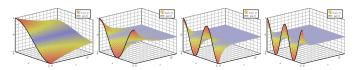
Kapitel S

Die Wärmeleitungsgleichung



Et ignem regunt numeri. [Selbst das Feuer beherrschen die Zahlen.] Joseph Fourier (1768–1830), Théorie analytique de la chaleur (1822)

[Les méthodes] C'est dans les travaux d'application qu'on doit les étudier; c'est là qu'on juge leurs capacités et qu'on apprend la manière de les utiliser. Joseph-Louis Lagrange (1736-1813)

Vollversion

michael-eisermann.de/lehre/HM3

26.02.2025

Motivation und Zielsetzung

Die Wärmeleitungsgleichung oder Diffusionsgleichung im \mathbb{R}^3 lautet:

$$\partial_t u(t,x,y,z) - \kappa \, \Delta u(t,x,y,z) = q(t,x,y,z) \quad \text{mit} \quad \Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$$

Typischerweise ist u die Wärmedichte und q die Wärmeleistungsdichte, jeweils abhängig von der Zeit $t \geq 0$ und dem Ort $(x, y, z) \in \Omega \subseteq \mathbb{R}^3$. Die Konstante $\kappa > 0$ ist die Temperaturleitfähigkeit des Materials.

Diese Gleichung tritt in vielen Anwendungen und den verschiedensten Kontexten auf, nicht zuletzt löst Google zur Bewertung von Webseiten eine diskrete Version der Wärmeleitung auf dem Linkgraphen. T453

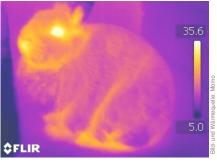
Sie ist eine partielle Differentialgleichung, linear zweiter Ordnung, und das archetypische Beispiel einer parabolischen Differentialgleichung.

Die Wärmeleitungsgleichung folgt aus der Energieerhaltung, dem Gaußschen Integralsatz und Fouriers Gesetz der Wärmeleitung. Zur Wiederholung wollen wir mit dieser Herleitung beginnen.

Die Fundamentallösung der Wärmeleitungsgleichung können wir explizit angeben. Sie wird Wärmeleitungskern genannt und beschreibt allgemein, explizit und quantitativ die freie Wärmeausbreitung im \mathbb{R}^n .

Fouriers Wärmeleitungsgleichung

Ziel: Wie berechnen wir den Wärmefluss in einem Körper?



Wärmebilanz für K= Kaninchen bei $t\in$ Winter

Wir betrachten ein Gebiet $\Omega \subseteq \mathbb{R}^3$ und ein Zeitintervall $I = [t_0, t_1]$ und suchen eine Beziehung zwischen Wärmeleistungsdichte $q: I \times \Omega \to \mathbb{R}$, Wärmedichte $u: I \times \Omega \to \mathbb{R}$ und Wärmefluss $\vec{f}: I \times \Omega \to \mathbb{R}^3$.

Fouriers Wärmeleitungsgleichung

(2) Mit Gauß (G3G) verwandeln wir Flussintegrale in Volumenintegrale:

Dürfen wir die Ableitung unters Integral ziehen? K kompakt, $\partial_t u$ stetig!

$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_K u(t,x) \, \mathrm{d}x \quad \mathop{=}\limits_{\mathrm{D3c}}^{\mathrm{Kpkt}} \quad \iiint_K \frac{\partial}{\partial t} u(t,x) \, \mathrm{d}x$$
 Dank Linearität des Integrals erhalten wir ein einziges Volumenintegral:

$$\iiint_K \left[\frac{\partial}{\partial t} u(t,x) + \nabla \cdot \vec{f}(t,x) - q(t,x) \right] \mathrm{d}x = 0.$$

(3) Diese lokale Wärmebilanz gilt für jedes Kompaktum $K \subseteq \Omega \subseteq \mathbb{R}^3$. Das gilt genau dann, wenn der (stetige!) Integrand verschwindet (H1A):

$$\partial_t u(t,x) + \nabla \cdot \vec{f}(t,x) = q(t,x)$$

Diese Gleichung gilt überall dort, wo etwas entsteht (q), gespeichert wird (u) und fließt (\vec{f}) . Die Wärmeleitungsgleichung heißt deshalb auch Diffusionsgleichung und tritt in vielfältigen Anwendungen auf. Wir werden sie am Ende des Semesters mit Fourier-Theorie lösen können. Spezialfall: Für q=0 sowie $u=\varrho$ und $\vec{f}=\varrho\vec{v}$ erhalten wir erneut die Kontinuitätsgleichung.

- Die Wärmeleitungsgleichung und ihre freien Lösungen
 - Von der Wärmebilanz zur Differentialgleichung
 - Wärmeleitungskern und Superposition
 - Lösung durch Fourier-Transformation
- 2 Die eindimensionale Wärmeleitungsgleichung als ARWP
 - Wie schnell kühlt ein Stab über seine Enden ab?
 - Was passiert bei gleichmäßigem Aufheizen?
 - Was passiert bei Isolierung an den Rändern?
- 3 Existenz und Eindeutigkeit und Näherung des ARWP
 - Existenz und Eindeutigkeit von Lösungen
 - Energie und Minimum-Maximum-Prinzip
 - Approximation durch finite Differenzen
- 4 Die dreidimensionale Wärmeleitungsgleichung als ARWP
 - Wie schnell kühlt eine Kugel über ihren Rand ab?
 - Anwendungsbeispiele aus Küche, Keller, Krimi

Motivation und Zielsetzung

Zur Vereinfachung betrachten wir zunächst den eindimensionalen Fall:

$$\partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = q(t,x)$$

Für q = 0 erhalten wir die homogene Wärmeleitungsgleichung:

$$\partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0$$

Die zeitliche Ableitung ist proportional zur zweiten räumlichen Ableitung. Diese entspricht der räumlichen Krümmung von u (konkav / konvex): Genau dann gilt $\partial_t u(t,x) = 0$, wenn $\partial_x^2 u(t,x) = 0$. In diesem Falle ist $x\mapsto u(t,x)$ eine Gerade; überall fließt genauso viel Wärme ab wie zu.

Das Lösungsverfahren verläuft nach einem bewährten Schema: Durch den Produktansatz u(t,x) = v(t)w(x) trennen wir die Variablen. Für räumlich begrenzte Wärmeverteilungen müssen wir zusätzlich Randbedingungen berücksichtigen, etwa u(t,0) = u(t,L) = 0.

Zur Lösung der vorgegebenen Anfangswerte u(0,x) nutzen wir unsere Kenntnisse und Vorarbeit zu Fourier-Reihen. Hierzu hat Fourier seine Theorie ursprünglich entwickelt. Alles fügt sich wunderbar zusammen!

Fouriers Wärmeleitungsgleichung

Aufgabe: (1) Sei $K \subseteq \Omega \subseteq \mathbb{R}^3$ kompakt, etwa ein Würfel. Formulieren Sie die Wärmebilanz für K in Worten und als Volumen-/Flussintegrale.

- (2) Formen Sie dies um zu einem einzigen Volumenintegral.
- (3) Folgern Sie hieraus die zugehörige Differentialgleichung.
- (4) Vereinfachen Sie schließlich durch die Annahme $\vec{f} = -\kappa \, \nabla u$.

Lösung: (1) Für jedes Kompaktum $K \subseteq \Omega$ gilt die Wärmebilanz:

Von den Wärmequellen in K zugeführte Energie

- = Zuwachs der in K enthaltenen Wärmeenergie
- + Wärmefluss über den Rand von K nach außen

Als Integralgleichung formuliert bedeutet dies:

$$\iiint_K q(t,x) \, \mathrm{d}x = \frac{\mathrm{d}}{\mathrm{d}t} \iiint_K u(t,x) \, \mathrm{d}x + \oiint_{S=\partial K} \vec{f}(t,x) \cdot \vec{n} \, \mathrm{d}S$$

Alle Funktionen seien so oft stetig differenzierbar wie in der folgenden Rechnung benötigt. Ich greife hier schon mal vor: q sei stetig, f einmal stetig diff'bar, u zweimal stetig diff'bar.

Fouriers Wärmeleitungsgleichung

(4) Wärme fließt von warm nach kalt, genauer $\vec{f} = -\kappa \nabla u$. Einsetzen:

$$\partial_t u(t,x) + \nabla \cdot \left[-\kappa \nabla u(t,x) \right] = q(t,x)$$

Mit dem Laplace-Operator $\Delta = \nabla \cdot \nabla$ schreiben wir dies kurz

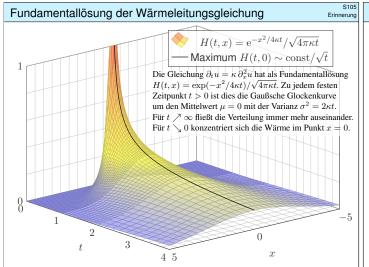
$$\partial_t u - \kappa \Delta u = q$$
 mit $\Delta = \partial_1^2 + \partial_2^2 + \partial_3^2$.

Physikalische Begründung: Wärme ist (vereinfacht) proportional zur Temperatur T, genauer u=arrho cT mit Dichte arrho und Wärmekapazität c. Sie fließt proportional zur Temperaturdifferenz, also $f = -\lambda \, \nabla T$ mit Wärmeleitfähigkeit λ . Demnach gilt $f = -\kappa \, \nabla u$ mit $\kappa := \lambda/(\varrho c)$. Szzzz Zur Vereinfachung sei hier die Temperaturleitfähigkeit $\kappa(t,x)$ räumlich konstant und isotrop.

Wir erhalten so Fouriers berühmte Wärmeleitungsgleichung (1822):

$$\frac{\partial u}{\partial t} - \kappa \, \Delta u = q \quad \text{mit} \quad \Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$$

Sie beschreibt, wie sich die Wärme in einem Körper ausbreitet. Joseph Fourier (1768-1830) hat sie in seiner Arbeit Théorie analytique de la chaleur 1822 erstmals eingehend untersucht und hierzu die nach ihm benannte Fourier-Theorie entwickelt, mit der wir uns dieses Semester beschäftigen. Gesucht ist u, gegeben sind Anfangswerte und q. Wie sehen die Lösungen aus? Im homogenen Fall ohne Quellen (q=0) können wir die Fundamentallösung angeben! $\boxed{\text{D516}}$



Existenz und Eindeutigkeit von Lösungen

Ausführung

Satz S1A: Lösung des Cauchy-Problems, 3&E

Zu lösen sei die homogene Wärmeleitungsgleichung (als AWP)

$$\begin{split} \partial_t u(t,x) - \kappa \, \Delta u(t,x) &= 0 \quad \text{für alle } t > 0 \text{ und } x \in \mathbb{R}^n, \\ u(0,x) &= u_0(x) \quad & \text{Anfangswerte für } x \in \mathbb{R}^n. \end{split}$$

Gegeben sei $u_0: \mathbb{R}^n \to \mathbb{R}$ stetig mit Schranke $|u_0(x)| \leq a e^{b|x|^{\alpha}}$, $\alpha < 2$.

Existenz: Dann wird unser Problem gelöst durch das Integral

$$u(t,x) = \int_{\mathbb{R}^n} H(t,x-\xi) \, u_0(\xi) \, \mathrm{d}\xi \quad \text{für } t > 0.$$

Zu jedem T>0 gilt eine Schranke $|u(t,x)|\leq A\,\mathrm{e}^{B|x|^2}$ auf $[0,T]\times\mathbb{R}^n$.

Eindeutigkeit: Unsere Lösung *u* ist die einzige mit dieser Schranke. Ausführlich bedeutet das: Sind $\tilde{u}, \check{u}: [0,T] \times \mathbb{R}^n \to \mathbb{R}$ zwei Lösungen mit Abstand beschränkt durch $|\tilde{u}(t,x) - \dot{\tilde{u}}(t,x)| \leq A e^{Bx^2}$, so gilt $\tilde{u} = \check{u}$.

Lösung durch Fourier-Transformation

S109 Ausführung

Zu lösen sei die inhomogene Wärmeleitungsgleichung (als AWP)

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = f(t,x) & \text{für alle } t > 0 \text{ und } x \in \mathbb{R}, \\ u(0,x) = u_0(x) & \text{Anfangswerte für } x \in \mathbb{R}. \end{array}$$

Gegeben sind $u_0: \mathbb{R} \to \mathbb{R}$ und $f: \mathbb{R}_{>0} \times \mathbb{R}$, gesucht ist $u: \mathbb{R}_{>0} \to \mathbb{R}$. Randwerte sind hier nicht vorgegeben, wir arbeiten unbegrenzt auf R.

Aufgabe: Lösen Sie dies durch Fourier-Transformation bezüglich x. Welche Rechenregeln nutzen / welche Voraussetzungen benötigen Sie?

Unser Ziel ist zunächst, eine Lösung u(t,x) in Form einer expliziten Integralformel zu finden. Ist dies gelungen, so können wir den gewählten Rechenweg präzisieren oder die Formel eigenständig untersuchen.

⚠ Die hier verwendeten Sätze und Rechenregeln benötigen gewisse Voraussetzungen. Gehen Sie in einem ersten Durchgang davon aus, dass alle Voraussetzungen erfüllt sind. Diese sind schließlich in einem zweiten Durchgang nachzuprüfen. Genaueres erklärt der folgende Satz.

