Das **Flussintegral** eines Vektorfeldes $f:\mathbb{R}^3\supset S\to\mathbb{R}^3$ entlang Φ ist

$$\int_{s \in S} f(s) \cdot dS := \int_{(x,y) \in D} f(\Phi(x,y)) \cdot (\partial_x \Phi(x,y) \times \partial_y \Phi(x,y)) d(x,y).$$

Der Normalenvektor $\partial_x\Phi\times\partial_y\Phi$ im Punkt $\Phi(x,y)$ steht senkrecht auf S. Für das Flussintegral zählt daher nur der Anteil von f senkrecht zu S.

Das Flussintegral wechselt das Vorzeichen bei Orientierungsumkehr.

Diese Integrale sind invariant bei (positiver) Umparametrisierung, somit wohldefiniert für jede (orientierte) stückweise glatte Fläche S.

Der HDI als eindimensionaler Integralsatz

Unsere Integralsätze beruhen alle auf dem Hauptsatz der Differentialund Integralrechnung (HDI, Satz B1) und verallgemeinern diesen:

1dim: Jedes kompakte Intervall $[a,b]\subset\mathbb{R}$ hat als Rand $\partial[a,b]=\{a,b\}$. Der Startpunkt zählt negativ, n(a)=-1, der Zielpunkt positiv, n(b)=+1. Für jede stetig differenzierbare Funktion $f:[a,b]\to\mathbb{R}$ gilt dann

$$\int_{s\in[a,b]} f'(s) \,\mathrm{d}s \quad \stackrel{\scriptscriptstyle\mathsf{HDI}}{=} \quad \sum_{s\in\{a,b\}} f(s) \, n(s) \ = \ f(b) - f(a).$$

Allgemein: Sei $\Omega\subset\mathbb{R}^n$ offen und $f:\Omega\to\mathbb{R}$ stetig differenzierbar. Zudem sei $\Gamma\subset\Omega$ eine stückweise glatte und orientierte Kurve. Für das Arbeitsintegral von $f'=\operatorname{grad} f$ entlang Γ gilt dann:

$$\int_{s \in \Gamma} f'(s) \cdot ds \stackrel{\text{HDI}}{=} \sum_{s \in \partial \Gamma} f(s) \, n(s)$$

Die Orientierung teilt die Randpunkte $s\in\partial\Gamma$ in Start- und Zielpunkte; Startpunkte zählen negativ, n(s)=-1, Zielpunkte positiv, n(s)=+1. Ist die Kurve Γ geschlossen, also $\partial\Gamma=\emptyset$, so folgt $\oint_{s\in\Gamma}f'(s)\cdot\mathrm{d}s=0$.

Der Integralsatz von Green und Stokes

 \bigcirc Der Satz von Green in der Ebene bzw. von Stokes im Raum: Das Flächenintegral der Rotation $\mathrm{rot}(f)$ über die Fläche S ist gleich dem Arbeitsintegral von f entlang der Randkurve ∂S .

2dim: Sei $S \subset \mathbb{R}^2$ kompakt mit stückweise glatter Randkurve $\Gamma = \partial S$. Für jedes stetig differenzierbare Vektorfeld $f: \mathbb{R}^2 \supset S \to \mathbb{R}^2$ gilt dann

$$\int_{s \in S} \operatorname{rot} f(s) \cdot dS \stackrel{\text{Green}}{=} \int_{s \in \Gamma} f(s) \cdot ds.$$

3dim: Allgemeiner gilt dies für jede stückweise glatte, orientierte Fläche $S \subset \mathbb{R}^3$ und jedes stetig differenzierbare Vektorfeld $f: \mathbb{R}^3 \supset S \to \mathbb{R}^3$. Die Zerlegung $\mathrm{d}S = n(s) \, |\mathrm{d}S|$ ergibt die gleichwertige Formulierung

$$\int_{s \in S} \operatorname{rot} f(s) \cdot n(s) |dS| \stackrel{\text{Stokes}}{=} \int_{s \in \Gamma} f(s) \cdot ds.$$

Die stückweise glatte Randkurve $\Gamma=\partial S$ sei hierbei positiv orientiert. Liegt die Fläche S in einer Ebene, so reduziert sich Stokes zu Green.

 $D \subset \mathbb{R}^2$ heißt Kompaktum mit stückweise glattem Rand, wenn gilt:

- D ist kompakt und der Rand ∂D ist eine stückweise glatte Kurve.
- In jedem regulären Randpunkt $s \in \partial D$ liegt das Innere von D auf der einen Seite von ∂D und das Äußere auf der anderen Seite.

Beispiele: Rechtecke, Polygone, Kreisscheiben, Kreisringe, . . . Der Rand ist **positiv orientiert**, wenn D stets links von ∂D liegt.

Die Einheitstangente $t_{\partial D}:\partial D\to\mathbb{R}^2$ zeigt in Richtung der Orientierung, die Einheitsnormale $n_{\partial D}=\circlearrowleft t_{\partial D}:\partial D\to\mathbb{R}^2$ zeigt überall aus D heraus.

Sei $D \subset \mathbb{R}^2$ zusammenhängend kompakt mit stückweise glattem Rand. Ein parametrisiertes **Flächenstück** ist eine C^1 -Abbildung $\Phi: D \to \mathbb{R}^3$.

Senkrecht auf den Tangentenvektoren $\partial_x \Phi(x,y)$ und $\partial_y \Phi(x,y)$ steht der Normalenvektor $\partial_x \Phi(x,y) \times \partial_y \Phi(x,y)$ für $(x,y) \in D$.

Die Parametrisierung Φ heißt **regulär**, wenn sie injektiv ist und zudem $\partial_x\Phi(x,y)\times\partial_y\Phi(x,y)\neq 0$ in jedem Punkt $(x,y)\in D$ erfüllt.

Das Bild $S=\Phi(D)\subset\mathbb{R}^3$ heißt dann **glattes Flächenstück**. Der Rand $\partial S:=\Phi(\partial D)$ ist dann eine stückweise glatte Kurve.

Kompakta mit stückweise glattem Rand

Z204 Fazit

Hier ist $|\mathrm{d}S|=|\mathrm{d}\Phi|=|\partial_x\Phi\times\partial_y\Phi|\,\mathrm{d}(x,y)$ das skalare Flächenelement und $\mathrm{d}S=\mathrm{d}\Phi=(\partial_x\Phi\times\partial_y\Phi)\,\mathrm{d}(x,y)$ das vektorielle Flächenelement.

Die Zerlegung $\mathrm{d}S=n(s)\,|\mathrm{d}S|$ definiert die Einheitsnormale $n\colon S\to\mathbb{R}^3$. Diese definiert für jedes Flächenstück eine der beiden Orientierungen. Für stückweise glatte Flächen verlangen wir, dass die Orientierungen einzelner Flächenstücke am gemeinsamen Rand zusammenpassen.

© Zur numerischen Approximation können wir die Kurve / Fläche triangulieren und das Vektorfeld linearisieren / Taylor—entwickeln. Für Polygone 6017 oder Polyeder 325 und lineare Vektorfelder ist dies exakt.

 $V \subset \mathbb{R}^3$ heißt Kompaktum mit stückweise glattem Rand, wenn gilt:

- ullet V ist kompakt und der Rand ∂V ist eine stückweise glatte Fläche.
- In jedem regulären Punkt $s\in\partial V$ liegt das Innere von V auf der einen Seite von ∂V und das Äußere von V auf der anderen Seite.

Beispiele: Quader, Polyeder, Vollkugeln, Kugelschalen, Volltori, . . . Der Rand ∂V ist **positiv orientiert**, wenn $n_{\partial V}$ stets nach außen zeigt. Die Einheitsnormale ist der Einheitsvektor in Richtung $\mathrm{d}\Phi=n_{\partial V}|\mathrm{d}\Phi|$.

Der Integralsatz von Gauß

Z206

2dim: Sei $D\subset\mathbb{R}^2$ kompakt mit stückweise glatter Randkurve $\Gamma=\partial D$. Sei $n:\Gamma\to\mathbb{R}^2:s\mapsto n(s)$ die nach außen weisende Einheitsnormale. Für jedes stetig differenzierbare Vektorfeld $f:\mathbb{R}^2\supset D\to\mathbb{R}^2$ gilt dann

$$\int_{(x,y)\in D} \operatorname{div} f(x,y) \operatorname{d}(x,y) \stackrel{\text{\tiny GamB}}{=} \int_{s\in \Gamma} f(s) \boldsymbol{\cdot} n(s) \left| \operatorname{d} s \right| = \int_{s\in \Gamma} f(s) \times \operatorname{d} s.$$

3dim: Sei $V\subset\mathbb{R}^3$ kompakt mit stückweise glatter Randfläche $S=\partial V$. Sei $n:S\to\mathbb{R}^3:s\mapsto n(s)$ die nach außen weisende Einheitsnormale. Für jedes stetig differenzierbare Vektorfeld $f:\mathbb{R}^3\supset V\to\mathbb{R}^3$ gilt dann

$$\int_{(x,y,z)\in V} \operatorname{div} f(x,y,z) \, \mathrm{d}(x,y,z) \stackrel{\text{\tiny GamB}}{=} \int_{s\in S} f(s) \cdot n(s) \, |\mathrm{d}S| = \int_{s\in S} f(s) \cdot \mathrm{d}S.$$

Gleichwertige Schreibweise mit $n(s) |ds| = \lozenge ds$ bzw. dS = n(s) |dS|.

Zusammenfassung und Rückblick

Z20

Diese Integralsätze sind gut und schön! Geht es auch einfacher?
Nein, denn Sie sollen nicht nur fühlen, sondern auch rechnen können!
Zur präzisen Formulierung und konkreten Berechnung benötigen Sie
daher alle Werkzeuge für Kurven-, Flächen- und Volumenintegrale.

Hierzu brauchen Sie solide Grundlagen und effiziente Methoden: Definitionen & Sätze, Beispiele & Rechentricks... sowie Übung!

Nochmal die Lernziele laut Modulhandbuch:

- Die Studierenden verfügen über grundlegende Kenntnisse zur Integralrechnung für Funktionen mehrerer Veränderlicher. [...]
- Sie sind in der Lage, die behandelten Methoden selbstständig, sicher, kritisch, korrekt und kreativ anzuwenden.
- Sie besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
- Sie können sich mit Spezialist:innen aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.

Sei $\Omega \subset \mathbb{C}$ offen. Der Weg $\gamma : [a,b] \to \Omega$ sei stückweise stetig diff'bar. Das **komplexe Wegintegral** einer stetigen Funktion $f: \mathbb{C} \supset \Omega \to \mathbb{C}$ ist

$$\int_{\gamma} f(z) \, \mathrm{d}z := \int_{t=a}^b f(\gamma(t)) \, \gamma'(t) \, \mathrm{d}t. \quad \mathsf{Merkregel:} \, z = \gamma(t), \, \, \mathrm{d}z = \gamma'(t) \, \mathrm{d}t$$

Eine komplexe Funktion $f=u+\mathrm{i} v:\mathbb{C}\supset\Omega\to\mathbb{C}$ heißt holomorph, wenn sie auf ganz Ω komplex differenzierbar ist und $f': \Omega \to \mathbb{C}$ stetig.

- \Leftrightarrow Cauchy–Riemann–Gleichungen $\partial_x u = \partial_y v$ und $\partial_x v = -\partial_y u$.
- \Leftrightarrow Das reelle Vektorfeld $\overline{f} = (u, -v) : \mathbb{R}^2 \supset \Omega \to \mathbb{R}^2$ erfüllt $\operatorname{div} = \operatorname{rot} = 0$.
- \Leftrightarrow Auf jeder Kreisscheibe $B(z_0, \rho) \subset \Omega$ gleicht f einer **Potenzreihe**:

$$f(z) = \sum_{k=0}^\infty a_k (z-z_0)^k \quad \text{mit} \quad a_k := \frac{1}{2\pi \mathrm{i}} \int_{\partial B(z_0,r)} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} \,\mathrm{d}\zeta$$

 \Leftrightarrow Auf jedem Kreisring $K(z_0,\sigma,\rho)\subset\Omega$ gleicht f einer Laurent–Reihe:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k \quad \text{mit} \quad a_k := \frac{1}{2\pi \mathrm{i}} \int_{\partial B(z_0,r)} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} \,\mathrm{d}\zeta$$

Der Koeffizient $\operatorname{res}_{z_0}(f) := a_{-1}$ heißt das $\operatorname{\bf Residuum}$ vor

Residuenkalkül für reelle Integrale

(1) Sei R(x,y) = P(x,y)/Q(x,y) eine rationale Funktion mit Nenner $Q(\cos t,\sin t) \neq 0$ für alle $t \in \mathbb{R}$. Dann ergibt die Weierstraß–Substitution

$$f(z) := \frac{1}{iz} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right)$$

eine rationale Funktion in z ohne Polstellen auf $\partial B(0,1)$, und es gilt

$$\int_{t=0}^{2\pi} R(\cos t, \sin t) dt = \int_{\partial B(0,1)} f(z) dz = 2\pi i \sum_{s \in B(0,1)} \operatorname*{res}_{s}(f).$$

(2) Sei f(z) = p(z)/q(z) eine rationale Funktion; reelle Polstellen $z \in \mathbb{R}$ seien höchstens einfach. Für deg(q) > deg(p) + 2 und u > 0 gilt dann:

$$\int_{-\infty}^{+\infty} \! f(x) \, \mathrm{e}^{\mathrm{i} u x} \, \mathrm{d} x = 2 \pi \mathrm{i} \! \sum_{\mathrm{Im}(s) > 0} \! \underset{z = s}{\mathrm{res}} \! \left[f(z) \, \mathrm{e}^{\mathrm{i} u z} \right] + \pi \mathrm{i} \! \sum_{\mathrm{Im}(s) = 0} \! \underset{z = s}{\mathrm{res}} \! \left[f(z) \, \mathrm{e}^{\mathrm{i} u z} \right]$$

Diese Gleichung gilt auch noch im Falle deg(q) > deg(p) + 1 und u > 0.

Physikalische Anwendungen der Integralsätze

Strömungslehre: Die Massenbilanz als Integralgleichung:

$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_K \varrho \, \mathrm{d}K + \oiint_{S=\partial K} (\varrho \vec{v} \cdot \vec{n}) \, \mathrm{d}S = 0$$

Hieraus erhalten wir dank Gauß die Kontinuitätsgleichung:

$$\frac{\partial \varrho}{\partial t} + \operatorname{div}(\varrho \vec{v}) = 0$$
, bei $\varrho = \operatorname{const}$ also $\operatorname{div} \vec{v} = 0$

Wärmeleitung: Die Wärmebilanz als Integralgleichung:

$$\iiint_K q(t,x) \, \mathrm{d}x = \frac{\mathrm{d}}{\mathrm{d}t} \iiint_K u(t,x) \, \mathrm{d}x + \oiint_{S=\partial K} \vec{f}(t,x) \cdot \vec{n} \, \mathrm{d}S$$

Hieraus erhalten wir Fouriers berühmte Wärmeleitungsgleichung:

$$\frac{\partial u}{\partial t} - \kappa \, \Delta u = q \quad \text{mit} \quad \Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$$

Exakte und konservative Vektorfelder

Ein Vektorfeld $f: U \to \mathbb{R}^n$ heißt **exakt**, oder **Gradientenfeld**, wenn es ein Potential erlaubt, also ein Skalarfeld $F:U\to\mathbb{R}$ mit F'=f existiert.

$$f = F' = \operatorname{grad} F = (\partial_1 F, \dots, \partial_n F) = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right).$$

 \bigcirc Für jeden stückweise stetig diff'baren Weg $\gamma: [a,b] \to U$ gilt dann:

$$\int_{\gamma} f \cdot \mathrm{d}\gamma = \int_{a}^{b} F'(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t = \int_{a}^{b} \frac{\mathrm{d}F(\gamma(t))}{\mathrm{d}t} \, \mathrm{d}t = F(\gamma(b)) - F(\gamma(a))$$

Ist der Weg γ geschlossen, $\gamma(a) = \gamma(b)$, so folgt demnach $\oint_{\gamma} f \cdot d\gamma = 0$.

Ein Vektorfeld $f: U \to \mathbb{R}^n$ heißt konservativ, oder global wirbelfrei, wenn $\oint_{\gamma} f \cdot d\gamma = 0$ für jeden geschlossenen Weg $\gamma : [a,b] \to U$ gilt.

Das garantiert: Arbeitsintegrale hängen nur von Start und Ziel ab.

Diese beiden Begriffe erweisen sich als äquivalent (Hauptsatz H2A):

- (1) Besitzt das Vektorfeld $f:U\to\mathbb{R}^n$ ein Potential, so ist f konservativ.
- (2) Ist umgekehrt f konservativ, so ist $F(x) = \int_{s=p}^{x} f(s) \cdot ds$ ein Potential.
- \bigcirc Der Wert F(x) ist wohldefiniert, unabhängig vom gewählten Weg γ .

Wir nutzen den Satz von Green / Gauß in der komplexen Ebene $\mathbb{C} = \mathbb{R}^2$. Für holomorphe Funktionen erhalten wir so den Residuensatz F4D:

Sei $\Omega \subset \mathbb{C}$ offen und $f: \Omega \setminus S \to \mathbb{C}$ holomorph auf Ω bis auf eine Menge S isolierter Singularitäten. Sei $D\subset \Omega$ kompakt mit stückweise glattem Rand, wobei $\partial D \cap S = \emptyset$. Dann gilt

$$\int_{\partial D} f(z) dz = 2\pi i \sum_{s \in \mathring{D}} \operatorname{res}_{s}(f).$$

$$\mathop{\mathrm{res}}_s(f) := \frac{1}{2\pi \mathrm{i}} \int_{\partial B(s,r)} f(z) \, \mathrm{d}z \quad \text{für } 0 < r < \rho.$$

Ist s eine höchstens n-fache Polstelle von f, so gilt

$$\mathop{\mathrm{res}}_s(f) = \lim_{z \to s} \; \frac{1}{(n-1)!} \Big(\frac{\mathrm{d}}{\mathrm{d}z}\Big)^{n-1} \Big[(z-s)^n f(z) \Big].$$

Für f = p/q mit einfacher Polstelle s gilt $res_s(p/q) = p(s)/q'(s)$.

O Damit lassen sich Residuen in Polstellen meist leicht berechnen.

Residuenkalkül für reelle Integrale

(3) Sei f(z) = p(z)/q(z) rational mit $p, q \in \mathbb{C}[z]$ und $\deg q \ge \deg p + 2$, aber ohne Polstellen in $\mathbb{R}_{\geq 0}$, gekürzt also $q(x) \neq 0$ für alle $x \in \mathbb{R}_{\geq 0}$. Dann gelten folgende Formeln für Integrale über die reelle Halbachse:

$$\begin{split} &\int_{x=0}^{\infty} f(x) \, \mathrm{d}x &= -\sum_{s \neq 0} \underset{z=s}{\mathrm{res}} \Big[f(z) \ln(z) \Big] \\ &\int_{x=0}^{\infty} f(x) \ln(x) \, \mathrm{d}x = -\frac{1}{2} \sum_{s \neq 0} \underset{z=s}{\mathrm{res}} \Big[f(z) \ln(z)^2 \Big] - \pi \mathrm{i} \int_{x=0}^{\infty} f(x) \, \mathrm{d}x \\ &\int_{x=0}^{\infty} f(x) \, x^{\alpha} \, \mathrm{d}x &= \frac{2\pi \mathrm{i}}{1 - \mathrm{e}^{2\pi \mathrm{i}\alpha}} \sum_{s \neq 0} \underset{z=s}{\mathrm{res}} \Big[f(z) \, z^{\alpha} \Big] \quad \mathrm{für} \, 0 < \alpha < 1 \end{split}$$

Hierbei nutzen wir für jede komplexe Zahl $z = r e^{i\varphi}$ mit $0 < r < \infty$ und $0 \le \varphi < 2\pi$ ihren komplexen Logarithmus mit $\ln z := \ln r + \mathrm{i} \varphi$. Auf $\mathbb{C} \smallsetminus \mathbb{R}_{\geq 0}$ entspricht dies dem Nebenzweig $\ln = \ln_\pi$ aus Satz F2M. Für $\alpha \in \mathbb{R}$ setzen wir $z^{\alpha} := e^{\alpha \ln z}$. Auf $\mathbb{R}_{>0}$ sind das die üblichen reellen Definitionen; ihre komplexen Fortsetzungen sind unstetig quer zu $\mathbb{R}_{>0}$.

Physikalische Anwendungen der Integralsätze

Elektrodynamik: Die Maxwell-Gleichungen als Integralgleichungen:

 $\oint_{\partial V} \vec{E} \cdot \vec{n} \, dS = \iiint_{V} 4\pi \varrho \, dV$ Coulomb Ladungsgesetz $\oint_{\partial S} \vec{E} \cdot d\vec{s} = -\frac{1}{c} \iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot \vec{n} \, dS$ Faraday Induktionsgesetz

 $\oint \int_{\partial V} \vec{B} \cdot \vec{n} \, dS = 0$ Gauß Quellenfreiheit

 $\oint_{\partial S} \vec{B} \cdot d\vec{s} = \frac{1}{c} \iint_{S} \left(4\pi \vec{J} + \frac{\partial \vec{E}}{\partial t} \right) \cdot \vec{n} \, dS$ Ampère Durchflutungsgesetz

Dank Gauß und Stokes erhalten wir hieraus Differentialgleichungen:

$$\nabla \cdot \vec{E} = 4\pi \varrho, \qquad \nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0,$$

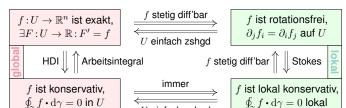
$$\nabla \cdot \vec{B} = 0, \qquad \nabla \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{J}.$$

Hieraus folgen insbesondere Ladungserhaltung und Wellengleichung.

Konstruktion von Potentialen

Lösung des Potentialproblems bei einfachem Zusammenhang (H2E): Unser Gebiet $U\subset\mathbb{R}^n$ sei einfach zusammenhängend, z.B. konvex oder sternförmig zu p. Ein C^1 -Vektorfeld $f:U\to\mathbb{R}^n$ erlaubt genau dann ein Potential $F: U \to \mathbb{R}$, wenn f rotationsfrei ist, also $\partial_i f_i = \partial_i f_j$ erfüllt. In diesem Fall erhalten wir ein Potential durch das Arbeitsintegral

$$F(x) = \int_{s=p}^x f(s) \cdot \mathrm{d}s = \int_{t=a}^b f(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t \quad \mathrm{mit} \quad \begin{cases} \gamma : [a,b] \to U, \\ \gamma(a) = p, \gamma(b) = x. \end{cases}$$



U einfach zshgd

Aufgabe: Unter welchen Voraussetzungen gilt...?

