Kapitel J

Die Fourier-Isometrie

L'étude approfondie de la nature est la source la plus féconde des découvertes mathématiques.

Joseph Fourier (1768–1830), Théorie analytique de la chaleur (1822)

Vollversion

michael-eisermann.de/lehre/HM3

26.02.2025

Motivation und Zielsetzung

J003 Überblick

Fourier–Analyse zerlegt das Signal $f: \mathbb{R} \to \mathbb{C}$ ins Spektrum $\widehat{f}: \mathbb{Z} \to \mathbb{C}$:

$$f \circ \longrightarrow \widehat{f}, \quad \widehat{f}(k) := \frac{1}{T} \int_{t=0}^{T} e^{-ik\omega t} f(t) dt, \quad f(t) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{ik\omega t}.$$

Hierzu sei $f:\mathbb{R} \to \mathbb{C}$ absolut integrierbar auf [0,T] und T-periodisch. Der Fourier-Koeffizient $\widehat{f}(k)$ ist die Amplitude der Schwingung $\mathrm{e}^{\mathrm{i}k\omega t}$. Somit ist $\widehat{f}:\mathbb{Z} \to \mathbb{C}$ das Spektrum zur Grundfrequenz $\omega = 2\pi/T$.

Fourier–Synthese: Zu gegebenem Spektrum $\widehat{f}: \mathbb{Z} \to \mathbb{C}$ betrachten wir die zugehörigen Teilschwingungen $\widehat{f}(k) \operatorname{e}^{\mathrm{i}k\omega t}$ und rekonstruieren hieraus durch Überlagerung die Funktion $f(x) = \sum_k \widehat{f}(k) \operatorname{e}^{\mathrm{i}k\omega t}$, falls konvergent. Konvergiert die Reihe? In welchem Sinne? Mit welchem Grenzwert?

Bislang nutzen wir **punktweise und gleichmäßige Konvergenz** (I2A). In diesem Kapitel geht es um **Konvergenz im quadratischen Mittel**. Für typische Anwendungen sind diese drei die zentralen Techniken. Wir nutzen zwei zentrale Sätze: Dirichlet I2A und Fischer–Riesz J1A.

Inhalt dieses Kapitels J

- 1 Parseval–Gleichung und Fourier–Isometrie
 - Die Energiegleichung und erste Anwendungsbeispiele
 - Die Fourier-Isometrie zwischen Funktion und Spektrum
 - Isoperimetrische Optimierung durch Fourier–Reihen
- 2 Punktweise und gleichmäßige Konvergenz
 - Punktweise Konvergenz nach Dirichlet
 - Gleichmäßige Approximation nach Fejér
 - Wann gilt punktweise Konvergenz fast überall?
- 3 Konvergenz im quadratischen Mittel
 - Bestapproximation durch Orthogonalprojektion
 - Konvergenz im quadratischen Mittel
 - Vergleich der drei Konvergenzbegriffe
- 4 Fazit: Fourier-Analyse und Synthese
 - Zusammenfassung
 - Verständnisfragen

Motivation und Zielsetzung

J004 Überblick

Im vorigen Kapitel haben wir einzelne Funktionen $f:\mathbb{R}\to\mathbb{C}$ untersucht. In diesem Kapitel betrachten wir den Vektorraum aller Funktionen. Diese mutige Sichtweise verschafft uns einen besseren Überblick: Wir nutzen unser Wissen über Lineare Algebra und Skalarprodukte.

Die T-periodischen Funktionen $f:\mathbb{R}\to\mathbb{C}$ bilden einen Vektorraum, ebenso bilden die Koeffizientenfolgen $\widehat{f}:\mathbb{Z}\to\mathbb{C}$ einen Vektorraum: Addition und Skalarmultiplikation sind jeweils punktweise erklärt, dies nutzen und schätzen wir bereits als praktische Rechenregeln.

Die Fourier–Analyse ist eine lineare Abbildung $\mathscr{F}: f \mapsto \widehat{f}$. Die Fourier–Synthese ist eine lineare Abbildung $\mathscr{F}^{-1}: \widehat{f} \mapsto f$. Auf welchen Funktionenräumen sollten wir diese nun betrachten? Die Isometrie $L^2 \leftrightarrow \ell^2$ ist überraschend einfach und überaus nützlich!

Kurzum: Wir transformieren hier nicht nur einzelne Funktionen, sondern untersuchen, wie sich die Fourier–Analyse $\mathscr{F}:L^2\to\ell^2$ und die Fourier–Synthese $\mathscr{F}^{-1}:\ell^2\to L^2$ als lineare Abbildungen verhalten. Eine anschauliche Anwendung ist die isoperimetrische Ungleichung J1B.

Wir führen die Untersuchungen des vorangegangenen Kapitels I fort. Sei $f: \mathbb{R} \to \mathbb{C}$ absolut integrierbar auf [0,T] und T-periodisch. Die **Fourier-Analyse** zerlegt das Signal f in sein Spektrum \widehat{f} :

$$f \circ \longrightarrow \widehat{f}, \quad \widehat{f}(k) := \frac{1}{T} \int_{t=0}^{T} e^{-ik\omega t} f(t) dt, \quad f(t) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{ik\omega t}.$$

Für die punktweise bzw. gleichmäßige Konvergenz dieser Reihe haben wir das praktische Dirichlet-Kriterium I2A, das wir in §J2 beweisen. In §J3 führen wir diese Fourier-Analyse weiter aus und beweisen: Dabei gilt die **Parseval-Gleichung**, auch **Energiegleichung** genannt:

$$\|f\|_{L^2} = \|\widehat{f}\|_{\ell^2} \quad \text{also} \quad \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2$$

Genau dann ist die Funktion f quadrat-integrierbar, $\int_0^T |f(t)|^2 dt < \infty$, wenn die Koeffizientenfolge \hat{f} quadrat-summierbar ist, $\sum_k |\hat{f}(k)|^2 < \infty$.

Satz von Parseval: die Energiegleichung

J103 Erläuterung

Analogie: In der Physik ist $\frac{m}{2}|v|^2$ die kinetische Energie einer Masse m mit Geschwindigkeit $v=(v_1,v_2,v_2)\in\mathbb{R}^3$, also $v=v_1e_1+v_2e_2+v_3e_3$. Da unsere Basis (e_1,e_2,e_3) orthonormal ist, gilt $|v|^2=v_1^2+v_2^2+v_3^3$: Die Gesamtenergie ist daher die Summe der Teilenergien!

Für trigonometrische Polynome, also endliche Summen statt Reihen, folgt die Parseval–Gleichung direkt aus dem Satz des Pythagoras: 1121 Die Gesamtlänge (aka Norm) des Vektors f zum Quadrat (linke Seite) ist gleich der Quadratsumme seiner Koordinaten $\widehat{f}(k)$ (rechte Seite).

Der Raum L^2 entsteht als Abschluss der trigonometrischen Polynome: Die Funktionen $e_k(t)=\mathrm{e}^{\mathrm{i}k\omega t}$ mit $k\in\mathbb{Z}$ bilden eine Hilbert-Basis (J3E), also ein vollständiges Orthonormalsystem für den Raum $L^2([0,T],\mathbb{C})$ mit dem Skalarprodukt $\langle f\mid g\, \rangle=\frac{1}{T}\int_0^T\overline{f(t)}\,g(t)\,\mathrm{d}t$, wie oben erklärt.

Alternativ führt folgende Sichtweise und Rechnung ebenfalls zum Ziel: Wie in den folgenden Beispielen gilt Parseval für Rechteckfunktionen. Per Linearkombination gilt Parseval dann für alle Treppenfunktionen. Per Grenzübergang gilt Parseval für alle integrierbaren Funktionen!

Satz von Parseval: die Energiegleichung

 \bigcirc Die komplexe Schreibweise ist meist kürzer und übersichtlicher. Für reelle Funktionen $f: \mathbb{R} \to \mathbb{R}$ nutzen wir auch die Co/Sinus-Reihe:

$$f(t) \sim \sum_{k=-\infty}^{\infty} c_k e^{ik\omega t} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t)$$

Dank der einfachen Umrechnung $c_{\pm k}=\frac{1}{2}(a_k\mp \mathrm{i} b_k)$ erhalten wir:

$$\frac{1}{T} \int_{t=0}^{T} |f(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 + b_k^2$$

Nachrechnen: Es gilt $|c_0|^2 = \frac{1}{4}a_0^2$ und $|c_{\pm k}|^2 = \frac{1}{4}(a_k^2 + b_k^2)$ für $k \neq 0$; jeder Summand tritt jeweils einmal für +k und einmal für -k auf.

Wie so oft ist die komplexe Gleichung eleganter und leichter. Ich gebe beide Formeln an, damit Sie sie leicht zur Hand haben.

Physikalisch bedeutet die Parseval–Gleichung eine Energieerhaltung: Die Gesamtenergie des Signals f (als Integral auf der linken Seite) ist die Summe der Energien aller Teilschwingungen $\widehat{f}(k)$ e_k (rechte Seite).

Satz von Parseval: die Energiegleichung

J104 Erläuterung

Wir können uns f zum Beispiel als ein akustisches Signal vorstellen. Die Fourier–Analyse $f\mapsto \widehat{f}$ zerlegt das Signal f in sein Spektrum \widehat{f} . Die Fourier–Synthese $\widehat{f}\mapsto f$ rekonstruiert aus dem Spektrum das ursprüngliche Signal. Dabei geht keinerlei Information verloren!

Anwendung: Aus dem Spektrum können wir Frequenzen leicht ausfiltern, abschwächen oder verstärken. Die Fußball-Weltmeisterschaft 2010 etwa war geprägt vom Brummen der Vuvuzela. Ihre Grundfrequenz liegt bei ca. 230Hz, dazu kommen noch Obertöne. Diese Frequenzen lassen sich gezielt herausfiltern durch (digitale) Fourier–Analyse–Synthese.

Der klare Vorteil: Man kann die störenden Frequenzen gezielt dämpfen; das Getröte ist trotz Filter zwar noch zu hören, doch spürbar gemindert. So kann die Fernsehzuschauer:in den Stadionjubel wieder genießen.

Wieviel Energie geht dem Signal hierdurch verloren? Genau die Energie der herausgefilterten Frequenzen. Ein Jubel für die Energiegleichung!

Energiegleichung der Sägezahnfunktion

J105 Beispiel

Aufgabe: Berechnen Sie beide Seiten der Energiegleichung für

$$f(x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{2}{k} \sin(kx) = \begin{cases} x & \text{für } -\pi < x < \pi, \\ 0 & \text{für } x = \pm \pi. \end{cases}$$

Energiegleichung der Rechteckfunktion

J107 Beispiel

Aufgabe: Berechnen Sie beide Seiten der Energiegleichung für

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots \right] = \begin{cases} +1 & \text{für } 0 < x < \pi, \\ -1 & \text{für } -\pi < x < 0, \\ 0 & \text{für } x \in \{0, \pm \pi\}. \end{cases}$$

Energiegleichung der Sägezahnfunktion

J106 Beispiel

Lösung: Wir berechnen beide Seiten der Energiegleichung

$$\frac{1}{T} \int_{t=0}^{T} |f(t)|^2 dt \quad \stackrel{!}{=} \quad \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 + b_k^2.$$

Das Integral ergibt:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \, \mathrm{d}x = \frac{1}{2\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{\pi^2}{3}$$

Die Reihe ergibt:

$$\frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 + b_k^2 = 2 \sum_{k=1}^{\infty} \frac{1}{k^2}$$

Dies entspricht der bemerkenswerten Gleichung [321]

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Diese Reihe haben wir im vorigen Kapitel ausgerechnet.

Energiegleichung der Rechteckfunktion

J108 Beispiel

Lösung: Wir berechnen beide Seiten der Energiegleichung

$$\frac{1}{T} \int_{t=0}^{T} |f(t)|^2 dt \quad \stackrel{!}{=} \quad \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 + b_k^2.$$

Das Integral ergibt:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)^2 \, \mathrm{d}x = 1$$

Die Reihe ergibt:

$$\frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 + b_k^2 = \sum_{j=0}^{\infty} \frac{8}{\pi^2 (2j+1)^2}$$

Dies entspricht der bemerkenswerten Gleichung [309]

$$\sum_{j=0}^{\infty} \frac{1}{(2j+1)^2} = \frac{\pi^2}{8}.$$

Diesen Wert können Sie alternativ auch aus $\sum_{k=1}^{\infty} 1/k^2 = \pi^2/6$ ableiten. Sehen Sie wie? Hinweis: Sie können die ungeraden und die geraden Terme getrennt summieren und erhalten $\sum_{k=1}^{\infty} 1/k^2 = \sum_{j=0}^{\infty} 1/(2j+1)^2 + \sum_{j=1}^{\infty} 1/(2j)^2$, die letzte Reihe ist gleich $\frac{1}{4} \sum_{k=1}^{\infty} 1/k^2$. Die quadrat-integrierbaren Funktionen bilden den C-Vektorraum

$$L^2 = L^2([0,T],\mathbb{C}) := \left\{ f: [0,T] \to \mathbb{C} \mid \int_{t=0}^T |f(t)|^2 dt < \infty \right\}.$$

Hierauf haben wir als Skalarprodukt und Norm die Integrale

$$\langle f \mid g \rangle_{L^2} := \frac{1}{T} \int_{t=0}^T \overline{f(t)} \, g(t) \, \mathrm{d}t \quad \text{und} \quad \|f\|_{L^2}^2 := \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t.$$

Die quadrat-summierbaren Folgen bilden den C-Vektorraum

$$\ell^2 = \ell^2(\mathbb{Z}, \mathbb{C}) := \left\{ |\widehat{f}: \mathbb{Z} \to \mathbb{C} \mid \sum_{k = -\infty}^{\infty} |\widehat{f}(k)|^2 < \infty \right\}.$$

Hierauf haben wir als Skalarprodukt und Norm die Summen

$$\langle \, \widehat{f} \mid \widehat{g} \, \rangle_{\ell^2} := \sum_{k=-\infty}^{\infty} \overline{\widehat{f}(k)} \, \widehat{g}(k) \quad \text{und} \quad \| \widehat{f} \|_{\ell^2}^2 := \sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^2.$$

Die Fourier-Isometrie

Satz J1A: Fourier-Isometrie, Fischer-Riesz 1907

Jeder Funktion $f \in L^2$ ordnen wir ihre Fourier–Koeffizienten $\widehat{f} \in \ell^2$ zu:

$$\mathscr{F}\,:\,L^2([0,T],\mathbb{C})\to\ell^2(\mathbb{Z},\mathbb{C})\,:\,f\mapsto\widehat{f}\;\;\mathrm{mit}\;\;\widehat{f}(k)=\frac{1}{T}\int_{t=0}^T\mathrm{e}^{-\mathrm{i}k\omega t}f(t)\,\mathrm{d}t$$

Umgekehrt definiert jede Koeffizientenfolge $\widehat{f} \in \ell^2$ eine Funktion $f \in L^2$:

$$\mathscr{F}^{-1}\,:\,\ell^2(\mathbb{Z},\mathbb{C})\to L^2([0,T],\mathbb{C})\,:\,\widehat{f}\mapsto f\ \ \mathrm{mit}\ \ f(t)=\sum_{k=-\infty}^\infty\widehat{f}(k)\,\mathrm{e}^{\mathrm{i}k\omega t}$$

Diese Abbildungen sind \mathbb{C} -linear und zueinander inverse Isometrien. Norm und Skalarprodukt bleiben erhalten dank Parseval-Gleichung:

$$\begin{split} \|f\|_{L^2} &= \|\widehat{f}\|_{\ell^2} &\quad \text{also} &\quad \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2, \\ \langle \, f \mid g \, \rangle_{L^2} &= \langle \, \widehat{f} \mid \widehat{g} \, \rangle_{\ell^2} &\quad \text{also} &\quad \frac{1}{T} \int_{t=0}^T \overline{f(t)} \, g(t) \, \mathrm{d}t = \sum_{k=-\infty}^\infty \overline{\widehat{f}(k)} \, \widehat{g}(k). \end{split}$$

Die Fourier-Isometrie

Sei $f : \mathbb{R} \to \mathbb{C}$ abs. integrierbar auf [0,T] und T-periodisch, $\omega = 2\pi/T$. Die **Fourier-Analyse** zerlegt das Signal f in sein Spektrum \hat{f} :

$$f \circ \longrightarrow \widehat{f}, \quad \widehat{f}(k) := \frac{1}{T} \int_{t=0}^{T} e^{-ik\omega t} f(t) dt, \quad f(t) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{ik\omega t}.$$

Es gilt die Parseval-Gleichung, auch Energiegleichung genannt:

$$\|f\|_{L^2} = \|\widehat{f}\|_{\ell^2} \quad \text{also} \quad \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2$$

Dank dieser Gleichung gilt $f \in L^2$ genau dann, wenn $\widehat{f} \in \ell^2$ gilt. Für $f,g \in L^2$ gilt die **Parseval–Gleichung** zudem für Skalarprodukte:

$$\langle \, f \mid g \, \rangle_{L^2} = \langle \, \widehat{f} \mid \widehat{g} \, \rangle_{\ell^2} \quad \text{also} \quad \frac{1}{T} \int_{t=0}^T \overline{f(t)} \, g(t) \, \mathrm{d}t = \sum_{k=-\infty}^\infty \overline{\widehat{f}(k)} \, \widehat{g}(k)$$

Diese Beziehungen fassen wir in folgendem Satz zusammen:Fourier-Analyse und -Synthese sind zueinander inverse Isometrien.