Inhomogene Wärmeleitungsgleichung

S111 Ausführung

Die eindimensionale inhomogene Wärmeleitungsgleichung $\partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = f(t,x)$ mit rechter Seite f(t,x) und Anfangswert u(0,x)=0 wird gelöst durch das Integral

$$u(t,x) = \int_{\tau=0}^{t} \int_{\xi \in \mathbb{R}} H(t-\tau, x-\xi) f(\tau, \xi) d\xi d\tau.$$

Anschaulich ist $H(t-\tau,x-\xi)$ eine Fundamentallösung, die verschoben in (τ,ξ) startet. Wenn man diese Formel erst einmal vermutet, dann kann man sie auch direkt nachprüfen:

$$\frac{1}{t-t_0} \int_{\tau=t_0}^t \int_{\mathbb{R}} H(t-\tau,x-\xi) \, f(\tau,\xi) \, \mathrm{d}\xi \, \mathrm{d}\tau \quad \to \quad f(t,x) \quad \mathrm{für} \, t_0 \nearrow t.$$

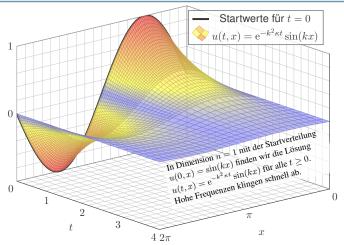
Dieser Grenzwert ist anschaulich plausibel. Die genaue Rechnung benötigt als Voraussetzung, dass f nicht nur beschränkt und stetig, sondern sogar Hölder-stetig ist: Auf jedem Kompaktum in $\mathbb{R}_{>0} \times \mathbb{R}$ gilt die lokale Schranke $|f(t,x)-f(t',x')| \leq C \big[|t-t'|^{\alpha/2}+|x-x'|^{\alpha}\big]$ für geeignete Konstanten $C,\delta,\alpha>0$ und alle Punkte mit Abstand $|t-t'|<\delta$ und $|x-x'|<\delta$. Hinreichend aber wesentlich stärker: f ist Lipschitz-stetig oder sogar stetig differenzierbar.

Anschließend bleibt die Ableitung unter dem Integral gemäß der Leibniz-Regel D3B:

$$\partial_t u(t,x) = f(t,x) + \int_0^t \int_{\mathbb{R}} \partial_t H(t-\tau, x-\xi) f(\tau,\xi) \, \mathrm{d}\xi \, \mathrm{d}\tau$$
$$\partial_x^2 u(t,x) = \int_0^t \int_{\mathbb{R}} \partial_x^2 H(t-\tau, x-\xi) f(\tau,\xi) \, \mathrm{d}\xi \, \mathrm{d}\tau$$

Die Differenz ist $\partial_t u(t,x) - \kappa \partial_x^2 u(t,x) = f(t,x)$, denn $\partial_t H(t,x) - \kappa \partial_x^2 H(t,x) = 0$.

Eigenlösungen der Wärmeleitungsgleichung



Warnendes Beispiel: Tychonovs exotische Lösung

Ausführung

Satz S1B: exotische Lösung, Tychonov 1935

Sei $\alpha>1.$ Wir kennen (von Seite B438) die C^{∞} –glatte Funktion

$$g\,:\,\mathbb{R}\to\mathbb{R}\,:\,t\mapsto g(t):=\begin{cases}\mathrm{e}^{-1/t^\alpha}&\text{für }t>0,\\0&\text{für }t\leq0.\end{cases}$$

Zu
$$\kappa>0$$
 konstruieren wir daraus
$$u\,:\,\mathbb{R}^2\to\mathbb{R}\,:\,(t,x)\mapsto u(t,x)=\sum_{n=0}^\infty\frac{g^{(n)}(t)}{\kappa^n}\cdot\frac{x^{2n}}{(2n)!}$$

Diese Reihe konvergiert in jedem Punkt $(t, x) \in \mathbb{R}^2$. Die so definierte Funktion u ist C^{∞} -glatt, und wir dürfen termweise ableiten. Daher gilt

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für alle } t > 0 \text{ und } x \in \mathbb{R}, \\ u(0,x) = 0 & \text{Anfangswerte für } x \in \mathbb{R}. \end{array}$$

 \triangle Die Nullfunktion erfüllt ebenso dieses AWP, aber dennoch gilt $u \neq 0$. Eindeutigkeit S1A greift nicht, denn u(t,x) wächst schneller als $A\,\mathrm{e}^{\overset{\circ}{B}x^2}.$

Lösung durch Fourier-Transformation

Ausführung

Lösung: (1) Wir transformieren und nutzen den Ableitungssatz K2A:

$$\begin{split} u(t,x) & \circ \longrightarrow U(t,\xi), \qquad u_0(x) \circ \longrightarrow U_0(\xi), \qquad f(t,x) \circ \longrightarrow F(t,\xi) \\ \partial_t u(t,x) &= \kappa \, \partial_x^2 u(t,x) + f(t,x) \circ \longrightarrow \underbrace{\partial_t U(t,\xi)}_{y'(t)} = \underbrace{-\kappa \, \xi^2}_{a} \underbrace{U(t,\xi)}_{y(t)} + \underbrace{F(t,\xi)}_{b(t)} \end{split}$$

(2) Diese lineare Differentialgleichung in t mit Parameter ξ löst M2E:

$$U(t,\xi) = e^{-\kappa \xi^2 t} U_0(\xi) + \int_{\tau=0}^t e^{-\kappa \xi^2 (t-\tau)} F(\tau,\xi) d\tau$$

(3) Wir kennen die (Rück)Transformation der Glockenkurve aus K1F:

$$e^{-\kappa \xi^2 t}$$
 $\bullet - \circ e^{-x^2/4\kappa t}/\sqrt{2\kappa t} = H(t,x)\sqrt{2\pi}$

(4) Das Produkt (rück)transformiert zur Faltung gemäß Satz K2B:

$$\widehat{f}(\xi) \cdot \widehat{g}(\xi) \quad \bullet \longrightarrow \quad (f * g)(x) / \sqrt{2\pi}$$

(5) Wir erhalten so schließlich die ersehnte Lösung dank Fubini C1E:

$$u(t,x) = \int_{\mathbb{R}} H(t,x-\xi) u_0(\xi) d\xi + \int_0^t \int_{\mathbb{R}} H(t-\tau,x-\xi) f(\tau,\xi) d\xi d\tau$$

Inhomogene Wärmeleitungsgleichung

Satz S1c: Lösung der inhomogenen Wärmeleitung, 3&E Zu lösen sei die inhomogene Wärmeleitungsgleichung (als AWP)

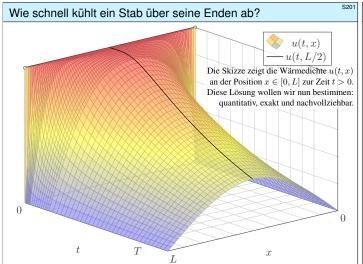
$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \Delta u(t,x) = f(t,x) & \text{ für alle } t > 0 \text{ und } x \in \mathbb{R}^n, \\ u(0,x) = u_0(x) & \text{Anfangswerte für } x \in \mathbb{R}^n. \end{array}$$

Gegeben sei $u_0: \mathbb{R}^n \to \mathbb{R}$ stetig mit Schranke $|u_0(x)| \leq a e^{b|x|^{\alpha}}, \, \alpha < 2$ sowie $f:\mathbb{R}_{>0}\times\mathbb{R}^n\to\mathbb{R}$ beschränkt und stetig differenzierbar, $f\in C^1_b$ Existenz: Dann wird unser Problem gelöst durch das Integral

$$u(t,x) = \int_{\mathbb{R}^n} H(t, x - \xi) u_0(\xi) d\xi + \int_0^t \int_{\mathbb{R}^n} H(t - \tau, x - \xi) f(\tau, \xi) d\xi d\tau.$$

Zu jedem T > 0 gilt eine Schranke $|u(t,x)| \le A e^{B|x|^2}$ auf $[0,T] \times \mathbb{R}^n$. **Eindeutigkeit:** Unsere Lösung *u* ist die einzige mit dieser Schranke.

Ohne diese Schranke gibt es exotische Gegenbeispiele wie S1B.



Trennung der Variablen durch Produktansatz

S203 Erläuterung

Die linke Seite der Gleichung hängt nur von t ab, die rechte nur von x. Da wir t und x unabhängig variieren können, sind beide Seiten konstant, also gleich einer gemeinsamen Konstanten $\lambda \in \mathbb{R}$, siehe Satz R1D. Aus unserer partiellen Differentialgleichung (PDE)

$$\partial_t u(t,x) = \kappa \, \partial_x^2 u(t,x)$$

erhalten wir so zwei gewöhnliche Differentialgleichungen (ODE):

$$v'(t) = \kappa \lambda v(t)$$
 und $w''(x) = \lambda w(x)$

mit einer noch unbekannten Separationskonstanten $\lambda \in \mathbb{R}$.

- **1. Teilproblem:** $w''(x) = \lambda w(x)$ mit Randbedingung w(0) = w(L) = 0
- **2. Teilproblem:** $v'(t) = \kappa \lambda v(t)$ mit derselben Kopplungskonstanten λ
- © Diese Eigenwertprobleme sind gewöhnliche Differentialgleichungen, zudem linear mit konstanten Koeffizienten, also leicht zu lösen!
- \bigcirc Beide Teilprobleme sind über die Separationskonstante λ gekoppelt. Wir lösen beide getrennt und führen sie anschließend zusammen...

Bestimmung der Ortsfunktion w(x)

S20

3. Fall: $\lambda = -\omega^2 < 0$, also $w''(x) + \omega^2 w(x) = 0$. Allgemeine Lösung:

$$w(x) = a\sin(\omega x) + b\cos(\omega x) \quad \text{mit } a,b \in \mathbb{R}$$

Einsetzen in die vorgegebenen Randbedingungen:

$$w(0) = b \stackrel{!}{=} 0$$
 und $w(L) = a\sin(\omega L) \stackrel{!}{=} 0$

- $igorplus \begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\lin$

Damit haben wir das erste Teilproblem vollständig gelöst:

$$w''(x) = \lambda w(x) \quad \text{mit} \quad w(0) = w(L) = 0$$

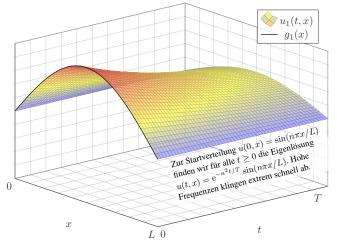
Als einzige nicht-triviale Lösungen erhalten wir

$$w_n(x) = a_n \sin(n\pi x/L)$$
 für $n = 1, 2, 3, ...$

Diese Lösung gehört zur Separationskonstanten $\lambda_n = -(n\pi/L)^2$.

Produktansatz: Eigenlösung $u_1(t,x)$

\$20



Die homogene Wärmeleitungsgleichung

S20

Aufgabe: Lösen Sie die homogene Wärmeleitungsgleichung (ARWP)

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) = u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } 0 < x < L. \end{array}$$

Dies ist ein Anfangsrandwertproblem (ARWP). Gesucht sind Funktionen $u:\mathbb{R}_{\geq 0}\times [0,L]\to \mathbb{R}$, die obige Gleichungen erfüllen. Dazu sei u stetig auf $\mathbb{R}_{\geq 0}\times [0,L]$, eventuell bis auf die Ecken (0,0) und (0,L), und differenzierbar auf $\mathbb{R}_{>0}\times [0,L]$, einmal nach t und zweimal nach v. Der Anfangswert u(0,x)=g(x) gibt die Wärmedichte zur Zeit t=0 in jedem Punkt x vor. Der Randwert u(t,0)=u(t,L)=0 bedeutet, dass wir an den Stabrändern die Wärmedichte u konstant auf Null halten, etwa durch Kontakt mit einem großen Reservoir konstanter Temperatur.

Lösung: (0) Wir separieren die Variablen durch den Produktansatz

$$u(t,x) = v(t) w(x).$$

Damit entkoppeln wir unsere PDE in zwei ODE / Eigenprobleme:

$$v'(t)\,w(x) = \kappa\,v(t)\,w''(x) \quad \Longrightarrow \quad \frac{1}{\kappa}\,\frac{v'(t)}{v(t)} = \frac{w''(x)}{w(x)} = \lambda, \quad \lambda \in \mathbb{R}$$

Bestimmung der Ortsfunktion w(x)

3204

- (1) Wir lösen zunächst das erste Teilproblem: $w''(x) \lambda \, w(x) = 0$
- **1. Fall:** $\lambda = 0$, also w''(x) = 0. Allgemeine Lösung:

$$w(x) = a + bx$$
 mit $a, b \in \mathbb{R}$

Einsetzen in die vorgegebenen Randbedingungen:

$$w(0) = a \stackrel{!}{=} 0$$
 und $w(L) = a + bL \stackrel{!}{=} 0$

- $\stackrel{\textstyle \smile}{\square}$ Hieraus folgt a=b=0. Es gibt nur die triviale Lösung!
- **2. Fall:** $\lambda = \alpha^2 > 0$, also $w''(x) \alpha^2 w(x) = 0$. Allgemeine Lösung:

$$w(x) = a e^{\alpha x} + b e^{-\alpha x}$$
 mit $a, b \in \mathbb{R}$

Einsetzen in die vorgegebenen Randbedingungen:

$$w(0) = a + b \stackrel{!}{=} 0$$
 und $w(L) = a e^{\alpha L} + b e^{-\alpha L} \stackrel{!}{=} 0$

 $\stackrel{\textstyle \smile}{\square}$ Hieraus folgt a=b=0. Es gibt nur die triviale Lösung!

Bestimmung der Zeitfunktion v(t)

S20

- (1) Erstes Eigenproblem: $w''(x) = \lambda \, w(x) \, \text{mit } w(0) = w(L) = 0$ Lösungen: $w_n(x) = \sin(n\pi x/L) \, \text{mit } n \in \mathbb{N} \, \text{und } \lambda = \lambda_n = -(n\pi/L)^2$
- (2) Zweites Eigenproblem: $v'(t)=\kappa\lambda\,v(t)$ mit $\lambda=\lambda_n=-(n\pi/L)^2$ Lösung: $v_n(t)={\rm e}^{-(n\pi/L)^2\kappa t}={\rm e}^{-n^2t/T}$ mit Abklingzeit $T=L^2/\kappa\pi^2$
- (3) Zusammengesetzte Eigenfunktionen:

$$u_n(t,x) = v_n(t) w_n(x) = e^{-n^2 t/T} \sin(n\pi x/L)$$

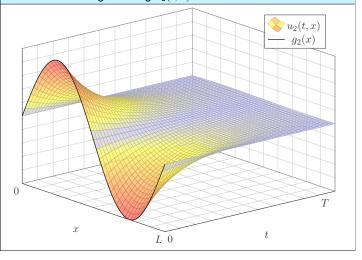
So finden wir zu unseren RWP alle Lösungen in Produktform. Zudem gilt das Superpositionsprinzip für lineare Gleichungen: Jede Linearkombination dieser Lösungen ist ebenfalls eine Lösung. Wir können sogar zu Reihen übergehen, Konvergenz vorausgesetzt!