(1)
$$\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$$

(2)
$$\int_X \int_Y f(x,y) \, \mathrm{d}y \, \mathrm{d}x = \int_Y \int_X f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

(3)
$$\int_{Y} f(y) dy = \int_{X} f(\Phi(x)) |\det \Phi'(x)| dx$$

(4)
$$\int_{\Omega} \sum_{k=0}^{n} f_k(x) dx = \sum_{k=0}^{n} \int_{\Omega} f_k(x) dx$$

(5)
$$\int_{\Omega} \sum_{k=0}^{\infty} f_k(x) dx = \sum_{k=0}^{\infty} \int_{\Omega} f_k(x) dx$$

(6)
$$\int_{\Omega} \lim_{k \to \infty} f_k(x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{\Omega} f_k(x) \, \mathrm{d}x$$

(7)
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{Y} f(x, y) \, \mathrm{d}y = \int_{Y} \frac{\partial}{\partial x} f(x, y) \, \mathrm{d}y$$

Zusammenfassung und Verständnisfragen

Aufgabe: Was ist ein Skalarfeld g? ein Vektorfeld f? Unter welchen Voraussetzungen gilt...?

(1)
$$\partial_i \partial_j g = \partial_j \partial_i g$$

(2)
$$\operatorname{rot}\operatorname{grad} g = 0$$

(3)
$$\operatorname{div}\operatorname{rot} f = 0$$

(4)
$$\int_{s \in \Gamma} \operatorname{grad} g(s) \cdot ds = \sum_{s \in \partial \Gamma} g(s) \, n(s)$$

(5)
$$\int_{s \in S} \operatorname{rot} f(s) \cdot dS = \int_{s \in \partial S} f(s) \cdot ds$$

(6)
$$\int_{v \in V} \operatorname{div} f(v) \, dV = \int_{s \in \partial V} f(s) \cdot dS$$

Erklären Sie Bedeutung, Definition und Funktionsweise dieser Formeln. Welche physikalischen und mathematischen Anwendungen kennen Sie?

Zusammenfassung und Verständnisfragen

Aufgabe: Begründen Sie durch ein Ergebnis Ihrer Vorlesung oder widerlegen Sie durch ein Gegenbeispiel aus Ihrem Fundus:

- (1) Jeder stetige Weg $\gamma:[a,b]\to\mathbb{R}^n$ hat endliche Länge.
- (2) Jeder stetig diff'bare Weg $\gamma: [a,b] \to \mathbb{R}^n$ hat endliche Länge.
- (3) Für $f: \mathbb{R}^2 \smallsetminus \{0\} \to \mathbb{R}^2$ mit $\operatorname{div}(f) = 0$ gilt $\int_{\partial D} f(s) \times \mathrm{d}s = 0$.
- (4) Für $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$ mit $\operatorname{rot}(f) = 0$ gilt $\int_{\partial D} f(s) \cdot ds = 0$.
- (5) Für $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ mit $\operatorname{rot}(f) = 0$ gilt $\int_{\partial D} f(s) \cdot ds = 0$.
- (6) Für $f: \mathbb{R}^3 \setminus A \to \mathbb{R}^3$ mit $\operatorname{rot}(f) = 0$ gilt $\int_{\partial D} f(s) \cdot ds = 0$.
- (7) Für $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ mit $\operatorname{div}(f) = 0$ gilt $\int_{\partial K} f(s) \cdot dS = 0$.

Hierbei sei $A\subset\mathbb{R}^3$ eine Gerade, etwa die $z ext{-Achse},$

- D eine Kreisscheibe um 0 sowie K eine Kugel um 0.
- (8) Für $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$ mit $f(x) = \text{const} \cdot x/|x|^n$ gilt div(f) = 0.
- (9) Für $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$ mit $\operatorname{div}(f) = 0$ gilt $f(x) = \operatorname{const} \cdot x/|x|^n$.

Zusammenfassung und Verständnisfragen

Aufgabe: Begründen Sie durch ein Ergebnis Ihrer Vorlesung oder widerlegen Sie durch ein Gegenbeispiel aus Ihrem Fundus:

- (1) Jedes Vektorfeld $f:\mathbb{R}^1 \to \mathbb{R}^1$ hat ein Potential.
- (2) Jedes Vektorfeld $f: \mathbb{R}^2 \to \mathbb{R}^2$ hat ein Potential.
- (3) Jedes Vektorfeld $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit rot(f) = 0 hat ein Potential.
- (4) Jedes Vektorfeld $f: \mathbb{R}^n \to \mathbb{R}^n$ mit $\partial_i f_i = \partial_i f_i$ hat ein Potential.
- (5) Jedes Vektorfeld $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$ mit rot(f) = 0 hat ein Potential.
- (6) Jedes Vektorfeld $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ mit rot(f) = 0 hat ein Potential.
- (7) Jedes Vektorfeld $f: \mathbb{R}^3 \smallsetminus A \to \mathbb{R}^3$ mit $\mathrm{rot}(f) = 0$ hat ein Potential. Hierbei sei $A \subset \mathbb{R}^3$ eine Gerade, etwa die z-Achse.
- (8) Jedes Feld $f: \mathbb{R}^n \smallsetminus \{0\} \to \mathbb{R}^n: f(x) = g(|x|) \cdot x/|x|$ hat ein Potential.
- (9) Wikipedia zu Rotation eines Vektorfeldes (aufgerufen 11.11.2021): "Die Divergenz der Rotation eines Vektorfeldes ist gleich null. Umgekehrt ist in einfach zusammenhängenden Gebieten [im \mathbb{R}^3] ein Feld, dessen Divergenz gleich null ist, die Rotation eines anderen Vektorfeldes."

Zusammenfassung und Verständnisfragen

(1) Voraussetzungen des Hauptsatzes der Differential- und Integralrechnung [\$\overline{123}\$], kurz HDI: Die Funktion $F:[a,b] \to \mathbb{C}$ sei stetig differenzierbar mit Ableitung f=F'. (Es genügt F stetig und stückweise stetig differenzierbar [\$\overline{2213}\$], oder noch allgemeiner F absolut stetig [\$\overline{2214}\$].)

(2) Gegenbeispiele ($\overline{\texttt{C414}}$): Vertauschbarkeit gilt nicht immer! Voraussetzungen des Satzes von Fubini ($\overline{\texttt{C121}}$): $f: X \times Y \to [0, \infty]$ sei messbar oder $f: X \times Y \to \mathbb{C}$ absolut integrierbar.

(3) Voraussetzungen des Transformationssatzes $\fbox{ 2209}$: Die Mengen $X,Y\subset \Bbb R^n$ seien messbar, $f:Y\to [0,\infty]$ messbar oder $f:Y\to \Bbb C$ absolut integrierbar, $\Phi:X\to Y$ stetig differenzierbar und bijektiv (zumindest injektiv und surjektiv bis auf Ausnahmemengen vom Volumen Null).

(4) Das Integral ist linear! Die Behauptung gilt unter den üblichen Vorsichtsmaßnahmen: $f_k:\Omega\to[0,\infty]$ messbar oder $f_k:\Omega\to\mathbb{C}$ absolut integrierbar.

(5) Gegenbeispiele $\overline{ \mathbb{D} 101}$: Für Reihen, also unendliche Summen, gilt Vertauschung nicht immer! Hinreichend ist $f_k:\Omega \to [0,\infty]$ messbar oder L^1 -Konvergenz $\sum_{k=0}^\infty \int_\Omega |f_k| \le \infty$. $\overline{ \mathbb{D} 106}$

(6) Für Grenzwerte und Integrale gilt Vertauschung nicht immer! $\boxed{\texttt{D201}}$ Voraussetzungen für den Satz der majorisierten Konvergenz $\boxed{\texttt{D209}}$: Hinreichend ist punktweise Konvergenz $f_k \to f$ (fast überall) und eine absolut integrierbare Majorante g mit $|f_k| \leq g$ (fast überall) für alle k.

(7) Gegenbeispiele $\boxed{0409}$: Leider kann man nicht immer die Ableitung unter das Integral ziehen! Hinreichend ist insb. Y kompakt und $f: X \times Y \to \mathbb{C}$ stetig und stetig nach x differenzierbar. Allgemein wie bei der majorisierten Konvergenz $\boxed{0309}$: Für jedes x ist $y \mapsto f(x,y)$ integrierbar über y, für fast jedes y ist $x \mapsto f(x,y)$ stetig differenzierbar nach x, und zudem existiert eine integrierbare Majorante g(y), das heißt, $|(\partial f_y/\partial x_j)(x,y)| \leq g(y)$ für alle x und fast alle y.

Zusammenfassung und Verständnisfragen

Z220 Fazit

Sei $\Omega\subset\mathbb{R}^3$ ein Gebiet, also eine offene zusammenhängende Teilmenge. Hierauf betrachten wir ein Skalarfeld g, also eine stetige Abbildung $g:\Omega\to\mathbb{R}$, sowie ein Vektorfeld f, also eine stetige Abbildung $f:\Omega\to\mathbb{R}^3$. Sind diese zudem stetig differenzierbar, so definieren wir wie üblich die Ableitungen grad, rot, div, siehe zum Beispiel die Wiederholung zu Beginn von Kapitel H.

Aussage (1) gilt für alle zweimal stetig differenzierbaren Funktionen $g:\Omega\to\mathbb{R}$: Das ist der Satz von Schwarz (D4A). Damit rechnet man die angegebenen Identitäten (2) und (3) leicht nach. $\boxplus 100$

Die Gleichungen (4–6) sind unsere Integralsätze. Hierzu seien f und g stetig differenzierbar. (Etwas weniger genügt, zum Beispiel Lipschitz–stetig und somit fast überall differenzierbar.)

Für den HDI (4) sei $\Gamma \subset \Omega \subset \mathbb{R}^3$ eine stückweise glatte Kurve vom Startpunkt p zum Zielpunkt q mit vektoriellem Wegelement ds. Hierzu sei Γ orientiert; genau wie beim eindimensionalen HDI werten wir Startpunkte negativ, n(p)=-1, und Zielpunkte positiv, n(q)=+1. Allgemein kann eine solche Kurve Γ mehrere Komponenten und mehrere Randpunkte $s\in\partial\Gamma$ haben.

Für Stokes (5) sei $S \subset \Omega \subset \mathbb{R}^3$ eine orientierte, stückweise glatte Fläche mit vektoriellem Flächenelement $dS = n \, |dS|$, also Einheitsnormale $n : S \to \mathbb{R}^3$ und skalarem Flächenelement |dS|. Die Randkurve $\Gamma = \partial S$ ist dann ebenfalls stückweise glatt und wird positiv orientiert gemäß der Rechte-Hand-Regel. (Für ebene Flächen $S \subset \mathbb{R}^2$ entspricht der Satz von Stokes im Raum \mathbb{R}^3 dem Satz von Green in der Ebene \mathbb{R}^2 , siehe Kapitel E. Beide sind äquivalent.)

Für Gauß (6) schließlich sei $V\subset\Omega$ ein Kompaktum mit stückweise glatter Randfläche ∂V und dem üblichen euklidischen Volumenelement $\mathrm{d}V=\mathrm{d}(x_1,x_2,x_3)$. Die Randfläche $S=\partial V$ wird orientiert durch die nach außen weisende Einheitsnormale $n:S\to\mathbb{R}^3$, so dass $\mathrm{d}S=n\,|\mathrm{d}S|$.

Zusammenfassung und Verständnisfragen

Z222 Fazit

Aussage (1) gilt nicht. Die Kochkurve ist ein beliebtes Gegenbeispiel. E104 Aussage (2) gilt dank der Integralformel $\ell(\gamma) = \int_a^b |\gamma'(t)| \, \mathrm{d}t$ für die Weglänge. E107

Aussage (3) gilt nicht immer! Gegenbeispiel ist das Quellenfeld $f(x,y):=(x,y)/(x^2+y^2)$. E317 Hier gilt $\operatorname{div}(f)=0$ auf ganz $\mathbb{R}^2\smallsetminus\{0\}$ und dennoch $\int_{\partial D}f(s)\times\mathrm{d}s=2\pi$.

Aussage (4) gilt nicht immer! Gegenbeispiel ist das Wirbelfeld $f(x,y):=(-y,x)/(x^2+y^2)$. E317 Hier gilt $\operatorname{rot}(f)=0$ auf ganz $\mathbb{R}^2\smallsetminus\{0\}$ und dennoch $\int_{\partial D}f(s)\cdot\mathrm{d}s=2\pi$.

Aussage (5) gilt dank Stokes und der Geometrie des Raumes: Wir haben $\partial D = \partial S$ für eine Hemisphäre $S \subset \mathbb{R}^3 \smallsetminus \{0\}$, also $\int_{\partial D} f(s) \cdot \mathrm{d}s = \int_{\partial S} f(s) \cdot \mathrm{d}s = \int_S \mathrm{rot}(f) \cdot \mathrm{d}S = 0$. Allgemein: Das Gebiet $\mathbb{R}^3 \smallsetminus \{0\}$ ist zwar nicht konvex oder sternförmig, aber dennoch einfach zusammenhängend! Das bedeutet, jede geschlossene Kurve Γ in $\mathbb{R}^3 \smallsetminus \{0\}$ ist zusammenziehbar, somit verschwindet längs Γ das Arbeitsintegral jedes rotationsfreien Vektorfeldes.

Aussage (6) gilt nicht immer! Gegenbeispiel ist das Magnetfeld eines stromdurchflossenen Leiters A, etwa das Wirbelfeld $f(x,y,z)=(-y,x,0)/(x^2+y^2)$ um die z-Achse A. H154 Hier gilt $\operatorname{rot}(f)=0$ auf ganz $\mathbb{R}^3 \smallsetminus A$ und dennoch $\int_{\partial D} f(s) \cdot \mathrm{d} s = 2\pi$.

Aussage (7) gilt nicht immer! Gegenbeispiel ist das Feld einer im Ursprung konzentrierten Masse oder Ladung, also das Quellenfeld $f(x,y,z)=(x,y,z)/(x^2+y^2+z^2)^{3/2}$. [H32] Hier gilt $\operatorname{div}(f)=0$ auf ganz $\mathbb{R}^3 \smallsetminus \{0\}$ und dennoch $\int_{\partial K} f(s) \cdot \mathrm{d}S = 4\pi$.

Aussage (8) rechnet man leicht nach. $\fbox{1222}$ Die Umkehrung (9) ist falsch, zum Beispiel erfüllt jedes konstante Vektorfeld f auch $\mathrm{div}(f)=0$. Wenn wir jedoch verlangen, dass f divergenzfrei und zudem radialsymmetrisch ist, so folgt tatsächlich $f(x)=\mathrm{const}\cdot x/|x|^n$, siehe Satz H2F.

Zusammenfassung und Verständnisfragen

Faz

Aussage (1) gilt immer: Dank HDI ist $F(x)=\int_{t=0}^x f(t)\,\mathrm{d}t$ eine Stammfunktion, also F'=f. Aussage (2) gilt nicht immer: Notwendiges Kriterium ist $\mathrm{rot}(f)=0$. Beispiel: Das Vektorfeld $f:\mathbb{R}^2\to\mathbb{R}^2$ mit f(x,y)=(-y,x) erfüllt $\mathrm{rot}(f)=2\neq 0$. Demnach erlaubt f kein Potential, das heißt, es gibt keine Funktion $F:\mathbb{R}^2\to\mathbb{R}$ mit grad F=f. Unnötig danach zu suchen!

Aussagen (3) und (4) gelten immer: Auf einfach zusammenhängenden Gebieten (wie \mathbb{R}^n) ist für C^1 -Vektorfelder $f:\mathbb{R}^n \to \mathbb{R}^n$ das notwendige Kriterium $\mathrm{rot}(f)=0$ auch hinreichend. F215

Aussage (5) gilt nicht immer. Unser zentrales Gegenbeispiel ist das Wirbelfeld. [H205] Hier gilt $\operatorname{rot}(f)=0$ auf ganz $\mathbb{R}^2\smallsetminus\{0\}$, aber dennoch $\oint_{\partial B(0,r)}f(s)\cdot\mathrm{d}s=2\pi.$

Aussage (6) gilt immer, denn im Gegensatz zur punktierten Ebene $\mathbb{R}^2 \setminus \{0\}$ ist der punktierte Raum $\mathbb{R}^3 \setminus \{0\}$ einfach zusammenhängend. Hier ist $\mathrm{rot}(f) = 0$ hinreichend. H215

Aussage (7) gilt nicht immer. Gegenbeispiel ist das Magnetfeld eines stromdurchflossenen Leiters A, etwa das Wirbelfeld $f(x,y,z)=(-y,x,0)/(x^2+y^2)$ um die z-Achse A. Hier gilt $\operatorname{rot}(f)=0$ auf ganz $\mathbb{R}^3 \smallsetminus A$, aber dennoch $\oint_{\partial D} f(s) \cdot \mathrm{d} s = 2\pi$. [H154]

(8) Zu $f(x)=g(|x|)\cdot x/|x|$ mit g stetig finden wir explizit das Potential F(x)=G(|x|) mit $G(r)=\int_1^r g(\rho)\,\mathrm{d}\rho$: Leiten Sie es geduldig ab, Sie finden grad F=f. Somit rot f=0. H104

(9) Ja. \boxdot Vein! Prominentes Gegenbeispiel: Das Gebiet $U=\mathbb{R}^3 \smallsetminus \{0\}$ ist einfach zshgd. \ddddot Das (Gravitations-)Vektorfeld $f:U\to\mathbb{R}^3:x\mapsto x/|x|^3$ erfüllt $\mathrm{div}(f)=0$ auf ganz U. \ddddot Für jede Sphäre S um 0 gilt $\int_S f \cdot \mathrm{d}S = 4\pi > 0$. \ddddot Somit ist $f=\mathrm{rot}(g)$ unmöglich! \ddddot Dank $\partial S=\emptyset$ und dem Satz von Stokes (G3E) gilt nämlich $\int_S \mathrm{rot}(g) \cdot \mathrm{d}S = \int_{\partial S} g \cdot \mathrm{d}s = 0$.

Für Funktionen $f,g:[a,b]\to\mathbb{C}$ definieren wir ihr **Skalarprodukt** durch

$$L^p \times L^q \to \mathbb{C} \, : \, (f,g) \mapsto \langle \, f \mid g \, \rangle := \frac{1}{b-a} \int_{t=a}^b \overline{f(t)} \, g(t) \, \mathrm{d}t.$$

Der Integrand $\overline{f}g$ sei absolut integrierbar, etwa $f\in L^\infty$ beschränkt und $g\in L^1$ absolut integrierbar, allgemein $f\in L^p, g\in L^q$ mit 1/p+1/q=1. Bei Periode T wählen wir ein beliebiges Intervall der Länge b-a=T. Dieses Periodenintegral ist invariant bei Verschieben oder Vervielfachen. Sei $\omega=2\pi/T$. Als **Basisfunktion** $e_k:\mathbb{R}\to\mathbb{C}$ mit $k\in\mathbb{Z}$ definieren wir

$$e_k(t) := e^{ik\omega t} = \cos(k\omega t) + i\sin(k\omega t).$$

Für diese Funktionen gelten die Orthonormalitätsrelationen

$$\langle \, e_k \mid e_\ell \, \rangle = egin{cases} 0 & ext{für } k
eq \ell : & ext{paarweise Orthogonalität,} \ 1 & ext{für } k = \ell : & ext{Normierung auf Länge } 1. \end{cases}$$

Ähnliche, etwas kompliziertere Formeln gelten für $\cos(k\omega t)$ und $\sin(k\omega t)$. \odot Meist gehen wir mit $x=\omega t$ zur Periode $T=2\pi$ und $\omega=1$ über.

Fourier-Koeffizienten und Fourier-Reihe

Allgemein: Ist $f:\mathbb{R} \to \mathbb{C}$ periodisch und über [0,T] integrierbar, dann definieren wir durch obige Formeln die **Fourier–Koeffizienten** von f. Diese Koeffizienten von f fassen wir zur **Fourier–Reihe** zusammen:

$$f(t) \sim \sum_{k=-\infty}^{\infty} c_k e^{ik\omega t} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t).$$

igwedge Diese Reihe ist zunächst nur eine symbolische Schreibweise! Gelesen: "Die Funktion f hat die Fourier-Koeffizienten c_k bzw. a_k, b_k ." Aufgrund der Euler-Formel $\mathrm{e}^{\mathrm{i}k\omega t} = \cos(k\omega t) + \mathrm{i}\sin(k\omega t)$ gilt dabei

$$a_k = c_k + c_{-k}, \quad b_k = i(c_k - c_{-k}),$$

 $c_k = \frac{a_k - ib_k}{2}, \quad c_{-k} = \frac{a_k + ib_k}{2}.$

Ist f reell, also $f: \mathbb{R} \to \mathbb{R}$, so gilt $a_k, b_k \in \mathbb{R}$, also $c_{-k} = \overline{c_k}$. Ist f gerade, so liefert f eine Cosinusreihe, $b_k = 0$, $c_{-k} = c_k$. Ist f ungerade, so liefert f eine Sinusreihe, $a_k = 0$, $c_{-k} = -c_k$.

Vier wichtige Beispiele

Für unsere Sägezahnfunktion 1205 finden wir:

$$f(x) = 2 \left[\sin x - \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x - \frac{1}{4} \sin 4x + \dots \right]$$

Für die Parabelfunktion $F(x) = \int_{t=0}^x f(t) \, \mathrm{d}t$ folgt $\fbox{\cite{1321}}$:

$$F(x) = \frac{\pi^2}{6} - 2\left[\cos x - \frac{1}{2^2}\cos 2x + \frac{1}{3^2}\cos 3x - \frac{1}{4^2}\cos 4x + \dots\right]$$

Für unsere Rechteckfunktion [1225] finden wir:

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \frac{1}{7} \sin 7x + \dots \right]$$

Für die Dreieckfunktion $F(x) = \int_{t=0}^{x} f(t) dt$ folgt 1309:

$$F(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \frac{1}{7^2} \cos 7x + \dots \right]$$

- \bigcirc Es gilt Konvergenz in jedem Punkt $x \in \mathbb{R}$: Wir schreiben "=" statt "~".
- Wir sehen explizit, wie schnell die Fourier–Koeffizienten abklingen.

Signal und Spektrum

Sei $f:\mathbb{R} \to \mathbb{C}$ absolut integrierbar auf [0,T] und T-periodisch. Wir entwickeln f in **Harmonische** zur Grundfrequenz $\omega = 2\pi/T$:

$$f \circ - \bullet \widehat{f}, \quad \widehat{f}(k) := \frac{1}{T} \int_{t=0}^{T} \mathrm{e}^{-\mathrm{i}k\omega t} f(t) \, \mathrm{d}t, \quad f(t) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k) \, \mathrm{e}^{\mathrm{i}k\omega t}.$$

Diese **Analyse** zerlegt das Signal $f:\mathbb{R}\to\mathbb{C}$ in sein Spektrum $\widehat{f}:\mathbb{Z}\to\mathbb{C}$. Die Reihe ist wie zuvor zunächst nur eine symbolische Schreibweise; wir schreiben Gleichheit nur im Falle der (punktweisen) Konvergenz. Für diese Fourier–Analyse gelten folgende nützliche Rechenregeln:

 $\mbox{Verschiebung:} \quad f(t-a) \circ \mbox{$-$} \bullet \mbox{$\rm e$}^{-{\rm i}k\omega a} \widehat{f}(k), \quad \mbox{$\rm e$}^{{\rm i}\ell\omega t} f(t) \circ \mbox{$-$} \bullet \widehat{f}(k-\ell),$

Produkte: $f \cdot q \circ - \widehat{f} * \widehat{q}$, $f * q \circ - \widehat{f} \cdot \widehat{q}$.

