Mathématiques assistées par ordinateur

Chapitre 6 : Méthodes itératives

Michael Eisermann

Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/~eiserm/cours#mao Document mis à jour le 6 juillet 2009

Sommaire

- 1 Systèmes dynamiques et points fixes
- 2 Le théorème du point fixe de Banach
- 3 La méthode de Newton

Sommaire

- 1 Systèmes dynamiques et points fixes
 - Suites itératives, convergence, points fixes
 - Approximation de racines d'après Newton-Héron
 - Instabilité numérique : l'effet papillon
 - Dynamique locale autour d'un point fixe
- 2 Le théorème du point fixe de Banach
- 3 La méthode de Newton

La notion de convergence sera fondamentale dans toute la suite.

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

Exemple

Pour |k| < 1 la suite géométrique k^n converge vers 0.

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

Exemple

Pour |k| < 1 la suite géométrique k^n converge vers 0.

Exemple

Soit $u_0 = 0$ puis $u_{n+1} = \frac{9+u_n}{10}$ pour tout $n \in \mathbb{N}$.

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

Exemple

Pour |k| < 1 la suite géométrique k^n converge vers 0.

Exemple

Soit
$$u_0 = 0$$
 puis $u_{n+1} = \frac{9+u_n}{10}$ pour tout $n \in \mathbb{N}$.

$$u_0 = 0$$
, $u_1 = 0.9$, $u_2 = 0.99$, $u_3 = 0.999$, $u_4 = 0.9999$, ...

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

Exemple

Pour |k| < 1 la suite géométrique k^n converge vers 0.

Exemple

Soit
$$u_0 = 0$$
 puis $u_{n+1} = \frac{9+u_n}{10}$ pour tout $n \in \mathbb{N}$.

$$u_0 = 0$$
, $u_1 = 0.9$, $u_2 = 0.99$, $u_3 = 0.999$, $u_4 = 0.9999$, ...

Cette suite converge vers 1, car $|u_n - 1| = (\frac{1}{10})^n \to 0$. (Exercice)

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

Exemple

Pour |k| < 1 la suite géométrique k^n converge vers 0.

Exemple

Soit $u_0 = 0$ puis $u_{n+1} = \frac{9+u_n}{10}$ pour tout $n \in \mathbb{N}$.

$$u_0 = 0$$
, $u_1 = 0.9$, $u_2 = 0.99$, $u_3 = 0.999$, $u_4 = 0.9999$, ...

Cette suite converge vers 1, car $|u_n - 1| = (\frac{1}{10})^n \to 0$. (Exercice)

Ici on *itère* la fonction $f : \mathbb{R} \to \mathbb{R}$ donnée par $f(x) = \frac{9+x}{10}$.

La notion de convergence sera fondamentale dans toute la suite.

Définition (convergence)

Une *suite* $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} est une application $\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$.

La suite $(u_n)_{n\in\mathbb{N}}$ dans \mathbb{R} converge vers $\ell\in\mathbb{R}$ si pour tout $\varepsilon>0$ il existe $N\in\mathbb{N}$ tel que pour tout $n\geq N$ on ait $|u_n-\ell|\leq \varepsilon$.

Exemple

Pour |k| < 1 la suite géométrique k^n converge vers 0.

Exemple

Soit $u_0 = 0$ puis $u_{n+1} = \frac{9+u_n}{10}$ pour tout $n \in \mathbb{N}$.

$$u_0 = 0$$
, $u_1 = 0.9$, $u_2 = 0.99$, $u_3 = 0.999$, $u_4 = 0.9999$, ...

Cette suite converge vers 1, car $|u_n-1|=(\frac{1}{10})^n\to 0$. (Exercice)

Ici on *itère* la fonction $f: \mathbb{R} \to \mathbb{R}$ donnée par $f(x) = \frac{9+x}{10}$. La limite 1 est un *point fixe* car f(1) = 1 et il s'avère *attractif*.

Définition (suite itérative)

On considère une fonction $f : \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$.

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

Définition (suite itérative)

On considère une fonction $f \colon \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

Questions importantes :

1 Quel est le comportement de la suite u_n ?

Définition (suite itérative)

On considère une fonction $f \colon \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

Questions importantes:

1 Quel est le comportement de la suite u_n ? Converge-t-elle? Si oui, vers quelle limite?

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

- 1 Quel est le comportement de la suite u_n ? Converge-t-elle? Si oui, vers quelle limite?
- Stabilité : une petite variation des données initiales mène-t-elle à une petite variation des résultats ? Ou est-ce chaotique ?

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

- 1 Quel est le comportement de la suite u_n ? Converge-t-elle? Si oui, vers quelle limite?
- Stabilité : une petite variation des données initiales mène-t-elle à une petite variation des résultats ? Ou est-ce chaotique ?
- \blacksquare Si la suite u_n converge, converge-t-elle rapidement?

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

- **1** Quel est le comportement de la suite u_n ? Converge-t-elle? Si oui, vers quelle limite?
- Stabilité : une petite variation des données initiales mène-t-elle à une petite variation des résultats ? Ou est-ce chaotique ?
- Si la suite u_n converge, converge-t-elle rapidement? Combien d'itérations faut-il pour une précision donnée?

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

Questions importantes:

- **1** Quel est le comportement de la suite u_n ? Converge-t-elle? Si oui, vers quelle limite?
- Stabilité : une petite variation des données initiales mène-t-elle à une petite variation des résultats ? Ou est-ce chaotique ?
- Si la suite u_n converge, converge-t-elle rapidement? Combien d'itérations faut-il pour une précision donnée?