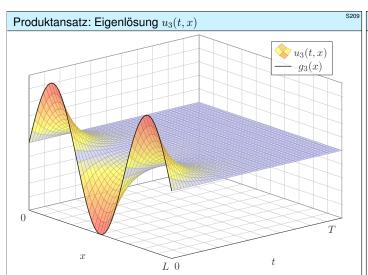
$$u(t,x) = \sum_{n=1}^{\infty} a_n u_n(t,x)$$

 \bigcirc Die Probe ist leicht: Es gilt $\partial_t u = \kappa \partial_x^2 u$ sowie u(t,0) = u(t,L) = 0.

Produktansatz: Eigenlösung $u_2(t,x)$

S208





Beispiel: Kühlung an den Rändern $\begin{array}{c} u(t,x) \\ u(t,L/2) \\ u(t,L/2) \\ u(t,L/2) \\ u(t,L/2) \\ u(t,x) \\$

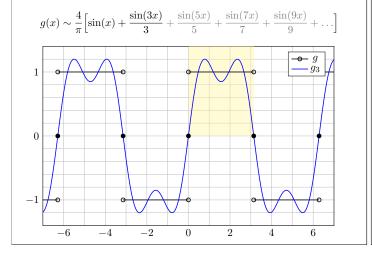
Beispiel: Kühlung an den Rändern

Wie können wir mit der so gefundenen Lösung rechnen? Ganz konkret: Wie wurden diese schönen Graphiken erstellt? Die Reihe beschreibt die exakte Lösung und Approximationen

$$u(t,x) \approx 4 \sum_{k=0}^{n} e^{-(2k+1)^2 t/T} \frac{\sin((2k+1)\pi x/L)}{(2k+1)\pi}$$

für $n=1,2,3,\ldots$ Diese werden immer besser, sogar exakt für $n\to\infty$. Für die obige Graphik habe ich die Reihe bis n=30 aufsummiert (und zudem nahe t=0 geglättet; die folgenden Graphiken erklären warum.) Eine wichtige und nützliche Eigenschaft der Wärmeleitung ist ihre Glättungseigenschaft: Eine "raue" Funktion g(x)=u(0,x) hat starke hohe Frequenzen. Diese klingen jedoch bei der Wärmeleitung für t>0 besonders schnell ab. Zu t=0 dürfen die Anfangsdaten beliebig rau sein, sogar unstetig, doch zu jedem Zeitpunkt t>0 ist die Lösung glatt. In obigem Beispiel sehen wir dies drastisch: $x\mapsto u(0,x)$ ist unstetig im Rand $x\in\{0,L\}$, doch für t>0 ist u(t,x) stetig, glatt, sogar analytisch!

Fourier–Entwicklung von u_0 = Rechteckfunktion



Lösung der Anfangsbedingungen

(4) Die allgemeine Lösung erhalten wir durch Superposition:

$$u(t,x) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi x/L)$$

Einsetzen der Startzeit t=0 liefert die vorgegebenen Anfangswerte:

$$u(0,x) = \sum_{n=1}^{\infty} a_n \sin \bigl(n \pi x / L \bigr) \stackrel{!}{=} g(x) \quad \text{für } 0 < x < L$$

Hier sind a_1,a_2,a_3,\ldots die Koeffizienten der Fourier–Sinusreihe von g. Wir betrachten daher die ungerade Fortsetzung \tilde{g} von g auf [-L,L]:

$$\tilde{g}(x) = \begin{cases} g(x) & \text{für } 0 < x < L, \\ -g(-x) & \text{für } -L < x < 0. \end{cases}$$

Anschließend berechnen wir die Fourier–Reihe für $\tilde{g}:[-L,L]\to\mathbb{R}.$ Die Koeffizienten a_n erhalten wir aus den Anfangsdaten g dank Fourier:

$$a_n = \frac{2}{L} \int_{x=0}^{L} g(x) \sin(n\pi x/L) dx$$

Beispiel: Kühlung an den Rändern

S212

Aufgabe: Lösen Sie die homogene Wärmeleitungsgleichung (ARWP)

$$\begin{split} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) &= 0 \quad \text{für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) &= u(t,L) = 0 \quad &\text{Randbedingungen für } t \geq 0, \\ u(0,x) &= 1 \quad &\text{Anfangswerte für } 0 < x < L. \end{split}$$

Lösung: Wir kennen bereits die allgemeine Lösung:

$$u(t,x) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi x/L)$$

Für t=0 nutzen wir die Fourier–Entwicklung der Rechteckfunktion: [225]

$$\sum_{n=1}^{\infty} a_n \sin(n\pi x/L) \stackrel{!}{=} 1 \quad \text{mit} \quad a_n = \begin{cases} 0 & \text{für n gerade,} \\ 4/(n\pi) & \text{für n ungerade.} \end{cases}$$

Die gesuchte Lösungsfunktion ist demnach

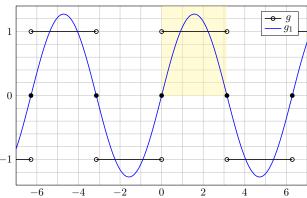
S213 Ausführung

$$u(t,x) = 4\sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{\sin((2k+1)\pi x/L)}{(2k+1)\pi}.$$

Fourier–Entwicklung von u_0 = Rechteckfunktion

S214

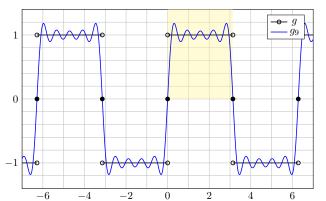
$$g(x) \sim \frac{4}{\pi} \left[\sin(x) + \frac{\sin(3x)}{3} + \frac{\sin(5x)}{5} + \frac{\sin(7x)}{7} + \frac{\sin(9x)}{9} + \dots \right]$$

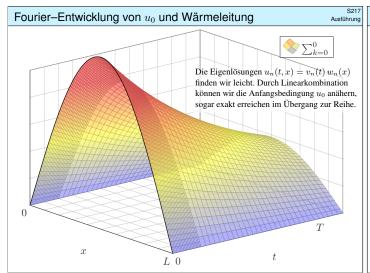


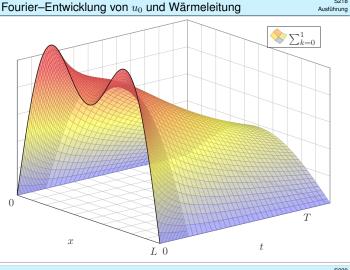
Fourier–Entwicklung von u_0 = Rechteckfunktion

S21

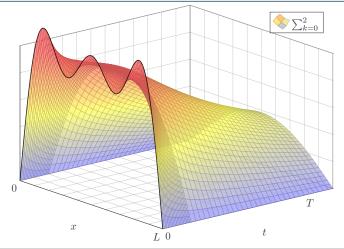
$$g(x) \sim \frac{4}{\pi} \left[\sin(x) + \frac{\sin(3x)}{3} + \frac{\sin(5x)}{5} + \frac{\sin(7x)}{7} + \frac{\sin(9x)}{9} + \dots \right]$$

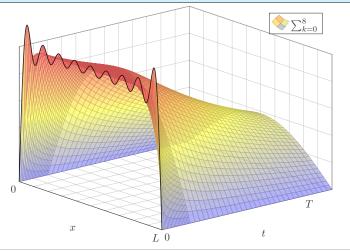






Fourier-Entwicklung von u_0 und Wärmeleitung

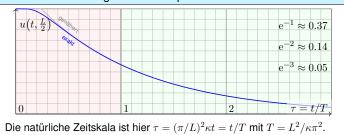




Zeitliche Entwicklung der Kerntemperatur

Plausibilitätscheck: Wie lange toastet Brot?

S224



 $u(t,x) = \frac{4}{\pi} \sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{\sin((2k+1)\pi x/L)}{(2k+1)}$ $u(t,\frac{L}{2}) = \frac{4}{\pi} \sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{(-1)^k}{(2k+1)} \lessapprox \frac{4}{\kappa} e^{-t/T}$

Leibniz–Reihe, numerisch günstig, explizite Fehlerschranke B3G! Wir können Wärmedichte in Temperatur umrechnen und leicht messen.

Die Temperaturdifferenz fällt exponentiell, sehr gute Näherung für t > T.

Obigen Verlauf können wir für jede Start- und Zieltemperatur nutzen: Hierzu genügt eine affin-lineare Transformation der Temperaturskala.

Welche Daten benötigen Sie? Schätzen Sie diese soweit möglich! **Lösung:** Toastbrot der Dicke $L=14\mathrm{mm}$ wird bei $220^{\circ}\mathrm{C}$ getoastet.

Aufgabe: Wie lange toastet Brot? Welche Temperatur wird erreicht?

Die Temperaturleitfähigkeit beträgt etwa $\kappa \approx 0.5 \mathrm{mm}^2/\mathrm{s}$: Messen! Die natürliche Zeitskala ist hier $T=L^2/\kappa\pi^2\approx 40\mathrm{s}$: Das ist plausibel. Der Verlauf der Kerntemperatur ist (näherungsweise für t > T):

$$\begin{array}{ccc} t & \mapsto & 220^{\circ}\mathrm{C} - 200^{\circ}\mathrm{C} \cdot \frac{4}{\pi}\,\mathrm{e}^{-t/T} = \vartheta(t) \\ 2\mathrm{min} = 3T & \mapsto & 220^{\circ}\mathrm{C} - 200^{\circ}\mathrm{C} \cdot \frac{4}{\pi}\,\mathrm{e}^{-3} \approx 200^{\circ}\mathrm{C} \end{array}$$

Jetzt wissen Sie, warum das Toasten doch relativ lange dauert. Bei 20mm Dicke benötigen Sie doppelt so lange... außen verbrannt?

C Wärmeleitung und Timing sind essentiell beim Grillen. Mangelnde Kenntnis führt zu falscher Intuition und häufig zu Fehlentscheidungen. Grillgut muss ruhen! blog.thermoworks.com/carryover-cooking

Physikalische Beispiele: Materialkonstanten

Die **Temperaturleitfähigkeit** $\kappa = \lambda/(\varrho c)$ können wir berechnen aus Wärmeleitfähigkeit λ . Dichte ρ und spezifischer Wärmekapazität c.

Trainiolating for X, Biorito g una opozinoci o Trainionapazitat e.									
Material	$\varrho / \frac{\mathrm{kg}}{\mathrm{m}^3}$	$c / \frac{J}{kg K}$	$\lambda / \frac{W}{m K}$	$\kappa / \frac{\text{mm}^2}{\text{s}}$					
Tannenholz	600	2720	0.12	0.07					
Fensterglas	2480	700	0.87	0.50					
Stahl (leg./unleg.)	7800	460	$15 \cdots 50$	$4 \cdots 14$					
Kupfer (rein)	8940	383	400	117					
Marmor	≈ 2600	≈ 800	≈ 2.8	≈ 1.35					
Beton	≈ 2400	≈ 880	≈ 2.1	≈ 0.99					
Granit	≈ 2640	≈ 820	≈ 1.6	≈ 0.74					
Ziegelstein	≈ 1700	≈ 840	≈ 0.4	≈ 0.28					
Wasser bei 0°C	999	4220	0.561	0.133					
$50^{\circ}\mathrm{C}$	990	4181	0.642	0.155					
100°C	958	4216	0.679	0.168					
Luft bei 1013 hPa	$1.3 \cdots 1.0$	≈ 1005	$0.025 \cdots 0.030$	$19 \cdots 30$					

Wir haben oben die Wärmebilanz umgeformt zur Differentialgleichung

Physikalische Beispiele: Materialkonstanten

 $\partial_t u(t,x) - \nabla \cdot \left[\kappa \nabla u(t,x) \right] = q(t,x).$

Erst an dieser Stelle spielt das Medium des Wärmetransports eine Rolle. Die Materialeigenschaft κ wird empirisch durch Messungen bestimmt.

 \odot Ist $\kappa \in \mathbb{R}$ eine Konstante, so vereinfacht sich unsere Gleichung zu

(2)
$$\partial_t u(t,x) - \kappa \, \Delta u(t,x) = q(t,x).$$

Die Temperaturleitfähigkeit κ hängt nicht nur vom Material ab, sondern im Allgemeinen auch von dessen Zustand, auch von seiner Temperatur: Die PDE (1) mit $\kappa = \kappa(t, x, u)$ ist dann nicht mehr linear in u. Schwierig!

 \odot Wir betrachten hier κ näherungsweise als temperaturunabhängig. Die Leitfähigkeit ist eventuell richtungsabhängig, also nicht isotrop, bei

Holz etwa längs und quer zu den Fasern. Im allgemeinen, anisotropen Fall ist $\kappa(t,x) \in \mathbb{R}^{3\times 3}$ ein Tensor zweiter Stufe, also eine (3×3) -Matrix.

Wir betrachten hier nur den idealisierten Fall (2) eines homogenen. isotropen Mediums mit konstanter Temperaturleitfähigkeit κ . Einfacher!

Lienhard: A Heat Transfer Textbook. Dover 2020. Luft isoliert gut, dennoch ist κ hier groß: Zwar wird kaum Wärmeleistung übertragen (λ), aber Dichte (ϱ) und Kapazität (c) sind gering.