Die Fourier-Isometrie

J112 Erläuterung

Diese Fourier–Isometrie ist der Höhepunkt unserer kurzen Einführung zu Fourier–Reihen. Sie perfektioniert die ersehnte Analyse / Synthese:

$$(\mathscr{F},\mathscr{F}^{-1}):L^2([0,T],\mathbb{C})\cong\ell^2(\mathbb{Z},\mathbb{C}):f\leftrightarrow\widehat{f}$$

Diese Beziehung ist höchst erstaunlich und ungemein praktisch: Aus dem Signal f gewinnen wir das Spektrum \widehat{f} und umgekehrt.

Aus $f\in L^2\subseteq L^1$ folgt $\widehat{f}\in \ell^2\subseteq \ell^\infty$ dank Energiegleichung. Umgekehrt: Für $\widehat{f}\in \ell^2\supseteq \ell^1$ konvergieren die Polynome $f_n(t)=\sum_{k=-n}^n \widehat{f}(k)\operatorname{e}^{\mathrm{i}k\omega t}$ in $L^2\supseteq L^\infty$ gegen eine Funktion $f:\mathbb{R}\to\mathbb{C}$ dank Vollständigkeit von L^2 .

Aus der Energiegleichung folgt die allgemeine Parseval–Gleichung. Damit das Integral einen Sinn hat, muss fg absolut integrierbar sein. Damit die Reihe einen Sinn hat, muss $\widehat{f}\,\widehat{g}$ absolut summierbar sein. Beides wird garantiert durch die Cauchy–Schwarz–Ungleichung:

$$||f \cdot g||_{L^1} \le ||f||_{L^2} \cdot ||g||_{L^2}, \quad ||\widehat{f} \cdot \widehat{g}||_{\ell^1} \le ||\widehat{f}||_{\ell^2} \cdot ||\widehat{g}||_{\ell^2}$$

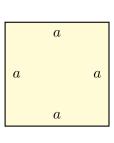
Ungleichungen und Konvergenzbegriffe werden nachfolgend ausgeführt. Doch zuerst präsentiere ich eine elegante geometrische Anwendung.

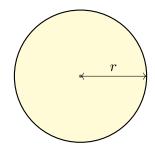
Optimierung: das isoperimetrische Problem

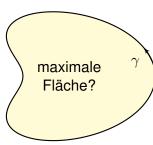
Isoperimetrische Optimierung durch Fourier-Reihen

J114 Beispiel

Wieviel Fläche F können Sie mit einem Zaun der Länge L umgrenzen?







Aufgabe: (0) Wie verhalten sich L, F und F/L^2 bei Streckung um λ ?

- (1) Welche Fläche F_{\square} erreichen Sie mit einem Quadrat von Umfang L?
- (2) Welche Fläche F_{\bigcirc} erreichen Sie mit einem Kreis von Umfang L?
- (3) Geht noch mehr? Wie sehen optimale Kurven aus?

Lösung: (0) L wächst linear, F quadratisch, F/L^2 bleibt konstant.

- (1) Seitenlänge a=L/4, Fläche $F_{\square}=a^2=L^2/16$. Das ist schon gut.
- (2) Radius $r = L/2\pi$, Fläche $F_{\bigcirc} = \pi r^2 = L^2/4\pi$. Das ist noch besser!

Isoperimetrische Optimierung durch Fourier-Reihen

(1) Wir entwickeln $\gamma, \gamma' : [0, 2\pi] \to \mathbb{C}$ in ihre Fourier–Reihen

$$\gamma(t) = \sum_{k \in \mathbb{Z}} c_k \, \mathrm{e}^{\mathrm{i} k t} \quad \mathsf{und} \quad \gamma'(t) \sim \sum_{k
eq 0} \mathrm{i} k \, c_k \, \mathrm{e}^{\mathrm{i} k t}.$$

Wir lesen diese Beziehung von rechts nach links als Integration (I3A). Dank Energiegleichung und Parametrisierung nach Weglänge folgt:

$$\sum_{k=-\infty}^{\infty} k^2 |c_k|^2 \stackrel{\text{(E)}}{=} \frac{1}{2\pi} \int_{t=0}^{2\pi} |\gamma'(t)|^2 dt = 1$$

(2) Die umschlossene Fläche berechnen wir mit Green und Parseval:

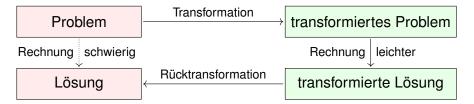
$$F \stackrel{\text{(G)}}{=} \frac{1}{2} \int_{t=0}^{2\pi} \gamma_1 \gamma_2' - \gamma_2 \gamma_1' \, \mathrm{d}t = \frac{1}{2} \int_{t=0}^{2\pi} \mathrm{Im} \left[(\gamma_1 - \mathrm{i} \gamma_2) (\gamma_1' + \mathrm{i} \gamma_2') \right] \, \mathrm{d}t$$
$$= \pi \mathrm{Im} \left[\frac{1}{2\pi} \int_{t=0}^{2\pi} \overline{\gamma} \gamma' \, \mathrm{d}t \right] \stackrel{\text{(P)}}{=} \pi \mathrm{Im} \left[\sum_{k=-\infty}^{\infty} \overline{c_k} \cdot \mathrm{i} k c_k \right] = \pi \sum_{k=-\infty}^{\infty} k |c_k|^2$$

Gleichung (G) ist die Greensche Formel E209 für den Flächeninhalt.

Wie beschreiben wir einen geschlossenen Weg $\gamma:[0,L]\to\mathbb{R}^2=\mathbb{C}$? Sei γ' absolut integrierbar mit $\gamma(t)=\gamma(0)+\int_0^t\gamma'(\tau)\,\mathrm{d}\tau$ und $\gamma(L)=\gamma(0)$.

Wir parametrisieren nach Weglänge, mit konstanter Geschwindigkeit $|\gamma'(t)|=1$ für alle t. Nach Skalierung können wir $L=2\pi$ annehmen.

Beispiel: Der Kreis $\gamma(t)=c_0+c_1\,\mathrm{e}^{\mathrm{i}t}$ mit $c_0,c_1\in\mathbb{C}$ und $|c_1|=1$. Die umschlossene Fläche ist $F=\frac{1}{2}\,\mathrm{Im}\int_{t=0}^{2\pi}\overline{\gamma}\,\gamma'\,\mathrm{d}t=\pi$.



Aufgabe: Untersuchen Sie die Fourier-Entwicklung $\gamma(t) = \sum_k c_k e^{ikt}$:

- (1) Entwickeln Sie γ' und berechnen Sie $\sum_k k^2 |c_k|^2$ dank Parseval.
- (2) Berechnen Sie die von γ umschlossene Fläche F mit Green.
- (3) Gilt immer $F \leq \pi$? (4) Für welche Kurven gilt Gleichheit?

Isoperimetrische Optimierung durch Fourier-Reihen

J116 Beispiel

(3) Wir vergleichen unsere Fläche F mit der Kreisfläche π :

$$|F| \stackrel{\text{\tiny (2)}}{=} \left| \pi \sum_{k=-\infty}^{\infty} k \, |c_k|^2 \right| \leq \pi \sum_{k=-\infty}^{\infty} |k| \cdot |c_k|^2 \quad \text{und} \quad \pi \stackrel{\text{\tiny (1)}}{=} \, \pi \sum_{k=-\infty}^{\infty} k^2 \cdot |c_k|^2$$

Die erste Reihe ist termweise kleiner-gleich der zweiten:

$$|F| - \pi \le \pi \sum_{k=-\infty}^{\infty} (|k| - k^2) |c_k|^2 \le 0.$$

Also gilt $|F| \le \pi$: Die Kreisfläche kann nicht übertroffen werden!

(4) Gleichheit gilt nur, wenn $c_k = 0$ für alle $k \notin \{-1, 0, 1\}$. Also

$$\gamma(t) = c_{-1} e^{-it} + c_0 + c_1 e^{it}$$
 mit $|c_1|^2 + |c_{-1}|^2 \stackrel{\text{(1)}}{=} 1$.

Aus
$$F=+\pi$$
 folgt $|c_1|^2-|c_{-1}|^2\stackrel{\text{(2)}}{=}+1$, also $|c_1|=1$ und $|c_{-1}|=0$. Aus $F=-\pi$ folgt $|c_1|^2-|c_{-1}|^2\stackrel{\text{(2)}}{=}-1$, also $|c_1|=0$ und $|c_{-1}|=1$.

 \bigcirc Das heißt, nur Kreise $\gamma(t) = c_0 + e^{\mathrm{i}(\alpha \pm t)}$ maximieren die Fläche! Alle anderen Kurven umschließen strikt kleineren Flächeninhalt.

Das isoperimetrische Problem ist eine klassische Optimierungsaufgabe: Wieviel Fläche F können Sie mit einem Zaun der Länge L umgrenzen? Die Lösung mit Fourier-Reihen grenzt an Zauberei! Was passiert hier?

Nach ersten Beispielen wollen wir *alle* Möglichkeiten erkunden. Wir wollen alle periodischen Funktionen $\gamma:\mathbb{R}\to\mathbb{R}^2$ untersuchen und zu gegebenem Umfang L die größtmögliche Fläche F finden.

Der Raum aller Funktionen ist allerdings sehr unübersichtlich. Die Fourier-Isometrie übersetzt dies in ein Problem über Reihen. Dieses ist wesentlich übersichtlicher und kann leicht gelöst werden.

Dabei haben wir die Fourier-Isometrie voll ausgenutzt: Die Übersetzung bewahrt alle wesentlichen Informationen! Dieses schöne Ergebnis bildet eine würdige Illustration: Transformation zur Vereinfachung ist durchaus typisch.

Darum geht es in Mathematik und Wissenschaft allgemein: Zusammenhänge verstehen und geeignete Werkzeuge entwickeln, um damit konkrete Probleme zu lösen, effizient, sicher, korrekt.

Die isoperimetrische Ungleichung

J119 Erläuterung

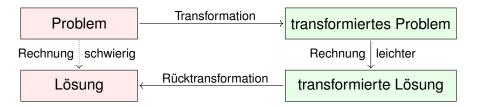
Ein klassisches Optimierungsproblem: Der Legende nach wurde Karthago gegründet durch die phönizische Königin Elissa, römisch Dido genannt. Der lokale Herrscher versprach ihr dazu so viel Land, wie sie mit einer Kuhhaut umspannen könne. Diese schnitt Dido in dünne Streifen der Gesamtlänge ℓ und maß die Grenze des zukünftigen Karthago ab, das auf einer Seite durch die gerade Mittelmeerküste begrenzt wird.

Aufgabe: (1) Welche Kurve wählt Dido, um die Fläche zu maximieren?
(2) Und wenn zwei Küstenpunkte der Stadtgrenze vorgegeben sind?
Untuition ist gut, aber vage. Schlüssige Argumente sind besser.

- (1) Wir betrachten die Fläche, die von einer Geraden G und einem Weg γ der Länge ℓ begrenzt wird. Durch Spiegelung an G erweitern wir γ zu einem geschlossenen Weg. Dabei verdoppeln sich die Länge und der umschlossene Flächeninhalt. Nach der isoperimetrischen Ungleichung folgt $2F \leq (2\ell)^2/(4\pi)$, also $F \leq \ell^2/(2\pi)$. Nur für einen Halbkreis erhalten wir Gleichheit.
- (2) Wir fixieren zwei Punkte A und B mit Abstand $<\ell$ auf der Geraden G und verlangen, dass γ von A nach B läuft. Sei Γ der Kreisbogen der Länge ℓ von A nach B. Wir vergleichen den von γ und Γ umschlossenen Flächeninhalt, jeweils ergänzt durch den fehlenden Kreisbogen jenseits G. Die isoperimetrische Ungleichung besagt, dass der Flächeninhalt genau für $\gamma = \Gamma$ maximal ist.

Die isoperimetrische Ungleichung

Wieviel Fläche F können Sie mit einem Zaun der Länge L umgrenzen? \bigcirc Fourier transformiert ein schwieriges Problem in ein leichtes!



Wir haben so den Beweis von Hurwitz (1902) nachgerechnet:

Satz J1B: isoperimetrische Ungleichung

Sei $\gamma:[0,L]\to\mathbb{R}^2$ ein geschlossener Weg, also $\gamma(0)=\gamma(L)$. Zudem sei γ stückweise stetig differenzierbar und habe Länge L. Für den umschlossenen Flächeninhalt F gilt immer $F\le F_{\bigcirc}=L^2/4\pi$. Gleichheit gilt nur, wenn γ einen Kreis vom Umfang L beschreibt.

Das ist anschaulich plausibel und nun auch nachvollziehbar bewiesen!

Die isoperimetrische Ungleichung

J120

Wer Freude am Knobeln hat, mag vielleicht folgende Varianten untersuchen: Sie verfügen über einen Zaun der Länge L, entweder starr (ein Geradensegment) oder flexibel (eine stückweise stetig differenzierbare Kurve). In einem großen rechteckigen Garten möchten Sie einen Bereich für Ihre Kaninchen einzäunen. Welche Fläche ist hier höchstens möglich? Welche Zaunkurve maximiert die Fläche? Was gilt für einen kreisförmigen Garten? Was gilt für ein parabelförmig auslaufendes Ende des Gartens? Machen Sie sich Skizzen und argumentieren Sie umsichtig!

Zum Ausklang nenne ich noch ein einfaches, aber erhellendes Zahlenbeispiel. Es ist eine schöne, leichte Aufgabe, doch sie erfordert geometrischen Sachverstand und quantitativen Vergleich. Mit den nützlichen Werkzeugen Ihrer Vorlesung zur HM3 gelingt Ihnen die Lösung nun leicht:

Aufgabe: (nach einer Klausuraufgabe vom Februar 2012)

- (1) Können Sie mit 12m Zaun eine Fläche von $12m^2$ umschließen?
- (2) Können Sie mit 13m Zaun eine Fläche von 13m² umschließen?

Lösung: Wir wissen, dass der Kreis den Flächeninhalt *F* maximiert:

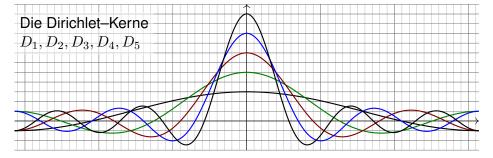
$$F \leq F_{\bigcirc} = L^2/4\pi$$
, und Gleichheit gilt nur für den Kreis (J1B).

- (1) Für L=12 finden wir $F_{\bigcirc}=L^2/4\pi<12$. (Es gilt $12<4\pi<13$.)
- (2) Für L=13 erreicht der Kreis die Fläche $F_{\bigcirc}=L^2/4\pi>13$.

Beweis des Dirichlet-Kriteriums

J201 Ergänzung

Der Satz von Dirichlet I2A ist der Grundstein der Fourier-Reihen. Wir rechnen ihn nun geduldig nach. Nur für Unerschrockene!