Observation (limites et points fixes)

Si f est continue et u_n converge vers ℓ , alors ℓ est un point fixe de f.

Définition (suite itérative)

On considère une fonction $f: \mathbb{R} \to \mathbb{R}$ et une valeur initiale $u_0 \in \mathbb{R}$. Ceci définit la suite itérative $(u_n)_{n \in \mathbb{N}}$ par la récurrence $u_{n+1} = f(u_n)$.

Écriture alternative : $u_n = f^n(u_0)$ où $f^n = f \circ \cdots \circ f$ (n termes).

Questions importantes:

- **1** Quel est le comportement de la suite u_n ? Converge-t-elle? Si oui, vers quelle limite?
- Stabilité : une petite variation des données initiales mène-t-elle à une petite variation des résultats ? Ou est-ce chaotique ?
- Si la suite u_n converge, converge-t-elle rapidement? Combien d'itérations faut-il pour une précision donnée?

Observation (limites et points fixes)

Si f est continue et u_n converge vers ℓ , alors ℓ est un point fixe de f.

Démonstration.
$$f(\ell) = f(\lim u_n) = \lim f(u_n) = \lim u_{n+1} = \ell$$
.

Exemple (convergence linéaire à la Banach)

On itère $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{2x+2}{x+2}$, à partir de $u_0 = 2$.

Exemple (convergence linéaire à la Banach)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{2x+2}{x+2}$, à partir de $u_0 = 2$.

Point fixe?

Exemple (convergence linéaire à la Banach)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{2x+2}{x+2}$, à partir de $u_0 = 2$.

Point fixe?
$$f(x) = x \Leftrightarrow 2x + 2 = x^2 + 2x \Leftrightarrow x^2 = 2$$
.

Exemple (convergence linéaire à la Banach)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{2x+2}{x+2}$, à partir de $u_0 = 2$.

Point fixe? $f(x) = x \Leftrightarrow 2x + 2 = x^2 + 2x \Leftrightarrow x^2 = 2$. D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Exemple (convergence linéaire à la Banach)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{2x+2}{x+2}$, à partir de $u_0 = 2$.

Point fixe ? $f(x) = x \Leftrightarrow 2x + 2 = x^2 + 2x \Leftrightarrow x^2 = 2$.

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

$$\begin{array}{lll} u_1 = \frac{3}{2} & = \underline{1}.50000000000 \\ u_2 = \frac{10}{7} & = \underline{1}.42857142857 \dots \\ u_3 = \frac{17}{12} & = \underline{1}.41666666666 \dots \\ u_4 = \frac{58}{41} & = \underline{1}.41463414634 \dots \\ u_5 = \frac{99}{70} & = \underline{1}.41428571428 \dots \\ \dots & \dots & \dots \\ u_{10} = \frac{11482}{8119} & = \underline{1}.41421357310 \dots \\ u_{11} = \frac{19601}{13860} & = \underline{1}.41421356421 \dots \end{array}$$

Exemple (convergence linéaire à la Banach)

On itère $f\colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0},\, x\mapsto \frac{2x+2}{x+2}$, à partir de $u_0=2$.

Point fixe ? $f(x) = x \Leftrightarrow 2x + 2 = x^2 + 2x \Leftrightarrow x^2 = 2$.

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

$$\begin{array}{lll} u_1 = \frac{3}{2} & = \underline{1}.500000000000 \\ u_2 = \frac{10}{7} & = \underline{1}.42857142857 \dots \\ u_3 = \frac{17}{12} & = \underline{1}.41666666666 \dots \\ u_4 = \frac{58}{41} & = \underline{1}.41463414634 \dots \\ u_5 = \frac{99}{70} & = \underline{1}.41428571428 \dots \\ \dots & \dots & \dots \\ u_{10} = \frac{11482}{8119} & = \underline{1}.41421357310 \dots \\ u_{11} = \frac{19601}{13860} & = \underline{1}.41421356421 \dots \end{array}$$

Empiriquement, le nombre de décimales valables croît linéairement avec le nombre d'itérations.

Exemple (convergence linéaire à la Banach)

On itère $f\colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0},\, x\mapsto \frac{2x+2}{x+2}$, à partir de $u_0=2$.

Point fixe ? $f(x) = x \Leftrightarrow 2x + 2 = x^2 + 2x \Leftrightarrow x^2 = 2$.

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

$$\begin{array}{lll} u_1 = \frac{3}{2} & = \underline{1}.50000000000 \\ u_2 = \frac{10}{7} & = \underline{1}.42857142857 \dots \\ u_3 = \frac{17}{12} & = \underline{1}.41666666666 \dots \\ u_4 = \frac{58}{41} & = \underline{1}.41463414634 \dots \\ u_5 = \frac{99}{70} & = \underline{1}.41428571428 \dots \\ \dots & \dots & \dots \\ u_{10} = \frac{11482}{8119} & = \underline{1}.41421357310 \dots \\ u_{11} = \frac{19601}{13860} & = \underline{1}.41421356421 \dots \end{array}$$

Empiriquement, le nombre de décimales valables croît linéairement avec le nombre d'itérations. Il nous faudra encore une preuve!

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe?