Aufgabe: Lösen Sie die inhomogene Wärmeleitungsgleichung (ARWP)

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = f(t,x) & \text{ für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) = u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } 0 < x < L. \end{array}$$

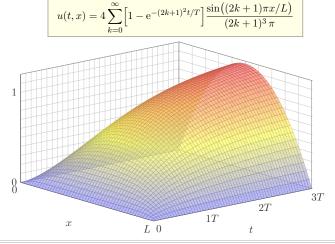
Im Gegensatz zum vorigen Modell wird hier der Stab durch Wärmequellen f(x,t) aufgeheizt. Denken Sie etwa an elektrischen Widerstand, bio/chemische Reaktion oder radioaktiven Zerfall. Der Anfangswert u(0,x)=g(x) gibt die Wärmeverteilung zur Zeit t=0 vor. Die Randwerte u(t,0)=u(t,L)=0 bedeuten, dass wir hier die Wärmedichte u auf Null halten, also kühlen.

Dank unserer Erfahrung versuchen wir folgenden Lösungsansatz:

$$u(t,x) = \sum_{n=1}^{\infty} v_n(t) \sin(n\pi x/L)$$

Das imitiert die Lösungsformel, die wir oben für den homogenen Fall f=0 entwickelt haben; dort fanden wir die Lösung $v_n(t)=a_n\exp(-n^2t/T)$. Wir setzen diesen erfolgreichen Ansatz in unsere PDE ein, nun mit einer allgemeinen rechten Seite f(t,x), und bestimmen damit $v_n(t)$.

Beispiel: gleichmäßiges Aufheizen



Neumann-Randbedingung: Wärmeisolierung

Aufgabe: Lösen Sie die homogene Wärmeleitungsgleichung (ARWP)

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für alle } t > 0 \text{ und } 0 < x < L, \\ \partial_x u(t,0) = \partial_x u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } 0 \leq x \leq L. \end{array}$$

Die erste Gleichung ist wie zuvor die homogene Wärmeleitungsgleichung. Der Anfangswert u(0,x)=g(x) gibt die Wärmeverteilung zur Zeit t=0 vor. Neu ist die Randbedingung $\partial_x u(t,0)=\partial_x u(t,L)=0$: Sie bedeutet, dass keine Wärme über den Rand abfließt. Man stelle sich eine perfekte Wärmeisolierung vor. Die Lösungen zeigen dies anschaulich: Die Gesamtwärmemenge $Q(t)=\int_{x=0}^L u(t,x)\,\mathrm{d}x$ bleibt für alle Zeiten $t\geq 0$ konstant.

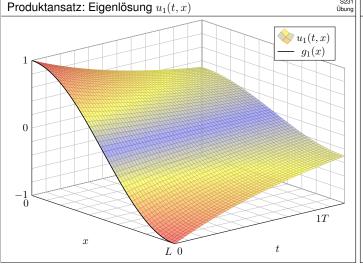
Lösung: Der Produktansatz u(t,x) = v(t) w(x) separiert dies zu

$$\frac{1}{\kappa} \frac{v'(t)}{v(t)} = \frac{w''(x)}{w(x)} = \lambda.$$

Wir erhalten zwei gewöhnliche Differentialgleichungen:

$$v'(t) = \kappa \lambda v(t)$$
 und $w''(x) = \lambda w(x)$

Die Randbedingung übersetzt sich in w'(0) = w'(L) = 0.



Die inhomogene Wärmeleitungsgleichung

Lösung: Einsetzen dieses Ansatzes in die PDE:

$$\partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = \sum_{n=1}^{\infty} \left[v_n'(t) + \kappa v_n(t) (n\pi/L)^2 \right] \sin(n\pi x/L) \stackrel{!}{=} f(t,x)$$

Für t=0 ist zudem der Anfangswert vorgegeben:

$$u(0,x) = \sum_{n=1}^{\infty} v_n(0) \sin(n\pi x/L) \stackrel{!}{=} g(x)$$

Zum Vergleich entwickeln wir auch g und f in Fourier–Sinusreihen:

$$g(x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x/L), \qquad f(t,x) = \sum_{n=1}^{\infty} b_n(t) \sin(n\pi x/L).$$

Durch Koeffizientenvergleich erhalten wir eine ODE erster Ordnung:

$$v'_n(t) + (n^2/T)v_n(t) = b_n(t), v_n(0) = a_n$$

 $\stackrel{\bigodot}{\bigcirc}$ Für $b_n=0$ erhalten wir erneut die vorige Lösung $v_n(t)=a_n\,{\rm e}^{-n^2t/T}.$ Auch hier ist die natürliche Zeitskala $T=L^2/\kappa\pi^2;$ das vereinfacht!

Beispiel: gleichmäßiges Aufheizen

S228

Aufgabe: Lösen Sie die inhomogene Wärmeleitungsgleichung (ARWP)

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 1/T & \text{ für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) = u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = 0 & \text{Anfangswerte für } 0 < x < L. \end{array}$$

Lösung: Wir kennen bereits die allgemeine Lösung:

$$u(t,x) = \sum_{n=1}^{\infty} v_n(t) \sin(n\pi x/L)$$

Wir nutzen die Fourier-Entwicklung der Rechteckfunktion: [1225]

$$\sum_{n=1}^\infty b_n \sin(n\pi x/L) \stackrel{!}{=} 1 \quad \text{mit} \quad b_n = \begin{cases} 0 & \text{ für n gerade,} \\ 4/(n\pi) & \text{ für n ungerade.} \end{cases}$$

Gewöhnliche Differentialgleichung für die Koeffizienten $v_n(t)$:

$$v'_n(t) + (n^2/T) v_n(t) = b_n/T, v_n(0) = 0$$

Lösung für n gerade $v_n(t)=0$, ungerade $v_n(t)=4/(n^3\pi)[1-\mathrm{e}^{-n^2t/T}]$.

Produktlösungen und Superposition

S230

Erstes Teilproblem: $w''(x) = \lambda w(x)$ mit w'(0) = w'(L) = 0Lösungen: $w_n(x) = \cos(n\pi x/L)$ mit $\lambda = \lambda_n = -(n\pi/L)^2$

Zweites Teilproblem: $v'(t)=\kappa\lambda\,v(t)$ mit $\lambda=\lambda=-(n\pi/L)^2$ Lösung: $v_n(t)=\mathrm{e}^{-(n\pi/L)^2\kappa t}=\mathrm{e}^{-n^2t/T}$ mit Abklingzeit $T=L^2/\kappa\pi^2$

Zusammengesetzte Eigenfunktion:

$$u_n(t, x) = v_n(t) w_n(x) = e^{-n^2 t/T} \cos(n\pi x/L)$$

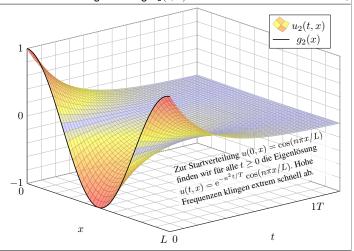
Die allgemeine Lösung erhalten wir durch Superposition:

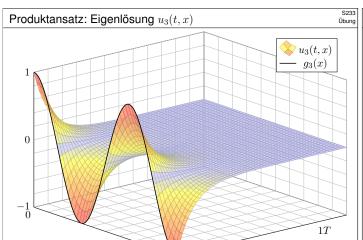
$$u(t,x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \cos(n\pi x/L)$$

Hier ist die konstante Funktion $u(t,x)=a_0/2$ eine Lösung. Wie für Fourier-Reihen üblich schreiben wir $a_0/2$, so dass die untenstehende Integralformel für alle $n\in\mathbb{N}$ gleich aussieht. Stationäre Lösung: Für $t\to\infty$ gilt $u(t,x)\to a_0/2$. Die Rechnung zeigt Ihnen, wie schnell! Die konstante Lösung entspricht einer homogenen Wärmeverteilung, bei der kein Wärmefluss stattfindet. Jede Lösung strebt für $t\to\infty$ gegen diese stationäre Lösung, wie zu erwarten war.

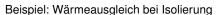
Produktansatz: Eigenlösung $u_2(t, x)$

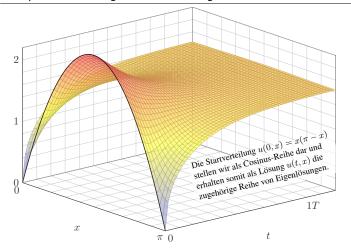
S23





t





L = 0

Existenz und Eindeutigkeit von Lösungen

Lösungen suchen wir bisher mit dem Produktansatz u(t,x)=v(t) w(x). Das ist zunächst nur geraten, mit etwas Anschauung und Erfahrung. Wir haben Glück und finden die Eigenfunktionen $u_n(t,x)=v_n(t)$ $w_n(x)$, genug um mit $u(t,x)=\sum_n a_n v_n(t)$ $w_n(x)$ alle Bedingungen zu erfüllen. Unsere Konstruktion von u(t,x) zeigt somit die **Existenz** einer Lösung. Dies zeigt jedoch noch keineswegs die **Eindeutigkeit**: Es könnte noch weitere Lösungen der PDE geben, die aber unserem Ansatz entgehen. Eine dramatische Warnung sind exotische Lösungen wie in Satz S1B.

Mehrdeutigkeiten müssen wir erkennen und nötigenfalls auch beheben: Sind noch mehrere Lösungen möglich, so stellen wir geeignete weitere Bedingungen, um die physikalisch sinnvollen Lösungen herauszuheben. Dieses Vorgehen beruht auf der Überzeugung, dass die physikalische Entwicklung deterministisch ist. Ein brauchbares mathematisches Modell soll die zukünftige Entwicklung vorhersagen und muss daher eine eindeutige Lösung haben, nämlich die physikalisch beobachtete.

Mathematisch bedeutet die Eindeutigkeit: Je zwei Lösungen sind gleich. Dies wollen wir nun sorgfältig als Satz formulieren und dann beweisen.

Was fordern wir von einer Lösung?

S303 Ausführung

S301 Ausführung

Stetigkeit in den Randpunkten ist nicht selbstverständlich, wie bereits unser erstes Beispiel mahnt. Wir formulieren daher besonders sorgfältig:

Definition S3B: Lösung des Anfangs- und Randwerteproblems

Eine Funktion $u:[0,T[\times[a,b]\to\mathbb{R}]]$ nennen wir eine **Lösung** des obigen Anfangs- und Randwertproblems S3A, wenn gilt:

- (A) Auf $]0,T[\times]a,b[$ existieren die Ableitungen $\partial_t u,\partial_x u,\partial_x^2 u$ und sind dort stetig und erfüllen die Wärmeleitungsgleichung $\partial_t \kappa \partial_x^2 u = f$.
- (B) Auf $]0,T[\times[a,b]$ sei u stetig und $\partial_x u$ stetig fortsetzbar, und beide erfüllen auf $]0,T[\times\{a,b\}$ die jeweils geforderten Randbedingungen.
- (C) Es gilt u(0,x)=g(x) für alle $x\in [a,b]$ und zudem Stetigkeit:
- (C1) Im strengen Sinne sei u stetig auf $[0,T[\times[a,b].$ Schwächer:
- (C2) Für $t \searrow 0$ gilt L^2 -Konvergenz $\int_{x=a}^b |u(t,x)-u(0,x)|^2 dx \to 0$.

 \bigcirc Die starke Bedingung (C1) impliziert die schwache (C2) dank D3A. \triangle Eine unstetige Startverteilung g erfordert die Abschwächung (C2): Uns genügt dann quadratische Integrierbarkeit und L^2 -Konvergenz.

Lösung der Anfangsbedingungen

Die allgemeine Lösung erhalten wir durch Superposition:

$$u(t,x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \cos(n\pi x/L)$$

Einsetzen der Anfangswerte für t=0 liefert:

$$u(0,x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x/L) \stackrel{!}{=} g(x)$$

Hier sind a_0,a_1,\ldots die Koeffizienten der Fourier–Cosinusreihe von g. Wir betrachten daher die gerade Fortsetzung von g auf [-L,L]:

$$\tilde{g}(x) = \begin{cases} g(x) & \text{für } 0 \leq x \leq L, \\ g(-x) & \text{für } -L \leq x \leq 0. \end{cases}$$

Anschließend berechnen wir die Fourier–Reihe für $\tilde{g}:[-L,L]\to\mathbb{R}.$ Die Koeffizienten a_n erhalten wir aus den Anfangsdaten dank Fourier:

$$a_n = \frac{2}{L} \int_{x=0}^{L} g(x) \cos(n\pi x/L) dx$$

Beispiel: Wärmeausgleich bei Isolierung

S236

Aufgabe: Lösen Sie die homogene Wärmeleitungsgleichung (ARWP)

$$\begin{array}{ll} \partial_t u(t,x) - \partial_x^2 u(t,x) = 0 & \text{ für alle } t > 0 \text{ und } 0 < x < \pi, \\ \partial_x u(t,0) = \partial_x u(t,\pi) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) := x(\pi-x) & \text{Anfangswerte für } 0 \leq x \leq \pi. \end{array}$$

Lösung: Wir kennen bereits die allgemeine Lösung:

$$u(t,x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-n^2 t} \cos(nx)$$

Für t=0 nutzen wir die Fourier–Entwicklung der Anfansgwerte: $\fbox{1225}$

$$g(x) \stackrel{!}{=} \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \, \cos(nx) \quad \text{also} \quad a_n = \begin{cases} -4/n^2 & \text{für } n \geq 2 \text{ gerade,} \\ 0 & \text{für } n \text{ ungerade.} \end{cases}$$

Die gesuchte Lösungsfunktion ist demnach

$$u(t,x) = \frac{\pi^2}{6} - \sum_{k=1}^{\infty} e^{-4k^2t} \frac{\cos(2kx)}{k^2}$$

Wie lautet die Problemstellung?