Trigonometrisches Polynom nennt man jede C-Linearkombination

$$f(t) = \sum_{k=-n}^{n} c_k e^{ik\omega t} = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(k\omega t) + b_k \sin(k\omega t).$$

$$\begin{split} c_k &= \frac{1}{T} \int_{t=0}^T \mathrm{e}^{-\mathrm{i}k\omega t} \, f(t) \, \mathrm{d}t &= \langle \, \mathrm{e}^{\mathrm{i}k\omega t} \mid f \, \rangle \quad \text{bzw.} \\ a_k &= \frac{2}{T} \int_{t=0}^T \cos(k\omega t) \, f(t) \, \mathrm{d}t &= 2 \langle \cos(k\omega t) \mid f \, \rangle, \\ b_k &= \frac{2}{T} \int_{t=0}^T \sin(k\omega t) \, f(t) \, \mathrm{d}t &= 2 \langle \sin(k\omega t) \mid f \, \rangle. \end{split}$$

 \bigcirc Formeln für c_k sind meist einfacher und übersichtlicher als für a_k , b_k .

Konvergenz-Kriterium von Dirichlet

Z304 Fazit

Zur Funktion f ist $f_n(t)=\sum_{k=-n}^n c_k \mathrm{e}^{\mathrm{i}k\omega t}$ ihr n–tes Fourier–Polynom. Wir sagen, die Fourier–Reihe von f konvergiert im Punkt $t\in\mathbb{R}$, wenn die Zahlenfolge $(f_n(t))_{n\in\mathbb{N}}$ in \mathbb{C} für $n\to\infty$ konvergiert. Beispiel: Ist f im Punkt t differenzierbar, so folgt $f_n(t)\to f(t)$. Allgemeiner gilt Satz I2a:

(1) Angenommen, $f:\mathbb{R}\to\mathbb{C}$ erfüllt die Dirichlet–Bedingung im Punkt t, d.h. beide Grenzwerte $f(t\pm)$ und beide Ableitungen $f'(t\pm)$ existieren. Dann konvergiert in diesem Punkt t die Fourier–Reihe $f_n(t)$ gemäß

$$f_n(t) = \sum_{k=-n}^n c_k \, \mathrm{e}^{\mathrm{i}k\omega t} \ \to \ \frac{1}{2} \Big[f(t+) + f(t-) \Big] \quad \text{für} \quad n \to \infty.$$

(2) Ist $f: \mathbb{R} \to \mathbb{C}$ stetig und stückweise stetig differenzierbar mit $|f'| \le L$, so konvergiert die Fourier–Reihe $f_n \to f$ sogar gleichmäßig auf ganz \mathbb{R} :

$$\left|f_n(t)-f(t)\right| \leq 2L/\omega \cdot \ln(n)/n \rightarrow 0 \quad \text{für} \quad n \rightarrow \infty$$

(3) Ist f mindestens d-mal stetig differenzierbar, so ist die gleichmäßige Konvergenz entsprechend schneller gemäß $|f_n - f| \le \operatorname{const} \cdot \ln(n)/n^d$.

Integrieren und Differenzieren

Z306

↑ Fourier-Reihen können wir nicht immer termweise ableiten! 1319

• Hingegen können wir sie immer termweise integrieren: 1318

• Auf 1318

Sei $f: \mathbb{R} \to \mathbb{C}$ periodisch und integrierbar, $F(t) := C + \int_{u=0}^t f(u) \, \mathrm{d}u$. Genau dann ist F periodisch, wenn $\int_{u=0}^T f(u) \, \mathrm{d}u = 0$. In diesem Fall gilt:

$$f(t) \sim c_0 + \sum_{k \neq 0} c_k e^{ik\omega t} \quad \Longrightarrow_{?!} \quad F(t) \sim C_0 + \sum_{k \neq 0} \frac{c_k}{ik\omega} e^{ik\omega t}$$

 \bigcirc Wir können die Umkehrung sorgsam als Ableitungsregel für F lesen: Hierzu sei F absolut stetig mit F'=f und $F(t)=F(0)+\int_{u=0}^t f(u)\,\mathrm{d}u.$ Zum Beispiel genügt: F stetig und stückweise stetig differenzierbar.

Glattheit entspricht schnellem Abklingen der Fourier–Koeffizienten: Für jede integrierbare Funktion $f:[0,2\pi]\to\mathbb{C}$ gilt $|c_k|\to 0$ für $|k|\to\infty$. Ist f mindestens d–mal stetig differenzierbar, so gilt sogar $|k^dc_k|\to 0$. Umgekehrt: Gilt $\sum |c_k|<\infty$, zum Beispiel $|c_k|\le c/|k|^\alpha$ für $\alpha>1$, so konvergiert $\sum c_ke_k$ gleichmäßig gegen eine stetige Funktion f. Gilt sogar $\sum |k^dc_k|<\infty$, so ist f mindestens d–mal stetig diff'bar.

Punktweises Produkt und Faltungsprodukt

Z30

© Diese nützlichen Eigenschaften vereinfachen unsere Rechnungen. Linearität, Symmetrie und Verschiebung rechnet man leicht nach.

Die Fourier–Analyse übersetzt das punktweise Produkt $h=f\cdot g$ der Signale in das Faltungsprodukt $\widehat{h}=\widehat{f}\ast\widehat{g}$ der Spektren:

$$h = f \cdot g \circ - \hspace{-1mm} \bullet \ \widehat{h} = \widehat{f} \ast \widehat{g} \quad \text{mit} \quad \widehat{h}(k) = \sum_{m+n=k} \widehat{f}(m) \, \widehat{g}(n)$$

Konvergenz und Summierbarkeit sind garantiert falls $\widehat{f},\widehat{g}\in\ell^1(\mathbb{Z},\mathbb{C})$: Aus $\sum |\widehat{f}(m)|<\infty$ und $\sum |\widehat{g}(n)|<\infty$ folgt dann $\sum |\widehat{h}(k)|<\infty$.

Umgekehrt gilt: Die Fourier–Analyse übersetzt das Faltungsprodukt h=f*g der Signale in das punktweise Produkt $\widehat{h}=\widehat{f}\cdot\widehat{g}$ der Spektren:

$$h = f * g \circ - \bullet \widehat{h} = \widehat{f} \cdot \widehat{g} \quad \text{mit} \quad h(t) = \frac{1}{T} \int_{u=0}^{T} f(u) g(t-u) \, \mathrm{d}u$$

Konvergenz und Integrierbarkeit sind garantiert falls $f,g\in L^1([0,T],\mathbb{C})$: Aus $\int_{u=0}^T |f(u)|\,\mathrm{d} u < \infty$ und $\int_{v=0}^T |g(v)|\,\mathrm{d} v < \infty$ folgt $\int_{t=0}^T |h(t)|\,\mathrm{d} t < \infty$.

Es gilt die Parseval-Gleichung, auch Energiegleichung genannt:

$$\|f\|_{L^2} = \|\widehat{f}\|_{\ell^2} \quad \text{also} \quad \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2$$

Insbesondere ist f genau dann quadrat-integrierbar, $\int_0^T |f(t)|^2 dt < \infty$, wenn die Koeffizientenfolge \widehat{f} quadrat-summierbar ist, $\sum \lvert \widehat{f}(k) \rvert^2 < \infty.$ Alternativ nutzen wir die Co/Sinus-Reihe mit $c_{\pm k} = \frac{1}{2}(a_k \mp ib_k)$:

$$f(t) \sim \sum_{k=-\infty}^{\infty} c_k e^{ik\omega t} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t)$$

$$\frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t \quad = \quad \sum_{k=-\infty}^\infty |c_k|^2 \quad = \quad \frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^\infty a_k^2 + b_k^2.$$

Für $f,g\in L^2$ gilt die **Parseval–Gleichung** zudem für Skalarprodukte:

$$\langle\,f\mid g\,\rangle = \langle\,\widehat{f}\mid\widehat{g}\,\rangle \quad \text{also} \quad \frac{1}{T}\int_{t=0}^T \overline{f(t)}\,g(t)\,\mathrm{d}t = \sum_{k=-\infty}^\infty \overline{\widehat{f}(k)}\,\widehat{g}(k)$$

Die Fourier-Isometrie

Die Fourier-Isometrie J1A ist folgende Analyse / Synthese:

$$(\mathscr{F},\mathscr{F}^{-1})\,:\,L^2([0,T],\mathbb{C})\,\cong\,\ell^2(\mathbb{Z},\mathbb{C})\,:\,f\leftrightarrow\widehat{f}$$

Jeder Funktion $f \in L^2$ ordnen wir ihre Fourier–Koeffizienten $\widehat{f} \in \ell^2$ zu:

$$\mathscr{F}:L^2 \to \ell^2: f \mapsto \widehat{f} \quad \mathrm{mit} \quad \widehat{f}(k) = \frac{1}{T} \int_{t=0}^T \mathrm{e}^{-\mathrm{i}k\omega t} f(t) \, \mathrm{d}t$$

Umgekehrt definiert jede Koeffizientenfolge $\widehat{f}\in\ell^2$ eine Funktion $f\in L^2$:

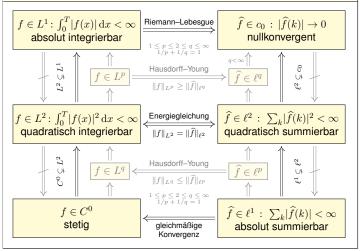
$$\mathscr{F}^{-1}\,:\,\ell^2\to L^2\,:\,\widehat{f}\mapsto f\quad\text{mit}\quad f(t)=\sum_{k=-\infty}^\infty\widehat{f}(k)\,\mathrm{e}^{\mathrm{i}k\omega t}$$

Diese Abbildungen sind C-linear und zueinander inverse Isometrien zwischen dem Funktionenraum $L^2([0,T],\mathbb{C})$ und Folgenraum $\ell^2(\mathbb{Z},\mathbb{C})$.

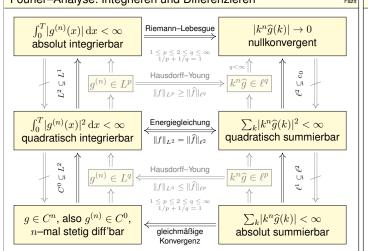
 \bigcirc Funktionen $f \in L^2$ und Folgen $\widehat{f} \in \ell^2$ entsprechen sich verlustfrei. Norm und Skalarprodukt bleiben erhalten dank Parseval-Gleichung.

Eine Anwendung ist die isoperimetrische Ungleichung J1B: Allein der Kreis maximiert den umschlossenen Flächeninhalt F.

Fourier-Analyse: Glattheit und Abklingen



Fourier-Analyse: Integrieren und Differenzieren



Die Fourier-Isometrie

Die quadrat-integrierbaren Funktionen bilden den C-Vektorraum

$$L^2=L^2([0,T],\mathbb{C}):=\bigg\{\,f\!:\![0,T]\to\mathbb{C}\;\bigg|\;\int_{t=0}^T\!|f(t)|^2\,\mathrm{d}t<\infty\,\bigg\}.$$
 Hierauf haben wir als **Skalarprodukt** und **Norm** die Integrale

$$\langle\,f\mid g\,\rangle_{L^2} := \frac{1}{T} \int_{t=0}^T \overline{f(t)}\,g(t)\,\mathrm{d}t \quad \text{ und } \quad \|f\|_{L^2}^2 := \frac{1}{T} \int_{t=0}^T |f(t)|^2\,\mathrm{d}t.$$
 Die **quadrat-summierbaren** Folgen bilden den \mathbb{C} -Vektorraum

$$\ell^2 = \ell^2(\mathbb{Z},\mathbb{C}) := \bigg\{ \left. \widehat{f} \colon \mathbb{Z} \to \mathbb{C} \; \right| \; \sum_{k = -\infty}^{\infty} |\widehat{f}(k)|^2 < \infty \; \bigg\}.$$

Hierauf haben wir als **Skalarprodukt** und **Norm** die Summen

$$\langle\,\widehat{f}\mid\widehat{g}\,\rangle_{\ell^2}:=\sum_{k=-\infty}^\infty\overline{\widehat{f}(k)}\,\widehat{g}(k)\quad\text{und}\quad\|\widehat{f}\|_{\ell^2}^2:=\sum_{k=-\infty}^\infty|\widehat{f}(k)|^2.$$

 \bigcirc Beide Vektorräume L^2 und ℓ^2 scheinen zunächst sehr verschieden. Die Fourier-Isometrie enthüllt jedoch das Gegenteil: Sie sind isomorph!

Die Fourier-Isometrie

Die Fourier-Isometrie nutzt wesentlich die Begriffe der linearen Algebra: Vektorräume mit Skalarprodukt I1G, Cauchy-Schwarz-Ungleichung I1H, Satz des Pythagoras I11, Orthonormalisierung I1J. Zentrales Beispiel: Die Menge aller Funktionen $f: \mathbb{R} \to \mathbb{C}$ ist ein \mathbb{C} -Vektorraum. Hierin ist

die Teilmenge der T-periodischen Funktionen ein Untervektorraum.

Die Funktionen $e_k:\mathbb{R}\to\mathbb{C}:t\mapsto \mathrm{e}^{\mathrm{i}k\omega t}=\cos(k\omega t)+\mathrm{i}\sin(k\omega t)$ mit $k\in\mathbb{Z}$ spannen den Unterraum $V=\{\sum_{k=-n}^n c_k\,\mathrm{e}^{\mathrm{i}k\omega t}\mid n\in\mathbb{N},\,c_k\in\mathbb{C}\,\}$ aller trigonometrischen Polynome auf und sind hierin eine Orthonormalbasis.

Die Vervollständigung dieses Raumes V bezüglich der L^2 -Norm ist der Raum $L^2 = L^2([0,T],\mathbb{C})$ aller quadrat-integrierbaren Funktionen.

Auch die Menge aller Folgen $\widehat{f}: \mathbb{Z} \to \mathbb{C}$ ist ein \mathbb{C} -Vektorraum. Die Folgen $\delta_k : \mathbb{Z} \to \mathbb{C}$ mit $\delta_k(k) = 1$ und $\delta_k(\ell) = 0$ für $\ell \neq k$ spannen den Unterraum $W=\{\;\sum_{k=-n}^n c_k\delta_k\;|\;n\in\mathbb{N},\,c_k\in\mathbb{C}\;\}$ aller Folgen mit endlichem Träger auf und sind hierin eine Orthonormalbasis.

Die Vervollständigung dieses Raumes W bezüglich der ℓ^2 -Norm ist der Raum $\ell^2 = \ell^2(\mathbb{Z}, \mathbb{C})$ aller quadrat-summierbaren Folgen.

 \bigcirc Die Fourier-Isometrie $f \leftrightarrow \widehat{f}$ liefert $V \cong W$, vervollständigt $L^2 \cong \ell^2$.

Fourier-Analyse: Glattheit und Abklingen

Von oben nach unten werden die Bedingungen strikt stärker. Die Implikationen gehen daher immer nur von unten nach oben. Die Umkehrungen gelten nicht, wie geeignete Gegenbeispiele zeigen.

In der oberen Hälfte gehen Implikationen von links nach rechts: Schwache Bedingungen an f garantieren schwache Folgerungen für f.

In der unteren Hälfte gehen Implikationen von rechts nach links: Erst starke Bedingungen an \hat{f} garantieren starke Folgerungen für f.

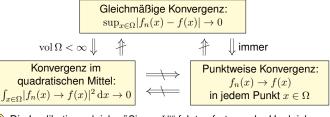
In der Mitte steht der symmetrische Fall p=q=2: Die Energiegleichung $||f||_{L^2} = ||\widehat{f}||_{\ell^2}$ garantiert die nützliche Äquivalenz $f \in L^2 \iff \widehat{f} \in \ell^2$. Die L^2 -Theorie ist daher zentral: die schönste, beste und einfachste.

Ergänzend nenne ich zudem die Hausdorff-Young-Ungleichungen: Sie interpolieren zwischen $(p,q)=(1,\infty)$ und dem zentralen Fall (p,q)=(2,2) durch $1\leq p\leq 2\leq q\leq \infty$ mit $1/p+1/q=\infty$.

Dasselbe Diagramm gilt für $g\in C^n$ und die n-fache Ableitung $f=g^{(n)}$, allgemein für $g\in AC^n$, also $g\in C^{n-1}$ und $g^{(n-1)}\in AC$ absolut stetig.

Punktweise Konvergenz vs quadratisches Mittel

Wir fassen die Beziehungen dieser drei Konvergenzarten zusammen. Seien $f_0, f_1, f_2, \dots, f: \Omega \to \mathbb{C}$ Funktionen auf einer Menge $\Omega \subset \mathbb{R}^d$.



 $\stackrel{\bigcirc}{\bigcirc}$ Die Implikation "gleichmäßig $\Rightarrow L^{p}$ " folgt sofort aus der Ungleichung

$$\int_{x \in \Omega} |f_n(x) - f(x)|^p dx \le \operatorname{vol}(\Omega) \cdot (\sup_{x \in \Omega} |f_n(x) - f(x)|)^p \to 0.$$

 $\stackrel{\bigcirc}{\bigcirc}$ Die Implikation "gleichmäßig \Rightarrow punktweise" ist klar: Für $x\in\Omega$ gilt $|f_n(x) - f(x)| \le \sup_{x \in \Omega} |f_n(x) - f(x)| \to 0.$

\Lambda Die Umkehrungen gelten nicht, siehe Gegenbeispiele. 🗵 🗓 🗓 🗓 🗓 🗘

Beispiele:

Die Fourier-Transformierte von $f:\mathbb{R} \to \mathbb{C}$ ist definiert durch

$$\widehat{f}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{x=-\infty}^{\infty} e^{-i\xi x} f(x) dx \quad \text{für } \xi \in \mathbb{R}.$$

Wir fordern hierzu, dass f auf jedem Intervall [-r, r] integrierbar ist. Unter dem Integral über $\mathbb R$ verstehen wir hier den Cauchy-Hauptwert

$$\int_{-\infty}^{\infty} e^{-i\xi x} f(x) dx := \lim_{r \to \infty} \int_{-r}^{r} e^{-i\xi x} f(x) dx.$$

Die Zuordnung $\mathscr{F}: f \mapsto \widehat{f}$ heißt **Fourier–Transformation**. Die inverse Fourier–Transformation $\mathscr{F}^{-1}:\widehat{f}\mapsto f$ ist

$$f(x) := \frac{1}{\sqrt{2\pi}} \int_{\xi = -\infty}^{\infty} \widehat{f}(\xi) \, \mathrm{e}^{\mathrm{i} \xi x} \, \mathrm{d} \xi \quad \text{für } x \in \mathbb{R}.$$

Dies kürzen wir ab als Fourier–Transformationspaar $f \circ \longrightarrow \widehat{f}$. Die Fourier-Transformation ist linear, kurz $a f + b g \circ - a \hat{f} + b \hat{g}$

Grundlegende Rechenregeln

Für die Transformation $f(x) \circ - \widehat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\xi x} f(x) dx$ gilt:

$$af(x) \circ \longrightarrow a\widehat{f}(\xi), \qquad f(x) + g(x) \circ \longrightarrow \widehat{f}(\xi) + \widehat{g}(\xi),$$

$$f(-x) \circ \longrightarrow \widehat{f}(-\xi), \qquad \overline{f(x)} \circ \longrightarrow \overline{\widehat{f}(-\xi)},$$

$$f(ax) \circ \longrightarrow \frac{1}{|a|}\widehat{f}\left(\frac{\xi}{a}\right), \qquad \frac{1}{|a|}f\left(\frac{x}{a}\right) \circ \longrightarrow \widehat{f}(a\xi),$$

$$f(x-a) \circ \longrightarrow e^{-i\xi a}\widehat{f}(\xi), \qquad e^{iax}f(x) \circ \longrightarrow \widehat{f}(\xi-a),$$

$$\partial_x f(x) \circ \stackrel{\triangle}{\longrightarrow} i\xi \widehat{f}(\xi), \qquad x f(x) \circ \stackrel{\triangle}{\longrightarrow} i\partial_\xi \widehat{f}(\xi),$$

$$(f*g)(x) \circ \stackrel{\triangle}{\longrightarrow} \sqrt{2\pi} \cdot \widehat{f}(\xi) \cdot \widehat{g}(\xi), \qquad f(x) \cdot g(x) \circ \stackrel{\triangle}{\longrightarrow} \frac{1}{\sqrt{2\pi}}(\widehat{f}*\widehat{g})(\xi).$$

- Die letzten vier erfordern Voraussetzungen, siehe K2A und K2B.
- \bigcirc Glattheit der Funktion f entspricht schnellem Abklingen von \hat{f} .
- Schnelles Abklingen der Funktion f entspricht Glattheit von \hat{f} .

Die Laplace-Transformation

Die Laplace-Transformierte von $f:\mathbb{R}_{\geq 0} \to \mathbb{C}$ ist definiert durch

$$f(t) \circ - \bullet F(s) := \mathcal{L}(f)(s) = \int_{t=0}^{\infty} e^{-st} f(t) dt.$$

Die Konvergenzabszisse ist $\sigma := \inf \{ \ s \in \mathbb{R} \mid F(s) \ \text{konvergiert} \ \}.$ Das Integral konvergiert für alle $s>\sigma$ und divergiert für alle $s<\sigma$. Es definiert eine holomorphe Funktion $F: \mathbb{C}_{\mathrm{Re}>\sigma} \to \mathbb{C}$. Umgekehrt gilt

$$F(s) \bullet - \circ f(t) = \mathcal{L}^{-1}(F)(t) = \frac{1}{2\pi} \int_{x=-\infty}^{\infty} e^{(s+ix)t} F(s+ix) dx$$

für jedes $s > \sigma$ und fast alle $t \ge 0$, und immer wo f stetig diff'bar ist. Insbesondere ist $\mathscr L$ injektiv, das heißt, aus $\mathscr L(f)=\mathscr L(g)$ folgt f=g.(Wir identifizieren Funktionen, die nur auf einer Nullmenge differieren.) Residuen: Hat F in \mathbb{C} nur isolierte Singularitäten und klingt ab, so gilt

$$\mathscr{L}^{-1}(F)(t) = \frac{1}{2\pi} \int_{x=-\infty}^{\infty} \mathrm{e}^{(s+\mathrm{i}x)t} \, F(s+\mathrm{i}x) \, \mathrm{d}x = \sum_{z_0 \in \mathbb{C}} \mathop{\mathrm{res}}_{z=z_0} \big[\mathrm{e}^{zt} F(z) \big].$$

Anwendung auf Differentialgleichungen

Laplace-Transformation kann lineare Differentialgleichungen lösen:

Integral Tabelle

algebraische Hilfsgleichung für die Transformierte $Y = \mathcal{L}(y)$ Lösung

Lösung der DG in yanalytisch —

Lösung der HG in Y- algebraisch -

Anstatt das Anfangswertproblem im Original direkt zu lösen, machen wir den gezeigten Umweg über den Bildraum; das ist manchmal leichter.