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe?
$$f(x) = x \Leftrightarrow x + \frac{2}{x} = 2x \Leftrightarrow x^2 = 2$$

$$f(x) = x$$

$$\Leftrightarrow$$

$$x + \frac{2}{x} = 2x$$

$$\Rightarrow$$

$$x^2 = 2$$

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe?
$$f(x) = x \Leftrightarrow x + \frac{2}{x} = 2x \Leftrightarrow x^2 = 2$$

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe ?
$$f(x) = x \qquad \Leftrightarrow \qquad x + \frac{2}{x} = 2x \qquad \Leftrightarrow \qquad x^2 = 2$$

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe ?
$$f(x) = x \Leftrightarrow x + \frac{2}{x} = 2x \Leftrightarrow x^2 = 2$$

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

Après n itérations on a environ 2^n chiffres valables!

Convergence quadratique

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe ?
$$f(x) = x \Leftrightarrow x + \frac{2}{x} = 2x \Leftrightarrow x^2 = 2$$

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

Après n itérations on a environ 2^n chiffres valables ! Empiriquement, le nombre de décimales valables double à chaque itération.

Convergence quadratique

Exemple (convergence quadratique à la Newton)

On itère $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $x \mapsto \frac{1}{2}(x + \frac{2}{x})$, à partir de $u_0 = 2$.

Point fixe ?
$$f(x) = x \Leftrightarrow x + \frac{2}{x} = 2x \Leftrightarrow x^2 = 2$$

D'après notre observation : si u_n converge, alors la limite est $\sqrt{2}$.

Calcul des premiers termes :

Après n itérations on a environ 2^n chiffres valables! Empiriquement, le nombre de décimales valables double à chaque itération. Il nous faudra encore une preuve!

Proposition (rappel)

Pour tout $a\in\mathbb{R}_{\geq 0}$ et $n\in\mathbb{N}$ il existe un unique $r\in\mathbb{R}_{\geq 0}$ tel que $r^n=a$. Ainsi on définit la racine nième $\sqrt[n]{a}:=r$.

Proposition (rappel)

Pour tout $a\in\mathbb{R}_{\geq 0}$ et $n\in\mathbb{N}$ il existe un unique $r\in\mathbb{R}_{\geq 0}$ tel que $r^n=a$. Ainsi on définit la racine nième $\sqrt[n]{a}:=r$.

Question : Comment approcher $\sqrt[n]{a}$ efficacement ?

Proposition (rappel)

Pour tout $a \in \mathbb{R}_{\geq 0}$ et $n \in \mathbb{N}$ il existe un unique $r \in \mathbb{R}_{\geq 0}$ tel que $r^n = a$. Ainsi on définit la racine nième $\sqrt[n]{a} := r$.

Question : Comment approcher $\sqrt[n]{a}$ efficacement ?

Théorème (Newton-Héron, version qualitative)

Pour toute valeur initiale $u_0 > 0$ la suite itérative

$$u_{k+1} = \frac{1}{n} \left[(n-1)u_k + \frac{a}{u_k^{n-1}} \right]$$

converge vers la racine $r:=\sqrt[n]{a}$.

Proposition (rappel)

Pour tout $a \in \mathbb{R}_{\geq 0}$ et $n \in \mathbb{N}$ il existe un unique $r \in \mathbb{R}_{\geq 0}$ tel que $r^n = a$. Ainsi on définit la racine nième $\sqrt[n]{a} := r$.

Question : Comment approcher $\sqrt[n]{a}$ efficacement ?

Théorème (Newton-Héron, version qualitative)

Pour toute valeur initiale $u_0 > 0$ la suite itérative

$$u_{k+1} = \frac{1}{n} \left[(n-1)u_k + \frac{a}{u_k^{n-1}} \right]$$

converge vers la racine $r:=\sqrt[n]{a}$.

Avantage important : la suite $(u_k)_{k\in\mathbb{N}}$ est facilement calculable ! Les quatre opérations arithmétiques +, -, *, / suffisent.

Proposition (rappel)

Pour tout $a \in \mathbb{R}_{\geq 0}$ et $n \in \mathbb{N}$ il existe un unique $r \in \mathbb{R}_{\geq 0}$ tel que $r^n = a$. Ainsi on définit la racine nième $\sqrt[n]{a} := r$.

Question : Comment approcher $\sqrt[n]{a}$ efficacement ?

Théorème (Newton-Héron, version qualitative)

Pour toute valeur initiale $u_0 > 0$ la suite itérative

$$u_{k+1} = \frac{1}{n} \left[(n-1)u_k + \frac{a}{u_k^{n-1}} \right]$$

converge vers la racine $r := \sqrt[n]{a}$.

Avantage important : la suite $(u_k)_{k\in\mathbb{N}}$ est facilement calculable ! Les quatre opérations arithmétiques +, -, *, / suffisent.

Questions pratiques : Quelle est la vitesse de la convergence ? Comment mesurer la qualité de l'approximation, $|u_k-r|$?

Théorème (Newton-Héron, version quantitative)

Soit a > 0 et $r := \sqrt[n]{a}$.