S302 Ausführung

Um über Eindeutigkeit zu sprechen, müssen wir zunächst erklären, wie die Problemstellung aussieht und was wir als Lösungen zulassen.

Definition S3A: Anfangs- und Randwertproblem, kurz ARWP

Die eindimensionale Wärmeleitungsgleichung formulieren wir wie folgt als Anfangs- und Dirichlet-Randwertproblem:

$$\begin{split} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) &= f(t,x) & \text{ für } 0 < t < T \text{ und } a < x < b, \\ u(t,a) &= \ell(t), \ u(t,b) = r(t) & \text{ Randbedingung für } 0 < t < T, \\ u(0,x) &= g(x) & \text{ Anfangswerte für } a < x < b. \end{split}$$

Gegeben sind hierzu stetige Funktionen $f:[0,T[\times[a,b]\to\mathbb{R}$ und $\ell,r:[0,T[\to\mathbb{R}$ sowie $g:[a,b]\to\mathbb{R}$; schwächer genügt $g\in L^2([a,b])$. Bei Neumann–Randbedingungen fordern wir stattdessen

$$\partial_x u(t,a) = \ell(t), \ \partial_x u(t,b) = r(t) \quad \text{für } 0 < t < T.$$

Auch gemischte Randbedingungen sind möglich.

Eindeutigkeit der Lösung

u(0,x) = 0

Ausführung

Satz S3c: Eindeutigkeitssatz für die Wärmeleitungsgleichung (0) Löst $u:[0,T[\times[a,b]\to\mathbb{R}$ die homogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für } 0 < t < T \text{ und } a < x < b, \\ \{u(t,a) = u(t,b) = 0 & \text{Dirichlet-Randbedingungen für } t > 0 \text{ oder } \\ \partial_x u(t,a) = \partial_x u(t,b) = 0 & \text{Neumann-Randbedingungen für } t > 0, \end{array}$$

Anfangswerte für t = 0 und a < x < b,

dann gilt
$$u(t,x) = 0$$
 für alle $(t,x) \in [0,T[\times [a,b].$

(1) Lösen $\tilde{u}, \check{u}: [0,T[\times [a,b] \to \mathbb{R}$ die Wärmeleitungsgleichung

$$\begin{split} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) &= f(t,x), \\ u(t,a) &= \ell(t), \ u(t,b) = r(t) \ \text{oder} \\ \partial_x u(t,a) &= \ell(t), \ \partial_x u(t,b) = r(t), \\ u(0,x) &= g(x), \end{split}$$

dann gilt $\tilde{u}(t,x) = \check{u}(t,x)$ für alle $(t,x) \in [0,T] \times [a,b]$.

Die Funktion $u:[0,T[\times[a,b]\to\mathbb{R}$ löse die Wärmeleitungsgleichung $\partial_t u=\kappa\,\partial_x^2 u$ mit den Randbedingungen $(u\,\partial_x u)(t,a)=(u\,\partial_x u)(t,b)=0.$ Als mathematische Hilfsgröße untersuchen wir hierzu die **Energie**

$$E: [0,T[\to \mathbb{R}: t \mapsto E(t) := \int_{x=a}^{b} \frac{1}{2} u(t,x)^2 dx \ge 0.$$

Aufgabe: Ist E stetig? Berechnen Sie $\dot{E}(t)$ für 0 < t < T. Lösung:

$$\begin{split} \dot{E}(t) &\stackrel{\text{Def}}{=} \partial_t \int_{x=a}^b \frac{1}{2} u(t,x)^2 \, \mathrm{d}x \qquad \quad \mathop{\stackrel{\text{Satz}}{=}}_{\text{DA}} \int_{x=a}^b \partial_t \left[\frac{1}{2} u(t,x)^2 \right] \, \mathrm{d}x \\ &\stackrel{\text{Prod}}{=} \int_{x=a}^b u(t,x) \cdot \partial_t u(t,x) \, \mathrm{d}x \stackrel{\text{PDE}}{=} \int_{x=a}^b u(t,x) \cdot \kappa \, \partial_x^2 u(t,x) \, \mathrm{d}x \\ &\stackrel{\text{put}}{=} \kappa \left[u(t,x) \cdot \partial_x u(t,x) \right]_{x=a}^b - \kappa \int_{x=a}^b \left[\partial_x u(t,x) \right]^2 \, \mathrm{d}x \qquad \leq 0 \end{split}$$

Somit kann $t\mapsto E(t)$ nur sinken. Sie bleibt konstant nur falls $\partial_x u=0$, wegen $\partial_t u=\kappa\,\partial_x^2 u=0$ also nur für konstante Lösungen $u(t,x)=\mathrm{const.}$

Konstruktion der Lösung durch Fourier-Theorie

S307 Ausführung

Satz S3D: Lösung der Wärmeleitungsgleichung, 3&E

Zu lösen sei die eindimensionale homogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) = u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } 0 < x < L. \end{array}$$

Gegeben sei $g:[0,L] \to \mathbb{R}$ stetig oder allgemeiner $g \in L^2([0,L])$, also entwickelt $g(x) = \sum_{n=1}^\infty a_n \sin(n\pi x/L)$ mit $\sum_{n=1}^\infty |a_n|^2 < \infty$. Dann wird unser Problem eindeutig gelöst durch

$$u(t,x) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi x/L).$$

Die natürliche Zeitskala ist die Abklingzeit $T=L^2/\kappa\pi^2$ (Eigenzeit). Gilt sogar $\sum_{n=1}^\infty |a_n|<\infty$, so ist u in t=0 stetig und dort gleich g.

Das Minimum-Maximum-Prinzip

Ausführung

Zu lösen ist für $u:[0,T]\times[a,b]\to\mathbb{R}$ das Anfangsrandwertproblem

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = f(t,x) & \text{für } 0 < t \leq T \text{ und } a < x < b, \\ u(t,a) = \ell(t), \ u(t,b) = r(t) & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } a < x < b. \end{array}$$

Allgemein untersuchen wir die Wärmeleitung auf einem Körper K; hierzu sei $K\subseteq \mathbb{R}^n$ kompakt mit stückweise glattem Rand ∂K . Obiges Beispiel in Dimension n=1 ist das kompakte Intervall K=[a,b] mit den beiden Randpunkten a< b, kurz $\partial K=\{a,b\}$. Auf dem Bereich $\Omega_T=[0,T]\times K$ sei $u:\Omega_T\to\mathbb{R}$ stetig. Zudem gelte $\partial_t u-\kappa\,\Delta u=f$ auf dem **parabolischen Inneren** (parabolic domain)

$$D_T =]0, T] \times \check{K}.$$

Vorgegeben sind die Rand- und Anfangswerte, also die Einschränkung $u|_{B_T}$ auf dem **parabolischen Rand** (engl. *parabolic boundary*)

$$B_T = ([0, T] \times \partial K) \cup (\{0\} \times K).$$

 \bigcirc Der Bereich Ω_T und sein parabolischer Rand B_T sind kompakt.

Das Minimum-Maximum-Prinzip

S311 Ausführung

 \bigcirc In der PDE $\partial_t u - \Delta u = f$ bedeutet $f \leq 0$ Senken oder Quellen.

Aufgabe: Beweisen Sie das Prinzip (1) in folgenden Verschärfungen:

- (a) Auf D_T gelte $\partial_t u \Delta u < 0$. Dann folgt $\max u = \max u|_{B_T} > u|_{D_T}$.
- (b) Auf D_T gelte $\partial_t u \Delta u \leq 0$. Dann folgt $\max u = \max u|_{B_T} \geq u|_{D_T}$.
- (c) Auf D_T gelte $\partial_t u \Delta u > 0$. Dann folgt $\min u = \min u|_{B_T} < u|_{D_T}$.
- (d) Auf D_T gelte $\partial_t u \Delta u \geq 0$. Dann folgt $\min u = \min u|_{B_T} \leq u|_{D_T}$.

Lösung: Durch Übergang von u zu -u gilt (a) \Leftrightarrow (c) und (b) \Leftrightarrow (d). Daher genügt es, die ersten beiden Aussagen (a) und (b) zu beweisen:

- (a) Angenommen, u wäre maximal im inneren Punkt $(t_0, x_0) \in D_T$. Dann gilt $\partial_t u(t_0, x_0) \ge 0$ und $\partial_{x_i} u(t_0, x_0) = 0$ sowie $\partial_{x_i}^2 u(t_0, x_0) \le 0$, also $\partial_t u(t_0, x_0) = \Delta u(t_0, x_0) \ge 0$ im Widerspruch zur Voraussetzung < 0
- also $\partial_t u(t_0,x_0) \Delta u(t_0,x_0) \geq 0$ im Widerspruch zur Voraussetzung < 0. (b) Wir betrachten $v:=u+\varepsilon|x|^2$ mit $\varepsilon>0$, wobei $|x|^2=x_1^2+\cdots+x_n^2$.
- Es gilt $\partial_t v \Delta v = \partial_t u \Delta u 2n\varepsilon < 0$, dank (a) also $\max v = \max_{B_T} v$. Wir haben $u \le v \le \max v = \max_{B_T} v \le \max_{B_T} u + \varepsilon \max_{B_T} |x|^2$.
- $\text{Damit gilt } u \leq \max_{B_T} u + \varepsilon \max_{B_T} |x|^2 \text{ für alle } \varepsilon > 0.$
- Für $\varepsilon \searrow 0$ folgt $u \leq \max_{B_T} u$, was zu zeigen war.

Aufgabe: Beweisen Sie den Eindeutigkeitssatz mit der Energiemethode!

Lösung: (0) Gesucht sind alle Funktionen $u:[0,T[\times[a,b]\to\mathbb{R},$ die die Wärmeleitung $\partial_t u=\kappa\,\partial_x^2 u$ lösen (im Sinne unserer Definition S3B), wobei alle Anfangs- und Randwerte konstant gleich Null sind.

Zunächst ist klar: Die Nullfunktion u(t,x)=0 ist eine mögliche Lösung. Wir wollen nun sorgfältig nachweisen, dass dies die einzige Lösung ist:

Sei $u:[0,T[\times[a,b]\to\mathbb{R}$ eine beliebige Lösung zu den Daten (0). Aufgrund der Anfangswerte u(0,x)=0 für alle $x\in[a,b]$ gilt E(0)=0. Die Funktion $E:[0,T[\to\mathbb{R}_{\geq 0}\colon t\mapsto E(t)$ ist stetig dank D3A bzw. (C2). Dank der Randwerte $u\,\partial_x u=0$ für alle $t\in[0,T[$ gilt $\dot{E}(t)\leq0$. Daraus folgt E(t)=0 für alle $t\in[0,T[$, also u(t,x)=0. Das war zu zeigen.

- (1) Gegeben seien Lösungen \tilde{u},\check{u} : $[0,T[\times[a,b]\to\mathbb{R}$ zu den Daten (1). Die Differenz $u=\tilde{u}-\check{u}$ erfüllt alle Gleichungen aus (0), also u=0. Daraus folgt $\tilde{u}=\check{u}$. Es kann also höchstens eine Lösung geben!
- Wir nutzen geschickt die lineare Struktur der Problemstellung!

Konstruktion der Lösung durch Fourier-Theorie

S308 Ausführung

Wir haben oben ausführlich dargestellt, wie man diese Lösung findet. Der Satz fasst das Ergebnis zusammen und ist leicht nachzurechnen:

Aufgabe: Zeigen Sie, dass u die Gleichung $\partial_t u = \kappa \, \partial_x^2 u$ sowie das Anfangs- und Randwertproblem löst (im Sinne unserer Definition S3B).

Lösung: Für alle t>0 und $\nu\in\mathbb{N}$ gilt $\sum_{n=1}^\infty \left|a_nn^\nu\,\mathrm{e}^{-n^2t/T}\right|<\infty$ dank der exponentiellen Dämpfung. Daher konvergiert die im Satz für u angegebene Reihe in jedem Punkt $(t,x)\in\mathbb{R}_{>0}\times\mathbb{R}$, und die so definierte Funktion $u:\mathbb{R}_{>0}\times\mathbb{R}\to\mathbb{R}$ ist beliebig oft differenzierbar.

Wir dürfen termweise ableiten und finden sofort $\partial_t u = \kappa \, \partial_x^2 u$.

In den Randpunkten $x \in \{0, L\}$ gilt offensichtlich u(t, x) = 0.

Für $t \searrow 0$ gilt ℓ^2 –Konvergenz $\sum_{n=1}^\infty |a_n - a_n \, \mathrm{e}^{-n^2 t/T}|^2 \searrow 0$ und somit L^2 –Konvergenz $\int_{x=0}^L |u(t,x) - u(0,x)|^2 \, \mathrm{d}x \searrow 0$ (Fourier–Isometrie J1A). Im Falle $\sum_{n=1}^\infty |a_n| < \infty$ ist die Reihe auf ganz $\mathbb{R}_{\geq 0} \times \mathbb{R}$ gleichmäßig konvergent, die so definierte Funktion $u: \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}$ ist somit stetig.

Wit dieser Methode k\u00f6nnen Sie zahlreiche \u00e4hnliche Probleme l\u00f6sen, insbesondere inhomogene Gleichungen mit diversen Randbedingungen.

Das Minimum-Maximum-Prinzip

S310 Ausführung

Wie zuvor sei $K\subseteq\mathbb{R}^n$ kompakt, $\Omega_T=[0,T]\times K$ und $u:\Omega_T\to\mathbb{R}$. Wir untersuchen $\partial_t u=\kappa\,\Delta u$, wobei $\Delta=\partial^2/\partial x_1^2+\cdots+\partial^2/\partial x_n^2$. Zur Vereinfachung der Schreibweise dürfen wir $\kappa=1$ annehmen.