Die Methode der Laplace-Transformation ist dann effizient, wenn Sie jeden der drei Schritte effizient ausführen können.

 Ausführliche \(\mathcal{L}\)-Tabellen finden Sie in Lehrbüchern, Formelsammlungen und Computer-Algebra-Systemen.

 \bigcirc Zudem nutzen wir die obigen Rechenregeln für \mathscr{L} und \mathscr{L}^{-1} . sowie Basisalgorithmen wie Partialbruchzerlegung (PBZ), etc.

Eigenschaften der Transformierten

 $e^{-x^2/2} \circ - e^{-\xi^2/2}$ $e^{-a|x|} \circ - \sqrt{2/\pi} \ a/(a^2 + \xi^2)$ $\mathbf{I}_{[-r,r]}(x) \circ - \sqrt{2/\pi} \sin(\xi r)/\xi$

Ist $f:\mathbb{R}\to\mathbb{C}$ absolut integrierbar, also $\int_{\mathbb{R}} |f(x)|\,\mathrm{d}x<\infty$, dann gilt: Die Fourier–Transformierte $\widehat{f}: \mathbb{R} \to \mathbb{C}$ ist stetig und beschränkt:

$$|\widehat{f}(\xi)| \leq \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x \quad \text{für alle } \xi \in \mathbb{R}$$

Sie verschwindet im Unendlichen (Riemann-Lebesgue-Lemma):

$$|\widehat{f}(\xi)| \to 0 \quad \text{für} \quad |\xi| \to \infty$$

Zudem gilt die Plancherel-Gleichung (Energiegleichung):

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\widehat{f}(\xi)|^2 d\xi$$

Umkehrsätze und Isometrie

Sind $f, \widehat{f}: \mathbb{R} \to \mathbb{C}$ absolut integrierbar und stetig, so gilt punktweise

$$\frac{1}{\sqrt{2\pi}} \int_{\xi=-\infty}^{\infty} \widehat{f}(\xi) e^{i\xi x} d\xi = f(x) \circ - \bullet \widehat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{x=-\infty}^{\infty} e^{-i\xi x} f(x) dx.$$

Die punktweise Rücktransformation für alle $x \in \mathbb{R}$ (linke Gleichung) gilt auch, wenn $f: \mathbb{R} \to \mathbb{C}$ absolut integrierbar, stückweise stetig und stetig diff'bar sowie sprungnormiert ist, also $f(x) = \frac{1}{2} [f(x+) + f(x-)]$.

Die quadrat-integrierbaren Funktionen bilden den C-Vektorraum

$$L^2 = L^2(\mathbb{R},\mathbb{C}) := \bigg\{\, f : \mathbb{R} \to \mathbb{C} \,\, \bigg| \, \int_{-\infty}^\infty \lvert f(t) \rvert^2 \, \mathrm{d}t < \infty \,\, \bigg\}.$$

Die Fourier-Transformation definiert eine Isometrie $\mathscr{F}:L^2\to L^2$, also

$$\boxed{\int_{-\infty}^{\infty} \lvert f(x) \rvert^2 \, \mathrm{d}x = \int_{-\infty}^{\infty} \lvert \widehat{f}(\xi) \rvert^2 \, \mathrm{d}\xi \; \; \text{und} \; \; \langle \, f \mid g \, \rangle = \langle \, \widehat{f} \mid \widehat{g} \, \rangle \; \; \text{für} \; f,g \in L^2.}$$

Unschärfe ist anschaulich: Ist f schmal, so ist \widehat{f} breit, und umgekehrt. Quantitativ: Für alle $f \in L^2$ gilt die Unschärferelation $\mathbf{V}(f) \cdot \mathbf{V}(\widehat{f}) > \frac{1}{4}$ Optimalfall: Gleichheit gilt genau dann, wenn f eine Glockenkurve ist.

Unsere kleine \mathcal{L} -Tabelle

$f(t)_{t\geq 0}$	$F(s)_{\operatorname{Re}(s)>\sigma}$
1	$\frac{1}{s}$
e^{at}	1
t^n	$\frac{s-a}{n!}$ $\frac{n!}{s^{n+1}}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$\sinh(at)$	$\frac{a}{s^2 - a^2}$
$\cosh(at)$	$\frac{s}{s^2 - a^2}$

$f(t)_{t\geq 0}$	$F(s) = \int_{t=0}^{\infty} e^{-st} f(t) dt$
af(t) + bg(t)	aF(s) + bG(s)
f'(t)	sF(s) - f(0)
f''(t)	$s^2 F(s) - s f(0) - f'(0)$
$f^{(n)}(t)$	$s^n F(s) - \dots - f^{(n-1)}(0)$
$t^n f(t)$	$(-1)^n F^{(n)}(s)$
$e^{at}f(t)$	F(s-a)
$f(at), \ a > 0$	$\frac{1}{a}F\left(\frac{s}{a}\right)$
f(t-a)u(t-a)	$e^{-as}F(s)$

Zusammenfassung und Verständnisfragen

Aufgabe: Begründen Sie durch ein Ergebnis Ihrer Vorlesung oder widerlegen Sie durch ein Gegenbeispiel aus Ihrem Fundus:

- (1) Jede Funktion $f: \mathbb{R}_{>0} \to \mathbb{C}$ ist \mathscr{L} -transformierbar.
- (2) Welche Bedingungen garantieren \mathscr{L} -Transformierbarkeit?
- (3) Ist jede \mathscr{L} -Transformierte $F: \mathbb{C}_{\mathrm{Re}>\sigma} \to \mathbb{C}$ holomorph? Warum?
- (4) Lässt sich jede \mathscr{L} -Transformierte F holomorph auf $\mathbb C$ fortsetzen?
- (5) Ist die Transformation $f \circ F = \mathcal{L}(f)$ linear? Ist sie injektiv?
- (6) Lässt sich F zu f rücktransformieren? Wie? Inwiefern eindeutig?
- (7) Ist jede rationale Funktion F = P/Q eine \mathcal{L} -Transformierte? Wie?

Lösung: (1) Nein, einfache Gegenbeispiele sind f(t) = 1/t und $f(t) = \exp(t^2)$. (2) Wir fordern, dass f auf jedem endlichen Intervall [0, r] integrierbar ist und höchstens exponentiell wächst gemäß $|f(t)| \le c e^{\sigma t}$ für alle $t \ge 0$ und Konstanten $c, \sigma \in \mathbb{R}$. L104

- (3) Ja, wir ziehen die Ableitung unters Integral (L1B) dank majorisierter Integrierbarkeit (D3E).
- (4) Nein, schon für $1 \circ \bullet 1/s$ müssen wir mit Polstellen rechnen. (Es gibt noch schlimmeres.)
- (5) Ja, die Transformation $f \circ F = \mathcal{L}(f)$ ist linear (L1c). Sie ist im Wesentlichen injektiv:
- (6) Die Umkehrformel $F\mapsto f=\mathscr{L}^{-1}(F)$ bestimmt f zumindest fast überall (Satz L3A): Wir können f auf jeder Menge vom Maß 0 beliebig abändern, ohne das Integral F(s) zu beeinflussen.
- Eindeutigkeit gilt, wenn f stückweise stetig differenzierbar ist und zudem sprungnormiert (7) Nein, für $s \to \infty$ muss $F(s) \to 0$ gelten! L104 Für $\deg P < \deg Q$ gelingt's mit PBZ.

Sei $f: \mathbb{R}^2 \supset G \to \mathbb{R}$ stetig. Zu lösen sei die **Differentialgleichung** y' = f(x,y) mit $y(x_0) = y_0$.

Qualitativer Überblick dank Existenz- und Eindeutigkeitssatz M1c: (1) Im Inneren \mathring{G} existieren Lösungen und laufen bis zum Rand ∂G . (2) Ist f stetig diff'bar nach y, so ist die Lösung durch $(x_0, y_0) \in \mathring{G}$

eindeutig bestimmt und hängt stetig von diesen Anfangswerten ab.
Elementar lösen können wir vor allem **exakte Differentialgleichungen**:

• f(x,y) + g(x,y)y' = 0 ist exakt, wenn $(f,g) = \operatorname{grad} \Phi$. M206

Wichtige Spezialfälle hiervon sind:

- y' = f(x) durch Integration dank HDI. B123
- y' = g(x) h(y) durch Trennung der Variablen. M124
- y' = a(x) y + b(x) lineare DG, explizite Lösungsformel. M222

Durch Substitution hierauf zurückführbar sind:

- y' = f(ax + by + c) mit Substitution v = ax + by + c. M409
- y' = f(y/x) Ähnlichkeits-DG, mit Substitution v = y/x. M411
- $y' = a(x) y + b(x) y^n$ Bernoulli–DG, mit Substitution $v = y^{1-n}$. M413

Zusammenfassung und Verständnisfragen

Aufgabe: Begründen Sie durch ein Ergebnis Ihrer Vorlesung oder widerlegen Sie durch ein Gegenbeispiel aus Ihrem Fundus:

- (1) Sei $f:\mathbb{R}^2 \to \mathbb{R}$ stetig. Zu jedem Startpunkt $(x_0,y_0) \in \mathbb{R}^2$ existiert ein Intervall $[x_0,x_1]$ mit $x_1>x_0$ und eine Funktion $y:[x_0,x_1] \to \mathbb{R}$ mit $y(x_0)=y_0$ und y'(x)=f(x,y(x)) für alle $x\in [x_0,x_1]$.
- (2) Sei $f:[x_0,x_1] imes\mathbb{R} o\mathbb{R}$ stetig und $y_0\in\mathbb{R}$. Dann existiert eine Lösung $y:[x_0,x_1] o\mathbb{R}$ mit $y(x_0)=y_0$ und y'(x)=f(x,y(x)) für alle $x\in[x_0,x_1]$.
- (3) Sei $f: \mathbb{R}^2 \to \mathbb{R}$ stetig. Für je zwei Funktionen $y, \tilde{y}: [x_0, x_1] \to \mathbb{R}$ mit $y(x_0) = \tilde{y}(x_0) = y_0$ sowie y'(x) = f(x, y(x)) und $\tilde{y}'(x) = f(x, \tilde{y}(x))$ für alle $x \in [x_0, x_1]$ gilt Gleichheit $y(x) = \tilde{y}(x)$ für alle $x \in [x_0, x_1]$.
- (4) Sei $f:\mathbb{R}^2 \to \mathbb{R}$ stetig und nach y stetig differenzierbar. Für je zwei Lösungen wie in (3) gilt Gleichheit $y(x) = \tilde{y}(x)$ für alle $x \in [x_0, x_1]$.
- (5) Ist jede separierbare DG exakt? bis auf integrierenden Faktor?
- (6) Ist jede lineare DG exakt? bis auf einen integrierenden Faktor?
- (7) Ist jede exakte DG separierbar? Ist jede exakte DG linear? Nennen Sie eine exakte DG, die weder separierbar noch linear ist.

Separierbare Differentialgleichungen

Satz M1A erklärt die Lösung separierbarer Differentialgleichungen:

$$y' = g(x) h(y)$$
 mit $y(x_0) = y_0$

Gegeben sind hierzu stetige Funktionen $g:I\to\mathbb{R}$ und $h:J\to\mathbb{R}\smallsetminus\{0\}$ auf Intervallen $I,J\subset\mathbb{R}$ sowie Anfangswerte $x_0\in I$ und $y_0\in J$. Wir definieren Stammfunktionen $G:I\to\mathbb{R}$ und $H:J\to\mathbb{R}$ durch

$$G(x) := \int_{t=x_0}^x g(t) \, \mathrm{d}t \qquad \text{und} \qquad H(y) := \int_{u=y_0}^y \frac{1}{h(u)} \, \mathrm{d}u.$$

Die Funktion H ist streng monoton, also bijektiv auf ihr Bild $H(J)\subset \mathbb{R}$. Sei $I_0\subset I$ ein hinreichend kleines Intervall um $x_0\in I_0$ mit $G(I_0)\subset H(J)$. Das AWP erlaubt genau eine Lösung $y\colon \mathbb{R}\supset I_0\to J\subset \mathbb{R}$, nämlich

$$y(x) = H^{-1}(G(x)).$$

- \bigcirc Lösungsformel \bigcirc Eindeutigkeit \bigcirc Stetig abhängig von (x_0, y_0)
- Die Probe ist leicht! Einsetzen und sorgfältig nachrechnen...

Exakte Differentialgleichungen

Jedes stetige Vektorfeld $(f,g): \mathbb{R}^2 \supset G \to \mathbb{R}^2$ definiert eine DG

$$f(x,y) + g(x,y)y' = 0.$$

Diese DG heißt **exakt**, wenn ein Potential Φ zu (f,g) existiert, also eine C^1 -Funktion $\Phi:\mathbb{R}^2\supset G\to\mathbb{R}$ mit $\operatorname{grad}\Phi=(f,g)$, d.h. $\partial_x\Phi=f$, $\partial_y\Phi=g$.

Satz M2A erklärt die Lösungskurven exakter Differentialgleichung: Die Lösungen $x\mapsto (x,y(x))$ der DG sind Äquipotentialkurven von $\Phi.$

- (1) Eine differenzierbare Funktion $y:I\to\mathbb{R}$ ist genau dann Lösung der Differentialgleichung, wenn $\Phi(x,y(x))=\mathrm{const}$ für alle $x\in I$ gilt.
- (2) Zu jedem Punkt $(x_0,y_0)\in G$ mit $g(x_0,y_0)\neq 0$ existiert ein offenes Intervall I um x_0 und eine eindeutige Lösung $y\colon I\to \mathbb{R}$ mit $y(x_0)=y_0$.
- \bigcirc Implizite Lösung \bigcirc Eindeutigkeit \bigcirc Stetig abhängig von (x_0,y_0) Aussage (2) ist der Satz über implizite Funktionen: Er besagt dass wir die Gleichung $\Phi(x,y(x))=c$ nach der Funktion y(x) auflösen können. Ob und wie gut die explizite Auflösung gelingt, hängt vom Einzelfall ab, aber zumindest lokal um (x_0,y_0) ist sie prinzipiell immer möglich.

Kapitel M präsentiert die wichtigsten Lösungsmethoden für gewöhnliche eindimensionale Differentialgleichungen sowie Anwendungsbeispiele. Zahlreiche Aufgaben üben, illustrieren und vertiefen diese Techniken. Das ist für Differentialgleichungen unentbehrlich: Üben, üben, üben! Eine Lösung zu finden ist schwer, sie zu überprüfen ist meist leicht. Deshalb sollen Sie am Ende jeder Rechnung die Probe machen!

Trotz allgemeiner Lösungstheorie und -methoden hat jede DG ihre Eigenarten: Man muss genau hinschauen und sorgfältig arbeiten! Insbesondere ist zu klären und bei jeder Rechnung zu beachten, auf welchem Gebiet $G \subset \mathbb{R}^2$ die DG definiert und Lösungen gesucht sind. Bei allen Umformungen ist sicherzustellen oder nachträglich zu prüfen, dass keine fiktiven Lösungen hinzukommen oder echte verloren gehen. Zur Sorgfalt gehört, die gefundenen / benachbarte / alle Lösungen zu prüfen, zu skizzieren, zu diskutieren und alle Sonderfälle zu beachten.

La Zur Vertiefung und für zahlreiche Anwendungsbeispiele siehe H. Heuser: *Gewöhnliche Differentialgleichungen*, Vieweg, 6. Aufl. 2009

Zusammenfassung und Verständnisfragen

Z404 Fazit

Lösung: (1) Ja, das ist die Existenzaussage des $\exists \& E$ -Satzes M1c. (2) Nein, wir können das Lösungsintervall $[x_0, x_1]$ nicht vorschreiben: Die Lösung y startet in $y(x_0) = y_0$, kann aber noch vor Erreichen von x_1 an den Rand gelangen $\boxed{\texttt{M12}}$ oder nach Unendlich entkommen $\boxed{\texttt{M119}}$.

- (3) Nein, die Stetigkeit der rechten Seite f allein reicht hierzu nicht. Ein anschauliches Gegenbeispiel ist die Wasseruhr $y'=\sqrt{|y|}$ M129; ganz ähnlich ist $y'=\sqrt[3]{y(x)^2}$ M325 und allgemein $y'=|y|^{\alpha}$ ©233.
- (4) Ja, das ist die Eindeutigkeitsaussage des ∃&E-Satzes M1c.
- (5) Die separierbare DG y'=g(x)h(y) schreiben wir g(x)h(y)-y'=0. In dieser Form ist sie exakt nur für g(x)=0 oder h'(y)=0. Sie wird exakt durch Multiplikation mit dem integrierenden Faktor 1/h(y). M211
- (6) Die lineare DG y'=a(x)y+b(x) schreiben wir a(x)y+b(x)-y'=0. In dieser Form ist sie exakt nur für a(x)=0. Sie wird exakt durch Multiplikation mit dem integrierenden Faktor $\mathrm{e}^{-A(x)}$ mit A'=a. M221
- (7) Nicht jede exakte DG ist separierbar, ebenso ist nicht jede linear. Beispiele sind leicht zu konstruieren: $x+y^2+2xyy'=0$ für x,y>0 ist exakt, aber y'=1/2(y/x+1/y) ist weder linear noch separierbar. M318

Lineare Differentialgleichungen

Z406

Satz M2E erklärt die Lösungsformel für lineare DG erster Ordnung:

$$y'(x) = a(x) y(x) + b(x)$$
 mit $y(x_0) = y_0$

Hierzu sei $I\subset\mathbb{R}$ ein Intervall, $a,b\colon I\to\mathbb{R}$ stetig, $x_0\in I$ und $y_0\in\mathbb{R}$. Die homogene DG y'(x)=a(x)y(x) mit $y(x_0)=y_0$ wird gelöst durch $y_1(x)=\mathrm{e}^{A(x)}\,y_0$ mit $A(x)=\int_{x_0}^x a(t)\,\mathrm{d}t.$ Zur inhomogenen Gleichung existiert genau eine Lösung $y\colon I\to\mathbb{R}$, und diese ist gegeben durch

$$y(x) = e^{A(x)} \int_{t=x_0}^x e^{-A(t)} b(t) dt + e^{A(x)} y_0.$$

- \bigcirc Lösungsformel \bigcirc Eindeutigkeit \bigcirc Stetig abhängig von (x_0, y_0)
- \bigcirc Für a=0 ist's der HDI. \bigcirc Für b=0 entfällt der inhomogene Term.
- Diese Lösungsformel gilt allgemein für lineare DGSysteme (O3D).
- Die Probe ist leicht! Einsetzen und sorgfältig nachrechnen...

Integrierende Faktoren

Z408 Fazit

Eine Funktion $\lambda\colon G\to \mathbb{R}\smallsetminus\{0\}$ heißt integrierender Faktor zu (f,g), wenn das skalierte Vektorfeld $(\lambda f,\lambda g)\colon G\to \mathbb{R}^2$ ein Potential hat. Beispiele: Separierbar $\lambda(y)=1/h(y)$ M211, linear $\lambda(x)=\mathrm{e}^{-A(x)}$ M221. Satz M2C erklärt integrierende Faktoren in nur einer Variablen:

Für jeden nur von
$$x$$
 abhängigen integrierenden Faktor $\lambda = \lambda(x)$ gilt:
$$\frac{\lambda'(x)}{\lambda(x)} = \frac{\partial_y f(x,y) - \partial_x g(x,y)}{g(x,y)}, \quad \text{kurz:} \quad \frac{\lambda'(x)}{\lambda(x)} = -\frac{\text{rot}(f,g)}{g}(x,y)$$

Für jeden nur von y abhängigen integrierenden Faktor $\lambda = \lambda(y)$ gilt:

$$\frac{\lambda'(y)}{\lambda(y)} = \frac{\partial_x g(x,y) - \partial_y f(x,y)}{f(x,y)}, \quad \text{kurz:} \quad \frac{\lambda'(y)}{\lambda(y)} = + \frac{\operatorname{rot}(f,g)}{f}(x,y)$$

Dies ist lösbar, wenn auch die rechte Seite nur von x bzw. y abhängt. Ob eine dieser Lösungen möglich ist, muss man jeweils ausprobieren.

 \bigcirc Vorgehensweise: Man prüft zunächst $\operatorname{rot}(f,g)=0$. Falls möglich, berechnet man ein Potential Φ zu (f,g), notfalls nur lokal um (x_0,y_0) . Andernfalls versucht man einen der beiden obigen Korrekturfaktoren λ .

Sei $I \subset \mathbb{R}$ ein Intervall und $a_0, a_1, \ldots, a_{n-1}, b \colon I \to \mathbb{K}$ stetig, $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Dies definiert eine **lineare Differentialgleichung** n-ter Ordnung

$$y^{(n)}(x) + a_{n-1}(x) y^{(n-1)}(x) + \dots + a_1(x) y'(x) + a_0(x) y(x) = b(x).$$

Die stetigen Funktionen $a_0, a_1, \ldots, a_{n-1} : I \to \mathbb{K}$ heißen Koeffizienten. Die stetige Funktion $b : I \to \mathbb{K}$ heißt Störterm oder kurz rechte Seite. Links wirkt der lineare Differentialoperator $L : C^n(I, \mathbb{K}) \to C^0(I, \mathbb{K})$,

$$L = a_0 \partial^0 + a_1 \partial^1 + \dots + a_{n-1} \partial^{n-1} + \partial^n,$$

$$y \mapsto a_0 y + a_1 y' + \dots + a_{n-1} y^{(n-1)} + y^{(n)}.$$

Wir suchen alle Funktionen $y:I\to\mathbb{K}$, die die Gleichung $L\,y=b$ erfüllen. Linearität bedeutet $L(c_1y_1+c_2y_2)=c_1L(y_1)+c_2L(y_2)$ für $c_1,c_2\in\mathbb{K}$. In anderen Worten: Aus Lösungen y_1 zu b_1 und y_2 zu b_2 ergibt die Linearkombination $y=c_1y_1+c_2y_2$ eine Lösung zu $b=c_1b_1+c_2b_2$. Zu Ly=b gehört die **homogene lineare Differentialgleichung** Ly=0. Als Lösungsmenge suchen wir also den Kern der linearen Abbildung L.

Lineare DG *n*-ter Ordnung

Besonders leicht sind lineare DG mit konstanten Koeffizienten:

$$y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_1y'(x) + a_0y(x) = 0$$

Kurzschreibweise $p(\partial)\,y=0$ mit dem charakteristischen Polynom

$$p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}.$$

Jede k-fache Nullstelle $\lambda \in \mathbb{C}$ liefert k linear unabhängige Lösungen

$$e^{\lambda x}$$
, $x e^{\lambda x}$, $x^2 e^{\lambda x}$, ..., $x^{k-1} e^{\lambda x}$.