Théorème (Newton-Héron, version quantitative)

Soit a>0 et $r:=\sqrt[n]{a}$. Pour toute valeur initiale $u_0>0$ les suites

$$u_k = \frac{1}{n} \left[(n-1)u_{k-1} + \frac{a}{u_{k-1}^{n-1}} \right]$$
 et $v_k = a/u_k^{n-1}$

Théorème (Newton-Héron, version quantitative)

Soit a>0 et $r:=\sqrt[n]{a}$. Pour toute valeur initiale $u_0>0$ les suites

$$u_k = \frac{1}{n} \left[(n-1)u_{k-1} + \frac{a}{u_{k-1}^{n-1}} \right]$$
 et $v_k = a/u_k^{n-1}$

donnent des encadrements $v_k \le r \le u_k$ de plus en plus fins :

$$v_1 \le v_2 \le v_3 \le \dots \le r \le \dots \le u_3 \le u_2 \le u_1$$

Théorème (Newton-Héron, version quantitative)

Soit a>0 et $r:=\sqrt[n]{a}$. Pour toute valeur initiale $u_0>0$ les suites

$$u_k = \frac{1}{n} \left[(n-1)u_{k-1} + \frac{a}{u_{k-1}^{n-1}} \right]$$
 et $v_k = a/u_k^{n-1}$

donnent des encadrements $v_k \le r \le u_k$ de plus en plus fins :

$$v_1 \le v_2 \le v_3 \le \dots \le r \le \dots \le u_3 \le u_2 \le u_1$$

En particulier $|u_k - v_k|$ permet de majorer l'erreur d'approximation.

Théorème (Newton-Héron, version quantitative)

Soit a>0 et $r:=\sqrt[n]{a}$. Pour toute valeur initiale $u_0>0$ les suites

$$u_k = \frac{1}{n} \left[(n-1)u_{k-1} + \frac{a}{u_{k-1}^{n-1}} \right]$$
 et $v_k = a/u_k^{n-1}$

donnent des encadrements $v_k \le r \le u_k$ de plus en plus fins :

$$v_1 \le v_2 \le v_3 \le \dots \le r \le \dots \le u_3 \le u_2 \le u_1$$

En particulier $|u_k - v_k|$ permet de majorer l'erreur d'approximation.

Quant à la vitesse de convergence, l'erreur relative $\varepsilon_k = \frac{u_k - r}{r}$ vérifie

$$\varepsilon_{k+1} \le \min \left\{ \frac{n-1}{n} \varepsilon_k , \frac{n-1}{2} \varepsilon_k^2 \right\}.$$

Théorème (Newton-Héron, version quantitative)

Soit a > 0 et $r := \sqrt[n]{a}$. Pour toute valeur initiale $u_0 > 0$ les suites

$$u_k = \frac{1}{n} \left[(n-1)u_{k-1} + \frac{a}{u_{k-1}^{n-1}} \right]$$
 et $v_k = a/u_k^{n-1}$

donnent des encadrements $v_k \le r \le u_k$ de plus en plus fins :

$$v_1 \le v_2 \le v_3 \le \dots \le r \le \dots \le u_3 \le u_2 \le u_1$$

En particulier $|u_k - v_k|$ permet de majorer l'erreur d'approximation.

Quant à la vitesse de convergence, l'erreur relative $\varepsilon_k = \frac{u_k - r}{r}$ vérifie

$$\varepsilon_{k+1} \le \min \left\{ \frac{n-1}{n} \varepsilon_k, \frac{n-1}{2} \varepsilon_k^2 \right\}.$$

 \Rightarrow Initialement, pour u_k loin de r, la progression est au moins linéaire : $\varepsilon_{k+1} \leq \frac{n-1}{n} \varepsilon_k$ avec un rapport de contraction $\frac{n-1}{n} < 1$.

Théorème (Newton-Héron, version quantitative)

Soit a > 0 et $r := \sqrt[n]{a}$. Pour toute valeur initiale $u_0 > 0$ les suites

$$u_k = \frac{1}{n} \left[(n-1)u_{k-1} + \frac{a}{u_{k-1}^{n-1}} \right]$$
 et $v_k = a/u_k^{n-1}$

donnent des encadrements $v_k \le r \le u_k$ de plus en plus fins :

$$v_1 \le v_2 \le v_3 \le \dots \le r \le \dots \le u_3 \le u_2 \le u_1$$

En particulier $|u_k - v_k|$ permet de majorer l'erreur d'approximation.

Quant à la vitesse de convergence, l'erreur relative $\varepsilon_k = \frac{u_k - r}{r}$ vérifie

$$\varepsilon_{k+1} \le \min \left\{ \frac{n-1}{n} \varepsilon_k, \frac{n-1}{2} \varepsilon_k^2 \right\}.$$

- ⇒ Initialement, pour u_k loin de r, la progression est au moins linéaire : $\varepsilon_{k+1} \leq \frac{n-1}{r} \varepsilon_k$ avec un rapport de contraction $\frac{n-1}{r} < 1$.
- \Rightarrow Finalement, pour u_k proche de r, la convergence est quadratique : $\varepsilon_{k+1} \leq \frac{n-1}{2} \varepsilon_k^2$.