Satz S3E: Maximumsprinzip für die Wärmeleitungsgleichung

Auf $\Omega_T = [0,T] \times K$ sei $u: \Omega_T \to \mathbb{R}$ stetig. Da Ω_T und B_T kompakt sind, nimmt u hierauf Minimum und Maximum an. Wegen $\Omega_T \supseteq B_T$ gilt also:

$$\min_{\Omega_T} u \leq \min_{B_T} u \quad \quad \mathsf{und} \quad \quad \max_{\Omega_T} u \geq \max_{B_T} u$$

Zudem gelte $\partial_t u = \Delta u$ auf dem parabolischen Inneren $D_T =]0,T] \times \mathring{K}.$

(1) Dann nimmt u sein Minimum und Maximum auf dem Rand B_T an:

$$\min_{\Omega_T} u = \min_{B_T} u$$
 und $\max_{\Omega_T} u = \max_{B_T} u$

Seien $u, v : \Omega_T \to \mathbb{R}$ zwei Lösungen, $\partial_t u = \Delta u$ und $\partial_t v = \Delta v$ auf D_T .

- (2) Monotonie: Aus $u \leq v$ auf dem Rand B_T folgt $u \leq v$ auf ganz Ω_T .
- (3) Eindeutigkeit: Aus u=v auf dem Rand B_T folgt u=v auf ganz Ω_T .

Das Minimum-Maximum-Prinzip

S312 Ausführung

Aufgabe: Beweisen Sie die Monotonie (2) in folgenden Verschärfungen:

(e) In jedem Punkt im Inneren D_T gelte $\partial_t u - \Delta u \leq \partial_t v - \Delta v$. Aus $u \leq v$ auf dem Rand B_T folgt $u \leq v$ auf ganz Ω_T .

(f) In jedem Punkt im Inneren D_T gelte $\partial_t u - \Delta u \leq \partial_t v - \Delta v$. Aus u < v auf dem Rand B_T folgt u < v auf ganz Ω_T .

(g) In jedem Punkt im Inneren D_T gelte $\partial_t u - \Delta u < \partial_t v - \Delta v$. Aus $u \leq v$ auf dem Rand B_T folgt u < v im Inneren D_T .

Lösung: (e) Für die Differenz w=u-v gilt $\partial_t w - \Delta w \leq 0$. Dank (b) folgt $w \leq \max w = \max_{B_T} w \leq 0$, also $u \leq v$.

- (f) Für w=u-v gilt $\partial_t w \Delta w \leq 0$ in jedem Punkt von D_T . Dank (b) folgt $w \leq \max w = \max_{B_T} w < 0$, also u < v.
- (g) Für w=u-v gilt $\partial_t w \Delta w < 0$ in jedem Punkt von D_T . Dank (a) folgt $w|_{D_T} < \max_{B_T} w \leq 0$, auf D_T also w<0 und u< v.
- ② Dies können wir zur Eingrenzung durch Ober/Unterlösungen nutzen. Solche Ungleichungen und Einschachtelungen kennen wir bereits aus den Sätzen M4c und M4D für gewöhnliche Differentialgleichungen.

Zu lösen ist für $u:[0,T]\times[a,b]\to\mathbb{R}$ das Anfangsrandwertproblem

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = f(t,x) & \text{ für } 0 < t \le T \text{ und } a < x < b, \\ u(t,a) = \ell(t), \ u(t,b) = r(t) & \text{Randbedingungen für } t \ge 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } a < x < b. \end{array}$$

Zur numerischen Diskretisierung approximieren wir die Ableitungen ∂_t sowie ∂_x und ∂_x^2 (Differentialquotienten) durch Differenzenquotienten:

$$\begin{split} \partial_x u(t,x) &\approx \frac{u(t,x+\Delta x/2) - u(t,x-\Delta x/2)}{\Delta x} \\ \partial_x^2 u(t,x) &\approx \frac{\partial_x u(t,x+\Delta x/2) - \partial_x u(t,x-\Delta x/2)}{\Delta x} \\ &\approx \frac{u(t,x-\Delta x) - 2u(t,x) + u(t,x+\Delta x)}{(\Delta x)^2} \end{split}$$

Die Wärmeleitungsgleichung $\partial_t u = \kappa \, \partial_x^2 u + f$ besagt näherungsweise:

$$\frac{u(t+\Delta t,x)-u(t,x)}{\Delta t}\approx \kappa \frac{u(t,x-\Delta x)-2u(t,x)+u(t,x+\Delta x)}{(\Delta x)^2}+f(t,x)$$

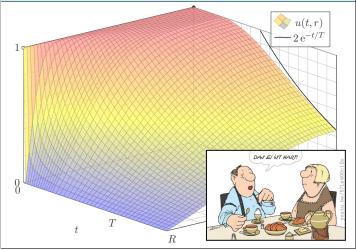
Finite-Differenzen-Methode: Kühlung am Rand

S315 Ergänzung

							_					-
	x =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
t	=0.0	0.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000
	0.1	0.000	0.600	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.600	0.000
	0.2	0.000	0.520	0.840	1.000	1.000	1.000	1.000	1.000	0.840	0.520	0.000
	0.3	0.000	0.440	0.776	0.936	1.000	1.000	1.000	0.936	0.776	0.440	0.000
	0.4	0.000	0.398	0.706	0.898	0.974	1.000	0.974	0.898	0.706	0.398	0.000
	0.5	0.000	0.362	0.660	0.852	0.954	0.980	0.954	0.852	0.660	0.362	0.000
	0.6	0.000	0.336	0.617	0.816	0.923	0.959	0.923	0.816	0.617	0.336	0.000
	0.7	0.000	0.314	0.584	0.779	0.895	0.930	0.895	0.779	0.584	0.314	0.000
	0.8	0.000	0.297	0.554	0.747	0.863	0.902	0.863	0.747	0.554	0.297	0.000
	0.9	0.000	0.281	0.528	0.716	0.832	0.871	0.832	0.716	0.528	0.281	0.000
	1.0	0.000	0.268	0.505	0.687	0.801	0.840	0.801	0.687	0.505	0.268	0.000
	1.1	0.000	0.255	0.483	0.660	0.771	0.809	0.771	0.660	0.483	0.255	0.000
	1.2	0.000	0.244	0.463	0.634	0.742	0.779	0.742	0.634	0.463	0.244	0.000
	1.3	0.000	0.234	0.444	0.608	0.713	0.749	0.713	0.608	0.444	0.234	0.000
	1.4	0.000	0.224	0.426	0.584	0.686	0.720	0.686	0.584	0.426	0.224	0.000
	1.5	0.000	0.215	0.409	0.561	0.659	0.693	0.659	0.561	0.409	0.215	0.000
	1.6	0.000	0.206	0.392	0.539	0.633	0.666	0.633	0.539	0.392	0.206	0.000
	1.7	0.000	0.198	0.377	0.518	0.609	0.640	0.609	0.518	0.377	0.198	0.000
		0.000	0.190		0.498							
	1.9	0.000	0.183	0.348	0.478	0.562	0.591	0.562	0.478	0.348	0.183	0.000
	2.0	0.000	0.176	0.334	0.460	0.540	0.568	0.540	0.460	0.334	0.176	0.000

Wie schnell kühlt eine Kugel über ihren Rand ab?

S4I



Der Laplace-Operator bei sphärischer Symmetrie

S403

Zur Vereinfachung nutzen wir sphärische Symmetrie:

$$U: \mathbb{R}^3 \to \mathbb{R}: (x, y, z) \mapsto U(x, y, z) = u(\sqrt{x^2 + y^2 + z^2})$$

Hier zählt nur der Radius $r=\sqrt{x^2+y^2+z^2}$ und somit die Funktion

$$u: \mathbb{R}_{\geq 0} \to \mathbb{R}: r \mapsto u(r).$$

Aufgabe: Berechnen Sie den Laplace-Operator $\Delta U(x,y,z)$ mittels u. **Lösung:** Wir leiten geduldig ab: Wir finden $\partial_x r = x/r$ und somit

$$\begin{split} \partial_x \, u(r) &= u'(r) \cdot \frac{x}{r} & \text{dank Kettenregel,} \\ \partial_x^2 \, u(r) &= u''(r) \cdot \frac{x^2}{r^2} + u'(r) \cdot \frac{r - x^2/r}{r^2} & \text{dank Produktregel.} \end{split}$$

Ebenso für $\partial_u^2 u(r)$ und $\partial_z^2 u(r)$. Die Summe ergibt schließlich:

$$\left(\partial_x^2 + \partial_y^2 + \partial_z^2\right) U(x,y,z) \ = \ u''(r) + \frac{2}{r} u'(r) \ = \ \frac{1}{r^2} \partial_r \left[r^2 \partial_r \, u(r) \right]$$

Hier sind $\Delta x > 0$ und $\Delta t > 0$ Schrittweiten, nicht der Laplace-Operator. Diese Diskretisierung können wir als Rekursionsgleichung nutzen:

$$u(t+\Delta t,x)\approx u(t,x) + \Delta t \Big[\kappa \frac{u(t,x-\Delta x) - 2u(t,x) + u(t,x+\Delta x)}{(\Delta x)^2} + f(t,x)\Big]$$

Aus den Werten zur Zeit t gewinnen wir so die Werte zur Zeit $t+\Delta t$. Die Randwerte $u(t+\Delta t,x)$ für $x\in\{a,b\}$ sind dabei vorgegeben.

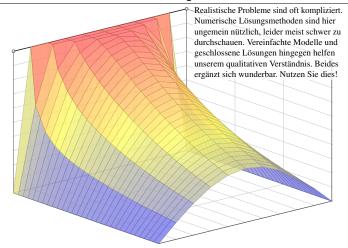
Aufgabe: Approximieren Sie $u:[0,2]\times[0,1]\to\mathbb{R}$ zu den Daten $\kappa=0.04$, $f=0,\,g=1,\,\ell=0,\,r=0$ mit Diskretisierung $\Delta t=0.1$ und $\Delta x=0.1$. **Lösung:** Die folgende Tabelle und die Graphik zeigen die Werte. H125

Mit diesem Verfahren können Sie u näherungsweise berechnen. Sie finden dieses Beispiel unter eiserm.de/lehre/HM3/Irrfahrt.ods. In der Numerik lernen Sie noch weit bessere und raffiniertere Verfahren.

⚠ Bevor man irgendeine numerische Approximation unternimmt, muss man sicherstellen, dass die Frage gut gestellt ist: Unsere mathematische Vorbereitung zeigt, dass eine exakte Lösung u existiert und dass sie eindeutig ist. Erst das gibt der numerischen Näherung einen Sinn!

Finite-Differenzen-Methode: Kühlung am Rand

S316 Ergänzung



Wie schnell kühlt eine Kugel über ihren Rand ab?

S402 Erläuterung

Erstes Beispiel, aus der Küche:

Wie lange muss ein Ei kochen? eine Pute garen? ein Bierfass kühlen? Genauer: Wann erreicht die Kerntemperatur die jeweilige Zielgröße? Wir untersuchen hier nur Wärmeleitung ohne Konvektion / Strömung; für Pute und Ei ist das realistisch, bei Bier eine starke Vereinfachung.

Zweites Beispiel, aus der Fernsehunterhaltung:

Mit gut gekühltem, frisch gezapftem Bier schauen Sie *CSI: Stuttgart.* Die Polizei findet morgens um 6 Uhr ein Mordopfer im Schlossgarten. Die Außentemperatur beträgt recht konstant 10°C, die Temperatur in der Mitte des Gehirns liegt noch bei 20°C. Wann geschah der Mord?

Drittes Beispiel, aus Erdgeschichte und Evolution:

Warum waren Dinosaurier groß, aber Vögel sind klein? Erstere waren vermutlich wechselwarm, und ihre Wärmebilanz ist bei großem Volumen günstiger: Das Volumen wächst kubisch, die Oberfläche nur quadratisch. Warmblüter (Vögel, Säugetiere) haben schnelleren Stoffwechsel und benötigen viel Energie für die Regulierung ihrer Körpertemperatur.

Der Laplace-Operator in Kugelkoordinaten

S404 Erläuterung

Allgemein können wir $U: \mathbb{R}^3 \to \mathbb{R}$ in Kugelkoordinaten parametrisieren:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \sin \theta \cos \varphi \\ \rho \sin \theta \sin \varphi \\ \rho \cos \theta \end{pmatrix} \implies U \begin{pmatrix} x \\ y \\ z \end{pmatrix} = U \begin{pmatrix} \rho \sin \theta \cos \varphi \\ \rho \sin \theta \sin \varphi \\ \rho \cos \theta \end{pmatrix} =: u \begin{pmatrix} \rho \\ \varphi \\ \theta \end{pmatrix}$$

Aus $U: \mathbb{R}^3 \to \mathbb{R}$ erhalten wir die Funktion $u: \mathbb{R}_{\geq 0} \times [0, 2\pi] \times [0, \pi] \to \mathbb{R}$. Wir übertragen den Laplace-Operator in sphärische Koordinaten:

$$\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2 = \frac{1}{\rho^2} \partial_\rho \Big(\rho^2 \partial_\rho \Big) + \frac{1}{\rho^2 \sin \theta} \partial_\theta \Big(\sin \theta \, \partial_\theta \Big) + \frac{1}{\rho^2 \sin^2 \theta} \partial_\varphi^2$$

Das hedeutet ausführlich

$$\left[\Delta U \right] \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \left[\frac{1}{\rho^2} \partial_\rho \left(\rho^2 \partial_\rho \right) + \frac{1}{\rho^2 \sin \theta} \partial_\theta \left(\sin \theta \, \partial_\theta \right) + \frac{1}{\rho^2 \sin^2 \theta} \partial_\varphi^2 \right] u \begin{pmatrix} \rho \\ \varphi \\ \theta \end{pmatrix}$$

Übung für Mutige: Rechnen Sie beide Seiten aus und vergleichen Sie! \bigcirc Hängt u nicht von φ und θ ab, so erhalten wir die vorige Formel in r.