Aufgabe: (1) Rechnen Sie die Formel für den Dirichlet-Kern nach:

$$D_n(x) := \sum_{k=-n}^n e^{ikx} = 1 + 2\sum_{k=1}^n \cos(kx) = \frac{\sin((n+1/2)x)}{\sin(x/2)}$$

(2) Für das n-te Fourier-Polynom von f folgt die **Faltungsformel**:

$$f_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_n(t) dt$$

Beweis des Dirichlet-Kriteriums

J203 Ergänzung

Satz J2A: Konvergenz in einem vorgegebenen Punkt

Angenommen, $f: \mathbb{R} \to \mathbb{C}$ erfüllt die Dirichlet-Bedingung im Punkt x, d.h. beide Grenzwerte $f(x\pm)$ und beide Ableitungen $f'(x\pm)$ existieren.

Dann konvergiert im Punkt x die Fourier-Reihe $f_n(x)$ gemäß

$$f_n(x) = \sum\nolimits_{k = -n}^n {{c_k}} {{\mathrm{e}^{{\mathrm{i}}kx}}} \ \to \ \frac{1}{2}{\left[{f(x +) + f(x -)} \right]} \quad {\mathrm{f\"{u}r}} \ n \to \infty.$$

Beweis: Dank unserer obigen Vorbereitungen (1) und (2) wissen wir:

$$f_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) D_n(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(x+t)}{\sin(t/2)} \sin((n+\frac{1}{2})t) dt$$

Die Konvergenz für $n \to \infty$ beweisen wir durch folgende Grenzwerte:

$$\frac{1}{2\pi} \int_{-\pi}^{0} f(x+t) D_n(t) dt \rightarrow \frac{1}{2} f(x-),$$

$$\frac{1}{2\pi} \int_{0}^{\pi} f(x+t) D_n(t) dt \rightarrow \frac{1}{2} f(x+).$$

Beweis des Dirichlet-Kriteriums

J202 Ergänzung

Lösung: (1) Wir nutzen die geometrische Reihe für $z = e^{ix}$:

$$(e^{-ix/2} - e^{+ix/2}) \sum_{k=-n}^{n} e^{ikx} = e^{-i(n+1/2)x} - e^{+i(n+1/2)x}$$

$$D_n(x) = \frac{e^{-i(n+1/2)x} - e^{+i(n+1/2)x}}{e^{-ix/2} - e^{+ix/2}} = \frac{\sin((n+1/2)x)}{\sin(x/2)}$$

(2) Das n-te Fourier-Polynom von f ist definiert durch

$$f_n(x) := \sum_{k=-n}^n c_k \, \mathrm{e}^{\mathrm{i} k x} \quad \text{mit den Koeffizienten} \quad c_k = \frac{1}{2\pi} \int_{-\pi}^\pi \mathrm{e}^{-\mathrm{i} k t} f(t) \, \mathrm{d} t.$$

Wir setzen ein und fassen dank Linearität zusammen:

$$2\pi f_n(x) \stackrel{\text{Def}}{=} \sum_{k=-n}^n \left[\int_{-\pi}^{\pi} e^{-ikt} f(t) dt \right] e^{ikx} \stackrel{\text{Lin}}{=} \int_{-\pi}^{\pi} f(t) \left[\sum_{k=-n}^{n} e^{ik(x-t)} \right] dt$$

$$\stackrel{\text{Def}}{=} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt \stackrel{\text{Subs}}{=} \int_{-\pi}^{\pi} f(x-s) D_n(s) ds$$

Beweis des Dirichlet-Kriteriums

J204 Ergänzung

Wir zeigen den rechten Grenzwert. Hierzu nutzen wir die Funktion

$$g\,:\, [-\pi,\pi] \to \mathbb{C}\,:\, t \mapsto \begin{cases} \frac{f(x+t)-f(x+)}{\sin(t/2)} & \text{für } 0 < t \leq \pi, \\ 0 & \text{für } -\pi \leq t \leq 0. \end{cases}$$

Für $t \setminus 0$ gilt $g(t) \to 2f'(x+)$. Demnach ist mit f auch g integrierbar.

Für
$$D_n(t) = 1 + 2\sum_{k=1}^n \cos(kx)$$
 gilt $\int_{-\pi}^0 D_n(t) dt = \int_0^{\pi} D_n(t) dt = \pi$.

$$\frac{1}{2\pi} \int_{t=0}^{\pi} f(x+t) D_n(t) dt - \frac{1}{2} f(x+t)$$

$$= \frac{1}{2\pi} \int_{t=0}^{\pi} \left[f(x+t) - f(x+t) \right] D_n(t) dt$$

$$= \frac{1}{2\pi} \int_{t=0}^{\pi} \frac{f(x+t) - f(x+t)}{\sin(t/2)} \sin((n+\frac{1}{2})t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} g(t) \sin((n+\frac{1}{2})t) dt \to 0 \quad \text{für } n \to \infty$$

Der letzte Grenzwert ist das Riemann-Lebesgue-Lemma 13B.

Beweis des Dirichlet-Kriteriums

J205 Ergänzung

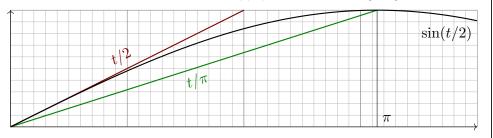
Aufgabe: (3) Zeigen Sie für $0 \le t \le s \le \pi$ die Ungleichungen

$$\frac{t}{\pi} \le \sin\left(\frac{t}{2}\right) \le \frac{t}{2}$$
 und $\frac{t}{\sin(t/2)} \le \frac{s}{\sin(s/2)}$

(4) Sei $f: [-\pi, \pi] \to \mathbb{C}$ absolut stetig mit f(0) = 0 und $|f'| \le L$. Zeigen Sie für f(t) und $g(t) = f(t)/\sin(t/2)$ die Schranken

$$|f(t)| \le Lt, \qquad |g(t)| \le L\pi, \qquad |g'(t)| \le \frac{4L}{t}.$$

Lösung: (3) Kurvendiskussion: $\sin(t/2)$ ist konkav auf $[0, \pi]$.



Beweis des Dirichlet-Kriteriums

J207 Ergänzung

Satz J2B: gleichmäßige Konvergenz mit Fehlerschranke

Die Funktion $f:\mathbb{R}\to\mathbb{C}$ sei periodisch und absolut stetig mit $|f'|\leq L$. Dann konvergieren die Fourier-Polynome f_n gleichmäßig gegen f: Für alle $x\in\mathbb{R}$ und $n\geq 7$ gilt die explizite Fehlerschranke

$$|f_n(x) - f(x)| \le 2L \cdot \ln(n)/n \to 0 \text{ für } n \to \infty$$

Beweis: Nach Verschiebung dürfen wir x=0 und f(x)=0 annehmen. Dank unserer obigen Vorbereitungen (1) und (2) wissen wir:

$$f_n(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(t)}{\sin(t/2)} \sin((n+\frac{1}{2})t) dt$$

Wir zerlegen dies in $\int_{-\pi}^{-\varepsilon}+\int_{-\varepsilon}^{\varepsilon}+\int_{\varepsilon}^{\pi}$ für $\varepsilon=\pi/(2n+1)$. Dank (4) gilt:

$$\int_0^{\varepsilon} \left| \frac{f(t)}{\sin(t/2)} \right| \sin\left(\left(n + \frac{1}{2}\right)t\right) dt \le \frac{L\varepsilon}{\sin(\varepsilon/2)} \int_0^{\varepsilon} \sin\left(\left(n + \frac{1}{2}\right)t\right) dt$$

$$= \frac{L\varepsilon}{\sin(\varepsilon/2)} \cdot \left[-\frac{\cos\left(\left(n + \frac{1}{2}\right)t\right)}{n + \frac{1}{2}} \right]_0^{\varepsilon} = \frac{L}{2n + 1} \cdot \frac{2\pi/(2n + 1)}{\sin(\pi/(4n + 2))}$$

Beweis des Dirichlet-Kriteriums

J206 Ergänzung

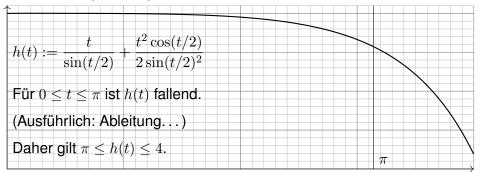
(4) Mit f(0) = 0 und $|f'| \le L$ gilt

$$|f(t)| = \left| \int_{\tau=0}^{t} f'(\tau) \, d\tau \right| \le \int_{\tau=0}^{t} \left| f'(\tau) \right| d\tau \le \int_{\tau=0}^{t} L \, d\tau = Lt,$$

$$|g(t)| = \left| \frac{f(t)}{\sin(t/2)} \right| = \frac{|f(t)|}{|\sin(t/2)|} \le \frac{Lt}{\sin(t/2)} \le \frac{Ls}{\sin(s/2)} \le L\pi,$$

$$|g'(t)| = \left| \frac{f'(t)}{\sin(t/2)} - \frac{f(t)\cos(t/2)/2}{\sin(t/2)^2} \right| \le \frac{L}{\sin(t/2)} + \frac{Lt\cos(t/2)}{2\sin(t/2)^2} \le \frac{4L}{t}.$$

Die letzte Ungleichung erhalten wir durch eine Kurvendiskussion:



Beweis des Dirichlet-Kriteriums

J208 Ergänzung

Für $\int_{-\varepsilon}^{0}$ gilt dieselbe Schranke. Für \int_{ε}^{π} nutzen wir partielle Integration:

$$\int_{\varepsilon}^{\pi} f(t)D_n(t) dt = \int_{\varepsilon}^{\pi} \frac{f(t)}{\sin(t/2)} \sin((n+\frac{1}{2})t) dt$$

$$= \left[-\frac{f(t)}{\sin(t/2)} \frac{\cos((n+\frac{1}{2})t)}{n+\frac{1}{2}} \right]_{\varepsilon}^{\pi} + \int_{\varepsilon}^{\pi} \left[\frac{f(t)}{\sin(t/2)} \right]' \frac{\cos((n+\frac{1}{2})t)}{n+\frac{1}{2}} dt$$

Für $\varepsilon = \pi/(2n+1)$ verschwindet die Auswertung $[\dots]_{\varepsilon}^{\pi}$. Mit (4) bleibt:

$$\left| \int_{\varepsilon}^{\pi} f(t) D_n(t) \, dt \right| \leq \int_{\varepsilon}^{\pi} \left| \left[\frac{f(t)}{\sin(t/2)} \right]' \right| \cdot \frac{1}{n + \frac{1}{2}} \, dt$$

$$\leq \frac{2}{2n+1} \int_{\varepsilon}^{\pi} \frac{4L}{t} \, dt = \frac{8L}{2n+1} \left[\ln \pi - \ln \varepsilon \right] = \frac{8L}{2n+1} \ln(2n+1)$$

Für $\int_{-\pi}^{-\varepsilon}$ gilt dieselbe Schranke. Für den Gesamtfehler erhalten wir:

$$|f_n(x) - f(x)| \le \frac{L}{2n+1} \left[\frac{2/(2n+1)}{\sin(\pi/(4n+2))} + \frac{8}{\pi} \ln(2n+1) \right] \le 2L \cdot \frac{\ln n}{n}$$

Die letzte Ungleichung gilt für $n \geq 7$, erneut dank Kurvendiskussion.

Gleichmäßige Approximation nach Fejér

J209 Ergänzung

 \bigcirc Die Fourier-Polynome f_n zu f sind die L^2 -Bestapproximation. $\boxed{\tt J310}$

Das Dirichlet-Kriterium J2A / I2A sichert punktweise Konvergenz.

 \bigcirc Ist f absolut stetig mit $|f'| \le L$, so gilt gleichmäßige Konvergenz auf ganz \mathbb{R} gemäß $|f_n - f| \le 2L \cdot \ln(n)/n \to 0$ für $n \to \infty$, siehe J2B / I2A.

Ohne Differenzierbarkeit geht's nicht: Es gibt stetige Funktionen f, deren Fourier–Reihe $f_n(x)$ in allen Punkten $x \in \mathbb{Q}$ divergiert. J218 Geniale Lösung: Lipót Fejér nutzte statt f_n das arithmetische Mittel

$$f_n^* := \frac{1}{n} \sum_{k=0}^{n-1} f_n = \sum_{k=-n}^n \frac{n-|k|}{n} c_k e^{ikx}.$$

Diese Gewichtung dämpft Oszillationen und konvergiert immer:

Satz J2c: Gleichmäßige Approximation, Fejér 1911

Vorgelegt sei eine beliebige stetige Funktion $f:\mathbb{R}\to\mathbb{C}$ von Periode T. Die Fejér–Polynome f_n^* konvergieren gleichmäßig gegen f, das heißt: Der maximale Abstand wird beliebig klein, $\max|f_n^*-f|\to 0$ für $n\to\infty$.

Gleichmäßige Approximation nach Fejér

J211 Ergänzung

Lösung: (1) Wir kennen bereits die Dirichlet–Kerne J201:

$$D_n(x) = \frac{e^{i(n+1/2)x} - e^{-i(n+1/2)x}}{e^{ix/2} - e^{-ix/2}} = \frac{\sin((n+1/2)x)}{\sin(x/2)}$$

Aufsummieren führt uns glücklich zu einer Teleskopsumme:

$$\sum_{k=0}^{n-1} D_k(x) = \sum_{k=0}^{n-1} \frac{e^{i(k+1/2)x} - e^{-i(k+1/2)x}}{e^{ix/2} - e^{-ix/2}} \cdot \frac{e^{ix/2} - e^{-ix/2}}{e^{ix/2} - e^{-ix/2}}$$

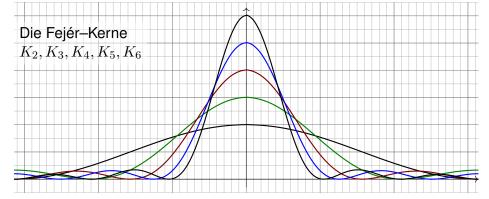
$$= \sum_{k=0}^{n-1} \frac{e^{i(k+1)x} - e^{ikx} + e^{-i(k+1)x} - e^{-ikx}}{(e^{ix/2} - e^{-ix/2})^2}$$

$$= \frac{e^{inx} - 2 + e^{-inx}}{(e^{ix/2} - e^{-ix/2})^2} = \frac{\sin(nx/2)^2}{\sin(x/2)^2} = \frac{1 - \cos(nx)}{1 - \cos(x)}$$

 \bigcirc Beide Kerne sind normiert: $\frac{1}{2\pi}\int_{-\pi}^{\pi}D_n(t)\,\mathrm{d}t=\frac{1}{2\pi}\int_{-\pi}^{\pi}K_n(t)\,\mathrm{d}t=1.$ Anders als der Dirichlet–Kern D_n erfüllt der Fejér–Kern zudem $K_n\geq 0.$

Gleichmäßige Approximation nach Fejér

J210 Ergänzung



Aufgabe: (1) Berechnen Sie Dirichlet-Kern und Fejér-Kern:

$$D_n(x) := \sum_{k=-n}^n e^{ikx}$$
 und $K_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x)$

(2) Für das *n*-te Fejér–Polynom von *f* folgt die **Faltungsformel**:

$$f_n^*(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_n(x-t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) K_n(t) dt$$

Gleichmäßige Approximation nach Fejér

J212 Ergänzung

(2) Das *n*-te Fourier–Polynom von *f* ist definiert durch

$$f_n(x) := \sum_{k=-n}^n c_k \, \mathrm{e}^{\mathrm{i} k x} \quad \text{mit den Koeffizienten} \quad c_k = \frac{1}{2\pi} \int_{-\pi}^\pi \mathrm{e}^{-\mathrm{i} k t} f(t) \, \mathrm{d} t.$$

Wir setzen ein und fassen dank Linearität zusammen J201:

$$f_n(x) \stackrel{\text{Lin}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt \stackrel{\text{Subs}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-s) D_n(s) ds$$

Das n-te Fejér-Polynom von f ist das arithmetische Mittel:

$$f_n^*(x) \stackrel{\text{Def}}{=} \frac{1}{n} \sum_{k=0}^{n-1} f_k(x) \stackrel{\text{Lin}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{n} \sum_{k=0}^{n-1} D_k(x-t) \right] dt$$

$$\stackrel{\text{Def}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_n(x-t) dt \stackrel{\text{Subs}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-s) K_n(s) ds$$

Diese Integraldarstellung nutzen wir nun zur Fehlerabschätzung.