Ist $p\in\mathbb{R}[x]$ reell und $\lambda=\sigma+\mathrm{i}\omega$ mit $\sigma,\omega\in\mathbb{R}$ und $\omega\neq0$ eine k–fache Nullstelle, so gilt dies auch für die komplex-konjugierte Zahl $\overline{\lambda}=\sigma-\mathrm{i}\omega.$ Durch Linearkombination erhalten wir die zugehörigen reellen Lösungen; sie entsprechen Real- und Imaginärteil der komplexen Lösungen:

$$\begin{array}{c}
e^{\lambda x}, \dots, x^{k-1} e^{\lambda x} \\
e^{\overline{\lambda} x}, \dots, x^{k-1} e^{\overline{\lambda} x}
\end{array} \Longrightarrow_{\text{Basis we chsel}} \begin{cases}
e^{\sigma x} \cos(\omega x), \dots, x^{k-1} e^{\sigma x} \cos(\omega x) \\
e^{\sigma x} \sin(\omega x), \dots, x^{k-1} e^{\sigma x} \sin(\omega x)
\end{cases}$$

Differentialgleichung in Potenzreihen

Für manche Differentialgleichungen reichen elementare Funktionen nicht aus; es werden neue Funktionen als Lösungen benötigt bzw. konstruiert. Bessel–Funktionen sind ein prominentes Beispiel. $\boxed{N321}$ Zu lösen sei eine analytische Differentialgleichung n—ter Ordnung

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

mit gegebenen Anfangsdaten $y(0), \dots, y^{(n-1)}(0)$ und einer Potenzreihe

$$f(x, u_0, u_1, \dots, u_{n-1}) = \sum_{\alpha \in \mathbb{N}^{n+1}} c_{\alpha} u_0^{\alpha_0} u_1^{\alpha_1} \cdots u_{n-1}^{\alpha_{n-1}} x^{\alpha_n}.$$

Diese DG wird von genau einer Potenzreihe $y(x)=\sum_{k=0}^\infty a_k x^k$ erfüllt: Aus den vorgegebenen Anfangsdaten a_0,\dots,a_{n-1} berechnen sich rekursiv alle weiteren Koeffizienten $a_n,a_{n+1},a_{n+2},\dots$ der Reihe.

- \bigcirc Hat diese Potenzreihe einen Konvergenzradius $\rho>0$, dann löst die so definierte Funktion y: $]-\rho, \rho[\to \mathbb{R}$ die gegebene Differentialgleichung.
- Dieses Verfahren ist manchmal mühsam, aber immer konstruktiv!

Verständnisfragen

Versuchen Sie, folgende Fragen frei aber genau zu beantworten, etwa so, wie Sie dies einer Kommiliton:in / Kolleg:in erklären wollen.

- (1) Was ist ein linearer Differentialoperator $L: C^n(I, \mathbb{K}) \to C^0(I, \mathbb{K})$?
- (2) Ist diese Abbildung L injektiv? Welche Dimension hat ihr Kern?
- (3) Welche Struktur hat die Lösungsmenge der Gleichung Ly = 0?
- (4) Was versteht man unter einem Fundamentalsystem?
- (5) Ist diese Abbildung $L:C^n(I,\mathbb{K})\to C^0(I,\mathbb{K})$ surjektiv?
- (6) Wie bestimmt man zu $b \in C^0$ ein Urbild $y \in C^n$ mit Ly = b?
- (7) Welche Struktur hat die Lösungsmenge der Gleichung $L\,y=b$?

Lösung: (1) Dies ist eine Zuordnung $L: y\mapsto a_0y+a_1y'+\cdots+a_{n-1}y^{(n-1)}+y^{(n)}$ mit Koeffizienten $a_0, a_1, \ldots, a_{n-1} \in C^0(I, \mathbb{K})$, eventuell konstant. (Zur Vereinfachung $a_n=1$.) (2) Die Abbildung $L: C^n(I, \mathbb{K}) \to C^0(I, \mathbb{K})$ ist linear. Sie ist für $n \geq 1$ nicht injektiv, genauer: (3) Die Lösungsmenge ker $L=\{y\in C^n\mid Ly=0\}$ ist ein \mathbb{K} -Vektorraum der Dimension n. (4) Ein Fundamentalsystem ist eine Basis $y_1,\ldots,y_n\in \ker L$. (5) Die Abbildung L ist surjektiv: (6) Partikulärlösungen y_b mit $Ly_b=b$ finden wir durch die Greensche Lösungsformel N245 oder Variation der Konstanten N311 oder geeigneten Ansatz für spezielle rechte Seiten N212. (7) Die Lösungsmenge der Gleichung Ly=b ist ein affiner Raum der Dimension n, explizit ausgeschrieben $\{y: I\to \mathbb{K}\mid Ly=b\}=\{y_b+c_1y_1+\cdots+c_ny_n\mid c_1,\ldots,c_n\in\mathbb{K}\}$.

Lineare DG n-ter Ordnung

Qualitativer Überblick dank Existenz- und Eindeutigkeitssatz N3A (Fortsetzung von M1c, konstruktiv M2E, später O1B, konstruktiv O2A):

Zu jedem Anfangsdatum $(x_0,v_0,\ldots,v_{n-1})\in I\times\mathbb{K}^n$ existiert genau eine Lösung $y:I\to\mathbb{K}$ mit Ly=b und $y(x_0)=v_0,\ldots,y^{(n-1)}(x_0)=v_{n-1}.$

Die Lösungsmenge $L_0=\{\ y\colon\! I\to\mathbb K\mid L\ y=0\ \}$ ist ein $\mathbb K$ -Vektorraum der Dimension n: Wir wählen ein Fundamentalsystem $y_1,\dots,y_n\in L_0$ von n linear unabhängigen Lösungen und erhalten:

$$L_0 = \left\{ c_1 y_1 + \dots + c_n y_n \mid c_1, \dots, c_n \in \mathbb{K} \right\} \cong \mathbb{K}^n$$

Die Lösungsmenge $L_b=\{\,y\colon\! I o\mathbb{K}\mid L\,y=b\,\}$ ist ein affiner Raum. Für jede Partikulärlösung $y_b\in L_b$ gilt $L_b=y_b+L_0$, ausgeschrieben:

$$L_b = y_b + L_0 = \{ y_b + c_1 y_1 + \dots + c_n y_n \mid c_1, \dots, c_n \in \mathbb{K}^n \}$$

"Allgemeine Lösungen = partikuläre Lösung + homogene Lösungen" Sind Anfangswerte $y(x_0), \ldots, y^{(n-1)}(x_0)$ vorgegeben, so kann man hieraus c_1, \ldots, c_n eindeutig bestimmen (lineares Gleichungssystem).

Lineare DG *n*-ter Ordnung

Z412 Fazit

Zu lösen sei schließlich eine **inhomogene lineare DG** $p(\partial)\,y(x)=b(x)$:

$$y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \dots + a_1 y'(x) + a_0 y(x) = b(x)$$

Eine Lösung y_b gewinnen wir durch **Variation der Konstanten** (N3c) oder Faltung von b mit der **Greenschen Fundamentallösung** u (N2F), für die $p(\partial)$ u=0 und $u(0)=\cdots=u^{(n-2)}(0)=0$, $u^{(n-1)}(0)=1$ gilt:

$$y_b(x) = \int_{t=x_0}^x u(x-t) b(t) dt$$

Für spezielle rechte Seiten lohnt sich folgender Ansatz (N2E): Zu lösen sei $p(\partial)\,y(x)=r(x)\,\mathrm{e}^{\mu x}$ mit Polynomen $p,r\in\mathbb{C}[x].$ Ist μ eine k–fache Nullstelle von p, so existiert eine Lösung

$$y_b(x) = q(x) x^k e^{\mu x}$$

mit einem eindeutigen Polynom $q \in \mathbb{C}[x]$ vom Grad $\deg q = \deg r$. Speziell $p(\partial) \ y(x) = \mathrm{e}^{\mu x}$ wird gelöst durch $y_b(x) = \mathrm{e}^{\mu x} x^k/p^{(k)}(\mu)$.

Euler-Lagrange-Differentialgleichung

Z414

Gegeben sei ein Wirkungsfunktional $S: C^2([a,b],\mathbb{R}) \to \mathbb{R}$ durch

$$y \mapsto S(y) := \int_{x=a}^{b} F(x, y(x), y'(x)) dx$$

mit einer C^2 -Funktion $F:[a,b]\times\mathbb{R}^2\to\mathbb{R}:(x,q,p)\mapsto F(x,q,p).$

Dann gilt die **Euler–Lagrange–Differentialgleichung** (Satz N4B): Ist $y \in C^2$ **extremal**, also minimal $S(y) \leq S(z)$ für alle $z \in C^2$ oder maximal $S(y) \geq S(z)$ für alle $z \in C^2$, dann erfüllt y die Gleichung

$$\left[\frac{\partial F}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial F}{\partial p} \right] (x, y(x), y'(x)) = 0.$$

Ausgeschrieben bedeutet das: Für alle $x \in [a,b]$ gilt die Gleichung

$$\frac{\partial F}{\partial q}(x,y(x),y'(x)) = \frac{\partial^2 F}{\partial x \, \partial p}(\cdots) + \frac{\partial^2 F}{\partial q \, \partial p}(\cdots) \, y'(x) + \frac{\partial^2 F}{\partial p^2}(\cdots) \, y''(x).$$

Verständnisfragen

Z416 Fazi

- (1) Was ist eine lineare Differentialgleichung $L\,y=0$ mit konstanten Koeffizienten? Was ist ihr charakteristisches Polynom?
- (2) Wie bestimmt man hierzu ein Fundamentalsystem?
- (3) Wie bestimmt man zu $b \in C^0$ ein Urbild $y \in C^n$ mit Ly = b?
- (4) Was versteht man unter einer speziellen rechten Seite b? Wie bestimmt man hierzu ein Urbild $y \in C^n$ mit Ly = b?
- (5) Was versteht man in diesem Zusammenhang unter Resonanz?
- (6) Was ist die Differentialgleichung des harmonischen Oszillators? Wie löst man sie? Was passiert bei harmonischer Anregung? Was versteht man unter dem Begriff Resonanzkatastrophe?

Lösung: (1) Hier gilt $L: y\mapsto a_0y+a_1y'+\cdots+a_{n-1}y^{(n-1)}+y^{(n)}$ mit konstanten Koeffizienten $a_0,a_1,\ldots,a_{n-1}\in\mathbb{K}$. Wir schreiben hierfür kurz $L=p(\partial)$ mit $\partial=\mathrm{d}/\mathrm{d}x$ und dem charakteristischen Polynom $p(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}+x^n\in\mathbb{K}[x]$. (2) Der Exponentialansatz N2D liefert hier stets n unabhängige Lösungen $y_1,\ldots,y_n\in\ker L$. (3) Neben Greenscher Lösungsformel NEED und Variation der Konstanten NEED lohnt sich meist (4) der passende Ansatz für spezielle rechte Seiten $r(x)\,\mathrm{e}^{\mu x},\,\mathrm{e}^{\sigma x}\cos(\tau x),\,\mathrm{e}^{\sigma x}\sin(\tau x)$. NEET

(5) Bei $p(\partial) y = r(x) e^{\mu x}$ liegt (k-fache) Resonanz vor, falls die Anregung μ eine (k-fache)

Nullstelle des char. Polynoms p trifft. (6) Siehe die Ausführung am Anfang des Kapites N.

Differentialgleichungssysteme können wir auf 1. Ordnung reduzieren:

$$\begin{cases} y_1'(t) = f_1(t, y_1(t), \dots, y_n(t)), \\ \vdots \\ y_n'(t) = f_n(t, y_1(t), \dots, y_n(t)). \end{cases}$$

Mit $y=(y_1,\ldots,y_n)$ und $f=(f_1,\ldots,f_n)$ bündeln wir dies prägnant und übersichtlich als eine **vektorwertige Differentialgleichung**:

$$y'(t) = f(t, y(t))$$

Gegeben ist hierzu die stetige Funktion $f: \mathbb{R} \times \mathbb{K}^n \supset G \to \mathbb{K}^n$. Gesucht sind alle Funktionen $y: I \to \mathbb{K}^n$ auf einem (maximalen) Intervall I, die $(t,y(t)) \in G$ und die Gleichung y'(t) = f(t,y(t)) für alle $t \in I$ erfüllen. Qualitativer Überblick dank **Existenz- und Eindeutigkeitssatz** O1B: (1) Zu jedem Startpunkt (t_0,y_0) im Inneren \mathring{G} existieren Lösungen; jede kann beidseitig bis zum Rand von G (oder ∞) fortgesetzt werden. (2) Ist f(t,y) stetig diff'bar nach y, so ist die Lösung durch $(t_0,y_0) \in \mathring{G}$ eindeutig bestimmt und hängt stetig von diesen Anfangswerten ab.

Fundamentalsysteme für homogene lineare DGSysteme

Sei $A:I \to \mathbb{K}^{n \times n}$ stetig. Die matrixwertige Differentialgleichung

$$W'(t) = A(t) W(t)$$
 mit $W(t_0) = E$

erlaubt die **Fundamentallösung** $W \colon I \to \mathbb{K}^{n \times n}$ gegeben durch

$$W(t) = E + \sum_{k=1}^{\infty} \int_{t_k=t_0}^{t} A(t_k) \cdots \int_{t_2=t_0}^{t_3} A(t_2) \int_{t_1=t_0}^{t_2} A(t_1) dt_1 dt_2 \cdots dt_k.$$

Für jedes $t\in I$ ist die Reihe absolut konvergent und W(t) invertierbar. Zu jedem $y_0\in\mathbb{K}^n$ hat daher die **vektorwertige Differentialgleichung**

$$y'(t) = A(t) y(t) \quad \text{mit} \quad y(t_0) = y_0$$

genau eine Lösung $y\colon I\to \mathbb{K}^n$, nämlich $y(t)=W(t)\,y_0$. Somit hat die Differentialgleichung $y'=A\,y$ als Lösungsmenge den \mathbb{K} -Vektorraum

$$L_0 = \{ Wy_0 \mid y_0 \in \mathbb{K}^n \}.$$

Diese allgemeine Lösungsformel ist einfach und übersichtlich.

Partikulärlösung für inhomogene lineare DGSysteme

Seien $A: I \to \mathbb{K}^{n \times n}$ und $b: I \to \mathbb{K}^n$ stetig, $Y = (y_1, \dots, y_n): I \to \mathbb{K}^{n \times n}$ eine Fundamentalmatrix der homogenen Gleichung Y'(t) = A(t) Y(t). Zu lösen sei das inhomogene Differentialgleichungssystem

$$y'(t) = A(t) y(t) + b(t)$$
 mit $y(t_0) = y_0$.

Eine Lösung y_b erhalten wir durch **Variation der Konstanten**. $\boxed{0311}$ Zu jedem Anfangswert $y_0 \in \mathbb{K}^n$ existiert genau eine Lösung, nämlich

$$y(t) = Y(t) \int_{\tau=t_0}^t Y(\tau)^{-1} b(\tau) d\tau + Y(t)Y(t_0)^{-1} y_0.$$

Somit hat die Differentialgleichung y' = A y + b als Lösungsmenge

$$L_b = y_b + L_0 = \{ y_b + W y_0 \mid y_0 \in \mathbb{K}^n \}.$$

Dies ist ein affiner Raum der Dimension n und präzisiert die Merkregel: "Allgemeine Lösungen = partikuläre Lösung + homogene Lösungen."

Lösung durch Hauptvektorketten und Hauptfunktionen

Sei $A\in\mathbb{K}^{n\times n}$ eine Matrix und $\lambda\in\mathbb{K}$ ein Skalar. Eine Hauptvektorkette

$$0 \stackrel{A-\lambda}{\longleftrightarrow} v_1 \stackrel{A-\lambda}{\longleftrightarrow} v_2 \stackrel{A-\lambda}{\longleftrightarrow} \dots \stackrel{A-\lambda}{\longleftrightarrow} v_\ell$$

besteht aus Vektoren $0 \neq v_1, \ldots, v_\ell \in \mathbb{K}^n$ mit $(A - \lambda)v_k = v_{k-1}$. Diese löst das DGSystem durch **Hauptfunktionen** y_1, \ldots, y_ℓ mit

$$y_k(t) = e^{\lambda t} \left[v_k + t v_{k-1} + \frac{t^2}{2} v_{k-2} + \dots + \frac{t^{k-1}}{(k-1)!} v_1 \right]$$

O Ist A diagonalisierbar, so können wir die Differentialgleichungen vollständig entkoppeln (P1B): Wir finden eine Basis (v_1,\ldots,v_n) des \mathbb{C}^n aus Eigenvektoren, $Av_k=\lambda_k v_k$. Diese liefert uns sofort eine Basis aus Eigenfunktionen $y_1,\ldots,y_n:\mathbb{R}\to\mathbb{C}^n$ mit $y_k(t)=\mathrm{e}^{\lambda_k t}v_k$.

Dies vereinfacht die Berechnung der obigen Matrix-Exponentialfunktion.

 \bigcirc Ist A **nicht diagonalisierbar**, so doch immerhin noch jordanisierbar: Es existiert eine Basis des Raumes \mathbb{C}^n aus Hauptvektoren, und diese liefern eine Basis des Lösungsraumes L_0 aus Hauptfunktionen.

Ein homogenes lineares DGSystem erster Ordnung ist von der Form

$$y'(t) = A(t) y(t).$$

Gegeben ist hierzu eine stetige **Koeffizientenmatrix** $A:I \to \mathbb{K}^{n \times n}$. Die Lösungsmenge $L_0 = \{\ y:I \to \mathbb{K}^n \mid y' = Ay\ \}$ ist ein \mathbb{K} -Vektorraum der Dimension n: Wir wählen ein **Fundamentalsystem** $y_1,\dots,y_n \in L_0$ von n linear unabhängigen Lösungen. Bezüglich dieser Basis gilt dann:

$$L_0 = \left\{ c_1 y_1 + \dots + c_n y_n \mid c_1, \dots, c_n \in \mathbb{K} \right\} \cong \mathbb{K}^n$$

Ein (inhomogenes) lineares DGSystem ist von der Form

$$y'(t) = A(t) y(t) + b(t).$$

Gegeben ist hier neben $A:I\to \mathbb{K}^{n\times n}$ ein stetiger **Störterm** $b:I\to \mathbb{K}^n$. Eine partikuläre Lösung y_b liefert die **Variation der Konstanten** (O3D). Die Lösungsmenge $L_b=\{\ y:I\to \mathbb{K}^n\ |\ y'=Ay+b\ \}$ ist ein affiner Raum:

$$L_b = y_b + L_0 = \{ y_b + c_1 y_1 + \dots + c_n y_n \mid c_1, \dots, c_n \in \mathbb{K} \}$$

"Allgemeine Lösungen = partikuläre Lösung + homogene Lösungen."

Fundamentalsysteme für homogene lineare DGSysteme

Lösungen $y_1, \dots, y_n : I \to \mathbb{K}^n$ bündeln wir zur **Fundamentalmatrix**:

$$Y: I \to \mathbb{K}^{n \times n},$$

$$Y(t) = (y_1(t), \dots, y_n(t)) = \begin{pmatrix} y_{11}(t) & y_{21}(t) & \dots & y_{n1}(t) \\ y_{12}(t) & y_{22}(t) & \dots & y_{n2}(t) \\ \vdots & \vdots & & \vdots \\ y_{1n}(t) & y_{2n}(t) & \dots & y_{nn}(t) \end{pmatrix}$$

Die folgenden vier Aussagen sind untereinander äquivalent:

- (a) Die Funktionen $y_1, \dots, y_n : I \to \mathbb{K}^n$ sind linear unabhängig über \mathbb{K} .
- (b) Die Vektoren $y_1(t), \ldots, y_n(t)$ sind linear unabhängig für jedes $t \in I$.
- (c) Die Vektoren $y_1(t),\dots,y_n(t)$ sind linear unabhängig für ein $t\in I$.
- (d) Die Determinante erfüllt $\det Y(t) \neq 0$ für ein und damit alle $t \in I$.

Man nennt Y(t) auch die **Wronski–Matrix** der Funktionen y_1,\dots,y_n . Die **Wronski–Determinante** $w(t)=\det Y(t)$ entwickelt sich gemäß

$$w(t) = w(t_0) \cdot \exp\left[\int_{\tau=t_0}^t \operatorname{tr} A(\tau) \, d\tau\right]$$

Unsere Fundamentallösung W ist der Spezialfall mit $W(t_0) = E$; Umrechnung via $Y(t) = W(t)Y(t_0)$ bzw. $W(t) = Y(t)Y(t_0)^{-1}$.

Lösung durch Eigenvektoren und Eigenfunktionen

Häufig trifft man **lineare DGSysteme mit konstanten Koeffizienten**, z.B. durch Linearisierung autonomer DGSysteme um Fixpunkte (§P2). Gegeben sei eine Matrix $A \in \mathbb{K}^{n \times n}$. Zu lösen sei das DGSystem

$$y'(t) = A y(t)$$
 für $y: \mathbb{R} \to \mathbb{K}^n$.

Zu jedem Startvektor $y(t_0) = y_0$ existiert genau eine Lösung, nämlich

$$y: \mathbb{R} \to \mathbb{K}^n \quad \text{mit} \quad y(t) = e^{(t-t_0)A} y_0.$$

Die Berechnung dieser Matrix-Exponentialfunktion ist leider schwierig.

 \bigcirc Eigen- & Hauptvektoren können dies dramatisch vereinfachen: Eigenvektoren $v_1,\ldots,v_\ell\in\mathbb{K}^n$ mit $Av_k=\lambda_kv_k$ liefern **Eigenfunktionen**

$$y_1, \dots, y_\ell : \mathbb{R} \to \mathbb{K}^n \quad \text{mit} \quad y_k(t) = e^{\lambda_k t} v_k.$$

Genau dann sind die Eigenfunktionen y_1,\ldots,y_ℓ linear unabhängig, wenn die Eigenvektoren $v_1,\ldots,v_\ell\in\mathbb{K}^n$ linear unabhängig sind. Genau dann sind y_1,\ldots,y_n eine **Basis** des Lösungsraumes der DG,

wenn die Vektoren v_1, \ldots, v_n eine Basis des Raumes \mathbb{K}^n sind.

Von komplexen zu reellen Lösungen

 \bigcirc Zu jeder Matrix $A \in \mathbb{C}^{n \times n}$ existiert eine Basis aus Hauptvektorketten. Das obige Verfahren führt also stets zu einer Basis des Lösungsraums. Ist die Matrix reell, $A \in \mathbb{R}^{n \times n}$, so fordert man meist reelle Lösungen. Sei $v_1, \dots, v_k \in \mathbb{C}^n$ eine Hauptvektorkette zum Eigenwert $\lambda = \sigma + \mathrm{i}\omega$. Dann ist $\overline{v_1}, \dots, \overline{v_k}$ eine Hauptvektorkette zum Eigenwert $\overline{\lambda} = \sigma - \mathrm{i}\omega$. Dank Basiswechsel hat das DGSystem folgende **reelle Lösungen**

$$\operatorname{Re} y_k(t) = e^{\sigma t} \operatorname{Re} \left(e^{i\omega t} \left[v_k + t \, v_{k-1} + \frac{t^2}{2} v_{k-2} + \dots + \frac{t^{k-1}}{(k-1)!} v_1 \right] \right),$$

$$\operatorname{Im} y_k(t) = e^{\sigma t} \operatorname{Im} \left(e^{i\omega t} \left[v_k + t \, v_{k-1} + \frac{t^2}{2} v_{k-2} + \dots + \frac{t^{k-1}}{(k-1)!} v_1 \right] \right).$$

Wir erkennen hieran insbesondere das **asymptotische Verhalten**: Für $\sigma < 0$ gilt exponentielles Abklingen, $|y_k(t)| \to 0$ für $t \to \infty$. Für $\sigma > 0$ gilt exponentielles Wachstum, $|y_k(t)| \to \infty$ für $t \to \infty$. Für $\sigma = 0$ ist y_1 beschränkt, aber y_2, \ldots, y_ℓ wachsen polynomiell.