Exemples numériques

Approximation de $r=\sqrt{2}$ à partir de $u_0=1$:

```
\begin{array}{l} \underline{1}.33333333333 \leq r \leq \underline{1}.50000000000\\ \underline{1.41}17647058 \leq r \leq \underline{1.41}666666667\\ \underline{1.41421}14384 \leq r \leq \underline{1.41421}56863\\ \underline{1.4142135623} \leq r \leq \underline{1.4142135624} \end{array}
```

Exemples numériques

Approximation de $r = \sqrt{2}$ à partir de $u_0 = 1$:

$$\begin{array}{l} \underline{1.3333333333} \leq r \leq \underline{1.50000000000} \\ \underline{1.41}17647058 \leq r \leq \underline{1.41}66666667 \\ \underline{1.41421}14384 \leq r \leq \underline{1.41421}56863 \\ \underline{1.4142135623} \leq r \leq \underline{1.4142135624} \end{array}$$

Approximation de $r = \sqrt[3]{10}$ à partir de $u_0 = 1$:

$$\begin{array}{l} 0.62500000000000000 \leq r \leq 4.00000000000000000\\ 1.2098298676748582 \leq r \leq 2.8750000000000000\\ 1.8579980870834728 \leq r \leq 2.3199432892249528\\ \underline{2.1315646651045386} \leq r \leq \underline{2.1659615551777928}\\ \underline{2.154}3122250101293 \leq r \leq \underline{2.1544959251533748}\\ \underline{2.1544346}865510652 \leq r \leq \underline{2.1544346}917722930\\ \underline{2.1544346900318837} < r \leq 2.1544346900318838 \end{array}$$

Exemples numériques

Approximation de $r = \sqrt{2}$ à partir de $u_0 = 1$:

```
\underline{1}.33333333333 \le r \le \underline{1}.50000000000
```

$$\underline{1.41}17647058 \leq r \leq \underline{1.41}66666667$$

$$\underline{1.41421}14384 \le r \le \underline{1.41421}56863$$

$$1.4142135623 \le r \le 1.4142135624$$

Approximation de $r = \sqrt[3]{10}$ à partir de $u_0 = 1$:

$$1.2098298676748582 \le r \le 2.87500000000000000$$

$$1.8579980870834728 \leq r \leq 2.3199432892249528$$

$$\underline{2.1}315646651045386 \leq r \leq \underline{2.1}659615551777928$$

$$\underline{2.154}3122250101293 \leq r \leq \underline{2.154}4959251533748$$

$$2.1544346865510652 \le r \le 2.1544346917722930$$

$$\underline{2.1544346900318837} \leq r \leq \underline{2.1544346900318838}$$

Peu d'itérations suffisent pour garantir une précision satisfaisante.

La récurrence de Fibonacci est définie par $x_{n+2} = x_{n+1} + x_n$.

La récurrence de Fibonacci est définie par $x_{n+2} = x_{n+1} + x_n$.

Exemple stable

n	0	1	2	3	4	5	6	7	8	9	
x_n	1.00	1.00	2.00	3.00	5.00	8.00	13.00	21.00	34.00 34.21	55.00	89.00
x'_n	1.00	1.01	2.01	3.02	5.03	8.05	13.08	21.13	34.21	55.34	89.55

La récurrence de Fibonacci est définie par $x_{n+2} = x_{n+1} + x_n$.

Exemple stable

n	0	1	2	3	4	5	6	7	8	9	10
x_n	1.00	1.00	2.00	3.00	5.00	8.00	13.00	21.00	34.00	55.00	89.00
x'_n	1.00	1.01	2.01	3.02	5.03	8.05	13.08	21.13	34.21	55.34	89.55

Définition (stabilité numérique, formulation heuristique)

Un calcul est *stable* si des petits changements des données initiales n'entraînent que des petits changements des résultats finaux.

La récurrence de Fibonacci est définie par $x_{n+2} = x_{n+1} + x_n$.

Exemple stable

	n	0	1	2	3	4	5	6	•	8	9	10
x	c_n	1.00	1.00	2.00	3.00	5.00	8.00	13.00	21.00	34.00	55.00	89.00
x	c'_n	1.00	1.01	2.01	3.02	5.03	8.05	13.08	21.13	34.21	55.34	89.55

Définition (stabilité numérique, formulation heuristique)

Un calcul est *stable* si des petits changements des données initiales n'entraînent que des petits changements des résultats finaux.

Exemple	n	0	1	2	3	4	5	6
•	x_n	1.000	-0.618	0.382	-0.236	0.146	-0.090	0.056
instable	x'_n	1.000	-0.619	0.381	-0.238	0.143	-0.095	0.048
	7	_	^	4.0				

n	7	8	9	10	20	30	
x_n	-0.034	0.022	-0.012	0.010	0.230	28.280	
x'_n	-0.047	0.001	-0.046	-0.045	-6.535	-803.760	

La récurrence de Fibonacci est définie par $x_{n+2} = x_{n+1} + x_n$.

Exemple stable

n	0	1	2	3	4	5	6	7	8	9	10
x_n	1.00	1.00	2.00	3.00	5.00	8.00	13.00	21.00	34.00	55.00	89.00
x'_n	1.00	1.01	2.01	3.02	5.03	8.05	13.08	21.13	34.21	55.34	89.55

Définition (stabilité numérique, formulation heuristique)

Un calcul est *stable* si des petits changements des données initiales n'entraînent que des petits changements des résultats finaux.

F	xem	nle		n	0	1	2	3	4	5	6
		•		x_n	1.000	-0.618	0.382	-0.236	0.146	-0.090	0.056
ın	stab	не		x'_n	1.000	-0.619	0.381	-0.238	0.143	-0.095	0.048
	n		7		8	9	10	20		30	

n	7	8	9	10	 20	 30	
x_n	-0.034	0.022	-0.012	0.010	0.230	28.280	
x'_n	-0.047	0.001	-0.046	-0.045	-6.535	-803.760	

Avertissement (calcul instable)

Des petites erreurs peuvent se propager, s'amplifier, et finalement entraîner une erreur considérable au cours de quelques itérations.