Beweis des Approximationssatzes von Fejér:

Der Fejér-Kern erfüllt $K_n \geq 0$ und $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(t) dt = 1$. Zudem gilt:

$$0 \le \frac{1}{2\pi} \int_{\delta \le |t| \le \pi} K_n(t) \, \mathrm{d}t = \frac{1}{\pi} \int_{t=\delta}^{\pi} \frac{\sin(nt/2)^2}{n \sin(t/2)^2} \, \mathrm{d}t \le \frac{1}{\pi} \int_{t=\delta}^{\pi} \frac{1}{n(t/\pi)^2} \, \mathrm{d}t$$
$$= \frac{1}{n} \int_{t=\delta}^{\pi} \frac{\pi}{t^2} \, \mathrm{d}t = \frac{1}{n} \left[-\frac{\pi}{t} \right]_{t=\delta}^{\pi} = \frac{1}{n} \left[\frac{\pi}{\delta} - 1 \right] < \frac{\pi}{n\delta} \quad \searrow 0 \quad \text{für } n \to \infty$$

Das bedeutet, die Gesamtmasse 1 konzentriert sich um 0.

Wir müssen nur noch das Verhalten für $|t|<\delta$ kontrollieren. Hierzu genügt uns die vorausgesetzte Stetigkeit der Funktion f.

Dank Kompaktheit des Periodenintervalls $[-\pi,\pi]$ ist die Funktion f sogar gleichmäßig stetig: Zu jedem $\varepsilon\in\mathbb{R}_{>0}$ existiert ein $\delta\in]0,\pi[$ so, dass für alle $x\in\mathbb{R}$ und $|t|<\delta$ die Schranke $|f(x-t)-f(x)|<\varepsilon/2$ gilt. Damit erhalten wir mühelos folgende Schranke:

$$0 \le \frac{1}{2\pi} \int_{|t| < \delta} |f(x - t) - f(x)| K_n(t) dt \le \frac{1}{2\pi} \int_{|t| < \delta} \frac{\varepsilon}{2} K_n(t) dt \le \frac{\varepsilon}{2}$$

Gleichmäßige Approximation nach Fejér

J215 Ergänzung

Ist $f: \mathbb{R} \to \mathbb{C}$ absolut stetig mit $|f'| \leq L$, so wissen wir 1216:

$$|f_n(x) - f(x)| < 2L \cdot \ln(n)/n \rightarrow 0 \text{ für } n \rightarrow \infty$$

Aufgabe: Die Fejér–Polynome konvergieren ebenso schnell:

$$|f_n^*(x) - f(x)| < 4L \cdot \ln(n)/n \rightarrow 0$$
 für $n \rightarrow \infty$

Lösung: Wir führen die Rechnung des vorigen Beweises fort:

$$\begin{aligned} \left| f_n^*(x) - f(x) \right| &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(x - t) - f(x) \right| K_n(t) \, \mathrm{d}t \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} L |t| \, K_n(t) \, \mathrm{d}t \, \leq \frac{L}{\pi} \int_{0}^{\pi} t \, \frac{\sin(nt/2)^2}{n \sin(t/2)^2} \, \mathrm{d}t \\ &\leq \frac{L}{\pi} \int_{0}^{\delta} t \cdot 4n \, \mathrm{d}t + \frac{L}{\pi} \int_{\delta}^{\pi} \frac{t}{n(t/\pi)^2} \, \mathrm{d}t \, = \, \frac{Ln}{\pi} 2\delta^2 + \frac{L\pi}{n} (\ln \pi - \ln \delta) \\ &= \frac{L}{n} \left[\frac{\pi}{2} + \pi (\ln 2 + \ln n) \right] \, < \, 4L \frac{\ln n}{n} \quad \text{(Skizze!)} \end{aligned}$$

In der letzten Zeile setzen wir $\delta=\pi/2n$ und verlangen $n\geq 80$. (Die Konstante 4 lässt sich noch verbessern, das ist aber mühsam.)

Gleichmäßige Approximation nach Fejér

Nach diesen länglichen, aber elementaren Vorbereitungen können wir nun den Approximationsfehler der Fejér-Polynome f_n^* abschätzen:

$$\begin{split} \left| f_n^*(x) - f(x) \right| &= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x - t) - f(x) \right] K_n(t) \, \mathrm{d}t \right| \\ &\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f(x - t) - f(x) \right| K_n(t) \, \mathrm{d}t \\ &= \frac{1}{2\pi} \int_{|t| < \delta} \frac{\varepsilon}{2} \, K_n(t) \, \mathrm{d}t + \frac{1}{2\pi} \int_{\delta \le |t| \le \pi} 2 \max |f| \, K_n(t) \, \mathrm{d}t \\ &< \frac{\varepsilon}{2} + \frac{2\pi \max |f|}{n\delta} \quad < \quad \varepsilon \quad \text{für alle} \quad n \ge \frac{4\pi}{\varepsilon \delta} \max |f| \end{split}$$

Ausführlich gesagt: Zu jedem $\varepsilon>0$ existiert ein Index $n_0\in\mathbb{N}$, sodass für alle $n\geq n_0$ die gleichmäßige Fehlerschranke $|f_n^*-f|\leq \varepsilon$ gilt.

Das beweist die Aussage des Satzes: Die Fejér-Polynome f_n^* konvergieren gleichmäßig gegen die vorgegebene Funktion f.

 \odot Die Konvergenz kann sehr langsam sein, aber sie gilt immer! Je glatter die Funktion f, desto schneller die Konvergenz.

Gleichmäßige Approximation nach Fejér

J216 Ergänzung

Fejérs Trick lässt sich allgemein zur Summation anwenden:Für schwach divergente Reihen wird damit Konvergenz erzwungen!

Für $a_k\in\mathbb{C}$ konvergiert die Reihe $\sum_{k=0}^\infty a_k$ gegen s, kurz $\sum_{k=0}^\infty a_k=s$, wenn die Folge der Partialsummen $s_n=\sum_{k=0}^n a_k$ gegen s konvergiert.

Dann konvergieren auch die Mittelwerte $s_n^* = \frac{1}{n} \sum_{k=0}^{n-1} s_k$ gegen s, etwas langsamer, aber Konvergenz und Grenzwert sind dieselben.

Umgekehrt kann aber s_n^* konvergieren, selbst wenn s_n divergiert:

Aufgabe: Wir betrachten $a_k = (-1)^k (k+1)^c$. Für welche $c \in \mathbb{R}$ konvergiert die Folge s_n ? und s_n^* . Was passiert speziell für c = 0?

Lösung: Für c=0 divergiert die Folge $(s_n)_{n\in\mathbb{N}}=(1,0,1,0,1,0,\dots)$. Hingegen konvergiert die Folge $(s_n^*)_{n\in\mathbb{N}}=(\frac{1}{1},\frac{1}{2},\frac{2}{3},\frac{2}{4},\frac{3}{5},\frac{3}{6},\dots)\to\frac{1}{2}$.

Die Folge s_n konvergiert für c < 0 dank Leibniz (Satz B3G) und divergiert für $c \ge 0$ dank Cauchy. Die Folge s_n^* konvergiert für $c \le 0$ wie gesehen.

Aufgabe: Für jede stetige Funktion $f : \mathbb{R} \to \mathbb{C}$ garantiert Fejérs Satz: Falls die Fourier–Reihe $f_n(x)$ im Punkt x konvergiert, dann gegen f(x).

Lösung: Aus $f_n(x) \to s$ folgt $f(x) = \lim f_n^*(x) = \lim f_n(x) = s$.

In unseren (noch sehr bescheidenen) Beispielen sind wir von einer (harmlosen) Funktion $f:[0,2\pi]\to\mathbb{C}$ ausgegangen und haben eine (harmlose) Fourier–Reihe $f\sim\sum c_ke_k$ erhalten. Wenn wir diese Reihe nun in einem Punkt $x\in\mathbb{R}$ auswerten, so erhalten wir $f(x)=\sum c_k\operatorname{e}^{\mathrm{i}kx}$ für fast jedes $x\in\mathbb{R}$. Das ist eine wichtige und nützliche Eigenschaft!

 \odot Dies gilt insbesondere für jede stückweise stetige und stückweise stetig differenzierbare Funktion f dank des Dirichlet-Kriteriums I2A.

⚠ Die Konvergenz einer Fourier–Reihe müssen wir jeweils prüfen. Punktweise Konvergenz ist keineswegs selbstverständlich:

Satz J2D: Kolmogorov 1923

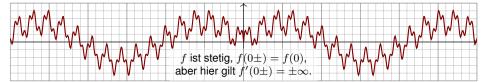
Es gibt integrierbare Funktionen $f:[0,2\pi]\to\mathbb{C}$, d.h. $\int_{x=0}^{2\pi}|f(x)|\,\mathrm{d}x<\infty$, deren Fourier–Reihe $\sum_k c_k\,\mathrm{e}^{\mathrm{i}kx}$ in jedem Punkt $x\in\mathbb{R}$ divergiert.

Diese Frage war lange offen, und Kolmogorovs Antwort kam als Schock. Dieser Satz dient uns hier nur als Warnung vor naiven Trugschlüssen. Solche Beispiele sind eher exotisch, wie uns folgender Satz versichert.

Fejérs Gegenbeispiel: divergente Fourier-Reihe

J219 Ergänzung

Gibt es stetige periodische Funktionen $f : \mathbb{R} \to \mathbb{R}$, deren Fourier–Reihe nicht konvergiert? Können wir solche Beispiele konkret angeben? Ja!



Satz J2G: Fejér 1911

Sei $f: \mathbb{R} \to \mathbb{R}$ gerade, 2π -periodisch und für $0 \le x \le \pi$ gegeben durch

$$f(x) := \sum_{i=1}^{\infty} \frac{1}{2^i} \sin\left(\left(i^{(2^i)} + \frac{1}{2}\right) \cdot x\right) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx).$$

Die Funktion f ist stetig, aber in x = 0 divergiert ihre Fourier-Reihe.

Das Dirichlet–Kriterium I2A gibt hinreichende Kriterien zur Konvergenz. Dies ist hier jedoch nicht erfüllt, denn $f'(0+)=+\infty$ und $f'(0-)=-\infty$. Tatsächlich divergiert $f_n(0)$ für $n\to\infty$, wie wir nun nachrechnen.

Punktweise Konvergenz ist keineswegs selbstverständlich, aber...

Ein klein wenig mehr als Integrierbarkeit genügt fast überall:

Satz J2E: Carleson 1966, Hunt 1968

Gilt $\int_{x=0}^{2\pi} |f(x)|^p dx < \infty$ für ein p > 1, so konvergiert die Fourier-Reihe fast überall gegen f, d.h. in allen $x \in \mathbb{R} \setminus N$ außer einer Nullmenge N.

 \bigcirc Dies gilt insbesondere für jede stetige Funktion. Die Konvergenz in einem vorgegebenen Punkt $x \in \mathbb{R}$ garantiert das Dirichlet–Kriterium I2A.

★ Konvergenz in allen Punkten hingegen wäre zu viel verlangt:

Satz J2F: Kahane & Katznelson 1966

Zu jeder Nullmenge $N\subseteq\mathbb{R}$ existiert eine stetige Funktion, deren Fourier–Reihe in allen Punkten $x\in N$ divergiert.

Diese Sätze sind extrem schwierig zu beweisen und dienen hier nur zur Illustration — und als Warnung vor allzu naiven Trugschlüssen. Das folgende schön-konkrete Beispiel illustriert die Problematik.

Fejérs Gegenbeispiel: divergente Fourier-Reihe

J220 Ergänzung

Satz J2H: Fejér 1911

Sei $f: \mathbb{R} \to \mathbb{R}$ gerade, 2π -periodisch und für $0 \le x \le \pi$ gegeben durch

$$f(x) := \sum_{i=1}^{\infty} \frac{1}{i^2} \sin((i^{(i^2)} + 1/2) \cdot x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx).$$

Die Funktion f ist stetig, aber in x = 0 divergiert ihre Fourier-Reihe.

- \bigcirc In fast jedem Punkt $x \in \mathbb{R}$ gilt Konvergenz $f_n(x) \to f(x)$ (J2E).
- \bigcirc Die Fejér-Polynome f_n^* konvergieren gleichmäßig gegen f (J2C).

Die Divergenz ist entsprechend subtil; wir rechnen sie jetzt nach.

Sei $f: \mathbb{R} \to \mathbb{R}$ gerade, 2π -periodisch und für $0 \le x \le \pi$ gegeben durch

$$f(x) := \sum_{i=1}^{\infty} \mu_i \sin(\omega_i x) \quad \stackrel{?}{\sim} \quad \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx).$$

mit Frequenzen $\omega_i \in \mathbb{N} + 1/2$, Amplituden $\mu_i \in \mathbb{R}_{>0}$ und $\sum_{i=1}^{\infty} \mu_i < \infty$. Dies garantiert gleichmäßige Konvergenz, und f ist stetig (I3c).

Aufgabe: (1) Für $k, \ell \in \mathbb{N}$ finden wir das Integral

$$\lambda_{k,\ell} := \int_{x=0}^{\pi} \cos(kx) \sin((\ell+1/2)x) \, \mathrm{d}x = \frac{\ell+1/2}{(\ell+1/2)^2 - k^2}.$$

- (2) Für die Fourier-Koeffizienten folgt $a_k = \frac{2}{\pi} \sum_{i=1}^{\infty} \mu_i \omega_i / (\omega_i^2 k^2)$.
- (3) Für $\sigma_{n,\ell} := \sum_{k=0}^n \lambda_{k,\ell}$ gilt $\sigma_{n,\ell} \ge 0$ und $\sigma_{n,n} \ge \frac{1}{2} \ln(n+1/2)$.
- (4) Für $s_n = \sum_{k=0}^n a_k$ und $n = \ell_i = \omega_i 1/2$ gilt $s_n \ge \frac{1}{2}\mu_i \ln \omega_i$.
- (5) Wir können μ_i und ω_i so wählen, dass die Folge s_n divergiert.
- \bigcirc Die Funktion f ist stetig, aber in x=0 divergiert ihre Fourier-Reihe!

Feiérs Gegenbeispiel: divergente Fourier-Reihe

Ergänzung

(3) Für $k \leq \ell$ gilt $\lambda_{k,\ell} \geq 0$, für $n \leq \ell$ also $\sigma_{n,\ell} \geq 0$. Für $n \geq \ell$ finden wir:

$$2\sigma_{n,\ell} = 2\sum_{k=0}^{n} \frac{\ell + 1/2}{(\ell + 1/2)^2 - k^2} = \sum_{k=0}^{n} \frac{1}{\ell + k + 1/2} + \frac{1}{\ell - k + 1/2}$$

$$= \sum_{j=\ell}^{\ell+n} \frac{1}{j+1/2} + \sum_{j=\ell-n}^{\ell} \frac{1}{j+1/2} = \frac{1}{\ell + 1/2} + \sum_{j=\ell-n}^{\ell+n} \frac{1}{j+1/2}$$

$$= \frac{1}{\ell + 1/2} + \sum_{j=n-\ell}^{n+\ell} \frac{1}{j+1/2} \ge 0$$

Durch Vergleich von Summe und Integral finden wir genauer:

$$2\sigma_{n,\ell} \geq \int_{t=n-\ell+1/2}^{n+\ell+3/2} \frac{1}{t} dt = \ln\left(\frac{n+\ell+3/2}{n-\ell+1/2}\right)$$

Speziell für $n = \ell$ finden wir damit die behauptete untere Schranke:

$$2\sigma_{n,n} \geq \ln(4n+3) \geq \ln(n+1/2)$$

Fejérs Gegenbeispiel: divergente Fourier-Reihe

Lösung: (1) Wir nutzen die trigonometrischen Additionstheoreme:

$$\int_{x=0}^{\pi} \cos(kx) \sin((\ell+1/2)x) dx$$

$$= \frac{1}{2} \int_{x=0}^{\pi} \sin((\ell+k+1/2)x) + \sin((\ell-k+1/2)x) dx$$

$$= \frac{1}{2} \left[\frac{-\cos((\ell+k+1/2)x)}{\ell+k+1/2} + \frac{-\cos((\ell-k+1/2)x)}{\ell-k+1/2} \right]_{x=0}^{\pi}$$

$$= \frac{1}{2} \left[\frac{1}{\ell+k+1/2} + \frac{1}{\ell-k+1/2} \right] = \frac{\ell+1/2}{(\ell+1/2)^2 - k^2}$$