Oas Eigenwert-Kriterium gilt allgemein für Linearisierungen (P2D).

Z424 Fazit

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}.$$

- \iff Das Vektorfeld (u, -v) erfüllt $\operatorname{div}(u, -v) = 0$ und $\operatorname{rot}(u, -v) = 0$.
- \iff Die komplexe Funktion $f = u + \mathrm{i} v : \mathbb{C} \supset \Omega \to \mathbb{C}$ ist **holomorph**.
- \iff Lokal ist f eine komplexe **Potenzreihe**, $f(z) = \sum a_k(z-z_0)^k$.
- \Longrightarrow Beide Funktionen u,v sind **harmonisch**, also $\Delta u=\Delta v=0$.

Die Maxwell-Gleichungen für die Felder $\vec{E}, \vec{B} : \mathbb{R}^4 \supset \Omega \to \mathbb{R}^3$ lauten

$$\nabla \cdot \vec{E} = 4\pi \varrho, \qquad \nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0,$$

$$\nabla \cdot \vec{B} = 0, \qquad \nabla \times \vec{B} - \frac{1}{c} \frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c} \vec{J}.$$

Jede ebene stationäre Lösung $\vec{E}\!:\!\mathbb{R}^2\supset\Omega\to\mathbb{R}^2$ ohne Quellen entspricht einer holomorphen Funktion $f=E_1-\mathrm{i} E_2:\mathbb{C}\supset\Omega\to\mathbb{C}$ und umgekehrt.

Die Charakteristikmethode

Zu lösen sei eine quasi-lineare PDE erster Ordnung

 $a(x,y,u)\,\partial_x u + b(x,y,u)\,\partial_y u = f(x,y,u)\quad \text{für alle } (x,y)\in\Omega\subset\mathbb{R}^2,$ mit Anfangswerten $u(x,y)=u_0(x,y)$ für alle $(x,y)\in A\subset\Omega$.

Gegeben sind hierzu das Definitionsgebiet $\Omega \subset \mathbb{R}^2$ und die stetigen Koeffizientenfunktionen $a,b,f:\Omega\times\mathbb{R}\to\mathbb{R}$, gesucht ist $u:\Omega\to\mathbb{R}$. Auf einer Teilmenge $A \subset \Omega$ gibt $u_0 : A \to \mathbb{R}$ die Anfangswerte vor. Eine **charakteristische Kurve** der PDE zum Startpunkt $(x_0, y_0) \in A$ ist $\text{ein }C^1\text{--Weg }\gamma\colon \mathbb{R}\supset I\to \Omega\times \mathbb{R}\subset \mathbb{R}^3 \text{ mit }s\mapsto (X(s),Y(s),U(s)) \text{ und }$

$$X(0) = x_0,$$
 $X' = a(X, Y, U),$
 $Y(0) = y_0,$ $Y' = b(X, Y, U),$
 $U(0) = u_0(x_0, y_0),$ $U' = f(X, Y, U).$

Solche gewöhnlichen DGSysteme können wir bereits gut lösen! Sind a, b, f stetig diff'bar, so hat das AWP genau eine maximale Lösung.

Der Startwert wird entlang der Charakteristik transportiert (Q2D): Jede Lösung u der PDE erfüllt u(X(s),Y(s))=U(s) für alle $s\in I$.

Potenzreihen und Fourier-Transformation

- Nicht jede PDE besitzt eine Lösung; selbst wenn sie eine besitzt, so doch meist nicht elementar, das heißt in geschlossener Form.
- In solchen Fällen hilft meist nur der Potenzreihenansatz Q333: Existenz- und Eindeutigkeitssatz Q3B von Cauchy-Kowalewskaja
- \bigcirc Fourier–Transformation löst $P(\partial) u(x) = g(x)$ für jedes Polynom $P(x) = \sum a_{\nu} x^{\nu}$. Die Transformation ergibt nämlich $P(i\xi) \hat{u}(\xi) = \hat{g}(\xi)$, Auflösen zu $\widehat{u}(\xi)=\widehat{g}(\xi)/P(\mathrm{i}\xi)$ und Rücktransformation liefert dann u: Dies garantiert der Existenzsatz R1A von Ehrenpreis-Malgrange.

In der Praxis treten sehr häufig partielle Differentialgleichungen auf. Erfahrungsgemäß sind die allermeisten höchstens zweiter Ordnung.

Uneare PDE erster Ordnung lösen wir entlang Charakteristiken. Die wichtigsten linearen PDE zweiter Ordnung sind folgende Modelle: Die Poisson–Gleichung $\Delta u=\varrho$, die Wellengleichung $\partial_t^2 u-c^2\Delta u=\varrho$ und die Wärmeleitungsgleichung $\partial_t u - \kappa \Delta u = q$ mit $\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$. Nach diesen drei Modellgleichungen klassifiziert man lineare PDE zweiter Ordnung in elliptisch, hyperbolisch und parabolisch R110.

Kompaktheit garantiert Eindeutigkeit.

Die Konstruktion einer Lösung oder erfolgreiche Probe eines Kandidaten zeigt die Existenz einer Lösung, aber noch nicht die Eindeutigkeit: Es könnte weitere Lösungen geben, die unserem Ansatz entgehen.

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet, also der Abschluss $\overline{\Omega}$ kompakt. (0) Löst $u: \overline{\Omega} \to \mathbb{R}$ die homogene Poisson–Gleichung

$$\Delta u(x) = 0$$
 für jeden inneren Punkt $x \in \Omega$, $u(x) = 0$ für jeden Randpunkt $x \in \partial \Omega$,

 $\text{dann gilt } u(x)=0 \text{ für alle } x \in \overline{\Omega}.$

(1) Lösen $\tilde{u}, \check{u}: \overline{\Omega} \to \mathbb{R}$ die inhomogene Poisson–Gleichung

$$\begin{split} \Delta u(x) &= q(x) \quad \text{für jeden inneren Punkt } x \in \Omega, \\ u(x) &= g(x) \quad \text{für jeden Randpunkt } x \in \partial \Omega, \end{split}$$

dann gilt $\tilde{u}(x) = \check{u}(x)$ für alle $x \in \overline{\Omega}$.

Wie üblich folgt (1) aus (0) dank Linearität: Angenommen \tilde{u} , \check{u} erfüllen (1). Die Differenz $u = \tilde{u} - \check{u}$ erfüllt dann (0). Also gilt u = 0 und somit $\tilde{u} = \check{u}$.

Konvektion-Diffusion und Navier-Stokes

Allgemeine Bilanzgleichung / Transportgleichung der Strömungslehre:

$$\frac{\partial_t u(t,x)}{\Delta n \text{derungsrate}} + \frac{\nabla \left[\vec{v} \ u(t,x) \right]}{\Delta u / \Delta b \text{fluss: Konvektion}} = \frac{\nabla \left[\kappa \ \nabla u(t,x) \right]}{\text{Diffusion: } \text{div grad}} + \frac{c \ u(t,x)}{\text{Wachstum/Zerfall}} + \frac{q(t,x)}{\text{Quellen}}$$

Angewendet auf die Impulsdichte $\vec{u} = \vec{v} \varrho$ erhalten wir daraus die Navier-Stokes-Gleichungen für inkompressible Fluide:

$$\begin{array}{ll} \text{Massenerhaltung:} & \operatorname{div}\vec{v} = \sum_{k=1}^n \frac{\partial v_k}{\partial x_k} = 0 \\ \\ \text{Impulserhaltung:} & \frac{\partial v_i}{\partial t} + \sum_{\substack{k=1\\ \text{Anderung}}}^n v_k \frac{\partial v_i}{\partial x_k} = \nu \Delta v_i - \frac{1}{\varrho} \frac{\partial p}{\partial x_i} + f_i \\ & \text{Diffusion} & \text{Interne Kraft} & \text{extern} \\ \end{array}$$

Jede ebene stationäre Strömung $v = (v_1, v_2) : \mathbb{R}^2 \supset \Omega \to \mathbb{R}^2$ konstanter Dichte ohne Wirbel, ohne Reibung und ohne äußere Kräfte entspricht einer holomorphen Funktion $f = v_1 - iv_2 : \mathbb{C} \supset \Omega \to \mathbb{C}$ und umgekehrt. Der Druck p berechnet sich hieraus durch $p + (\varrho/2)(v_1^2 + v_2^2) = \text{const.}$

Die Transportgleichung

Wir betrachten lineare PDE erster Ordnung mit konstanten Koeffizienten. Nach Division durch einen der Koeffizienten erhalten wir folgende Form:

$$\partial_t u(t,x) + b \, \partial_x u(t,x) + c \, u(t,x) = f(t,x)$$
 für $t > 0$ und $x \in \mathbb{R}$, mit Anfangswerten $u(0,x) = g(x)$ für $t = 0$ und $x \in \mathbb{R}$.

Gegeben sind die konstanten Koeffizienten $a=1,b,c\in\mathbb{R}$ sowie stetige Funktionen $f: \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$, gesucht ist $u: \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$. Dieses Problem hat genau eine Lösung $u: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$, nämlich

$$u(t,x) = g(x - bt) e^{-ct} + \int_{\tau=0}^{t} f(\tau, x - bt + b\tau) e^{c(\tau - t)} d\tau$$

- Machen Sie die Probe: einsetzen und sorgfältig nachrechnen!
- Das ist ein seltener Glücksfall: Zu dieser Problemklasse haben wir mühelos eine allgemein gültige und explizite Integralformel gefunden.
- O Allgemeiner gelingt diese Rechnung ebenso für Gleichungen $\partial_t u(t,x) + b(t) \partial_x u(t,x) + c(t,x) u(t,x) = f(t,x)$, siehe Satz Q3A.
- ⚠ Die meisten PDE lassen sich nicht einfach mit Integralformeln lösen.

Trennung der Variablen durch Produktansatz

Zu lösen sei eine separierbare Differentialgleichung der Form

$$P(x, \partial_x) u(x, y) = Q(y, \partial_y) u(x, y).$$

Gegeben sind Intervalle $X,Y\subset\mathbb{R}$ und hierauf die Differentialoperatoren $P(x,\partial_x)=\sum_{j=0}^m a_j(x)\partial_x^j$ und $Q(y,\partial_y)=\sum_{k=0}^n b_k(y)\partial_y^k$ mit a_j,b_k stetig. Das bedeutet anschaulich: P operiert nur auf x und Q operiert nur auf y. Als Lösungen gesucht sind Funktionen $u: X \times Y \to \mathbb{K}: (x,y) \mapsto u(x,y)$. In diesem Falle eignet sich der Produktansatz gemäß Satz R1D:

Sei $u: X \times Y \to \mathbb{K}: u(x,y) = v(x) \cdot w(y)$ Produkt von $0 \neq v \in C^m(X,\mathbb{K})$ und $0 \neq w \in C^n(Y, \mathbb{K})$. Dann ist die obige PDE äquivalent zu den beiden gewöhnlichen Differentialgleichungen / Eigenwertgleichungen

$$P(x, \partial_x) v(x) = \lambda v(x)$$
 und $Q(y, \partial_y) w(y) = \lambda w(y)$

mit einem gemeinsamen Eigenwert $\lambda \in \mathbb{K}$ als **Separationskonstante**. Lösung sind Eigenfunktionen u(x,y)=v(x)w(y) und Superpositionen. Gleiches gilt für $u(x_1, \dots, x_n) = u_1(x_1) \cdots u_n(x_n)$ in mehreren Variablen.

Minimum-Maximum-Prinzip harmonischer Funktionen

Beweise für die Eindeutigkeit liefern die Energiemethode und das folgende Minimum-Maximum-Prinzip für harmonische Funktionen.

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet, also der Abschluss $\overline{\Omega}$ kompakt. Sei $u:\overline{\Omega}\to\mathbb{R}$ stetig. Da $\overline{\Omega}$ und $\partial\Omega$ kompakt sind, nimmt u hierauf jeweils ein Minimum und ein Maximum an. Wegen $\overline{\Omega} \supset \partial \Omega$ gilt dann allgemein:

$$\min_{\overline{\Omega}} u \leq \min_{\partial\Omega} u$$
 und $\max_{\overline{\Omega}} u \geq \max_{\partial\Omega} u$

Zudem sei u harmonisch auf dem Inneren Ω , also $u \in C^2$ und $\Delta u = 0$. (1) Dann nimmt u sein Minimum und Maximum auf dem Rand $\partial\Omega$ an:

$$\min_{\overline{\Omega}} u = \min_{\partial\Omega} u$$
 und $\max_{\overline{\Omega}} u = \max_{\partial\Omega} u$

Seien $u, v : \overline{\Omega} \to \mathbb{R}$ stetig und auf dem Inneren Ω harmonisch. Dann gilt: (2) Monotonie: Aus $u \leq v$ auf dem Rand $\partial \Omega$ folgt $u \leq v$ auf ganz $\overline{\Omega}$.

- (3) Eindeutigkeit: Aus u=v auf dem Rand $\partial\Omega$ folgt u=v auf ganz $\overline{\Omega}$.

Dies können wir zur Eingrenzung durch Ober/Unterlösungen nutzen. Das Minimum-Maximum-Prinzip gilt ebenso diskret für endliche Graphen (Satz T4B) und beweist neben Eindeutigkeit auch Existenz der Lösung!

Fouriers berühmte Wärmeleitungsgleichung $\partial_t u - \kappa \Delta u = q$ folgt aus der Wärmebilanz für den Wärmefluss mit unseren Integralsätzen.

Die homogene Gleichung $\partial_t u = \kappa \Delta u$ hat als Fundamentallösung eine auseinanderfließende Glockenkurve, den Wärmeleitungskern

$$H: \mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}: H(t,x) = \frac{1}{(\sqrt{4\pi\kappa t})^n} \exp\left(-\frac{|x|^2}{4\kappa t}\right).$$

Die Konstanten sichern die Normierung $\int_{x\in\mathbb{R}^n} H(t,x)\,\mathrm{d}x=1$ für t>0. In Satz D5D haben wir die Gleichung $(\partial_t-\kappa\Delta)H=0$ nachgerechnet.

Ist für t=0 die Wärmeverteilung $u_0:\mathbb{R}^n\to\mathbb{R}$ vorgegeben, $u_0\in C_b$, so erhalten wir die Lösung durch **Superposition** (Faltung, siehe D5E)

$$u: \mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}: u(t,x) = \int_{\xi \in \mathbb{R}^n} H(t,x-\xi) u_0(\xi) d\xi.$$

Für $t \searrow 0$ gilt dann $u(t,x) \to u_0(x)$. Durch Ableiten unter dem Integral finden wir $(\partial_t - \kappa \, \Delta) \, u(t,x) = \int_{\mathbb{R}^n} u_0(\xi) \, (\partial_t - \kappa \, \Delta) H(t,x-\xi) \, \mathrm{d}\xi = 0.$

Randbedingungen und Eindeutigkeit

Für die Wärmeleitungsgleichung mit Anfangs- und Randbedingungen (ARWP) nutzen wir den folgenden Eindeutigkeitssatz S3c:

 $\begin{array}{ll} \text{(0) L\"ost } u \colon [0,T[\times[a,b] \to \mathbb{R} \text{ die homogene W\"armeleitungsgleichung} \\ \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{f\"ur } 0 < t < T \text{ und } a < x < b, \\ u(t,a) = u(t,b) = 0 & \text{Dirichlet-Randbedingungen f\"ur } t > 0 \text{ oder } \\ \partial_x u(t,a) = \partial_x u(t,b) = 0 & \text{Neumann-Randbedingungen f\"ur } t > 0, \\ u(0,x) = 0 & \text{Anfangswerte f\"ur } t = 0 \text{ und } a < x < b, \\ \end{array}$

 $\text{dann gilt } u(t,x) = 0 \text{ für alle } (t,x) \in [0,T[\times [a,b].$

(1) Lösen $\tilde{u},\check{u}\!:\![0,T[\, imes\,[a,b]\,\to\mathbb{R}$ die Wärmeleitungsgleichung

$$\begin{aligned} \partial_t u(t,x) &- \kappa \, \partial_x^2 u(t,x) = f(t,x), \\ \left\{ \begin{aligned} u(t,a) &= \ell(t), \ u(t,b) = r(t) \ \text{oder} \\ \partial_x u(t,a) &= \ell(t), \ \partial_x u(t,b) = r(t), \end{aligned} \right. \\ \left\{ \begin{aligned} u(0,x) &= g(x), \end{aligned} \right. \end{aligned}$$

dann gilt $\tilde{u}(t,x) = \check{u}(t,x)$ für alle $(t,x) \in [0,T] \times [a,b]$.

Wärmeleitung eines Stabes

Zu lösen sei die eindimensionale homogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) = u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } 0 < x < L. \end{array}$$

Gegeben sei $g:[0,L] \to \mathbb{R}$ stetig oder allgemeiner $g \in L^2([0,L])$, entwickelt als $g(x) = \sum_{n=1}^\infty a_n \sin(n\pi x/L)$ mit $\sum_{n=1}^\infty |a_n|^2 < \infty$. Dann wird unser Anfangs- und Randwertproblem gelöst durch

$$u(t,x) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi x/L).$$

Die natürliche Zeitskala ist die Abklingzeit $T=L^2/\kappa\pi^2$ (Eigenzeit). Gilt sogar $\sum_{n=1}^\infty |a_n|<\infty$, so ist u in t=0 stetig und dort gleich g.

 \bigcirc So können Sie Abkühlen und Aufheizen explizit berechnen: Diese Eigenfunktionen diagonalisieren die Wärmeleitungsgleichung. \bigcirc Numerisch sehr effizient für t>T dank exponentiellem Abklingen.

Wärmeleitung einer Kugel

Zu lösen sei die sphärische homogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,r) = \frac{\kappa}{r^2} \partial_r \Big[r^2 \partial_r \, u(t,r) \Big] & \text{ für alle } t > 0 \text{ und } 0 < r < R, \\ u(t,R) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,r) = 1 & \text{Anfangswerte für } 0 \leq r < R. \end{array}$$

Gegeben sei $g:[0,R] \to \mathbb{R}$ stetig oder allgemeiner $g \in L^2([0,R])$, entwickelt als $g(r) \cdot r = \sum_{n=1}^\infty a_n \sin(n\pi r/R)$ mit $\sum_{n=1}^\infty |a_n|^2 < \infty$. Dann wird unser Anfangs- und Randwertproblem gelöst durch

$$u(t,r) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi r/R).$$

Die natürliche Zeitskala ist die Abklingzeit $T=R^2/\kappa\pi^2$ (Eigenzeit). Gilt sogar $\sum_{n=1}^{\infty}|a_n|<\infty$, so ist u in t=0 stetig und dort gleich g.

So können Sie Abkühlen und Aufheizen explizit berechnen: Diese Eigenfunktionen diagonalisieren die Wärmeleitungsgleichung.

 \odot Numerisch sehr effizient für t > T dank exponentiellem Abklingen.

Zu lösen sei die inhomogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \Delta u(t,x) = f(t,x) & \text{für alle } t > 0 \text{ und } x \in \mathbb{R}^n, \\ u(0,x) = u_0(x) & \text{Anfangswerte für } x \in \mathbb{R}^n, \end{array}$$

Gegeben sei $u_0:\mathbb{R}^n \to \mathbb{R}$ stetig mit Schranke $|u_0(x)| \leq a \, \mathrm{e}^{b|x|^{\alpha}}, \, \alpha < 2$ sowie $f:\mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}$ beschränkt und stetig differenzierbar.

Existenz: Dann wird unser Problem gelöst durch das Integral

$$u(t,x) = \int_{\mathbb{R}^n} H(t,x-\xi) u_0(\xi) d\xi + \int_0^t \int_{\mathbb{R}^n} H(t-\tau,x-\xi) f(\tau,\xi) d\xi d\tau.$$

Zu jedem T>0 gilt eine Schranke $|u(t,x)|\leq A\operatorname{e}^{Bx^2}$ auf $[0,T]\times\mathbb{R}$. Eindeutigkeit: Unsere Lösung u ist die einzige mit dieser Schranke.

⚠ Ohne diese Schranke gibt es exotische Gegenbeispiele (S1B). Mehrdeutigkeiten müssen wir erkennen und nötigenfalls auch lösen: Sind noch mehrere Lösungen möglich, so stellen wir geeignete weitere Bedingungen, um die physikalisch sinnvollen Lösungen herauszuheben.

Das Minimum-Maximum-Prinzip

Z512 Fazit

Sei $K\subset\mathbb{R}^n$ kompakt und $\Omega_T=[0,T]\times K$. Für $u:\Omega_T\to\mathbb{R}$ untersuchen wir die Wärmeleitungsgleichung $\partial_t u=\Delta u$. Hierzu zerlegen wir Ω_T in

das parabolische Innere
$$D_T=]0,T] imes \mathring{K}$$
 und den parabolische Rand $B_T=\left([0,T] imes\partial K\right)\cup\left(\{0\} imes K\right).$

Auf $\Omega_T = [0,T] \times K$ sei $u: \Omega_T \to \mathbb{R}$ stetig. Da Ω_T und B_T kompakt sind, nimmt u hierauf Minimum und Maximum an. Wegen $\Omega_T \supset B_T$ gilt also:

$$\min_{\Omega_T} u \leq \min_{B_T} u \qquad \text{ und } \qquad \max_{\Omega_T} u \geq \max_{B_T} u$$

Zudem gelte $\partial_t u = \Delta u$ auf dem parabolischen Inneren $D_T =]0, T] \times \mathring{K}$. (1) Dann nimmt u sein Minimum und Maximum auf dem Rand B_T an:

$$\min_{\Omega_T} u = \min_{B_T} u$$
 und $\max_{\Omega_T} u = \max_{B_T} u$

Seien $u, v : \Omega_T \to \mathbb{R}$ zwei Lösungen, $\partial_t u = \Delta u$ und $\partial_t v = \Delta v$ auf D_T .

- (2) Monotonie: Aus $u \leq v$ auf dem Rand B_T folgt $u \leq v$ auf ganz Ω_T .
- (3) Eindeutigkeit: Aus u=v auf dem Rand B_T folgt u=v auf ganz Ω_T . Das Prinzip gilt ebenso harmonisch (Satz R2c) und diskret (Satz T4B).