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a = 0 pour point fixe.

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a = 0 pour point fixe.

Deux phénomènes peuvent se produire :

■ Si |k| < 1, par exemple $k = \frac{1}{2}$, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to 0.$$

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a = 0 pour point fixe.

Deux phénomènes peuvent se produire :

■ Si |k| < 1, par exemple $k = \frac{1}{2}$, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to 0.$$

On dit que *a* est un point fixe *attractif* ou *stable*.

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a=0 pour point fixe.

Deux phénomènes peuvent se produire :

■ Si |k| < 1, par exemple $k = \frac{1}{2}$, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to 0.$$

On dit que a est un point fixe attractif ou stable.

■ Si |k| > 1, par exemple k = 2, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to \infty.$$

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a = 0 pour point fixe.

Deux phénomènes peuvent se produire :

■ Si |k| < 1, par exemple $k = \frac{1}{2}$, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to 0.$$

On dit que a est un point fixe attractif ou stable.

■ Si |k| > 1, par exemple k = 2, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to \infty.$$

On dit que a est un point fixe répulsif ou instable.

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a = 0 pour point fixe.

Deux phénomènes peuvent se produire :

■ Si |k| < 1, par exemple $k = \frac{1}{2}$, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to 0.$$

On dit que *a* est un point fixe *attractif* ou *stable*.

■ Si |k| > 1, par exemple k = 2, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to \infty.$$

On dit que a est un point fixe répulsif ou instable.

■ Si |k| = 1: pour f = id tous les points sont fixés, pour f = -id la suite $u_n = (-1)^n u_0$ oscille.

Exemple (cas linéaire)

On considère une fonction linéaire $f: \mathbb{R} \to \mathbb{R}$, f(x) = kx avec une constante $k \in \mathbb{R}$. Évidemment elle admet a = 0 pour point fixe.

Deux phénomènes peuvent se produire :

■ Si |k| < 1, par exemple $k = \frac{1}{2}$, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to 0.$$

On dit que *a* est un point fixe *attractif* ou *stable*.

■ Si |k| > 1, par exemple k = 2, alors

$$|f^n(u_0) - a| = |k|^n \cdot |u_0 - a| \to \infty.$$

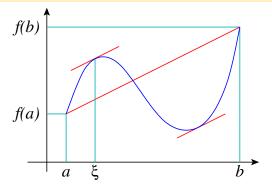
On dit que a est un point fixe répulsif ou instable.

■ Si |k| = 1: pour f = id tous les points sont fixés, pour f = -id la suite $u_n = (-1)^n u_0$ oscille.

Passons maintenant aux fonctions dérivables...

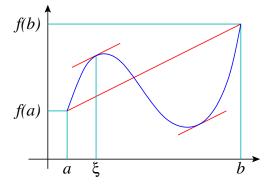
Théorème (des accroissements finis, TAF)

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue $\sup[a,b]$ et dérivable $\sup[a,b[$. Alors il existe $\xi\in]a,b[$ tel que $f'(\xi)=\frac{f(b)-f(a)}{b-a}.$



Théorème (des accroissements finis, TAF)

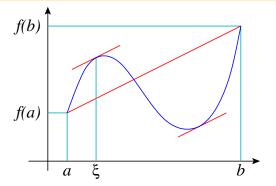
Soit $f \colon [a,b] \to \mathbb{R}$ une fonction continue $\sup[a,b]$ et dérivable $\sup[a,b[$. Alors il existe $\xi \in]a,b[$ tel que $f'(\xi) = \frac{f(b)-f(a)}{b-a}.$



Autrement dit, $f(b) - f(a) = f'(\xi)(b - a)$.

Théorème (des accroissements finis, TAF)

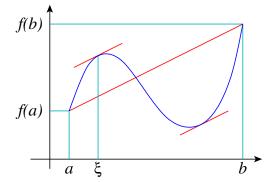
Soit $f \colon [a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur]a,b[. Alors il existe $\xi \in]a,b[$ tel que $f'(\xi) = \frac{f(b)-f(a)}{b-a}.$



Autrement dit, $f(b) - f(a) = f'(\xi)(b - a)$. Ou encore $f(b) = f(a) + f'(\xi)(b - a)$.

Théorème (des accroissements finis, TAF)

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue $\sup[a,b]$ et dérivable $\sup[a,b[$. Alors il existe $\xi\in]a,b[$ tel que $f'(\xi)=\frac{f(b)-f(a)}{b-a}.$



Autrement dit, $f(b) - f(a) = f'(\xi)(b - a)$. Ou encore $f(b) = f(a) + f'(\xi)(b - a)$.

C'est Taylor-Lagrange à l'ordre 0.

Dynamique autour d'un point fixe attractif

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| < 1 alors a est un point fixe attractif.

Dynamique autour d'un point fixe attractif

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| < 1 alors a est un point fixe attractif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| < k < 1.

Dynamique autour d'un point fixe attractif

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| < 1 alors a est un point fixe attractif.

Démonstration. On peut choisir $k\in\mathbb{R}$ telle que |f'(a)|< k<1. La continuité de f' assure l'existence d'un $\varepsilon>0$ tel que $|f'(\xi)|\leq k$ pour tout ξ dans le voisinage $V=[a-\varepsilon,a+\varepsilon]$.