(2) Da die Funktion f gerade ist, finden wir $b_k = 0$ und

$$a_{k} = \frac{2}{\pi} \int_{x=0}^{\pi} \cos(kx) f(x) dx = \frac{2}{\pi} \int_{x=0}^{\pi} \cos(kx) \sum_{i=1}^{\infty} \mu_{i} \sin(\omega_{i}x) dx$$
$$= \frac{2}{\pi} \sum_{i=1}^{\infty} \mu_{i} \int_{x=0}^{\pi} \cos(kx) \sin(\omega_{i}x) dx = \frac{2}{\pi} \sum_{i=1}^{\infty} \mu_{i} \frac{\omega_{i}}{\omega_{i}^{2} - k^{2}}$$

Feiérs Gegenbeispiel: divergente Fourier-Reihe

Ergänzung

(4) Für die *n*-te Partialsumme finden wir somit:

$$s_n = \sum_{k=0}^n a_k \stackrel{\text{(2)}}{=} \sum_{k=0}^n \frac{2}{\pi} \sum_{i=1}^\infty \mu_i \, \frac{\omega_i}{\omega_i^2 - k^2} \stackrel{\text{Lin}}{=} \frac{2}{\pi} \sum_{i=1}^\infty \mu_i \sum_{k=0}^n \frac{\omega_i}{\omega_i^2 - k^2} \stackrel{\text{(3)}}{=} \frac{2}{\pi} \sum_{i=1}^\infty \mu_i \sigma_{n,\ell_i}$$

Für alle Terme gilt $\mu_i \sigma_{n,\ell_i} \geq 0$. Speziell für $n = \ell_i = \omega_i - 1/2$ folgt:

$$s_n = \frac{2}{\pi} \sum_{i=1}^{\infty} \mu_i \sigma_{n,\ell_i} \ge \frac{2}{\pi} \mu_i \sigma_{n,n} \ge \frac{2}{\pi} \mu_i \cdot \frac{1}{2} \ln \omega_i = \frac{\mu_i \ln \omega_i}{\pi}$$

(5) Wir wählen nun die Frequenzen $\omega_i \in \mathbb{N} + 1/2$ und die Amplituden $\mu_i \in \mathbb{R}_{\geq 0}$ so, dass $\sum_{i=1}^{\infty} \mu_i < \infty$ gilt, aber $\mu_i \ln \omega_i \to \infty$. Beispiele:

$$\mu_i = \frac{1}{2^i}, \quad \sum_{i=1}^{\infty} \frac{1}{2^i} = 1, \qquad \omega_i = i^{(2^i)} + \frac{1}{2}, \quad \ln \omega_i \ge 2^i \ln i$$

$$\mu_i = \frac{1}{i^2}, \quad \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}, \quad \omega_i = i^{(i^2)} + \frac{1}{2}, \quad \ln \omega_i \ge i^2 \ln i$$

Die Funktion f ist stetig, aber in x = 0 divergiert ihre Fourier-Reihe!

orthogonale Projektion auf $U = \langle \, e_1, \dots, e_n \, \rangle \leq V$

Approximation: Zu $v \in V$ suchen wir den / einen Vektor $v^* \in U$, der v am nächsten liegt. Existenz? eindeutig? effektiv? effizient? Hierzu sei V ein Vektorraum mit Skalarprodukt $\langle - | - \rangle$ über $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Darin sei $U \leq V$ ein endlich-dim. Untervektorraum, $\dim U = n < \infty$.

Lösung: Wir erzeugen U durch eine Basis, orthonormalisieren diese zu e_1, \ldots, e_n (I1J) und berechnen die Orthogonalprojektion von v auf U.

Schon der Fall $V=\mathbb{R}^2$ und n=1 (oder $V=\mathbb{R}^3$ und n=1,2) ist interessant und Ihnen vielleicht noch aus der Schule vertraut. Die obige Skizze und die folgenden Argumente gelten aber ganz allgemein: Der Raum V darf beliebig groß sein, zum Beispiel ein Funktionenraum; lediglich der Unterraum U soll zur Vereinfachung endlich-dimensional bleiben, zum Beispiel der Unterraum U aller trigonometrischen Polynome vom Grad $\leq k$, mit $n=\dim U=1+2k$.

Bestapproximation durch Orthogonalprojektion

J303 Ergänzung

Satz J3A: Gauß 1795, Bessel 1818

Sei V ein Vektorraum über $\mathbb{K} = \mathbb{R}, \mathbb{C}$ mit einem Skalarprodukt $\langle -|-\rangle$. Sei $U \leq V$ ein Unterraum mit einer Orthonormalbasis e_1, \ldots, e_n oder allgemein einer Orthogonalbasis mit $\langle e_k \mid e_k \rangle > 0$ für alle $k = 1, \ldots, n$.

- (1) Orthogonalprojektion: Zu jedem $v \in V$ existiert genau ein Vektor $v^* = \sum_{k=1}^n e_k v_k \in U$ mit $(v-v^*) \perp U$. Dieser ist explizit gegeben durch $v_k = \langle \, e_k \mid v \, \rangle / \langle \, e_k \mid e_k \, \rangle$, seine Fourier-Koeffizienten.
- (2) **Bestapproximation**: Für alle Konkurrenten $u \in U \setminus \{v^*\}$ gilt $\|v u\|^2 = \|v v^*\|^2 + \|v^* u\|^2 > \|v v^*\|^2.$
- (3) **Bessel–Gleichung**: Dank $v=v^*+(v-v^*)$ und Pythagoras I1ı gilt $\|v\|^2 = \|v^*\|^2 + \|v-v^*\|^2$ (Approximationsfehler)
- (4) Bessel–Ungleichung: Es folgt $||v^*||^2 = \sum_{k=1}^n ||e_k||^2 |v_k|^2 \le ||v||^2$.

Übung: Wie berechnen Sie im Raum \mathbb{R}^3 den euklidischen Abstand des Punktes p zu einer Geraden $G = \langle u_1 \rangle^!$? zu einer Ebenen $E = \langle u_1, u_2 \rangle^!$. Welche Rechentechniken und Beweisargumente kennen Sie hierzu?

Beispiel: Vorgelegt ist eine Funktion $f: [-\pi, \pi] \to \mathbb{R}$, etwa $f(x) = x^2$. Zu $n \in \mathbb{N}$ gesucht ist die/eine Bestapproximation $f_n(x) = \sum_{k=-n}^n c_k e^{ikx}$, die den mittleren quadratischen Fehler $\int_{-\pi}^{\pi} |f_n(x) - f(x)|^2 dx$ minimiert.

Aufgabe: Wie bestimmen Sie die Parameter $c_k \in \mathbb{C}$ möglichst effizient? **Lösung:** Als Fourier–Koeffizienten, also $c_k = \langle e_k \mid f \rangle$! Dass dies eine optimale Lösung ist, sogar die einzige, verdanken wir folgendem Satz.

Den Approximationsfehler, also die verbleibende Differenz f_n-f , können wir auf viele verschiedene Weisen messen und bewerten, etwa durch das Supremum $\sup |f_n-f|$ oder $\int_{-\pi}^{\pi} |f_n(x)-f(x)|^p \, \mathrm{d}x$. Diese Normen sind in Analysis, Numerik und Optimierung wichtig, erfordern jedoch sehr aufwändig maßgeschneiderte Methoden. Nur für p=2 haben wir eine so schöne und einfache Antwort!

Bestapproximation durch Orthogonalprojektion

J304 Ergänzung

Beweis: (1) Genau dann gilt $(v - v^*) \perp U$, wenn für $k = 1, \ldots, n$ gilt:

$$0 \stackrel{!}{=} \langle e_k \mid v - v^* \rangle \stackrel{ ext{Lin}}{=} \langle e_k \mid v \rangle - \sum_j \langle e_k \mid e_j \rangle v_j \stackrel{ ext{ONB}}{=} \langle e_k \mid v \rangle - \langle e_k \mid e_k \rangle v_k$$

Es gibt genau eine Lösung: $v^* = \sum_{k=1}^n e_k v_k$ mit $v_k = \langle e_k \mid v \rangle / \langle e_k \mid e_k \rangle$.

(2) Für jeden Konkurrenten $u \in U$ gilt $u = v^* + \sum_k e_k \mu_k$ mit $\mu \in \mathbb{K}^n$, also

$$\|v - u\|^2 \stackrel{\text{Def}}{=} \|(v - v^*) - \sum_k e_k \mu_k\|^2 \stackrel{\text{III}}{=} \|v - v^*\|^2 + \sum_k \|e_k\|^2 |\mu_k|^2$$

- (3) Dies folgt aus der orthogonalen Zerlegung $v = v^* + (v v^*)$.
- \bigcirc Approximation interessiert uns in jedem \mathbb{K} -Vektorraum V mit Norm. Speziell für ein Skalarprodukt genügt hierzu die Orthogonalprojektion! Dazu formuliere ich den Satz umsichtig mit minimalen Voraussetzungen:

Für die Aussagen (1–3) genügt eine hermitesche Form $\langle -|-\rangle$. Dank der vorausgesetzten Orthonormalbasis e_1, \ldots, e_n ist sie positiv definit auf U. Für (1) genügt uns $\langle e_k \mid e_k \rangle \neq 0$, erst für (2) benötigen wir $\langle e_k \mid e_k \rangle > 0$. Für die Ungleichung (4) genügt, dass $\langle -|-\rangle$ auf V positiv semidefinit ist.

Quadrat-summierbare Folgen

J305 Ergänzung

Für jede Folge $\widehat{f}:\mathbb{Z} \to \mathbb{C}$ definieren wir die Quadrat-Norm

$$\|\widehat{f}\|_{\ell^2}^2 := \sum_{k \in \mathbb{Z}} |\widehat{f}(k)|^2 \quad \text{also} \quad \|\widehat{f}\|_{\ell^2} := \Big[\sum_{k \in \mathbb{Z}} |\widehat{f}(k)|^2\,\Big]^{1/2}.$$

Die **quadrat-summierbaren** Folgen bilden den \mathbb{C} -Vektorraum

$$\ell^2 = \ell^2(\mathbb{Z}) = \ell^2(\mathbb{Z}, \mathbb{C}) := \left\{ |\widehat{f}: \mathbb{Z} \to \mathbb{C} \mid ||\widehat{f}||_{\ell^2} < \infty \right\}.$$

Auf ℓ^2 haben wir $\cdot : \ell^2 \times \ell^2 \to \ell^1$ und somit das **Skalarprodukt**

$$\langle \operatorname{-}|\operatorname{-}\rangle\,:\,\ell^2\times\ell^2\to\mathbb{C}\quad\text{mit}\quad\langle\,\widehat{f}\mid\widehat{g}\,\rangle:=\sum_{k\in\mathbb{Z}}\overline{\widehat{f}(k)}\,\widehat{g}(k).$$

Dies ist absolut summierbar dank Cauchy-Schwarz-Ungleichung:

$$\sum_{k \in \mathbb{Z}} |\widehat{f}(k) \cdot \widehat{g}(k)| \le \|\widehat{f}\|_{\ell^2} \cdot \|\widehat{g}\|_{\ell^2}$$

 \bigcirc Für endliche Summen kennen wir das vom Skalarprodukt auf \mathbb{R}^n . Für unendliche Reihen folgt die Ungleichung durch Grenzübergang.

Quadrat-integrierbare Funktionen

J307 Ergänzung

Für $f: \mathbb{R}^n \supseteq \Omega \to \mathbb{C}$ messbar definieren wir die **Quadrat-Norm**

$$\|f\|_{L^2}^2 := \int_{x \in \Omega} \big|f(x)\big|^2 \, \mathrm{d}x \quad \text{also} \quad \|f\|_{L^2} := \Big[\int_{x \in \Omega} \big|f(x)\big|^2 \, \mathrm{d}x \,\Big]^{1/2}.$$

Die **quadrat-integrierbaren** Funktionen bilden den C-Vektorraum

$$L^2 = L^2(\Omega) = L^2(\Omega, \mathbb{C}) := \Big\{ f : \Omega \to \mathbb{C} \ \Big| \ \|f\|_{L^2} < \infty \ \Big\}.$$

Auf L^2 haben wir $\cdot : L^2 \times L^2 \to L^1$ und somit das **Skalarprodukt**

$$\langle \operatorname{-}|\operatorname{-}\rangle : L^2 \times L^2 \to \mathbb{C} \quad \operatorname{mit} \quad \langle \, f \mid g \, \rangle := \int_{x \in \Omega} \overline{f(x)} \, g(x) \, \mathrm{d}x.$$

Dies ist absolut integrierbar dank Cauchy-Schwarz-Ungleichung:

$$\int_{x \in \Omega} |f(x) \cdot g(x)| \, \mathrm{d}x \le ||f||_{L^2} \cdot ||g||_{L^2}$$

 \bigcirc Für Treppenfunktionen $f,g:\Omega\to\mathbb{C}$ ist dies eine endliche Summe. Für $f,g\in L^2(\Omega,\mathbb{C})$ folgt die Ungleichung daraus durch Grenzübergang.

Vergleich mit p-summierbaren Folgen

J306 Ergänzung

Für $1 \leq p \leq \infty$ und $\widehat{f} : \mathbb{Z} \to \mathbb{C}$ definieren wir die ℓ^p -Norm

$$\|\widehat{f}\|_{\ell^p} := \Big[\sum_{k \in \mathbb{Z}} \big|\widehat{f}(k)\big|^p\,\Big]^{1/p} \quad \text{wobei} \quad \|\widehat{f}\|_{\ell^\infty} := \sup_{k \in \mathbb{Z}} \big|\widehat{f}(k)\big|.$$

Die ℓ^p -summierbaren Folgen bilden den \mathbb{C} -Vektorraum

$$\ell^p = \ell^p(\mathbb{Z}) = \ell^p(\mathbb{Z}, \mathbb{C}) := \left\{ |\widehat{f}: \mathbb{Z} \to \mathbb{C} \mid ||\widehat{f}||_{\ell^p} < \infty \right\}.$$

Demnach bedeutet ℓ^1 absolut summierbar und ℓ^∞ beschränkt. Für $1 gelten dabei die Inklusionen <math>\ell^1 \subseteq \ell^p \subseteq \ell^q \subseteq \ell^\infty$.

Dank **Minkowski–Ungleichung** C4L ist ℓ^p ein Vektorraum und normiert. Für $p, q \in [1, \infty]$ mit 1/p + 1/q = 1 gilt die **Hölder–Ungleichung** C4L:

$$\|\widehat{f} \cdot \widehat{g}\|_{\ell^1} \le \|\widehat{f}\|_{\ell^p} \cdot \|\widehat{g}\|_{\ell^q}$$

Im Spezialfall p=q=2 ist dies die Cauchy–Schwarz–Ungleichung. Das Produkt $\cdot: \ell^p \times \ell^q \to \ell^1$ stiftet somit die **bilineare Paarung**

$$\langle \operatorname{-}|\operatorname{-}\rangle\,:\,\ell^p\times\ell^q\to\mathbb{C}\quad\mathrm{mit}\quad\langle\,\widehat{f}\mid\widehat{g}\,\rangle:=\sum_{k\in\mathbb{Z}}\overline{\widehat{f}(k)}\,\widehat{g}(k).$$

Vergleich mit p-integrierbaren Funktionen

J308 Ergänzung

Für $1 \leq p \leq \infty$ und $f: \mathbb{R}^n \supseteq \Omega \to \mathbb{C}$ definieren wir die L^p -Norm

$$||f||_{L^p} := \left[\int_{x \in \Omega} |f(x)|^p dx\right]^{1/p}$$
 wobei $||f||_{L^\infty} := \underset{x \in \Omega}{\operatorname{ess sup}} |f(x)|.$

Die L^p -integrierbaren Funktionen bilden den \mathbb{C} -Vektorraum

$$L^p = L^p(\Omega) = L^p(\Omega, \mathbb{C}) := \left\{ f : \Omega \to \mathbb{C} \mid \|f\|_{L^p} < \infty \right\}.$$

Demnach bedeutet L^1 absolut integrierbar und L^∞ essentiell beschränkt. Gleichheit f=g in $L^p(\Omega,\mathbb{C})$ bedeutet f(x)=g(x) für fast alle $x\in\Omega$. Für $\emptyset<\mathrm{vol}(\Omega)<\infty$ und $1< p< q<\infty$ folgt $L^1\supsetneq L^p\supsetneq L^q\supsetneq L^\infty$.