Wärmeleitung eines Stabes

Z514

Speziell für konstante Anfangswerte g(x)=1 erhalten wir die Lösung

$$u(t,x) = \frac{4}{\pi} \sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{\sin((2k+1)\pi x/L)}{(2k+1)}.$$

Die Kerntemperatur im Stabmittelpunkt x=L/2 ist demnach

$$u(t, \frac{L}{2}) = \frac{4}{\pi} \sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{(-1)^k}{(2k+1)} \xrightarrow[k=0]{} \frac{1}{\pi} e^{-t/T}.$$

- \bigcirc Die Abkühlung ist exponentiell, sehr gute Näherung für t>T. Bei doppelter Länge dauert die Abkühlung viermal so lange.
- Hohe Frequenzen klingen besonders schnell ab. Das ist numerisch günstig, führt zu schneller Konvergenz und Glättungseigenschaft:

Dieselbe Methode löst die inhomogene Gleichung $\partial_t u - \kappa \ \partial_x^2 u = f$ mit den jeweiligen Randbedingungen: Dirichlet, Neumann, etc.

Wärmeleitung einer Kugel

Z51 Faz

Speziell für konstante Anfangswerte g(r)=1 erhalten wir die Lösung

$$u(t,r) = 2\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n^2 t/T} \frac{\sin(n\pi r/R)}{n\pi r/R}.$$

Die Kerntemperatur im Kugelmittelpunkt r=0 ist demnach

$$u(t,0) = 2\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n^2 t/T} \stackrel{t \gg T}{\underset{n=1}{\sim}} 2 e^{-t/T}.$$

- \bigcirc Die Abkühlung ist exponentiell, sehr gute Näherung für t>2T. Bei doppeltem Radius dauert die Abkühlung viermal so lange.
- Hohe Frequenzen klingen besonders schnell ab. Das ist numerisch günstig, führt zu schneller Konvergenz und Glättungseigenschaft:

Dieselbe Methode löst die inhomogene Wärmeleitungsgleichung mit den jeweiligen Randbedingungen: Dirichlet, Neumann, etc.

Ein diskreter Wahrscheinlichkeitsraum (Ω, \mathbf{P}) besteht aus

- ullet einer Menge Ω von möglichen Ergebnissen und
- einer normierten und additiven Abbildung $P: \mathfrak{P}(\Omega) \to [0,1]$.

Letzteres bedeutet $\mathbf{P}(\Omega)=1$ und $\mathbf{P}(A)=\sum_{\omega\in A}\mathbf{P}(\{\omega\})$ für alle $A\subseteq\Omega.$

Alle Ergebnisse fassen wir zur **Ergebnismenge** Ω zusammen. Jedes Element $\omega \in \Omega$ heißt **Ergebnis**. Jede Teilmenge $A \subseteq \Omega$ heißt **Ereignis**. Das Ereignis A tritt genau dann ein, wenn ein Ergebnis $\omega \in A$ eintritt. Die Wahrscheinlichkeit hierfür ist das Wahrscheinlichkeitsmaß P(A).

Spezialfall: Ein Wahrscheinlichkeitsraum (Ω, \mathbf{P}) heißt **endlich**, wenn die Ergebnismenge Ω endlich ist. Er heißt **laplacesch**, wenn zudem alle Ergebnisse $\omega \in \Omega$ gleich wahrscheinlich sind. Für das Laplace-Wahrscheinlichkeitsmaß auf Ω gilt daher

$$\mathbf{P}(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl der Ergebnisse in } A}{\text{Anzahl aller Ergebnisse in } \Omega} = \frac{\text{günstige Ergebnisse}}{\text{mögliche Ergebnisse}}$$

Constitution Für Laplace–Experimente berechnet man die Wkten durch Abzählen der Ergebnisse. Hierbei helfen kombinatorische Abzählformeln.

Bedingte Wahrscheinlichkeit

Sei (Ω, \mathbf{P}) ein Wahrscheinlichkeitsraum und $B \subseteq \Omega$ ein Ereignis mit Wahrscheinlichkeit $\mathbf{P}(B)>0.$ Für jedes Ereignis $A\subseteq\Omega$ definieren wir die Wahrscheinlichkeit von A unter der Bedingung B durch

$$\mathbf{P}(A|B) := \mathbf{P}_B(A) := \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}.$$

Sei $\Omega = B_1 \sqcup B_2 \sqcup \ldots \sqcup B_\ell$ eine Zerlegung in disjunkte Ereignisse. Für $A \subseteq \Omega$ gilt dann die Formel der totalen Wahrscheinlichkeit:

$$\mathbf{P}(A) = \sum_{k=1}^{\ell} \mathbf{P}(A \cap B_k) = \sum_{k=1}^{\ell} \mathbf{P}(A|B_k) \mathbf{P}(B_k)$$

 $\label{eq:problem} \mbox{Im Falle } \mathbf{P}(A) > 0 \mbox{ gilt zudem die } \mathbf{Formel \ von \ Bayes} \mbox{ (Satz T2B):}$

$$\mathbf{P}(B_i|A) = \frac{\mathbf{P}(A|B_i)\,\mathbf{P}(B_i)}{\mathbf{P}(A)} = \frac{\mathbf{P}(A|B_i)\,\mathbf{P}(B_i)}{\sum_{k=1}^{\ell}\mathbf{P}(A|B_k)\,\mathbf{P}(B_k)}$$

- Bequeme Notation und präzises Rechnen mit Zufallsereignissen.
- Die Rechnung ist meist leicht, die Interpretation erfordert Übung.

Ausfallwahrscheinlichkeit

Von n unabhängigen Teilen habe jedes Ausfallwkt p. Dann gilt:

$$\begin{array}{ll} \mathbf{P}(\text{Alle Teile funktionieren}) & = (1-p)^n & \lessapprox \ \mathrm{e}^{-np} \\ \mathbf{P}(\text{Mindestens eins fällt aus}) & = 1-(1-p)^n & \lessapprox \ 1-\mathrm{e}^{-np} \end{array}$$

Taylor–Entwicklung: Es gilt $\exp(x) \gtrsim 1 + x$ und $\exp(-x) \gtrsim 1 - x$. Genauer: Für alle $x \in \mathbb{R}$ gilt $\exp(x) \ge 1 + x$ und $\exp(-x) \ge 1 - x$, und für $x \approx 0$ gilt zudem $\exp(x) \approx 1 + x$ und $\exp(-x) \approx 1 - x$.

Eine Maschine bestehe aus vielen **unabhängigen** Teilen T_1, \ldots, T_n . Jedes Teil T_k hat eine gewisse Ausfallwahrscheinlichkeit $p_k \in [0,1]$.

$$\begin{array}{lll} \mathbf{P}(\mathsf{Alle Teile funktionieren}) & = & (1-p_1)\cdots(1-p_n) \\ & \lessapprox & \mathrm{e}^{-p_1}\cdots\mathrm{e}^{-p_n} & = & \mathrm{e}^{-(p_1+\cdots+p_n)}. \end{array}$$

 $\mathbf{P}(\mathsf{Mindestens\ eins\ f\"{a}llt\ aus})\ =\ 1-(1-p_1)\cdots(1-p_n)$ $\gtrsim 1 - e^{-(p_1 + \dots + p_n)}$.

 \bigcirc Die Näherung ist praktisch für p_1,\ldots,p_n klein und n groß. Dies ist die Poisson-Verteilung $P(\lambda)$ mit $\lambda = p_1 + \cdots + p_n$. U314

Kombinatorik / Schubfachmodelle

Auf wie viele Arten kann man k Objekte auf n Fächer verteilen?

Schubfachmodell	unterscheidbare Objekte	ununterscheidbare Objekte
beliebig viele Objekte pro Fach	n^k	$\binom{n+k-1}{k}$
höchstens eins pro Fach (injektiv)	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$
mindestens eins pro Fach (surjektiv)	$n! {k \brace n}$	$\binom{k-1}{n-1}$

Unterscheidbare Objekte denken wir uns mit $1,\ldots,k$ nummeriert. Bei ununterscheidbaren Objekten dürfen wir Objekte untereinander vertauschen: Das bedeutet, wir betrachten Anordnungen dann als gleich, wenn sie sich nur durch die Nummerierung der Objekte unterscheiden. (Für Ausführungen siehe en.wikipedia.org/wiki/Twelvefold_way.)

Rechnen mit Ereignissen

Die Sprache der Mengen erlaubt uns, mit Ereignissen zu rechnen: Klare und eindeutige Formulierung ermöglicht effiziente Rechnung.

Menge	Bedeutung als Zufallsereignis
Ω	Das sichere Ereignis: Ω tritt immer ein, $\mathbf{P}(\Omega) = 1$.
Ø	Das unmögliche Ereignis: \emptyset tritt nie ein, $\mathbf{P}(\emptyset) = 0$.
$A \subseteq \Omega$	Das Ereignis A tritt ein bei jedem Ergebnis $\omega \in A$.
$\Omega \setminus A$	Komplement: $\overline{A} = \Omega \setminus A$ tritt ein, wenn A nicht eintritt.
$A \subseteq B$	Teilmenge: Immer wenn A eintritt, dann auch B .
$B \setminus A$	Restmenge: Das Ereignis B tritt ein, aber nicht A .
$A \cap B$	Die Ereignisse A und B treten beide ein.
$A \cup B$	Das Ereignis A oder B tritt ein (evtl. auch beide).
$A \triangle B$	Entweder A oder B tritt ein (aber nicht beide).
$A \sqcup B$	Das Ereignis A oder B tritt ein, wobei $A \cap B = \emptyset$.

Unser Ziel sind nachvollziehbar begründete, quantitative Aussagen. Diese Notation erlaubt präzises Rechnen mit Zufallsereignissen.

Stochastische Unabhängigkeit

Eine Familie von Ereignissen $A_1, A_2, \dots, A_n \subseteq \Omega$ heißt (stochastisch) unabhängig, wenn alle Schnittmengen die Produktregel erfüllen:

$$\mathbf{P}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_\ell}) = \mathbf{P}(A_{i_1}) \mathbf{P}(A_{i_2}) \cdots \mathbf{P}(A_{i_\ell})$$

für jede Auswahl $1 \leq i_1 < i_2 < \dots < i_\ell \leq n$: Die Wkt jedes Schnitts ist das Produkt der Wahrscheinlichkeiten. Für unabhängige Ereignisse lassen sich damit die Wkten aller erzeugten Ereignisse berechnen.

Das heißt, zwei Ereignisse $A,B\subseteq\Omega$ sind unabhängig, wenn gilt:

 $\bullet \mathbf{P}(A \cap B) = \mathbf{P}(A) \mathbf{P}(B).$

Drei Ereignisse $A, B, C \subseteq \Omega$ sind unabhängig, wenn gilt:

- $\bullet \ \mathbf{P}(A \cap B) = \mathbf{P}(A) \, \mathbf{P}(B),$
- $\mathbf{P}(A \cap C) = \mathbf{P}(A)\mathbf{P}(C)$,
- $\mathbf{P}(B \cap C) = \mathbf{P}(B) \mathbf{P}(C)$,
- $\bullet \ \mathbf{P}(A \cap B \cap C) = \mathbf{P}(A) \, \mathbf{P}(B) \, \mathbf{P}(C).$
- Die Tripelbedingung folgt nicht aus den drei Paarbedingungen!

Kollisionswahrscheinlichkeit

Z606 Fazit

Aus n Möglichkeiten wird k mal zufällig ausgewählt (wobei 1 < k < n). Die Wahrscheinlichkeit $P_{n,k}$, dabei k verschiedene auszuwählen, ist

$$P_{n,k} = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) \lessapprox \exp\left(-\frac{k(k-1)}{2n}\right).$$

 $\stackrel{ ext{ }}{\bigcirc}$ Der Graph ist die rechte Hälfte der Gaußschen Glockenkurve $\mathrm{e}^{-x^2/2}$. Die Wahrscheinlichkeit $Q_{n,k}$ mindestens einer Kollision ist demnach

$$Q_{n,k} = 1 - P_{n,k} \gtrsim 1 - \exp\left(-\frac{k(k-1)}{2n}\right).$$

Geburtstagsparadox: Mit welcher Wkt Q sind unter k=25 zufälligen Personen mindestens zwei am gleichen Tag des Jahres geboren?

Lösung: Für k=25 und n=365 gilt $P \lesssim e^{-0.821} \lesssim 0.44$, also $Q \gtrsim 0.56$.

Untuitiv hält man eine Kollision hier für unwahrscheinlich. Tatsächlich liegt die Wkt bei über 50%, daher heißt dieses überraschende Ergebnis auch "Geburtstagsparadox". Probieren Sie es selbst einmal aus!

Kombinatorik / Urnenmodelle

Z608 Fazit

Aus n durchnummerierten Kugeln ziehen wir k Kugeln (oder Lose): Ziehung mit / ohne Zurücklegen, Ergebnis mit / ohne Reihenfolge. Die Gesamtzahl der möglichen Ergebnisse berechnet sich wie folgt:

Urnenmodell	mit Reihenfolge		ohne Reihenfolge	
ohne Zurücklegen	$\frac{n!}{(n-k)!}$	Laplace	$\binom{n}{k} = \frac{n!}{k!(n-k)!} \frac{8}{8}$	Lablace
mit Zurücklegen	n^k	Laplace	$\binom{n+k-1}{k}$ $\frac{\xi}{\xi}$	Laplace

Beispiel: In einer Urne liegen N Kugeln, davon sind genau K rot. Wir ziehen zufällig n der N Kugeln (oZoR). Welche Wkt hat das Ereignis $A_k =$ "Es werden genau k der K roten Kugeln gezogen"? Lösung:

$$\mathbf{P}(A_k) = \frac{|A_k|}{|\Omega|} = \binom{K}{k} \binom{N-K}{n-k} / \binom{N}{n}$$

Abstand von Wahrscheinlichkeitsmaßen

Oft wollen oder müssen wir zwei WMaße \mathbf{P}_0 und \mathbf{P}_1 auf Ω vergleichen: Ist \mathbf{P}_0 mühsam aber \mathbf{P}_1 bequem, so wollen wir \mathbf{P}_0 durch \mathbf{P}_1 ersetzen. Die beiden WMaße \mathbf{P}_0 und \mathbf{P}_1 ordnen jedem Ereignis $A\subseteq\Omega$ die Wkten $\mathbf{P}_0(A)$ bzw. $\mathbf{P}_1(A)$ zu. Der totale Abstand zwischen \mathbf{P}_0 und \mathbf{P}_1 ist das Supremum, die größtmögliche Abweichung, die hierbei auftreten kann:

$$\left\|\mathbf{P}_0 - \mathbf{P}_1\right\| := \sup_{A \subseteq \Omega} \left|\mathbf{P}_0(A) - \mathbf{P}_1(A)\right| = \frac{1}{2} \sum_{\omega \in \Omega} \left|\mathbf{P}_0(\{\omega\}) - \mathbf{P}_1(\{\omega\})\right|$$

Diese Fehlerschranke nutzen wir bei näherungsweisen Rechnungen: Ist der Abstand klein genug, etwa $\|\mathbf{P}_0 - \mathbf{P}_1\| \le \varepsilon = 0.5 \cdot 10^{-3}$, so können wir $\mathbf{P}_0(A)$ durch $\mathbf{P}_1(A)$ ersetzen und machen dabei schlimmstenfalls einen Fehler von ε , das heißt, es gilt $\mathbf{P}_0(A) = \mathbf{P}_1(A) + \delta$ mit $|\delta| \le \varepsilon$.

Der totale Abstand ist (bis auf einen Faktor 1/2) die Summe über alle punktweisen Abstände: Die linke Seite $\sup_{A\subseteq\Omega}$ ist leicht zu verstehen, die rechte Seite $\sum_{\omega\in\Omega}$ ist leicht zu berechnen. Diese Umformulierung ist oft leichter zugänglich: Es genügt, die absolute Differenz über alle Ergebnisse zu addieren. Die genaue Rechnung $\boxed{\text{U318}}$ beweist dies und erklärt den Faktor 1/2.

Die Rechnung zeigt zudem, dass das Supremum angenommen wird, also ein Maximum ist. Für die Menge $A = \{ \ \omega \in \Omega \ | \ \mathbf{P}_0(\{\omega\}) > \mathbf{P}_1(\{\omega\}) \ \} \ \text{gilt} \ \| \mathbf{P}_0 - \mathbf{P}_1 \| = \left| \mathbf{P}_0(A) - \mathbf{P}_1(A) \right|.$

Hypergeometrisch, binomial, Poisson

Stichprobe: Gesamtgröße N, davon K Treffer, Stichprobengröße n. Die Trefferzahl k folgt der **hypergeometrischen Verteilung**

$$H(N,K,n)(k) = \binom{K}{k} \binom{N-K}{n-k} / \binom{N}{n}.$$

Ein Experiment mit Trefferwkt t mit n-mal unabhängig wiederholt, z.B. Stichprobengröße n mit Zurücklegen, Trefferwkt t=K/N. Die Trefferzahl k folgt hier der **Binomialverteilung**

$$B(n,t)(k) = \binom{n}{k} t^k (1-t)^{n-k}.$$

Damit sind H(N,K,n) und B(n,t) WVerteilungen auf $\{0,\dots,n\}\subset\mathbb{N}$. Für $N\to\infty$ und $K/N\to t$ gilt die Konvergenz $H(N,K,n)\to B(n,t)$. Genauer gilt für K>n folgende Abschätzung des **totalen Abstands**

$$||H(N, K, n) - B(n, K/N)|| < n/N.$$

Wahrscheinlichkeitsräume

Mit Kolmogorovs Axiomen (V1c) fixieren wir die grundlegenden Forderungen für WMaße, woraus alle weiteren Rechenregeln folgen:

Ein Wahrscheinlichkeitsraum $(\Omega, \mathscr{A}, \mathbf{P})$ besteht aus

- einer Ergebnismenge Ω ,
- ullet einer **Ereignismenge** $\mathscr{A} \subseteq \mathfrak{P}(\Omega)$ und
- ullet einem Wahrscheinlichkeitsmaß $\mathbf{P}: \mathscr{A} \rightarrow [0,1],$

mit folgenden grundlegenden Eigenschaften:

- **1 Normierung:** Es gilt $\Omega \in \mathscr{A}$ und $\mathbf{P}(\Omega) = 1$.
- **2** Komplemente: Aus $A \in \mathscr{A}$ folgt $(\Omega \setminus A) \in \mathscr{A}$.
- **3** σ -Additivität: Aus $A_0,A_1,A_2,\ldots\in\mathscr{A}$ folgt $\bigcup_{k=0}^\infty A_k\in\mathscr{A}$, sowie

$$\mathbf{P}\Bigl(\bigsqcup_{k=0}^\infty A_k\Bigr) = \sum\nolimits_{k=0}^\infty \mathbf{P}(A_k) \quad \text{wenn } A_i \cap A_j = \emptyset \text{ für } i \neq j.$$

Die Bezeichnung " σ " steht abkürzend für "abzählbar". Wir nennen $\mathscr A$ eine σ -Algebra und hierauf $\mathbf P:\mathscr A\to [0,1]$ ein σ -additives Maß.

Wichtigste Beispiele sind diskrete und kontinuierliche WRäume. Auch Mischungen aus diskret und kontinuierlich sind möglich.

Erwartung, Varianz, Streuung

Sei $\mathbf P$ ein WMaß auf $\Omega\subseteq\mathbb R^n$, zum Beispiel diskret oder kontinuierlich. Der Schwerpunkt der Verteilung $\mathbf P$ heißt **Mittelwert** oder **Erwartung**:

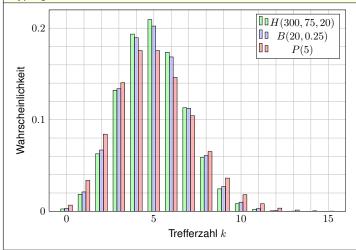
$$\mu := \sum\nolimits_{x \in \Omega} x \, p(x) \quad \text{bzw.} \quad \mu := \int_{x \in \Omega} x \, f(x) \, \mathrm{d}x.$$

Hierbei setzen wir absolute Summierbarkeit / Integrierbarkeit voraus. Die **Varianz** der Verteilung ist ihr Trägheitsmoment bezüglich μ :

$$\begin{split} \sigma^2 &:= \sum_{x \in \Omega} (x - \mu)^2 \, p(x) &= \left[\sum_{x \in \Omega} x^2 \, p(x) \right] - \mu^2 \ \geq 0 \quad \text{bzw.} \\ \sigma^2 &:= \int_{x \in \Omega} (x - \mu)^2 \, f(x) \, \mathrm{d}x \ = \int_{x \in \Omega} x^2 \, f(x) \, \mathrm{d}x - \mu^2 \ \geq 0. \end{split}$$

Die Wurzel $\sigma \geq 0$ dieses Wertes heißt die **Streuung** der Verteilung. Anschaulich misst σ , wie weit die Werte um den Mittelwert μ streuen. Man nennt die Streuung σ daher auch die **Standardabweichung**. Genau dann gilt $\sigma = 0$, wenn $\mathbf P$ auf den Punkt μ konzentriert ist, d.h. für $A \subseteq \mathbb R$ gilt $\mathbf P(A) = 1$ falls $\mu \in A$ und $\mathbf P(A) = 0$ falls $\mu \notin A$.

Hypergeometrisch, binomial, Poisson



Hypergeometrisch, binomial, Poisson

Z612 Fazit

Die **Poisson–Verteilung** $P(\lambda)$ zum Parameter $\lambda \geq 0$ ist gegeben durch

$$P(\lambda)(k) = e^{-\lambda} \lambda^k / k!.$$

Damit ist $P(\lambda)$ eine Wahrscheinlichkeitsverteilung auf $\mathbb{N}=\{0,1,2,\dots\}$. Das Gesetz der kleinen Zahlen besagt $B(n,\lambda/n)\to P(\lambda)$ für $n\to\infty$. Genauer gilt folgende Abschätzung des **totalen Abstands**:

$$||B(n, \lambda/n) - P(\lambda)|| \le \lambda^2/n.$$

Für Trefferwahrscheinlichkeit $t \in [0,1]$ und $\lambda = nt$ erhalten wir

$$||B(n,t) - P(nt)|| \le nt^2.$$

© Je nach geforderter Genauigkeit können wir so bequem von hypergeometrisch über binomial zu Poisson übergehen.

 \bigcirc Das verallgemeinert und präzisiert die Näherungsformel $\boxed{\text{U108}}$ für Ausfallwahrscheinlichkeiten bei n gleichen unabhängigen Bauteilen.

Diskrete und kontinuierliche WRäume

Z614

Eine diskrete Wahrscheinlichkeitsverteilung auf Ω ist eine Funktion

$$p\!:\!\Omega\to[0,1]\quad\text{mit Gesamtmasse}\quad\sum\nolimits_{x\in\Omega}p(x)=1.$$

Diese definiert ein diskretes Wahrscheinlichkeitsmaß

$$\mathbf{P} : \mathfrak{P}(\Omega) \to [0,1] \quad \mathrm{durch} \quad \mathbf{P}(A) := \sum\nolimits_{x \in A} p(x).$$

Hierbei ist $\mathfrak{P}(\Omega)$ die Familie aller Teilmengen $A \subseteq \Omega$.