Dynamique autour d'un point fixe attractif

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| < 1 alors a est un point fixe attractif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| < k < 1. La continuité de f' assure l'existence d'un $\varepsilon > 0$ tel que $|f'(\xi)| \le k$ pour tout ξ dans le voisinage $V = [a - \varepsilon, a + \varepsilon]$.

On applique le théorème des accroissements finis : pour tout $x \in V$ il existe un ξ entre a et x tel que $f(x) - f(a) = f'(\xi)(x - a)$, donc

$$|f(x) - a| = |f(x) - f(a)| = |f'(\xi)(x - a)| \le k|x - a|.$$

Dynamique autour d'un point fixe attractif

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| < 1 alors a est un point fixe attractif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| < k < 1.

La continuité de f' assure l'existence d'un $\varepsilon>0$ tel que $|f'(\xi)|\leq k$ pour tout ξ dans le voisinage $V=[a-\varepsilon,a+\varepsilon].$

On applique le théorème des accroissements finis : pour tout $x \in V$ il existe un ξ entre a et x tel que $f(x) - f(a) = f'(\xi)(x - a)$, donc

$$|f(x) - a| = |f(x) - f(a)| = |f'(\xi)(x - a)| \le k|x - a|.$$

Ainsi les images itérées de $x \in V$ convergent vers a:

$$|f^n(x) - a| \le k^n |x - a|$$
 pour tout $n \in \mathbb{N}$.

Dynamique autour d'un point fixe attractif

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| < 1 alors a est un point fixe attractif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| < k < 1.

La continuité de f' assure l'existence d'un $\varepsilon>0$ tel que $|f'(\xi)|\leq k$ pour tout ξ dans le voisinage $V=[a-\varepsilon,a+\varepsilon].$

On applique le théorème des accroissements finis : pour tout $x \in V$ il existe un ξ entre a et x tel que $f(x) - f(a) = f'(\xi)(x - a)$, donc

$$|f(x) - a| = |f(x) - f(a)| = |f'(\xi)(x - a)| \le k|x - a|.$$

Ainsi les images itérées de $x \in V$ convergent vers a:

$$|f^n(x) - a| \le k^n |x - a|$$
 pour tout $n \in \mathbb{N}$.

Autrement dit, a est un point fixe attractif.

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| > 1 alors a est un point fixe répulsif.

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| > 1 alors a est un point fixe répulsif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| > k > 1.

Proposition

Soit $f : \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| > 1 alors a est un point fixe répulsif.

Démonstration. On peut choisir $k\in\mathbb{R}$ telle que |f'(a)|>k>1. La continuité de f' assure l'existence d'un $\varepsilon>0$ tel que $|f'(\xi)|\geq k$ pour tout ξ dans le voisinage $V=[a-\varepsilon,a+\varepsilon]$.

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| > 1 alors a est un point fixe répulsif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| > k > 1. La continuité de f' assure l'existence d'un $\varepsilon > 0$ tel que $|f'(\xi)| \ge k$ pour tout ξ dans le voisinage $V = [a - \varepsilon, a + \varepsilon]$.

On applique le théorème des accroissements finis : pour tout $x \in V$ il existe un ξ entre a et x tel que $f(x) - f(a) = f'(\xi)(x-a)$, donc

$$|f(x) - a| = |f(x) - f(a)| = |f'(\xi)(x - a)| \ge k|x - a|.$$

Proposition

Soit $f : \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| > 1 alors a est un point fixe répulsif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| > k > 1.

La continuité de f' assure l'existence d'un $\varepsilon>0$ tel que $|f'(\xi)|\geq k$ pour tout ξ dans le voisinage $V=[a-\varepsilon,a+\varepsilon].$

On applique le théorème des accroissements finis : pour tout $x \in V$ il existe un ξ entre a et x tel que $f(x) - f(a) = f'(\xi)(x - a)$, donc

$$|f(x) - a| = |f(x) - f(a)| = |f'(\xi)(x - a)| \ge k|x - a|.$$

Ainsi les images itérées de $x \in V \setminus \{a\}$ s'éloignent de a :

$$|f^n(x) - a| \ge k^n |x - a|$$
, puis ils sortent du voisinage V .

Proposition

Soit $f: \mathbb{R} \to \mathbb{R}$ continûment dérivable et soit a = f(a) un point fixe. Si |f'(a)| > 1 alors a est un point fixe répulsif.

Démonstration. On peut choisir $k \in \mathbb{R}$ telle que |f'(a)| > k > 1.

La continuité de f' assure l'existence d'un $\varepsilon>0$ tel que $|f'(\xi)|\geq k$ pour tout ξ dans le voisinage $V=[a-\varepsilon,a+\varepsilon].$

On applique le théorème des accroissements finis : pour tout $x \in V$ il existe un ξ entre a et x tel que $f(x) - f(a) = f'(\xi)(x-a)$, donc

$$|f(x) - a| = |f(x) - f(a)| = |f'(\xi)(x - a)| \ge k|x - a|.$$

Ainsi les images itérées de $x \in V \setminus \{a\}$ s'éloignent de a :

$$|f^n(x) - a| \ge k^n |x - a|$$
, puis ils sortent du voisinage V .