Dank **Minkowski–Ungleichung** C4L ist L^p ein Vektorraum und normiert. Für $p, q \in [1, \infty]$ mit 1/p + 1/q = 1 gilt die **Hölder–Ungleichung** C4L:

$$||f \cdot g||_{L^1} \le ||f||_{L^p} \cdot ||g||_{L^q}$$

Im Spezialfall p=q=2 ist dies die Cauchy-Schwarz-Ungleichung. Das Produkt $\cdot: L^p \times L^q \to L^1$ stiftet somit die **bilineare Paarung**

$$\langle \operatorname{-}|\operatorname{-}\rangle : L^p \times L^q \to \mathbb{C} \quad \operatorname{mit} \quad \langle \, f \mid g \, \rangle := \int_{x \in \Omega} \overline{f(x)} \, g(x) \, \mathrm{d}x.$$

Wir wenden Bessels Approximationssatz auf Fourier–Polynome an. Für quadrat-integrierbare $f, g: [0, T] \to \mathbb{C}$ ist das **Skalarprodukt**

$$\langle f \mid g \rangle_{L^2} := \frac{1}{T} \int_{t=0}^T \overline{f(t)} g(t) dt.$$

Die zugehörige **Norm** ist definiert durch $||f||_{L^2} = \sqrt{\langle f | f \rangle}$, also

$$||f||_{L^2} := \left[\frac{1}{T} \int_{t=0}^T |f(t)|^2 dt\right]^{1/2}.$$

Der **mittlere quadratische Abstand** zwischen f,g ist definiert durch

$$||f - g||_{L^2} := \left[\frac{1}{T} \int_{t=0}^{T} |f(t) - g(t)|^2 dt\right]^{1/2}.$$

Der punktweise Abstand $|f(t)-g(t)|^2$ wird hier über [0,T] integriert. Das Quadrat gewichtet dabei große Abweichungen stärker als kleine. Der Faktor 1/T normiert und vereinfacht zudem die Fourier-Formeln. Die abschließende Wurzel sorgt dafür, dass die Norm homogen ist, also tatsächlich $\|\alpha \cdot f\| = |\alpha| \cdot \|f\|$ für alle $\alpha \in \mathbb{C}$ erfüllt.

Bestapproximation durch Fourier-Polynome

J311 Ergänzung

Aufgabe: Zeigen Sie dies für jede stetige Funktion f durch Vergleich von quadratischer Bestapproximation f_n und Fejér–Approximation f_n^* . Zusammen sind diese Approximationssätze extrem wirkungsvoll.

Lösung: Teil (1) ist die Anwendung von Bessels Approximationssatz J3A auf den Vektorraum $L^2([0,T],\mathbb{C})$ und trigonometrische Polynome.

(2) Für die Fejér–Approximation f_n^* gilt $\max |f_n^* - f| \to 0$ dank J2c. Die quadratische Bestapproximation sind die Fourier–Polynome f_n , daher gilt $||f_n - f||_{L^2} \le ||f_n^* - f||_{L^2}$. Ausgeschrieben bedeutet das:

$$\frac{1}{T} \int_{t=0}^{T} |f_n(t) - f(t)|^2 \le \frac{1}{T} \int_{t=0}^{T} |f_n^*(t) - f(t)|^2 \le \left(\max|f_n^* - f| \right)^2 \to 0$$

Monotonie $||f_{n+1} - f||_{L^2} \le ||f_n - f||_{L^2}$ ist klar, somit gilt $||f_n - f||_{L^2} \searrow 0$. Dank Aussage (1) folgt die monotone Konvergenz $||f_n||_{L^2} \nearrow ||f||_{L^2}$.

 \bigcirc Die Fejér-Approximation J2c stellt sicher, dass trigonometrische Polynome dicht liegen im Raum $C([0, 2\pi], \mathbb{C})$ der stetigen Funktionen.

Satz J3B: Bestapproximation durch Fourier-Polynome

Sei $f:[0,T]\to\mathbb{C}$ quadrat-integrierbar, das heißt $\int_0^T |f(t)|^2\,\mathrm{d}t<\infty$. (1) Sei $f_n=\sum_{k=-n}^n c_k\,\mathrm{e}^{\mathrm{i}k\omega t}$ eine Approximation durch ein beliebiges trigonometrisches Polynom vom Grad n mit Koeffizienten $c_k\in\mathbb{C}$. Bessel–Ungleichung: Der mittlere quadratische Fehler $\|f-f_n\|$ wird genau dann minimal, wenn f_n das Fourier–Polynom zu f ist, also

$$c_k = \langle e_k \mid f \rangle = \frac{1}{T} \int_{t=0}^T e^{-ik\omega t} f(t) dt.$$

Der mittlere quadratische Fehler ist dann $||f - f_n||^2 = ||f||^2 - ||f_n||^2$. (2) Für $n \to \infty$ gilt Konvergenz $||f - f_n|| \searrow 0$ im quadratischen Mittel. Für die Normen folgt $||f_n|| \nearrow ||f||$ und somit die Energiegleichung:

$$\frac{1}{T} \int_{t=0}^{T} |f_n(t)|^2 dt = \sum_{k=-n}^{n} |c_k|^2 \quad \nearrow \quad \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{1}{T} \int_{t=0}^{T} |f(t)|^2 dt$$

Bestapproximation durch Fourier-Polynome

J312 Ergänzung

Die Konvergenz $||f_n||_{L^2}^2 \nearrow ||f||_{L^2}^2$ bedeutet ausgeschrieben:

Offensichtlich gilt für die Koeffizientensummen entsprechendes:

$$B_n := \sum_{k=-n}^{n} |c_k|^2 \quad \nearrow \quad \sum_{k=-\infty}^{\infty} |c_k|^2 =: B$$

Die Energiegleichung $A_n=B_n$ gilt für jedes trigonometrische Polynom dank Pythagoras 1125. Damit folgt die Energiegleichung A=B für f.

Damit ist die Energiegleichung (2) für stetige Funktionen bewiesen. Das war das Ziel dieser Aufgabe (als leichtere, teilweise Lösung).

 \bigcirc Hieraus folgt der Satz J3B allgemein durch Vervollständigung: Die stetigen Funktionen liegen dicht in $L^2([0,T],\mathbb{C})$ bezüglich L^2 -Norm.

Der folgende Satz fasst dieses Ergebnis zusammen und erweitert zudem die Energiegleichung zur Parseval–Gleichung für Skalarprodukte. Satz J3c: Energiegleichung und Satz von Parseval

Sei $f: \mathbb{R} \to \mathbb{C}$ absolut integrierbar auf [0,T] und T-periodisch. Wir zerlegen f in **Harmonische** zur Grundfrequenz $\omega = 2\pi/T$:

$$f \circ \longrightarrow \widehat{f}, \quad \widehat{f}(k) := \frac{1}{T} \int_{t=0}^{T} e^{-ik\omega t} f(t) dt, \quad f(t) \sim \sum_{k=-\infty}^{\infty} \widehat{f}(k) e^{ik\omega t}.$$

Es gilt die Parseval-Gleichung, auch Energiegleichung genannt:

$$\|f\|_{L^2} = \|\widehat{f}\|_{\ell^2} \quad \text{also} \quad \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2$$

Dank dieser Gleichung gilt $f\in L^2$ genau dann, wenn $\widehat{f}\in \ell^2$ gilt. Für $f,g\in L^2$ gilt die **Parseval–Gleichung** zudem für Skalarprodukte:

$$\langle\,f\mid g\,\rangle = \langle\,\widehat{f}\mid\widehat{g}\,\rangle \quad \text{also} \quad \frac{1}{T}\int_{t=0}^T \overline{f(t)}\,g(t)\,\mathrm{d}t = \sum_{k=-\infty}^\infty \overline{\widehat{f}(k)}\,\widehat{g}(k)$$

Hausdorff-Young-Ungleichung

J315 Ergänzung

 \bigcirc Wir kennen die folgenden Beziehungen, die eine bemerkenswerte Dualität zwischen L^p -Funktionen und ℓ^q -Folgen illustrieren:

- (1a) Für $f \in L^1$ wissen wir $\widehat{f} \in \ell^{\infty}$, genauer $\widehat{f}(k) \leq \|f\|_{L^1}$ für alle $k \in \mathbb{Z}$. Dank Riemann–Lebesgue gilt zudem Abklingen $|\widehat{f}(k)| \to 0$ für $|k| \to \infty$.
- (1b) Zu $\widehat{f} \in \ell^1$ konvergiert $f = \sum_{k \in \mathbb{Z}} \widehat{f}(k) e_k$ in L^∞ , sogar gleichmäßig. Insbesondere gilt dann $\|f\|_{L^\infty} \leq \sum_{k \in \mathbb{Z}} |\widehat{f}(k)| \cdot \|e_k\|_{L^\infty} = \|\widehat{f}\|_{\ell^1}$.
- (2) Der zentrale Fall: Für $f \in L^2$ gilt $\widehat{f} \in \ell^2$ und die Fourier-Isometrie

$$\|f\|_{L^2} = \|\widehat{f}\|_{\ell^2}$$
 also $\frac{1}{T} \int_{t=0}^T |f(t)|^2 dt = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2$.

Diese Fälle behandeln die wichtigen Extreme $(p,q)=(1,\infty)$ und den symmetrischen Fall (p,q)=(2,2). Sie werden durch folgenden Satz von Young und Hausdorff zusammengefasst und verallgemeinert.

Aufgabe: Rechnen Sie die Parseval–Gleichung mit Fubini nach im Spezialfall $f \in L^1$ und $\widehat{g} \in \ell^1$, somit $g(t) = \sum_k \widehat{g}(k) e^{\mathrm{i}k\omega t} \in L^\infty$.

Lösung: Wir setzen ein und rechnen's geduldig aus:

$$\langle f \mid g \rangle_{L^{2}} \stackrel{\text{Def}}{=} \frac{1}{T} \int_{t=0}^{T} \overline{f(t)} \, g(t) \, \mathrm{d}t \qquad \stackrel{\text{Def}}{=} \frac{1}{T} \int_{t=0}^{T} \overline{f(t)} \sum_{k=-\infty}^{\infty} \widehat{g}(k) \, \mathrm{e}^{\mathrm{i}k\omega t} \, \mathrm{d}t$$

$$\stackrel{\text{Lin}}{=} \frac{1}{T} \int_{t=0}^{T} \sum_{k=-\infty}^{\infty} \overline{\mathrm{e}^{-\mathrm{i}k\omega t} f(t)} \, \widehat{g}(k) \, \mathrm{d}t \stackrel{\text{Fub}}{=} \sum_{k=-\infty}^{\infty} \left[\frac{1}{T} \int_{t=0}^{T} \overline{\mathrm{e}^{-\mathrm{i}k\omega t} f(t)} \, \mathrm{d}t \right] \widehat{g}(k)$$

$$\stackrel{\text{Def}}{=} \sum_{k=-\infty}^{\infty} \overline{\widehat{f}(k)} \, \widehat{g}(k) \qquad \stackrel{\text{Def}}{=} \langle \widehat{f} \mid \widehat{g} \rangle_{\ell^{2}}$$

 \bigcirc Speziell für f=g erhalten wir die Energiegleichung $\|f\|_{L^2}=\|\widehat{f}\|_{\ell^2}$. Für $f\in L^1$ und $\widehat{f}\in \ell^1$ ist damit die Energiegleichung erneut bewiesen. Für $f\in L^2$ folgt sie durch Grenzübergang, wie in Satz J3B ausgeführt. Für $f,g\in L^2$ folgt $\widehat{f},\widehat{g}\in \ell^2$, und obige Gleichungen bestehen weiter. Für Skalarprodukte erhalten wir dies durch Polarisieren der Norm.

Hausdorff-Young-Ungleichung

J316 Ergänzung

Satz J3D: Young 1913, Hausdorff 1923

Wir fixieren p,q mit $1\leq p\leq 2\leq q\leq \infty$ und 1/p+1/q=1, zum Beispiel $(p,q)=(1,\infty)$ oder p=q=2 wie oben.

(1) Aus $f \in L^p$ folgt $\widehat{f} \in \ell^q$, genauer gilt die Ungleichung

$$\|\widehat{f}\|_{\ell^q} \le \|f\|_{L^p} \quad \text{also} \quad \left(\sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^q\right)^{1/q} \le \left(\frac{1}{T} \int_{t=0}^T |f(t)|^p \, \mathrm{d}t\right)^{1/p}.$$

(2) Umgekehrt: Für $c \in \ell^p$ konvergiert die Folge $f_n = \sum_{k=-n}^n c_k e_k$ gegen eine Funktion f in L^q . Für diese gilt $\widehat{f} = c$, genauer gilt die Ungleichung

$$\|f\|_{L^q} \le \|\widehat{f}\|_{\ell^p} \quad \text{also} \quad \left(\frac{1}{T} \int_{t=0}^T |f(t)|^q \, \mathrm{d}t \right)^{1/q} \le \left(\sum_{k=-\infty}^\infty |\widehat{f}(k)|^p \right)^{1/p}.$$

rianlle Die Aussagen werden falsch, wenn wir p und q vertauschen. In beiden Teilen geht das Argument von $1 \le p \le 2$ nach $2 \le q \le \infty$. Ich nenne diesen Satz hier nur zur Illustration — und ohne Beweis.

Wollen wir eine Fourier-Reihe in einem einzelnen Punkt auswerten. so müssen wir uns die Frage der punktweisen Konvergenz stellen! Das Dirichlet-Kriterium I2A liefert uns hierzu ein beguemes und doch starkes Werkzeug. Es erlaubt insbesondere die Berechnung von einigen Reihengrenzwerten, die sonst nur schwer zu bekommen sind.

Wir kennen zudem die gleichmäßige Konvergenz $f_n \to f$ auf X: Hier liegt Konvergenz in allen Punkten $x \in X$ vor und zudem eine gleichmäßige Fehlerschranke $\sup |f_n - f| \to 0$. Das ist die stärkste und wirksamste Forderung, für manche Anwendungen jedoch leider zu stark.

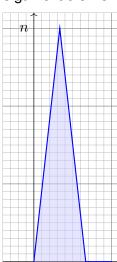
Fourier-Reihen nutzen das Skalarprodukt periodischer Funktionen. Es liegt daher nahe, die Güte der Approximation von f durch f_n mit der zugehörigen Norm des mittleren quadratischen Abstands zu messen:

$$||f_n - f||_{L^2([0,T],\mathbb{C})}^2 = \frac{1}{T} \int_{t=0}^T |f_n(t) - f(t)|^2 dt$$

Für die Konvergenz von Fourier-Reihen ist dieser Abstandsbegriff der natürlichste: Bezüglich der L^2 -Norm sind alle Formeln am einfachsten.

Ergänzung

 \triangle Aus punktweiser Konvergenz $f_n \to f$, also $f_n(x) \to f(x)$ für alle x, folgt nicht die Konvergenz im quadratischen Mittel!



Gegenbeispiel "wachsende Zacken": Für $n \geq 2$ sei $f_n: [0,1] \to \mathbb{R}$ definiert durch

$$f_n(x) = \begin{cases} n^2 x & \text{für } 0 \le x \le \frac{1}{n}, \\ 2n - n^2 x & \text{für } \frac{1}{n} \le x \le \frac{2}{n}, \\ 0 & \text{für } \frac{2}{n} \le x \le 1. \end{cases}$$

Für jeden Punkt $x \in [0,1]$ gilt $f_n(x) \to 0$. Hingegen gilt $\int_0^1 |f_n(x)| dx = 1$ sowie $\int_0^1 |f_n(x)|^2 dx = \frac{2}{3}n \to \infty \text{ für } n \to \infty.$

Es gilt $f_n(x) \to 0$ in jedem Punkt $x \in [0,1]$, aber $\max |f_n - 0| \to \infty$ im maximalen Abstand (L^{∞}) sowie $||f_n - 0||_{L^1} = 1$ im mittleren Abstand (L^1) und $||f_n - 0||_{L^2} \to \infty$ im quadratischen Mittel (L^2). Wir fassen die Beziehungen dieser drei Konvergenzarten zusammen. Seien $f_0, f_1, f_2, \ldots, f: \Omega \to \mathbb{C}$ Funktionen auf einer Menge $\Omega \subset \mathbb{R}^d$.