Eine kontinuierliche Wahrscheinlichkeitsverteilung oder WDichte auf einer Ergebnismenge $\Omega\subseteq\mathbb{R}^n$ ist eine messbare Funktion

$$f: \Omega \to \mathbb{R}_{\geq 0}$$
 mit Gesamtmasse $\int_{\Omega} f(x) \, \mathrm{d}x = 1$.

Diese definiert ein kontinuierliches Wahrscheinlichkeitsmaß

$$\mathbf{P} : \mathscr{B}(\Omega) \to [0,1] \quad \mathsf{durch} \quad \mathbf{P}(A) := \int_A f(x) \, \mathrm{d}x.$$

Hierbei ist $\mathscr{B}(\Omega)$ die Familie aller messbaren Teilmengen $A\subseteq\Omega$.

Existenz von Erwartung und Varianz

Z615 Fazit

Z6 Fa

Aufgabe: Welche der folgenden Funktionen $f:\mathbb{R} \to \mathbb{R}$ sind WDichten?

$$\begin{split} f(x) &= \frac{1/c}{1+|x|}, & f(x) &= \frac{1/c}{1+|x|^2}, \\ f(x) &= \frac{1/c}{1+|x|^3}, & f(x) &= \frac{1/c}{1+|x|^\alpha}, \\ g(x) &= \frac{1/c}{1+|x|^\alpha \ln(\mathrm{e}+|x|)}, & h(x) &= \frac{1/c}{1+|x|^\alpha \ln(\mathrm{e}+|x|)^2}, \end{split}$$

mit geeignetem $c \in \mathbb{R}$. Für welche existieren Erwartung und Varianz?

Lösung: Wir haben jeweils $f \ge 0$. Die erste lässt sich nicht normieren:

$$\int_{\mathbb{R}} \frac{1}{1+|x|^{\alpha}} \, \mathrm{d}x = \begin{cases} +\infty & \text{für } \alpha \leq 1, \\ <\infty & \text{für } \alpha > 1. \end{cases}$$

Für $\alpha=2$ erhalten wir die Cauchy-Verteilung $f(x)=\frac{1/\pi}{1+x^2}$. $\boxed{V249}$ Das Integral konvergiert für $\alpha>1$. Für die Erwartung braucht's $\alpha>2$. Für die Varianz braucht's $\alpha>3$. Für h genügt jeweils schon $\alpha\geq1,2,3$.

 $\{a,\ldots,b\}$

diskret

Gleichverteilung

Hyperg. H(N, K, n)

Binomial B(n,t)

Poisson $P(\lambda)$

Geometrisch G(q)

Z6 Fa	17 zit	Vo
V		G
$\frac{b-a+1)^2-1}{12}$		ט
$\frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1}$		
nt(1-t)		
$\frac{\lambda}{q}$		2
$\frac{q}{(1-q)^2}$ definiert! —		ioslacilaiodoo
		9

Zeta $Z(s)$, $s=2$	$\mathbb{N}_{\geq 1}$	$\frac{6}{\pi^2} \frac{1}{k^2}$	1	icht definiert! —
kontinuierlich	Ω	Dichte $f(x)$	E	V
Gleichverteilung	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential $E(\lambda)$	$\mathbb{R}_{\geq 0}$	$\lambda e^{-\lambda x}$	λ^{-1}	λ^{-2}
Normal $N(\mu, \sigma^2)$	\mathbb{R}	$\frac{e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}}{\sigma\sqrt{2\pi}}$	μ	σ^2
${\bf Cauchy}\; C(m,a)$	\mathbb{R}	$\frac{1}{\pi} \frac{a}{a^2 + (x-m)^2}$	<u> —</u> пі	cht definiert! —

 $\{0,\ldots,n\}$ $\binom{K}{k}\binom{N-K}{n-k}/\binom{N}{n}$ $n\frac{K}{N}$

 $\{0,\ldots,n\} \mid \binom{n}{k} t^k (1-t)^{n-k} \mid$

Der lokale Grenzwertsatz (LGS)

Für die Binomialverteilung B(n,t) gilt $\mu=nt$ und $\sigma^2=nt(1-t)$. Sie ähnelt der Normalverteilung: $B(n,t)\approx N(\mu,\sigma^2)$, das heißt:

$$\binom{n}{k} t^k (1-t)^{n-k} \; \approx \; \frac{\mathrm{e}^{-\frac{(k-\mu)^2}{2\sigma^2}}}{\sigma \sqrt{2\pi}} \; \approx \; \int_{k-1/2}^{k+1/2} \frac{\mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sigma \sqrt{2\pi}} \, \mathrm{d}x.$$

Dies nennt man auch Satz von de Moivre (1733) und Laplace (1812). Mühsame Summen ersetzen wir so durch bequemere Integrale:

$$\sum_{k=a}^{b} \binom{n}{k} t^{k} (1-t)^{n-k} = \int_{\xi=\alpha}^{\beta} \frac{e^{-\xi^{2}/2}}{\sqrt{2\pi}} d\xi + \delta$$

mit den Grenzen $\alpha=(a-1/2-\mu)/\sigma$ und $\beta=(b+1/2-\mu)/\sigma$. Der Approximationsfehler δ ist hierbei für $\sigma\geq 5$ beschränkt durch

$$|\delta| < \frac{|1-2t|}{10\sigma} + \frac{1}{3\sigma^2} \le \frac{1}{6\sigma} = \frac{1}{6\sqrt{nt(1-t)}}$$

© Gilt der Fehler als klein genug, so können wir die mühsame Summe der Binomialverteilung (links) durch das wesentlich bequemere Integral der Normalverteilung (rechts) ersetzen: Dieses liegt tabelliert vor. V116

Zufallsvariablen und Erwartungswerte

Sei $(\Omega,\mathscr{A},\mathbf{P})$ ein WRaum, zum Beispiel diskret oder kontinuierlich. $\boxed{\mathbb{V}112}$ Eine reelle **Zufallsvariable** ist eine messbare Funktion $X:\Omega\to\mathbb{R}$. $\boxed{\mathbb{V}219}$ Sie ordnet jedem Zufallsergebnis $\omega\in\Omega$ eine reelle Zahl $X(\omega)\in\mathbb{R}$ zu. Im Bildbereich \mathbb{R} definiert sie die **Verteilung** $\mathbf{P}_X:\mathscr{B}(\mathbb{R})\to[0,1]$ durch

$$\mathbf{P}_X(B) = \mathbf{P}(X \in B) = \mathbf{P}(\{ \omega \in \Omega \mid X(\omega) \in B \}).$$

Ihr Erwartungswert ist gegeben durch

$$\mu = \mathbf{E}(X) := \int_{\Omega} X(\omega) \, d\mathbf{P} = \int_{\mathbb{R}} x \, d\mathbf{P}_X.$$

Ist die Verteilung \mathbf{P}_X auf \mathbb{R} kontinuierlich mit Dichte $f:\mathbb{R}\to\mathbb{R}_{\geq 0}$, so gilt

$$\mathbf{E}(X) = \int_{\mathbb{D}} x f(x) \, \mathrm{d}x.$$

Ist \mathbf{P}_X diskret mit Wkten $p(x) = \mathbf{P}(\{ \ \omega \in \Omega \ | \ X(\omega) = x \ \})$, so gilt

$$\mathbf{E}(X) = \sum_{x \in \mathbb{R}} x \, p(x).$$

Unabhängige Zufallsvariablen

Eine Familie $X=(X_1,\ldots,X_n)$ von Zufallsvariablen $X_k\colon\Omega\to\mathbb{R}$ heißt (stochastisch) unabhängig, wenn für alle Intervalle $I_1,\ldots,I_n\subset\mathbb{R}$ gilt

$$P(X_1 \in I_1, ..., X_n \in I_n) = P(X_1 \in I_1) \cdots P(X_n \in I_n).$$

Die gemeinsame Verteilung von X_1, \ldots, X_n ist dann das Produktmaß

$$\mathbf{P}_X = \mathbf{P}_{(X_1,\dots,X_n)} = \mathbf{P}_{X_1} \otimes \dots \otimes \mathbf{P}_{X_n}.$$

Sind $\mathbf{P}_{X_1},\dots,\mathbf{P}_{X_n}$ auf $\mathbb R$ kontinuierliche WMaße mit Dichten f_1,\dots,f_n , so ist auch das Produktmaß \mathbf{P}_X auf $\mathbb R^n$ kontinuierlich, mit Produktdichte

$$f(x_1,\ldots,x_n)=f_1(x_1)\cdots f_n(x_n).$$

Erwartungen unabhängiger Zufallsvariablen X, Y multiplizieren sich:

$$\mathbf{E}(X \cdot Y) = \mathbf{E}(X) \cdot \mathbf{E}(Y)$$

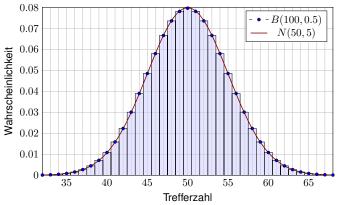
Ihre Kovarianz $\mathbf{Cov}(X,Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$ verschwindet somit. Varianzen unabhängiger Zufallsvariablen X,Y addieren sich:

$$\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y) + 2\mathbf{Cov}(X,Y)$$

▲ Für abhängige Zufallsvariablen gilt dies im Allgemeinen nicht!

Von Binomial- zu Normalverteilungen

Grundbeobachtung: Binomialverteilungen ähneln Normalverteilungen. Der lokale Grenzwertsatz präzisiert dies und sichert Fehlerschranken.



Der lokale Grenzwertsatz (LGS)

Fazit

 $\stackrel{\bigcirc}{\cup}$ Ist eine genauere Approximation nötig, so addiert man zur obigen Näherung durch das Integral noch folgenden Korrekturterm κ :

$$\begin{split} \sum_{k=a}^b \binom{n}{k} t^k (1-t)^{n-k} &= \int_{\xi=\alpha}^\beta \frac{\mathrm{e}^{-\xi^2/2}}{\sqrt{2\pi}} \, \mathrm{d}\xi \; + \; \kappa \; + \; \varepsilon \\ \mathrm{mit \, Korrektur} & \kappa \; = \; \frac{1-2t}{6\sigma\sqrt{2\pi}} \Big[(1-\xi^2) \, \mathrm{e}^{-\xi^2/2} \Big]_\alpha^\beta \end{split}$$

Der verbleibende Fehler ε ist noch eine Größenordnung kleiner, nämlich

$$|\kappa| < \frac{|1-2t|}{10\sigma}, \qquad |\varepsilon| < \frac{0.15 + 0.18|1-2t|}{\sigma^2} < \frac{1}{3\sigma^2} = \frac{1}{3nt(1-t)}.$$

Speziell für t=1/2 oder $\alpha=\beta$ verschwindet der Korrekturterm κ . Für $n\to\infty$ geht der Fehler gegen Null mit $1/\sqrt{n}\to 0$ bzw. $1/n\to 0$.

$\sigma \geq 5$	$\sigma \geq 8$	$\sigma \ge 13$	$\sigma \ge 19$	$\sigma \ge 26$
$ \delta < 0.034$	$ \delta < 0.0178$	$ \delta < 0.0097$	$ \delta < 0.0062$	$ \delta < 0.0043$
$ \varepsilon < 0.014$	$ \varepsilon < 0.0053$	$ \varepsilon < 0.0020$	$ \varepsilon < 0.0010$	$ \varepsilon < 0.0005$

Varianz und Streuung

Z622

Sei $(\Omega, \mathscr{A}, \mathbf{P})$ ein WRaum und $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Sei $\mathbf{E}(|X|) < \infty$, so dass der Erwartungswert $\mu = \mathbf{E}(X)$ existiert. Das (absolute, zentrierte) n—te Moment von X ist gegeben durch

$$\rho^n(X) := \mathbf{E}[|X - \mu|^n].$$

Fall n=2: Die **Varianz** von X ist die mittlere quadratische Abweichung

$$\sigma^{2}(X) = \mathbf{V}(X) := \mathbf{E}[(X - \mu)^{2}] = \mathbf{E}(X^{2}) - \mathbf{E}(X)^{2} \ge 0.$$

Die Streuung oder Standardabweichung ist $\sigma(X) := \sqrt{\mathbf{V}(X)}$. Nach Chebychev gelten folgende Abschätzungen für alle h, k > 0:

$$\begin{aligned} \mathbf{P}\Big[|X - \mu| \ge k\sigma\Big] \le \frac{1}{k^2}, & \mathbf{P}\Big[\mu - k\sigma < X < \mu + k\sigma\Big] \ge 1 - \frac{1}{k^2}, \\ \mathbf{P}\Big[X \ge \mu + k\sigma\Big] \le \frac{1}{1 + k^2}, & \mathbf{P}\Big[\mu - h\sigma < X < \mu + k\sigma\Big] \ge \frac{4(hk - 1)}{(h + k)^2} \end{aligned}$$

 \odot Kennen Sie nur μ und σ , so sind diese Ungleichungen optimal. Die Wkt großer Abweichungen fällt mindestens quadratisch, mit $1/k^2$.

Das Gesetz der großen Zahlen

Z62

Eine Messung / ein Experiment entspricht einer Zufallsvariablen $X:\Omega\to\mathbb{R}$ mit Erwartung $\mu=\mathbf{E}(X)$ und Varianz $\sigma^2=\mathbf{V}(X)<\infty.$ Wir führen unabhängige Wiederholungen X_1,X_2,X_3,\dots durch. Aus diesen Messwerten bilden wir den **empirischen Mittelwert**

$$\hat{X} := \frac{1}{n} (X_1 + \dots + X_n).$$

Es gilt $\mathbf{E}(\hat{X})=\mu$ und dank Unabhängigkeit zudem $\mathbf{V}(\hat{X})=\sigma^2/n$. Mit zunehmendem n streut \hat{X} immer weniger, denn $\hat{\sigma}=\sigma/\sqrt{n}\to 0$. Der Mittelwert \hat{X} nähert sich dem Erwartungswert μ : Für jedes $\varepsilon>0$ gilt

$$\mathbf{P}\Big[|\hat{X} - \mu| \ge \varepsilon\Big] \le \frac{\sigma^2}{n\,\varepsilon^2} \searrow 0.$$

Dieser Grenzwert besagt in Worten: Große Abweichungen $|\hat{X} - \mu| \geq \varepsilon$ werden beliebig unwahrscheinlich, wenn wir n hinreichend groß wählen. In praktischen Anwendungen möchte man n nicht allzu groß wählen, denn wiederholte Messungen sind teuer. Wir brauchen daher bessere Schranken für die Abweichung $\mathbf{P}(|\hat{X} - \mu| \geq \varepsilon)$. Diese liefert der ZGS!

Der ZGS besagt: Die Summe $S = X_1 + \cdots + X_n$ vieler unabhängiger aber ähnlich großer Zufallsvariablen ist annähernd normalverteilt.

Sei $(\Omega, \mathscr{A}, \mathbf{P})$ ein WRaum und $X_1, X_2, X_3, \ldots : \Omega \to \mathbb{R}$ unabhängig mit

- 1 endlichen Erwartungen
- $\mu_k = \mathbf{E}(X_k) \text{ dank } \mathbf{E}(|X_k|) < \infty,$
- 2 strikt positiven Varianzen $\sigma_k^2 = \mathbf{E}(|X_k \mu_k|^2) \geq \sigma_0^2 > 0,$ 3 beschränkten dritten Momenten $\rho_k^3 = \mathbf{E}(|X_k \mu_k|^3) \leq \rho_0^3 < \infty.$

Die Summe $S=X_1+\cdots+X_n$ hat die Erwartung $\mu=\mu_1+\cdots+\mu_n$

und die Varianz
$$\sigma^2=\sigma_1^2+\cdots+\sigma_n^2$$
. Es gilt $\mathbf{P}_S\approx N(\mu,\sigma^2)$, genauer:
$$\mathbf{P}(a\leq S\leq b) \ = \ \int_{(a-\mu)/\sigma}^{(b-\mu)/\sigma} \frac{\mathrm{e}^{-\xi^2/2}}{\sqrt{2\pi}}\,\mathrm{d}\xi \ + \ \delta$$

und für den Approximationsfehler δ gilt die allgemeine Schranke

$$|\delta| \ \leq \ \frac{\rho_1^3 + \dots + \rho_n^3}{(\sigma_1^2 + \dots + \sigma_n^2)^{3/2}} \ \leq \ \frac{\rho_0^3}{\sigma_0^3 \sqrt{n}} \ \searrow \ 0.$$

Der lokale Grenzwertsatz V3A ist spezieller, dabei aber auch präziser.

Verständnisfragen: Zufallsvariablen

Versuchen Sie, folgende Fragen frei aber genau zu beantworten, etwa so, wie Sie dies einer Kommiliton:in / Kolleg:in erklären wollen.

Was ist ein Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbf{P})$? Was ist hierauf eine (reelle) Zufallsvariable X? Was ist ihre Verteilung P_X im Bildraum \mathbb{R} ? Erinnerung: Wann ist $(\Omega, \mathcal{A}, \mathbf{P})$ diskret? endlich? laplacesch?

Wie berechnet man den Erwartungswert $\mu = \mathbf{E}(X)$? bei diskreter Verteilung? bei kontinuierlicher Verteilung? Wie berechnet man die Varianz $\sigma^2 = \mathbf{V}(X)$ und Streuung σ ? Was sind die Momente von X?

Nennen Sie wichtige Verteilungen und ihre Anwendungen. Was sind ihre Kenngrößen μ und σ ? Wie berechnet man sie? Wie verhalten sie sich bei einer affinen Skalierung Y = aX + b?

Wie lauten und was besagen die Ungleichungen von Chebychev? Wann lassen sie sich anwenden, was muss man hierzu wissen?

Gibt es genauere Ungleichungen, wenn man die Verteilung kennt? Was gilt für die Normalverteilung? Was besagt die 68-95-99-Regel?

Weise Worte zum guten Ausgang

Ergänzung

La bêtise n'est pas mon fort. [Dummheit ist nicht meine Stärke.] (Paul Valéry, 1871-1945)

Monsieur Cauchy annonce, que, pour se conformer au vœu du Conseil, il ne s'attachera plus à donner, comme il a fait jusqu'à présent. des démonstrations parfaitement rigoureuse. (Conseil d'instruction de l'École Polytechnique, 1825)

Je dois dire qu'il n'y avait pas un cours de Lebesgue où l'on ne riait pas d'une manière infiniment agréable. Je soupçonne même qu'au moins le tiers des gens venait au cours de Lebesque pour s'amuser. C'était infiniment intéressant, infiniment profond. (Szolem Mandelbrojt, 1899–1983, Souvenirs à bâtons rompus)

Weise Worte zum guten Ausgang

While physics and mathematics may tell us how the universe began, they are not much use in predicting human behavior because there are far too many equations to solve. I'm no better than anyone else at understanding what makes people tick. (Stephen Hawking, 1942-2018)

> Es gibt drei Möglichkeiten, klug zu handeln: 1. Durch Nachahmen — Das ist die leichteste. 2. Durch Nachdenken — Das ist die edelste. 3. Durch Erfahrung — Das ist die bitterste.

Erkläre es mir, und ich werde es vergessen. Zeige es mir, und ich werde mich erinnern. Lass es mich tun, und ich werde es verstehen. (Konfuzius, 551–497 v.Chr.)

Konfidenzintervalle

In der Praxis ist folgende Anwendung des ZGS besonders wichtig: Als Stichprobe für X führen wir n unabhängige Messungen aus. Aus den so gewonnenen Messwerten $x_1, \ldots, x_n \in \mathbb{R}$ berechnen wir

den Stichprobenmittelwert
$$\hat{x} := \frac{1}{n} \sum_{k=1}^{n} x_k,$$

 $\hat{\sigma}^2 := \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \hat{x})^2,$ die Stichprobenvarianz

$$\mathsf{das}\ 2\sigma\mathsf{-}\mathsf{Konfidenzintervall}\qquad I_2:=\Big[\ \hat{x}-2\frac{\hat{\sigma}}{\sqrt{n}},\ \hat{x}+2\frac{\hat{\sigma}}{\sqrt{n}}\ \Big].$$

Für große n gilt: Bei 95% aller Stichproben überdeckt das 2σ -Intervall I_2 den (konstanten aber uns unbekannten) Erwartungswert $\mu = \mathbf{E}(X)$. Noch strenger: Bei 99% aller Stichproben überdeckt das 3σ -Intervall I_3 den (konstanten aber uns unbekannten) Erwartungswert $\mu = \mathbf{E}(X)$. Der Nenner \sqrt{n} bedeutet: Für doppelte Genauigkeit braucht man eine viermal größere Stichprobe, für zehnfache Genauigkeit eine 100mal größere Stichprobe. Das ist Fluch und Segen der großen Zahlen!

Verständnisfragen: zentraler Grenzwertsatz

Wann sind zwei Zufallsvariablen X,Y unabhängig? Wann sind die Indikatorfunktionen I_A, I_B zweier Ereignisse $A, B \subset \Omega$ unabhängig? Kennen Sie weitere Beispiele von un/abhängigen Zufallsvariablen?

Gilt stets $\mathbf{E}(X+Y) = \mathbf{E}(X) + \mathbf{E}(Y)$? und $\mathbf{E}(X \cdot Y) = \mathbf{E}(X) \cdot \mathbf{E}(Y)$? und V(X + Y) = V(X) + V(X)? Was gilt bei Unabhängigkeit?

Was sind Erwartungswert und Varianz für B(1,t)? Wie kann man hieraus mühelos Erwartungswert und Varianz von B(n, t) ablesen?

Was besagt das Gesetz der großen Zahlen? Wie kann man Wkten / Erwartungswerte empirisch messen? Wie schnell ist die Konvergenz?

Was besagt der zentrale Grenzwertsatz? Welche drei Voraussetzungen braucht, welche Schlussfolgerung gewinnt man? Wie schnell ist die Konvergenz? Was ist gleich / anders beim lokalen Grenzwertsatz?

Wie berechnet man Stichprobenmittelwert und -Varianz? Wie bestimmt man hieraus das Konfidenzintervall der Stichprobe? Wie liegt es zum (gesuchten aber unbekannten) Erwartungswert?

Weise Worte zum guten Ausgang

Ergänzung

Why waste time learning, when ignorance is instantaneous? (Hobbes, 1985-1995)

Mathematik lernen Sie nicht durch Zuschauen allein, sondern durch eigene Arbeit und regelmäßige Übung! Klavierspielen lernen Sie ja auch nicht durch den Besuch von Konzerten. (nach Carl Runge, 1856-1927)

If you stop at general math, you're only going to make general math money. (Snoop Dogg, 1971-)

Weise Worte zum guten Ausgang

Z632

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair. (Charles Dickens, 1812-1870, A Tale of Two Cities, 1859)

Manches sagt ich, mehr noch wollt ich, ließe zur Rede Raum das Geschick. Die Stimme weicht, Wunden schwellen: Wahres sprach ich: will nun enden. (Edda, das dritte Lied von Sigurd dem Fafnirstödter)

> Prophetische Rede verachtet nicht. Alles aber prüfet, das Gute behaltet. (Die Bibel, 1, Thessalonicher 5, 20-21)