Aufgabe: Lösen Sie die sphärische Wärmeleitungsgleichung (ARWP)

$$\begin{array}{ll} \partial_t u(t,r) = \frac{\kappa}{r^2} \partial_r \left[r^2 \partial_r \, u(t,r) \right] & \text{für alle } t > 0 \text{ und } 0 < r < R, \\ u(t,R) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,r) = 1 & \text{Anfangswerte für } 0 \leq r < R. \end{array}$$

Gesucht sind Funktionen $u: \mathbb{R}_{\geq 0} \times [0, R] \to \mathbb{R}$, stetig auf $\mathbb{R}_{\geq 0} \times [0, R]$ bis auf die Ecke (0, R)und differenzierbar auf $\mathbb{R}_{>0} \times]0, R[$, mindestens einmal nach t und zweimal nach r, die obige Gleichungen erfüllen. Der Anfangswert u(0,r)=1 gibt die Wärmeverteilung zur Zeit t=0 vor. Der Randwert u(t,R)=0 bedeutet, dass wir am Kugelrand die Wärmedichte u konstant auf Null halten, etwa durch Kontakt mit einem riesigen Reservoir konstanter Temperatur.

Lösung: Wir separieren die Variablen durch den Produktansatz

$$u(t,r) = v(t) w(r).$$

Damit entkoppeln wir unsere PDE in zwei ODE / Eigenprobleme:

$$v'(t) = \lambda v(t)$$
 und $w''(r) + \frac{2}{r}w'(r) = \frac{\lambda}{\kappa}w(r)$

Zu jedem $\lambda \in \mathbb{R}$ haben wir links die Lösung $v(t) = e^{\lambda t}$.

Wärmeleitung einer Kugel

Zusammengesetzte Eigenfunktionen:

$$u_n(t,r) = v_n(t) w_n(r) = e^{-n^2 t/T} \frac{\sin(n\pi r/R)}{r}$$

Weitere Lösungen erhalten wir durch Superposition:

$$u(t,r) = \sum_{n=1}^{\infty} a_n u_n(t,r) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \frac{\sin(n\pi r/R)}{r}$$

Damit lösen wir schließlich die Anfangsbedingung für t=0:

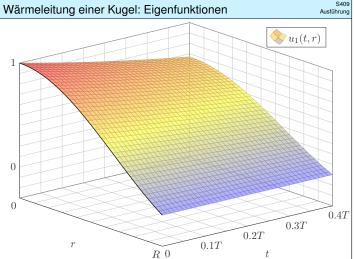
$$u(0,r) = \sum_{n=1}^\infty a_n \, \frac{\sin(n\pi r/R)}{r} \quad \stackrel{!}{=} \quad 1 \qquad \text{für } 0 \leq r < R.$$

Wie lösen Sie $\sum a_n \sin(n\pi r/R) = r$? Durch Fourier–Entwicklung! [1205]

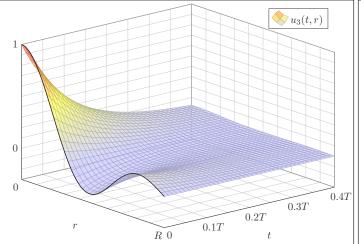
$$2\sum_{n=1}^{\infty}(-1)^{n+1}\frac{\sin(nx)}{n}=x \qquad \text{ für } |x|<\pi, \text{ hier } x=\pi r/R$$

$$2\sum_{n=1}^{\infty} (-1)^{n+1} \, \frac{\sin(n\pi r/R)}{n\pi r/R} = 1 \qquad \text{ für } |r| < R \text{, Einsetzen!}$$

Wärmeleitung einer Kugel: Eigenfunktionen



Wärmeleitung einer Kugel: Eigenfunktionen



Wärmeleitung einer Kugel

Rechts substituieren wir q(r) = r w(r):

$$w(r) = q(r)/r$$

$$w'(r) = q'(r)/r - q(r)/r^2$$

$$w''(r) = q''(r)/r - 2q'(r)/r^2 + 2q(r)/r^3$$

Aus $w''(r) + (2/r) w'(r) = (\lambda/\kappa) w(r)$ wird damit $q''(r) = (\lambda/\kappa) q(r)$.

$$\lambda = 0: \qquad w(r) = \frac{ar+b}{r} \qquad \qquad \mathrm{mit} \ a,b \in \mathbb{R},$$

$$\lambda > 0: \qquad w(r) = \frac{1}{r} \qquad \text{ fill } a, b \in \mathbb{R},$$

$$\lambda > 0: \qquad w(r) = \frac{a \operatorname{e}^{+\alpha r} + b \operatorname{e}^{-\alpha r}}{r}, \qquad \alpha = \sqrt{\lambda/\kappa}$$

$$\lambda < 0: \qquad w(r) = \frac{a \sin(\omega r) + b \cos(\omega r)}{r}, \qquad \omega = \sqrt{-\lambda/\kappa}$$
 where the proof of th

$$\lambda < 0$$
: $w(r) = \frac{a\sin(\omega r) + b\cos(\omega r)}{r}$, $\omega = \sqrt{-\lambda/\kappa}$

Endlichkeit von w(0) und die Randbedingung w(R)=0 erfüllt nur

$$w(r) = a \, \frac{\sin(\omega r)}{r} \qquad \text{(Spaltfunktion, we meet again!)}$$

 $\mathsf{mit}\ \omega = \omega_n := n\pi/R\ \mathsf{und}\ n = 1, 2, 3, \dots \text{, somit}\ \lambda = \lambda_n := -(n\pi/R)^2\kappa.$

Wärmeleitung einer Kugel

Als Lösung $u:\mathbb{R}_{\geq 0} \times [0,R] \to \mathbb{R}$ für die Kugel erhalten wir:

$$u(t,r) = 2\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n^2 t/T} \frac{\sin(n\pi r/R)}{n\pi r/R}$$

Zum Vergleich die Lösung $u: \mathbb{R}_{\geq 0} \times [0, L] \to \mathbb{R}$ für einen Stab:

$$u(t,x) = 4\sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{\sin((2k+1)\pi x/L)}{(2k+1)\pi}$$

Beide Lösungen haben im Wesentlichen dieselbe Form:

Summiert wird über alle natürlichen Zahlen $n=1,2,3,\ldots$ bzw. über alle ungeraden Zahlen $n=2k+1=1,3,5,\dots$

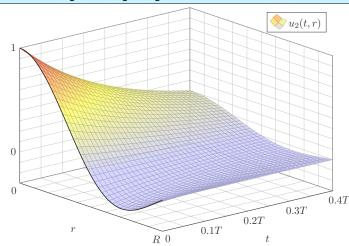
Der Zeitfaktor $e^{-n^2t/T}$ sorgt für exponentielles Abklingen. Für die Kugel erhalten wir zusätzlich einen Faktor r/R.

Die natürliche Zeitskala ist $T=R^2/\kappa\pi^2$ bzw. $T=L^2/\kappa\pi^2$

Bei doppelter Größe dauert die Abkühlung viermal so lange.

Wärmeleitung einer Kugel: Eigenfunktionen

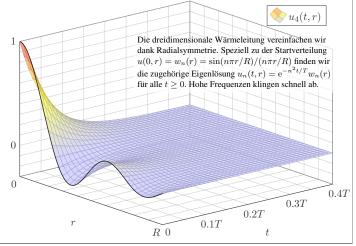
Ausführung

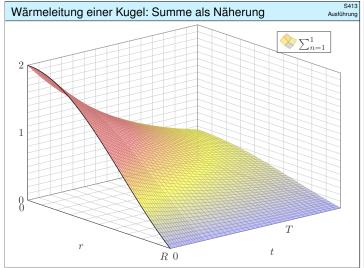


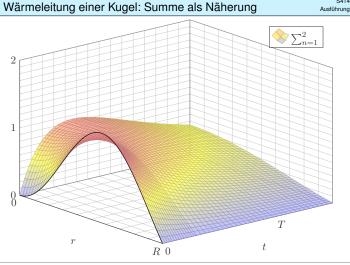
Wärmeleitung einer Kugel: Eigenfunktionen

S411 Ausführung

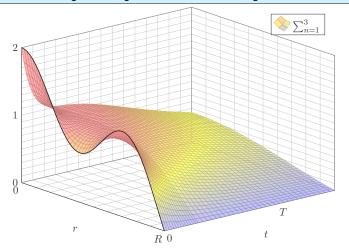
S412 Ausführung

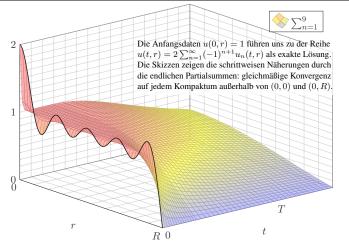






Wärmeleitung einer Kugel: Summe als Näherung





Zeitliche Entwicklung der Kerntemperatur

u(t,0) $e^{-1} \approx 0.37$ $e^{-2} \approx 0.14$ $e^{-3} \approx 0.05$

Die natürliche Zeitskala ist hier $\tau=(\pi/R)^2\kappa t=t/T$ mit $T=R^2/\kappa\pi^2$

$$u(t,r) = 2\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n^2 t/T} \frac{\sin(n\pi r/R)}{n\pi r/R}$$

- Leibniz-Reihe, numerisch günstig, explizite Fehlerschranke B3G! Die Abkühlung ist exponentiell, sehr gute Näherung für t > 2T.
- Bei doppeltem Radius dauert die Abkühlung viermal so lange.

Plausibilitätscheck: Wie lange kochen Eier?

S418

Aufgabe: Wie lange kochen Eier? Erklären Sie die Formel:

$$t = T \cdot \ln \bigg[2 \, \frac{\vartheta_{\mathsf{Außen}} - \vartheta_{\mathsf{Start}}}{\vartheta_{\mathsf{Außen}} - \vartheta_{\mathsf{Ziel}}} \bigg]$$

Lösung: Typischer Durchmesser $D=44 \mathrm{mm}$, also Radius $R=22 \mathrm{mm}$. Eier sind keine Kugeln, sondern... eiförmig; das vernachlässigen wir.

Die Temperaturleitfähigkeit beträgt etwa $\kappa \approx 0.2 \mathrm{mm}^2/\mathrm{s}$: Messen! Das ist etwas mehr als Wasser. Die Angaben in der Literatur variieren.

Die natürliche Zeitskala ist $T=R^2/\kappa\pi^2\approx 240\mathrm{s}=4\mathrm{min}$: Plausibel! Der Verlauf der Kerntemperatur ist (näherungsweise für t > T):

$$\begin{array}{cccc} t & \mapsto & 100^{\circ}\mathrm{C} - 93^{\circ}\mathrm{C} \cdot 2\,\mathrm{e}^{-t/T} = \vartheta(t) \\ 6\mathrm{min} = 1.5T & \mapsto & 100^{\circ}\mathrm{C} - 93^{\circ}\mathrm{C} \cdot 2\,\mathrm{e}^{-1.5} \approx 60^{\circ}\mathrm{C} \\ 8\mathrm{min} = 2.0T & \mapsto & 100^{\circ}\mathrm{C} - 93^{\circ}\mathrm{C} \cdot 2\,\mathrm{e}^{-2.0} \approx 75^{\circ}\mathrm{C} \\ 10\mathrm{min} = 2.5T & \mapsto & 100^{\circ}\mathrm{C} - 93^{\circ}\mathrm{C} \cdot 2\,\mathrm{e}^{-2.5} \approx 85^{\circ}\mathrm{C} \end{array}$$

Der Dotter denaturiert bei 65°C, das Eiklar erst bei 82°C.

Plausibilitätscheck: Wie lange kühlt Bier?

© Eierkochen ist eine Wissenschaft für sich. Manche denken: Dafür braucht's keine Rechnung! Stimmt, dieses Beispiel soll unser Modell illustrieren, prüfen, kalibrieren, mehr nicht. Man kann seine Frühstückseier auch ohne Studium kochen, dennoch gilt: Studieren erleuchtet Probieren! Manchmal stehen Sie auch vor Fragen, zu denen Sie (noch) keine Erfahrung haben, und Sie wollen rechnerisch eine Prognose erstellen. Typische Probleme sind Fragen der Skalierung:

Aufgabe: Wie lange kochen Sie ein Straußenei mit 15cm Durchmesser? Lösung: Der Durchmesser ist 3.4-mal größer, die Zeit etwa 11.5-mal.

Sie sollten daher eine längere Kochzeit von etwa 90min einplanen. Das hätten Sie ohne Modell wohl nur schwer erraten. Wie hilft Ihnen hier unser mathematisches Modell? Es erklärt Ihnen alle wesentlichen Eigenschaften! Insbesondere sehen Sie daran: Die erste Eigenfunktion ist relevant, alle anderen klingen viel schneller ab. Wir gewinnen so eine brauchbare, robuste Beschreibung unabhängig von Details. Probieren Sie's aus! Genauere Rechnungen sind bei Bedarf möglich.

Aufgabe: Wie lange kühlen Sie ein 51-Fass Bier? eine Flasche Sekt? **Lösung:** $R \approx 11 \text{cm}, \ \kappa \approx 0.14 \text{mm}^2/\text{s}, \ T = R^2/\kappa \pi^2 \approx 8800 \text{s} \approx 2.5 \text{h}.$ Flasche grob gerundet $R \approx 5 \text{cm}$, $T = R^2/\kappa \pi^2 \approx 1800 \text{s} \approx 0.5 \text{h}$.

Im Kühlschrank genügen $4T\approx 10\mathrm{h}$ für Bier bzw. $4T\approx 2\mathrm{h}$ für Sekt. Das ist durchaus plausibel. Im Gefrierschrank ist die Temperaturdifferenz größer und die Kühlung entsprechend schneller; die obige Formel berechnet die Zeit. (Vorsicht vor Frost!) Wir vereinfachen hier natürlich die Geometrie, Wärmeleitung, etc., aber immerhin erhalten wir eine brauchbare Größenordnung.