Gleichmäßige Konvergenz: $\sup_{x\in\Omega}|f_n(x)-f(x)|\to 0$

∭ immer

quadratischen Mittel: $\int_{x\in\Omega} |f_n(x) \to f(x)|^2 \,\mathrm{d}x \to 0$

Punktweise Konvergenz: $f_n(x) \to f(x)$ in jedem Punkt $x \in \Omega$

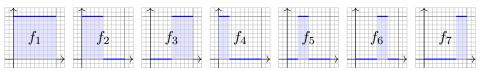
 \bigcirc Die Implikation "gleichmäßig $\Rightarrow L^{p}$ " folgt sofort aus der Ungleichung $\int_{x \in \Omega} |f_n(x) - f(x)|^p dx \le \operatorname{vol}(\Omega) \cdot (\sup_{x \in \Omega} |f_n(x) - f(x)|)^p \to 0.$

$$0$$
 Die Implikation "gleichmäßig \Rightarrow punktweise" ist klar: Für $x \in \Omega$ gilt $|f_n(x) - f(x)| \leq \sup_{x \in \Omega} |f_n(x) - f(x)| \to 0.$

⚠ Die Umkehrungen gelten nicht, siehe Gegenbeispiele. J319 J320

Ergänzung

 \triangle Aus Konvergenz im quadratischen Mittel $||f - f_n||_{L^2} \to 0$ folgt nicht gleichmäßige Konvergenz, ja nicht einmal punktweise $f_n(x) \to f(x)$: Es kann sein, dass die Folge $f_n(x)$ in keinem Punkt x konvergiert!



Gegenbeispiel "wandernde Blöcke": Wir zerlegen das Intervall $I_1 = [0, 1]$ in zwei Hälften $I_2 = [0, 1/2]$ und $I_3 = [1/2, 1]$, und diese wiederum in $I_4 = [0, 1/4]$ und $I_5 = [1/4, 1/2]$ sowie $I_6 = [1/2, 3/4]$ und $I_7 = [3/4, 1]$, usw. Hierzu betrachten wir die Folge der Indikatorfunktionen

$$f_n: [0,1] \to \mathbb{R}: f_n(x) = egin{cases} 1 & ext{für } x \in I_n, \\ 0 & ext{für } x \notin I_n. \end{cases}$$

Die Quadrat-Norm $||f_n||_{L^2} = \operatorname{vol}_1 I_n$ (Länge von I_n) konvergiert gegen 0. Jedoch konvergiert $f_n(x)$ für $n \to \infty$ in keinem Punkt x: Die Folge $f_n(x)$ besteht nämlich aus vielen Nullen und immer mal wieder einer 1.

 \odot Die trigonometrischen Funktionen $e^{ik\omega t}$ mit $k \in \mathbb{Z}$ sind vollständig: Sie lassen sich durch keine hierzu orthogonale Funktion f erweitern!

Satz J3E: Vollständigkeit der trigonometrischen Basis

Sei $f,g,h:\mathbb{R}\to\mathbb{C}$ integrierbar auf [0,T] und T-periodisch. (1) Gilt

$$\int_{t=0}^{T} e^{-ik\omega t} f(t) dt = 0$$

für alle $k \in \mathbb{Z}$, so folgt f(t) = 0 für fast alle $t \in \mathbb{R}$. (2) Gilt

$$\int_{t=0}^{T} e^{-ik\omega t} g(t) dt = \int_{t=0}^{T} e^{-ik\omega t} h(t) dt$$

für alle $k \in \mathbb{Z}$, so folgt g(t) = h(t) für fast alle $t \in \mathbb{R}$.

 \bigcirc Nochmal anders gesagt: Die Fourier–Analyse $f\mapsto \widehat{f}$ ist injektiv. Haben zwei Funktionen g,h dasselbe Spektrum $\widehat{g}=\widehat{h}$, so folgt g=h. (Das heißt: Gleichheit gilt überall bis auf eine Menge vom Maß Null.)

Konvergenz im quadratischen Mittel

J323 Ergänzung

Satz J3F: Vollständigkeit

(1) Wir haben folgende lineare Abbildung $L^2([0,T],\mathbb{C}) \to \ell^2(\mathbb{Z},\mathbb{C})$: Gilt $\frac{1}{T} \int_0^T |f(t)|^2 \,\mathrm{d}t < \infty$, so bilden die Fourier–Koeffizienten

$$c_k = \frac{1}{T} \int_{t=0}^{T} e^{-ik\omega t} f(t) dt$$

eine Zahlenfolge $(c_k)_{k\in\mathbb{Z}}$ mit $\sum_k |c_k|^2 = \frac{1}{T} \int_0^T |f(t)|^2 \,\mathrm{d}t < \infty$.

(2) Wir haben folgende lineare Abbildungen $\ell^2(\mathbb{Z},\mathbb{C}) \to L^2([0,T],\mathbb{C})$: Gilt $\sum_k |c_k|^2 < \infty$, so konvergiert die trigonometrische Reihe

$$\sum_{k=-\infty}^{\infty} c_k \, \mathrm{e}^{\mathrm{i}k\omega t}$$
 im quadratischen Mittel

gegen eine Funktion $f:\mathbb{R}\to\mathbb{C}$ mit $\frac{1}{T}\int_0^T |f(t)|^2\,\mathrm{d}t=\sum_k |c_k|^2<\infty.$

Aufgabe: Zeigen Sie diesen Satz im Spezialfall stetiger Funktionen $f, g, h : \mathbb{R} \to \mathbb{C}$ mit dem Approximationssatz von Fejér (Satz J2c).

Lösung: (1) Die Voraussetzung bedeutet $\widehat{f}(k)=0$ für alle $k\in\mathbb{Z}$. Für die Fourier-Polynome gilt demnach $f_n=0$ für alle $n\in\mathbb{N}$. Für die Fejér-Polynome gilt dann ebenso $f_n^*=0$ für alle $n\in\mathbb{N}$. Der Approximationssatz von Fejér garantiert uns dann

$$\max|f| = \max|f - f_n^*| \to 0 \quad \text{für} \quad n \to \infty.$$

Das bedeutet $\max |f| = 0$, also f(t) = 0 für alle $t \in \mathbb{R}$ wie behauptet.

 \bigcirc Jede stetige Funktion $f \neq 0$ hat demnach ein Spektrum $\widehat{f} \neq 0$, das heißt, es können nicht alle Fourier-Koeffizienten verschwinden.

(2) Aussage (1) angewendet auf f = g - h liefert f = 0, also g = h.

 \bigcirc Haben stetige Funktionen dasselbe Spektrum, so sind sie gleich. Umgekehrt bedeutet das, für stetige Funktionen $g \neq h$ gilt $\widehat{g} \neq \widehat{h}$.

Absolute und gleichmäßige Konvergenz

J324 Ergänzung

Satz J3G: Vollständigkeit

(1) Wir haben folgende lineare Abbildung $L^1([0,T],\mathbb{C}) \to \ell^\infty(\mathbb{Z},\mathbb{C})$: Gilt $\frac{1}{T} \int_0^T |f(t)| \, \mathrm{d}t \le M < \infty$, so bilden die Fourier–Koeffizienten

$$c_k = \frac{1}{T} \int_{t=0}^{T} e^{-ik\omega t} f(t) dt$$

eine Zahlenfolge $(c_k)_{k\in\mathbb{Z}}$ mit der gleichmäßigen Schranke $|c_k|\leq M$.

(2) Wir haben folgende lineare Abbildungen $\ell^1(\mathbb{Z},\mathbb{C}) \to L^\infty([0,T],\mathbb{C})$: Gilt $\sum_k |c_k| \leq M < \infty$, so konvergiert die trigonometrische Reihe

$$\sum_{k=-\infty}^{\infty} c_k \, \mathrm{e}^{\mathrm{i}k\omega t}$$
 gleichmäßig

gegen eine stetige Funktion $f: \mathbb{R} \to \mathbb{C}$ mit $|f| \leq M$.

Es gilt die Parseval-Gleichung, auch Energiegleichung genannt:

$$\|f\|_{L^2} = \|\widehat{f}\|_{\ell^2} \quad \text{also} \quad \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t = \sum_{k=-\infty}^\infty |\widehat{f}(k)|^2$$

Ist dieser Wert endlich, so ist die Funktion f quadrat-integrierbar, kurz $f \in L^2$, und die Koeffizientenfolge \widehat{f} ist quadrat-summierbar, kurz $\widehat{f} \in \ell^2$. Alternativ nutzen wir die Co/Sinus-Reihe mit $c_{\pm k} = \frac{1}{2}(a_k \mp \mathrm{i} b_k)$:

$$f(t) \sim \sum_{k=-\infty}^{\infty} c_k e^{ik\omega t} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t)$$

$$\frac{1}{T} \int_{t=0}^{T} |f(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2 = \frac{a_0^2}{4} + \frac{1}{2} \sum_{k=1}^{\infty} a_k^2 + b_k^2.$$

Für $f,g\in L^2$ gilt die **Parseval–Gleichung** zudem für Skalarprodukte:

$$\langle\,f\mid g\,\rangle = \langle\,\widehat{f}\mid\widehat{g}\,\rangle \quad \text{also} \quad \frac{1}{T}\int_{t=0}^T \overline{f(t)}\,g(t)\,\mathrm{d}t = \sum_{k=-\infty}^\infty \overline{\widehat{f}(k)}\,\widehat{g}(k)$$

Die Fourier-Isometrie

Die Fourier-Isometrie J1A ist folgende Analyse / Synthese:

$$(\mathscr{F},\mathscr{F}^{-1}):L^2([0,T],\mathbb{C})\cong \ell^2(\mathbb{Z},\mathbb{C}):f\leftrightarrow \widehat{f}$$

Jeder Funktion $f \in L^2$ ordnen wir ihre Fourier–Koeffizienten $\widehat{f} \in \ell^2$ zu:

$$\mathscr{F}\,:\,L^2\to\ell^2\,:\,f\mapsto\widehat{f}\quad\mathrm{mit}\quad\widehat{f}(k)=\frac{1}{T}\int_{t=0}^T\mathrm{e}^{-\mathrm{i}k\omega t}f(t)\,\mathrm{d}t$$

Umgekehrt definiert jede Koeffizientenfolge $\hat{f} \in \ell^2$ eine Funktion $f \in L^2$:

$$\mathscr{F}^{-1}\,:\,\ell^2 o L^2\,:\,\widehat{f}\mapsto f\quad \mathrm{mit}\quad f(t)=\sum_{k=-\infty}^\infty \widehat{f}(k)\,\mathrm{e}^{\mathrm{i}k\omega t}$$

Diese Abbildungen sind \mathbb{C} -linear und zueinander inverse Isometrien zwischen dem Funktionenraum $L^2([0,T],\mathbb{C})$ und Folgenraum $\ell^2(\mathbb{Z},\mathbb{C})$.

 \bigcirc Funktionen $f \in L^2$ und Folgen $\widehat{f} \in \ell^2$ entsprechen sich verlustfrei. Norm und Skalarprodukt bleiben erhalten dank Parseval–Gleichung.

Eine Anwendung ist die **isoperimetrische Ungleichung** J1B: Allein der Kreis maximiert den umschlossenen Flächeninhalt F.

Die quadrat-integrierbaren Funktionen bilden den C-Vektorraum

$$L^2 = L^2([0,T],\mathbb{C}) := \left\{ f: [0,T] \to \mathbb{C} \mid \int_{t=0}^T |f(t)|^2 dt < \infty \right\}.$$

Hierauf haben wir als Skalarprodukt und Norm die Integrale

$$\langle \, f \mid g \, \rangle_{L^2} := \frac{1}{T} \int_{t=0}^T \overline{f(t)} \, g(t) \, \mathrm{d}t \quad \text{und} \quad \|f\|_{L^2}^2 := \frac{1}{T} \int_{t=0}^T |f(t)|^2 \, \mathrm{d}t.$$

Die quadrat-summierbaren Folgen bilden den C-Vektorraum

$$\ell^2 = \ell^2(\mathbb{Z}, \mathbb{C}) := \left\{ |\widehat{f}: \mathbb{Z} \to \mathbb{C} \mid \sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^2 < \infty \right\}.$$

Hierauf haben wir als **Skalarprodukt** und **Norm** die Summen

$$\langle \, \widehat{f} \mid \widehat{g} \, \rangle_{\ell^2} := \sum_{k=-\infty}^{\infty} \overline{\widehat{f}(k)} \, \widehat{g}(k) \quad \text{und} \quad \| \widehat{f} \|_{\ell^2}^2 := \sum_{k=-\infty}^{\infty} |\widehat{f}(k)|^2.$$

Das Produkt ist absolut integrierbar/summierbar dank Cauchy–Schwarz. \odot Beide Vektorräume L^2 und ℓ^2 scheinen zunächst sehr verschieden. Die Fourier–Isometrie enthüllt jedoch das Gegenteil: Sie sind isomorph!

Die Fourier-Isometrie

J404 Fazit

Die Fourier-Isometrie nutzt wesentlich die Begriffe der linearen Algebra: Vektorräume mit Skalarprodukt I1G, Cauchy-Schwarz-Ungleichung I1H, Satz des Pythagoras I1I, Orthonormalisierung I1J. Zentrales Beispiel:

Die Menge aller Funktionen $f:\mathbb{R}\to\mathbb{C}$ ist ein \mathbb{C} -Vektorraum. Hierin ist die Teilmenge der T-periodischen Funktionen ein Untervektorraum.

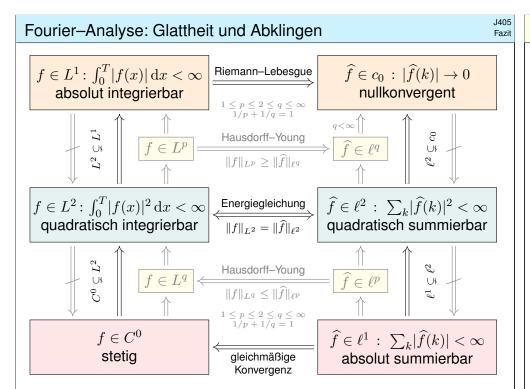
Die Funktionen $e_k: \mathbb{R} \to \mathbb{C}: t \mapsto \mathrm{e}^{\mathrm{i}k\omega t} = \cos(k\omega t) + \mathrm{i}\sin(k\omega t)$ mit $k \in \mathbb{Z}$ spannen den Unterraum $V = \{\sum_{k=-n}^n c_k \, \mathrm{e}^{\mathrm{i}k\omega t} \mid n \in \mathbb{N}, \, c_k \in \mathbb{C} \, \}$ aller trigonometrischen Polynome auf und sind hierin eine Orthonormalbasis.

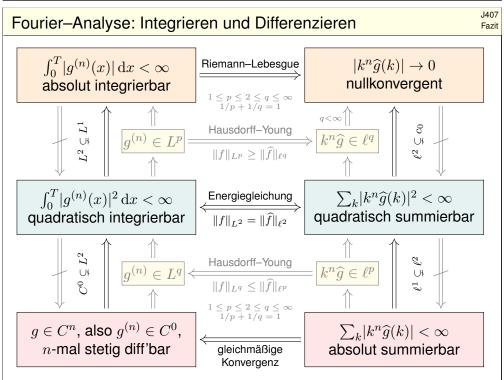
Die Vervollständigung dieses Raumes V bezüglich der L^2 -Norm ist der Raum $L^2=L^2([0,T],\mathbb{C})$ aller quadrat-integrierbaren Funktionen.

Auch die Menge aller Folgen $\widehat{f}:\mathbb{Z}\to\mathbb{C}$ ist ein \mathbb{C} -Vektorraum. Die Folgen $\delta_k:\mathbb{Z}\to\mathbb{C}$ mit $\delta_k(k)=1$ und $\delta_k(\ell)=0$ für $\ell\neq k$ spannen den Unterraum $W=\{\sum_{k=-n}^n c_k\delta_k\mid n\in\mathbb{N},\,c_k\in\mathbb{C}\,\}$ aller Folgen mit endlichem Träger auf und sind hierin eine Orthonormalbasis.

Die Vervollständigung dieses Raumes W bezüglich der ℓ^2 -Norm ist der Raum $\ell^2 = \ell^2(\mathbb{Z}, \mathbb{C})$ aller quadrat-summierbaren Folgen.

 $\stackrel{\smile}{\bigcirc}$ Die Fourier-Isometrie $f \leftrightarrow \widehat{f}$ liefert $V \cong W$, vervollständigt $L^2 \cong \ell^2$.





Fourier-Analyse: Glattheit und Abklingen

Fazit

Von oben nach unten werden die Bedingungen strikt stärker. Die Implikationen gehen daher immer nur von unten nach oben. Die Umkehrungen gelten nicht, wie geeignete Gegenbeispiele zeigen.

In der oberen Hälfte gehen Implikationen von links nach rechts: Schwache Bedingungen an f garantieren schwache Folgerungen für \widehat{f} .

In der unteren Hälfte gehen Implikationen von rechts nach links: Erst starke Bedingungen an \widehat{f} garantieren starke Folgerungen für f.

In der Mitte steht der symmetrische Fall p=q=2: Die Energiegleichung $\|f\|_{L^2}=\|\widehat{f}\|_{\ell^2}$ garantiert die nützliche Äquivalenz $f\in L^2 \Longleftrightarrow \widehat{f}\in \ell^2$. Die L^2 -Theorie ist daher zentral: die schönste, beste und einfachste.

Ergänzend nenne ich zudem die Hausdorff–Young–Ungleichungen: Sie interpolieren zwischen $(p,q)=(1,\infty)$ und dem zentralen Fall (p,q)=(2,2) durch $1\leq p\leq 2\leq q\leq \infty$ mit $1/p+1/q=\infty$.

Dasselbe Diagramm gilt für $g \in C^n$ und die n-fache Ableitung $f = g^{(n)}$, allgemein für $g \in AC^n$, also $g \in C^{n-1}$ und $g^{(n-1)} \in AC$ absolut stetig.

Punktweise Konvergenz vs quadratisches Mittel

Wir fassen die Beziehungen dieser drei Konvergenzarten zusammen. Seien $f_0, f_1, f_2, \ldots, f: \Omega \to \mathbb{C}$ Funktionen auf einer Menge $\Omega \subseteq \mathbb{R}^d$.

Gleichmäßige Konvergenz: $\sup_{x\in\Omega}|f_n(x)-f(x)|\to 0$

$$\operatorname{vol}\Omega<\infty$$
 \downarrow immer

Konvergenz im quadratischen Mittel: $\int_{x\in\Omega} |f_n(x)\to f(x)|^2\,\mathrm{d}x\to 0$

Punktweise Konvergenz: $f_n(x) \rightarrow f(x)$ in jedem Punkt $x \in \Omega$

 \bigcirc Die Implikation "gleichmäßig \Rightarrow punktweise" ist klar: Für $x \in \Omega$ gilt $|f_n(x) - f(x)| \leq \sup_{x \in \Omega} |f_n(x) - f(x)| \to 0.$

⚠ Die Umkehrungen gelten nicht, siehe Gegenbeispiele. J319 J320

Aufgabe: Beantworten Sie folgende Fragen und geben Sie eine kurze Begründung (ein Ergebnis der Vorlesung oder ein Gegenbeispiel).

- (1) Was bedeutet punktweise Konvergenz der Fourier-Reihe von f? Was sagt das Dirichlet-Kriterium über Konvergenz und Grenzwert?
- (2) Angenommen f ist nicht nur stetig, sondern stückw. stetig diff'bar. Konvergiert die Fourier-Reihe gleichmäßig gegen f? Wie schnell?
- (3) Was besagt Pythagoras für Norm und Skalarprodukt? Allgemein: Was besagt die Parseval–Gleichung für Norm und Skalarprodukt?
- (4) Wie definieren Sie die Räume L^p und ℓ^p für $1 \le p \le \infty$? Erklären Sie insb. die wichtigsten Fälle L^1 , L^2 , L^∞ und ℓ^1 , ℓ^2 , ℓ^∞ .
- (5) In welchem Sinne ist das Fourier–Polynom f_n vom Grad n die beste Approximation an die Funktion f in $L^2([0,T],\mathbb{C})$? In welchem Sinne konvergieren die Funktionen f_n gegen f?
- (6) Nennen Sie eine Folge $\widehat{f}: \mathbb{Z} \to \mathbb{C}$ in ℓ^2 aber nicht in ℓ^1 . Gilt umgekehrt $\ell^1 \subseteq \ell^2$? (Beweis oder Gegenbeispiel)

Verständnisfragen zur Energiegleichung

Aufgabe: Seien $f, g: \mathbb{R} \to \mathbb{C}$ periodisch und absolut integrierbar.

- (0) Wiederholen Sie möglichst präzise den Satz von Parseval (J3c).
- (1) Seien f, g stetig. (a) Gilt $\hat{f} = 0 \implies f = 0$ und (b) $\hat{f} = \hat{g} \implies f = g$?
- (2) Dieselbe Fragen für f, g stückweise stetig und (3) sprungnormiert.
- (4) Allgemein: (a) Folgt aus $\hat{f} = 0$ stets f = 0, zumindest fast überall?
- (b) Folgt aus $\hat{f} = \hat{g}$ stets f = g, zumindest fast überall?

Lösung: (1a) Ja: Dank Parseval gilt $\frac{1}{T}\int_0^T |f(t)|^2 \, \mathrm{d}t = \sum_{k \in \mathbb{Z}} |\widehat{f}(k)|^2 = 0$. Aus dem Integral $\int_0^T |f(t)|^2 \, \mathrm{d}t = 0$ und der Stetigkeit von f folgt f = 0. Ausführlich siehe Satz J3E und den anschließenden Beweis.

- (1b) Ja, dies folgt aus (1a) angewendet auf die Differenz f g.
- (2) Nein: Wie zuvor gilt $\int_0^T |f(t)|^2 dt = 0$, allerdings dürfen wir nun f an endlich vielen Stellen ändern. Dann gilt weiterhin $\hat{f} = 0$ aber $f \neq 0$.
- (3) Ja, die Sprungnormierung stellt die Eindeutigkeit wieder her.
- (4) Ja, aus $\int_0^T |f(t)|^2 dt = 0$ folgt f(x) = 0 für fast alle $x \in \mathbb{R}$, das heißt alle x außerhalb einer vernachlässigbaren Menge $N \subseteq \mathbb{R}$, $\operatorname{vol}_1(N) = 0$.

- (1) Nennen Sie eine Funktion $f:[0,1]\to\mathbb{C}$ in L^1 aber nicht in L^2 . Gilt umgekehrt $L^2\subseteq L^1$? (Beweis oder Gegenbeispiel)
- (2) Wie definieren Sie die Fourier-Abbildungen (Analyse / Synthese)

$$\mathscr{F}:L^1\to\ell^\infty\quad \text{und}\quad \mathscr{F}^{-1}:\ell^1\to L^\infty?$$

Wie definieren Sie als symmetrische Fassung die Fourier-Isometrie

$$\mathscr{F}:L^2\to\ell^2$$
 und $\mathscr{F}^{-1}:\ell^2\to L^2$?

- (3) Wie ändert sich das Spektrum \widehat{f} , wenn Sie f in einem Punkt $t \in \mathbb{R}$ abändern? in endlich vielen Punkten? auf einer Menge vom Maß Null?
- (4) Was bedeutet: Aus dem Signal f gewinnen Sie das Spektrum \widehat{f} und umgekehrt rekonstruieren Sie aus dem Spektrum \widehat{f} das Signal f?
- (5) Wie lösen Fourier–Reihen das isoperimetrische Problem? Inwiefern transformieren sie ein schwieriges Problem in ein leichtes?
- (6) Welchen Flächeninhalt können Sie mit einem Zaun der Länge L höchstens umgrenzen? Welche Kurven maximieren die Fläche?

Verständnisfragen zur Energiegleichung

J412 Übung

Aufgabe: (1) Ist $\sum_{k=1}^{\infty} \sin(kx)$ Fourier–Reihe einer int'baren Funktion?

- (2) Ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \sum_{k=1}^{\infty} \sin(kx) / \sqrt{k}$ stetig?
- (3) Vorgelegt sei die trigonometrische Reihe $f(x)=\sum_{k=1}^\infty k^{-a}\sin(kx)$. Für welche $a\in\mathbb{R}$ konvergiert f in jedem Punkt $x\in\mathbb{R}$? Für welche $a\in\mathbb{R}$ ist f zudem quadrat-integrierbar? stetig? stetig differenzierbar?
- (4) Dieselben Fragen für $f(x)=\sum_{k=2}^{\infty}\sin(kx)/(k^a\ln(k)^b)$ oder $f(x)=\sum_{k=3}^{\infty}\sin(kx)/(k^a\ln(k)^b\ln(\ln k)^c)$ mit $a,b,c\in\mathbb{R}.$

Lösung: (1) Nein nach Riemann–Lebesgue I3B, denn $b_k = 1 \not\to 0$.

- (2) Nein, denn $\sum_{k=1}^{\infty} 1/k = \infty$. Ausführlicher gilt folgendes:
- (3) Diese trig. Reihe konvergiert für a>0 in jedem Punkt $x\in\mathbb{R}$: In $x=0,\pi/2,\pi,\ldots$ folgt dies aus dem Leibniz–Kriterium (Satz B3G), und allgemein für $x\in\mathbb{R}$ aus Dirichlets Verallgemeinerung (Satz B3I).

Für $f \in L^2$ ist a > 1/2 notwendig und hinreichend dank Parseval (J3C).

- Für $f \in C^0$ ist a > 1/2 notwendig und a > 1 hinreichend (Satz I3C). Für $f \in C^1$ ist a > 3/2 notwendig und a > 2 hinreichend (Satz I3C).
- (4) Analog zu (3); zur Konvergenz dieser Reihen siehe B303.

Aufgabe: Vorgegeben sei ein Exponent $a \in \mathbb{R}$. (1) Ist $\sum_{k=1}^{\infty} k^{-a} e^{ikx}$ die Fourier–Reihe einer stetigen 2π –periodischen Funktion $f : \mathbb{R} \to \mathbb{C}$? (2) Falls ja, wie oft ist f stetig differenzierbar? mindestens? höchstens?

Lösung: Wir nutzen die obigen Kriterien zu Konvergenz und Stetigkeit. Die Reihe $\sum_{k=1}^{\infty} |k^{-a}|$ divergiert für $a \leq 1$ und konvergiert für a > 1.

(1a) Für a>1 gilt $\sum_{k=1}^{\infty}|k^{-a}|<\infty$, somit konvergieren die Funktionen $f_n(x)=\sum_{k=1}^n k^{-a}\,\mathrm{e}^{\mathrm{i}kx}$ gleichmäßig gegen $f(x)=\sum_{k=1}^{\infty} k^{-a}\,\mathrm{e}^{\mathrm{i}kx}$. Alle Funktionen f_n sind stetig, also auch die Grenzfunktion f. Die Antwort lautet hier also: Ja, $f(x)=\sum_{k=1}^{\infty} k^{-a}\,\mathrm{e}^{\mathrm{i}kx}$ ist stetig.

(1b) Für $a \leq 1$ gilt $\sum_{k=1}^{\infty} |k^{-a}| = \infty$. Angenommen es gäbe eine stetige und 2π -periodische Funktion $f: \mathbb{R} \to \mathbb{C}$ mit $f(x) \sim \sum_{k=1}^{\infty} k^{-a} \operatorname{e}^{\mathrm{i} k x}$.

Dank $f \in C^0([0,2\pi],\mathbb{C}) \subseteq L^2([0,2\pi],\mathbb{C})$ folgt dann $\int_{x=0}^{2\pi} |f(x)| \,\mathrm{d} x < \infty$ und dank Energiegleichung $\sum_{k=1}^\infty |k^{-a}|^2 < \infty$, also 2a > 1.

Für $a \le 1/2$ ist die Antwort also: Nein, f kann nicht stetig sein. Für $1/2 < a \le 1$ lassen unsere Kriterien keinen Schluss zu.

Verständnisfragen zu Glattheit und Abklingen

J415 Übung

Aufgabe: Für C^{∞} –glatte Funktionen klingen die Fourier–Koeffizienten extrem schnell ab; hierzu gilt erfreulicherweise auch die Umkehrung:

- (1) Ist $\sum_{k=0}^{\infty} \frac{1}{k!} e^{ikx}$ die Fourier-Reihe einer glatten Funktion?
- (2) Ist $\sum_{k=0}^{\infty} 2^{-k} e^{ikx}$ die Fourier–Reihe einer glatten Funktion?
- (3) Was gilt für $\sum_{k \in \mathbb{Z}} c_k \operatorname{e}^{\mathrm{i} k x}$ mit $|c_k| \leq q^k$ und 0 < q < 1?

Lösung: Ja, in beiden Fällen ist die so dargestellte Funktion glatt:

$$\sum_{k=0}^{\infty} \frac{1}{k!} e^{ikx} = \sum_{k=0}^{\infty} \frac{1}{k!} (e^{ix})^k = \exp(e^{ix}) = f(x)$$

$$\sum_{k=0}^{\infty} 2^{-k} e^{ikx} = \sum_{k=0}^{\infty} \left(\frac{e^{ix}}{2}\right)^k = \frac{1}{1 - e^{ix}/2} = g(x)$$

Die Funktionen $f,g:\mathbb{R}\to\mathbb{C}$ sind 2π -periodisch und C^∞ -glatt.

(3) Dasselbe gilt allgemein: Die Laurent–Reihe $h(z)=\sum_{k\in\mathbb{Z}}c_kz^k$ konvergiert auf dem Kreisring $U=K(0,q^{-1},q)\subseteq\mathbb{C}$. Die so definierte Funktion $h:\mathbb{C}\supseteq U\to\mathbb{C}$ ist C^∞ –glatt, sogar analytisch / holomorph. Somit ist insbesondere auch $\mathbb{R}\to\mathbb{C}:x\mapsto h(\mathrm{e}^{\mathrm{i}x})=\sum_{k\in\mathbb{Z}}c_k\,\mathrm{e}^{\mathrm{i}kx}$ glatt.

(2) Wir nehmen a > 1 an und untersuchen $f(x) = \sum_{k=1}^{\infty} k^{-a} e^{ikx}$. Durch Ableiten und Integrieren erhalten wir dank (1) sofort:

(2a) Aus a>n+1 folgt $f\in C^n(\mathbb{R},\mathbb{C})$:

Für a > n+1 ist f mindestens n-mal stetig differenzierbar.

(2b) Aus $f \in C^n(\mathbb{R}, \mathbb{C})$ folgt $a > n + \frac{1}{2}$:

Für $a \le n + 1/2$ ist f höchstens (n-1)-mal stetig differenzierbar.

Zusammenfassend bleiben damit zwei Möglichkeiten:

- $a \in]n+1, n+\frac{3}{2}] \implies f \in C^n \setminus C^{n+1}$, das heißt: f ist n-mal stetig differenzierbar, aber nicht (n+1)-mal.
- $a \in]n + \frac{3}{2}, n + 2] \implies f \in C^n \setminus C^{n+2}$, das heißt: f ist n-mal stetig differenzierbar, höchstens aber (n + 1)-mal.
- Unsere bequemen Kriterien liefern uns recht präzise Aussagen: einfacher Plausibilitätscheck und schnelle Vorabinformation.
- Es bleibt eine (kleine) Lücke. Falls dies wirklich nötig sein sollte, so müssen wir hierzu die gegebene Funktion f genauer untersuchen.

Verständnisfragen zu Glattheit und Abklingen

J416 Übung

- \bigcirc Schnelles Abklingen der Fourier–Koeffizienten entspricht Glattheit der Funktion. Sie kennen hierzu das L^2 –Kriterium $\sum |c_k|^2 < \infty$ sowie das C^n –Kriterium $\sum |c_k|k^n < \infty$, wie oben erklärt und illustriert.
- \bigcirc In unserem vorliegenden Beispiel klingen die Koeffizienten extrem schnell ab, so dass das C^n -Kriterium für $jedes\ n\in\mathbb{N}$ erfüllt ist: Die so dargestellte Funktion f ist also tatsächlich C^∞ -glatt.
- Besser noch können Sie die Reihe sogar explizit ausrechnen:Sie erkennen hier die Exponentialreihe bzw. die geometrische Reihe!

Gleiches gilt für jede Potenzreihe im Inneren ihres Konvergenzkreises, allgemein jede Laurent-Reihe im Inneren ihres Konvergenzkreisrings. Auch hier lohnt sich Ihre Investition in mathematische Allgemeinbildung.

- Glattheit der Funktion f und Abklingen der Fourier–Koeffizienten \widehat{f} können Sie leicht prüfen, selbst in vielen schwierigen Situationen, in denen Sie f nicht genau kennen oder analysieren können.
- Unsere bequemen Kriterien liefern uns recht präzise Aussagen: einfacher Plausibilitätscheck und schnelle Vorabinformation.