CSI: Stuttgart

Aufgabe: (MathFlix and Chill, für hartgesottene Fans der Wärmeleitung) Die Polizei findet morgens um 6 Uhr ein Mordopfer im Schlossgarten. Die Außentemperatur beträgt recht konstant 10°C, die Temperatur in der Mitte des Gehirns liegt noch bei $20^{\circ}\mathrm{C}$. Der Kopfumfang ist $U=57\mathrm{cm}$. Wann geschah der Mord? Wie verlässlich ist Ihre Schätzung?

Lösung: Radius $R \approx 9 \text{cm}$, Temperaturleitfähigkeit $\kappa \approx 0.2 \text{mm}^2/\text{s}$. Die natürliche Zeitskala ist hier $T=R^2/\kappa\pi^2\approx 4100\mathrm{s}\approx 1\mathrm{h}10.$

$$t = T \cdot \ln \left[2 \, \frac{\vartheta_{\text{Außen}} - \vartheta_{\text{Start}}}{\vartheta_{\text{Außen}} - \vartheta_{\text{Ziel}}} \right] = T \cdot \ln \left[2 \cdot \frac{27}{10} \right] \approx 2 \mathrm{h}$$

⚠ Gesicherte Aussagen erfordern große Umsicht:

Wir vereinfachten, der Kopf ist keine homogene Kugel: besseres Modell! Die Temperaturleitfähigkeit κ ist nur grob geschätzt: bessere Messung! Jede Messung (Temperaturen, Umfang) hat Fehler: Konfidenzintervall! Die Methode eignet sich nur von etwa 1T bis 4T: inverses Problem!

Leah Wilk et al., Science (2020), doi:10.1126/sciadv.aba4243.

J.B. Keller: Inverse Problems. Amer. Math. Monthly 83 (1976) 107-118.

Fouriers berühmte Wärmeleitungsgleichung $\partial_t u - \kappa \, \Delta u = q$ folgt aus der Wärmebilanz für den Wärmefluss dank unserer Integralsätze.

Die homogene Gleichung $\partial_t u = \kappa \, \Delta u$ hat als Fundamentallösung eine auseinanderfließende Glockenkurve, den Wärmeleitungskern

$$H\,:\,\mathbb{R}_{>0}\times\mathbb{R}^n\to\mathbb{R}\,:\,H(t,x)=\frac{1}{(\sqrt{4\pi\kappa t})^n}\exp\left(-\frac{|x|^2}{4\kappa t}\right).$$

Die Konstanten sichern die Normierung $\int_{x\in\mathbb{R}^n} H(t,x)\,\mathrm{d}x=1$ für t>0. In Satz D5D haben wir die Gleichung $(\partial_t-\kappa\Delta)H=0$ nachgerechnet.

Ist für t=0 die Wärmeverteilung $u_0:\mathbb{R}^n\to\mathbb{R}$ vorgegeben, $u_0\in C_b$, so erhalten wir die Lösung durch **Superposition** (Faltung, siehe D5E)

$$u: \mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}: u(t,x) = \int_{\xi \in \mathbb{R}^n} H(t,x-\xi) u_0(\xi) d\xi.$$

Für $t \searrow 0$ gilt dann $u(t,x) \to u_0(x)$. Durch Ableiten unter dem Integral finden wir $(\partial_t - \kappa \, \Delta) \, u(t,x) = \int_{\mathbb{R}^n} u_0(\xi) \, (\partial_t - \kappa \, \Delta) H(t,x-\xi) \, \mathrm{d}\xi = 0.$

Randbedingungen und Eindeutigkeit

Für die Wärmeleitungsgleichung mit Anfangs- und Randbedingungen (ARWP) nutzen wir den folgenden Eindeutigkeitssatz S3c:

$$\begin{array}{ll} \text{(0) L\"ost } u \colon [0,T[\times[a,b] \to \mathbb{R} \text{ die homogene W\"armeleitungsgleichung} \\ \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{f\"ur } 0 < t < T \text{ und } a < x < b, \\ u(t,a) = u(t,b) = 0 & \text{Dirichlet-Randbedingungen f\"ur } t > 0 \text{ oder } \\ \partial_x u(t,a) = \partial_x u(t,b) = 0 & \text{Neumann-Randbedingungen f\"ur } t > 0, \\ u(0,x) = 0 & \text{Anfangswerte f\"ur } t = 0 \text{ und } a < x < b, \\ \end{array}$$

 $\text{dann gilt } u(t,x) = 0 \text{ für alle } (t,x) \in [0,T[\times [a,b].$

(1) Lösen \tilde{u},\check{u} : $[0,T[\times[a,b]\to\mathbb{R}$ die Wärmeleitungsgleichung

$$\begin{aligned} \partial_t u(t,x) &- \kappa \, \partial_x^2 u(t,x) = f(t,x), \\ \left\{ \begin{aligned} u(t,a) &= \ell(t), \ u(t,b) = r(t) \ \text{oder} \\ \partial_x u(t,a) &= \ell(t), \ \partial_x u(t,b) = r(t), \end{aligned} \right. \\ \left\{ \begin{aligned} u(0,x) &= g(x), \end{aligned} \end{aligned}$$

dann gilt $\tilde{u}(t,x) = \check{u}(t,x)$ für alle $(t,x) \in [0,T] \times [a,b]$.

Wärmeleitung eines Stabes

Zu lösen sei die eindimensionale homogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \partial_x^2 u(t,x) = 0 & \text{für alle } t > 0 \text{ und } 0 < x < L, \\ u(t,0) = u(t,L) = 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,x) = g(x) & \text{Anfangswerte für } 0 < x < L. \end{array}$$

Gegeben sei $g:[0,L] \to \mathbb{R}$ stetig oder allgemeiner $g \in L^2([0,L])$, entwickelt als $g(x) = \sum_{n=1}^\infty a_n \sin(n\pi x/L)$ mit $\sum_{n=1}^\infty |a_n|^2 < \infty$. Dann wird unser Anfangs- und Randwertproblem gelöst durch

$$u(t,x) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi x/L).$$

Die natürliche Zeitskala ist die Abklingzeit $T=L^2/\kappa\pi^2$ (Eigenzeit). Gilt sogar $\sum_{n=1}^\infty |a_n|<\infty$, so ist u in t=0 stetig und dort gleich g.

So können Sie Abkühlen und Aufheizen explizit berechnen: Diese Eigenfunktionen diagonalisieren die Wärmeleitungsgleichung.

 \bigcirc Numerisch sehr effizient für t>T dank exponentiellem Abklingen.

Wärmeleitung einer Kugel

Zu lösen sei die sphärische homogene Wärmeleitungsgleichung

$$\begin{split} \partial_t u(t,r) &= \frac{\kappa}{r^2} \partial_r \Big[r^2 \partial_r \, u(t,r) \Big] & \text{ für alle } t > 0 \text{ und } 0 < r < R, \\ u(t,R) &= 0 & \text{Randbedingungen für } t \geq 0, \\ u(0,r) &= 1 & \text{Anfangswerte für } 0 \leq r < R. \end{split}$$

Gegeben sei $g:[0,R]\to\mathbb{R}$ stetig oder allgemeiner $g\in L^2([0,R])$, entwickelt als $g(r)\cdot r=\sum_{n=1}^\infty a_n\sin(n\pi r/R)$ mit $\sum_{n=1}^\infty |a_n|^2<\infty$. Dann wird unser Anfangs- und Randwertproblem gelöst durch

$$u(t,r) = \sum_{n=1}^{\infty} a_n e^{-n^2 t/T} \sin(n\pi r/R).$$

Die natürliche Zeitskala ist die Abklingzeit $T=R^2/\kappa\pi^2$ (Eigenzeit). Gilt sogar $\sum_{n=1}^\infty |a_n|<\infty$, so ist u in t=0 stetig und dort gleich g.

So können Sie Abkühlen und Aufheizen explizit berechnen: Diese Eigenfunktionen diagonalisieren die Wärmeleitungsgleichung.

 \bigcirc Numerisch sehr effizient für t > T dank exponentiellem Abklingen.

Zu lösen sei die inhomogene Wärmeleitungsgleichung

$$\begin{array}{ll} \partial_t u(t,x) - \kappa \, \Delta u(t,x) = f(t,x) & \text{für alle } t > 0 \text{ und } x \in \mathbb{R}^n, \\ u(0,x) = u_0(x) & \text{Anfangswerte für } x \in \mathbb{R}^n, \end{array}$$

Gegeben sei $u_0:\mathbb{R}^n \to \mathbb{R}$ stetig mit Schranke $|u_0(x)| \leq a\,e^{b|x|^{\alpha}},\, \alpha < 2$ sowie $f:\mathbb{R}_{>0} \times \mathbb{R}^n \to \mathbb{R}$ beschränkt und stetig differenzierbar.

Existenz: Dann wird unser Problem gelöst durch das Integral

$$u(t,x) = \int_{\mathbb{R}^n} H(t,x-\xi) u_0(\xi) d\xi + \int_0^t \int_{\mathbb{R}^n} H(t-\tau,x-\xi) f(\tau,\xi) d\xi d\tau.$$

Zu jedem T>0 gilt eine Schranke $|u(t,x)|\leq A\operatorname{e}^{Bx^2}$ auf $[0,T]\times\mathbb{R}$. Eindeutigkeit: Unsere Lösung u ist die einzige mit dieser Schranke.

⚠ Ohne diese Schranke gibt es exotische Gegenbeispiele (S1B). Mehrdeutigkeiten müssen wir erkennen und nötigenfalls auch lösen: Sind noch mehrere Lösungen möglich, so stellen wir geeignete weitere Bedingungen, um die physikalisch sinnvollen Lösungen herauszuheben.

Das Minimum-Maximum-Prinzip

S423 Fazit S424

Sei $K\subseteq\mathbb{R}^n$ kompakt und $\Omega_T=[0,T]\times K$. Für $u:\Omega_T\to\mathbb{R}$ untersuchen wir die Wärmeleitungsgleichung $\partial_t u=\Delta u$. Hierzu zerlegen wir Ω_T in

das parabolische Innere
$$D_T=]0,T] imes \mathring{K}$$
 und den parabolische Rand $B_T=\left([0,T] imes\partial K\right)\cup\left(\{0\} imes K\right).$

Auf $\Omega_T = [0,T] \times K$ sei $u: \Omega_T \to \mathbb{R}$ stetig. Da Ω_T und B_T kompakt sind, nimmt u hierauf Minimum und Maximum an. Wegen $\Omega_T \supseteq B_T$ gilt also:

$$\min_{\Omega_T} u \leq \min_{B_T} u \qquad \text{ und } \qquad \max_{\Omega_T} u \geq \max_{B_T} u$$

Zudem gelte $\partial_t u = \Delta u$ auf dem parabolischen Inneren $D_T =]0,T] \times \mathring{K}$. (1) Dann nimmt u sein Minimum und Maximum auf dem Rand B_T an:

$$\min_{\Omega_T} u = \min_{B_T} u$$
 und $\max_{\Omega_T} u = \max_{B_T} u$

Seien $u, v : \Omega_T \to \mathbb{R}$ zwei Lösungen, $\partial_t u = \Delta u$ und $\partial_t v = \Delta v$ auf D_T .

- (2) Monotonie: Aus $u \leq v$ auf dem Rand B_T folgt $u \leq v$ auf ganz Ω_T .
- (3) Eindeutigkeit: Aus u=v auf dem Rand B_T folgt u=v auf ganz Ω_T . Das Prinzip gilt ebenso harmonisch (Satz R2c) und diskret (Satz T4B).

Wärmeleitung eines Stabes

S426

Speziell für konstante Anfangswerte g(x)=1 erhalten wir die Lösung

$$u(t,x) = \frac{4}{\pi} \sum_{k=0}^{\infty} \mathrm{e}^{-(2k+1)^2 t/T} \, \frac{\sin \left((2k+1) \pi x/L \right)}{(2k+1)}.$$

Die Kerntemperatur im Stabmittelpunkt x=L/2 ist demnach

$$u(t, \frac{L}{2}) = \frac{4}{\pi} \sum_{k=0}^{\infty} e^{-(2k+1)^2 t/T} \frac{(-1)^k}{(2k+1)} \xrightarrow[k=0]{t \gg T} \frac{4}{\pi} e^{-t/T}.$$

- \bigcirc Die Abkühlung ist exponentiell, sehr gute Näherung für t>T. Bei doppelter Länge dauert die Abkühlung viermal so lange.
- Hohe Frequenzen klingen besonders schnell ab. Das ist numerisch günstig, führt zu schneller Konvergenz und Glättungseigenschaft:

Dieselbe Methode löst die inhomogene Gleichung $\partial_t u - \kappa \ \partial_x^2 u = f$ mit den jeweiligen Randbedingungen: Dirichlet, Neumann, etc.

Wärmeleitung einer Kugel

Faz

Speziell für konstante Anfangswerte g(r)=1 erhalten wir die Lösung

$$u(t,r) = 2 \sum_{n=1}^{\infty} (-1)^{n+1} \, \mathrm{e}^{-n^2 t/T} \, \frac{\sin(n \pi r/R)}{n \pi r/R}.$$

Die Kerntemperatur im Kugelmittelpunkt r=0 ist demnach

$$u(t,0) = 2 \sum_{n=1}^{\infty} (-1)^{n+1} e^{-n^2 t/T} \overset{t \gg T}{\underset{n=1}{\sim}} 2 e^{-t/T}.$$

- $\stackrel{\bigcirc}{\bigcirc}$ Die Abkühlung ist exponentiell, sehr gute Näherung für t>2T. Bei doppeltem Radius dauert die Abkühlung viermal so lange.
- Uhohe Frequenzen klingen besonders schnell ab. Das ist numerisch günstig, führt zu schneller Konvergenz und Glättungseigenschaft:

Dieselbe Methode löst die inhomogene Wärmeleitungsgleichung mit den jeweiligen Randbedingungen: Dirichlet, Neumann, etc.