Autrement dit, a est un point fixe répulsif.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Dans ce cas une analyse plus fine s'impose. Exemples typiques :

■ Pour $f(x) = x - x^3$ le point fixe 0 est attractif.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.
- lacksquare Pour $f(x)=x+x^2$ il est attractif à gauche mais répulsif à droite.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.
- lacksquare Pour $f(x)=x+x^2$ il est attractif à gauche mais répulsif à droite.
- \blacksquare Pour $f(x)=x-x^2$ il est attractif à droite mais répulsif à gauche.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Dans ce cas une analyse plus fine s'impose. Exemples typiques :

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.
- Pour $f(x) = x + x^2$ il est attractif à gauche mais répulsif à droite.
- lacksquare Pour $f(x)=x-x^2$ il est attractif à droite mais répulsif à gauche.

Remarque

En dimension ≥ 2 la situation est plus compliquée !

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Dans ce cas une analyse plus fine s'impose. Exemples typiques :

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.
- Pour $f(x) = x + x^2$ il est attractif à gauche mais répulsif à droite.
- lacksquare Pour $f(x)=x-x^2$ il est attractif à droite mais répulsif à gauche.

Remarque

En dimension ≥ 2 la situation est plus compliquée !

Reconsidérons le cas d'une application linéaire $\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)\mapsto\left(\begin{smallmatrix}\lambda&0\\0&\mu\end{smallmatrix}\right)\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)$.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Dans ce cas une analyse plus fine s'impose. Exemples typiques :

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.
- lacksquare Pour $f(x)=x+x^2$ il est attractif à gauche mais répulsif à droite.
- lacksquare Pour $f(x)=x-x^2$ il est attractif à droite mais répulsif à gauche.

Remarque

En dimension ≥ 2 la situation est plus compliquée !

Reconsidérons le cas d'une application linéaire $\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)\mapsto \left(\begin{smallmatrix}\lambda&0\\0&\mu\end{smallmatrix}\right)\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)$. Si $|\lambda|,|\mu|<1$, le point fixe 0 est attractif. Si $|\lambda|,|\mu|>1$, il est répulsif.

Remarque

Le cas d'un point fixe a avec |f'(a)| = 1 est douteux.

Dans ce cas une analyse plus fine s'impose. Exemples typiques :

- Pour $f(x) = x x^3$ le point fixe 0 est attractif.
- Pour $f(x) = x + x^3$ le point fixe 0 est répulsif.
- lacksquare Pour $f(x)=x+x^2$ il est attractif à gauche mais répulsif à droite.
- lacksquare Pour $f(x)=x-x^2$ il est attractif à droite mais répulsif à gauche.

Remarque

En dimension ≥ 2 la situation est plus compliquée!

Reconsidérons le cas d'une application linéaire $({x \atop y}) \mapsto \left({\lambda \atop 0} {0 \atop \mu}\right)({x \atop y})$. Si $|\lambda|, |\mu| < 1$, le point fixe 0 est attractif. Si $|\lambda|, |\mu| > 1$, il est répulsif. Si $|\lambda| < 1 < |\mu|$, il existe une direction stable et une direction instable.

Sommaire

- 1 Systèmes dynamiques et points fixes
- 2 Le théorème du point fixe de Banach
 - Fonctions contractantes
 - Le théorème du point fixe de Banach
 - Démonstration du théorème
 - Avertissements et généralisations
- 3 La méthode de Newton

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Définition (fonction contractante)

On dit que $f\colon I\to\mathbb{R}$ est *contractante* de rapport k où $0\le k<1$ si $|f(x)-f(y)|\le k\cdot |x-y|$ pour tout $x,y\in I.$

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Définition (fonction contractante)

On dit que $f\colon I\to\mathbb{R}$ est contractante de rapport k où $0\le k<1$ si $|f(x)-f(y)|\le k\cdot |x-y|$ pour tout $x,y\in I.$

Autrement dit, la fonction f est contractante si elle rapproche les points, d'un rapport k<1 fixé d'avance.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Définition (fonction contractante)

On dit que $f\colon I\to\mathbb{R}$ est contractante de rapport k où $0\le k<1$ si $|f(x)-f(y)|\le k\cdot |x-y|$ pour tout $x,y\in I.$

Autrement dit, la fonction f est contractante si elle rapproche les points, d'un rapport k < 1 fixé d'avance.

Proposition (critère pratique)

Soit $f: I \to \mathbb{R}$ dérivable tel que $|f'(\xi)| \le k$ pour tout $\xi \in I$. Si k < 1 alors f est contractante de rapport k.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Définition (fonction contractante)

On dit que $f\colon I\to\mathbb{R}$ est *contractante* de rapport k où $0\le k<1$ si $|f(x)-f(y)|\le k\cdot |x-y|$ pour tout $x,y\in I$.

Autrement dit, la fonction f est contractante si elle rapproche les points, d'un rapport k < 1 fixé d'avance.

Proposition (critère pratique)

Soit $f: I \to \mathbb{R}$ dérivable tel que $|f'(\xi)| \le k$ pour tout $\xi \in I$. Si k < 1 alors f est contractante de rapport k.

Démonstration. Soit $x,y\in I$. Par le théorème des accroissements fini on a $f(x)-f(y)=f'(\xi)\cdot (x-y)$ pour un ξ entre x et y. On conclut que $|f(x)-f(y)|=|f'(\xi)|\cdot |x-y|\leq k|x-y|$.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f \colon I \to I$ une fonction contractante de rapport k < 1. Alors :

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f \colon I \to I$ une fonction contractante de rapport k < 1. Alors :

If f(a) = a I

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \rightarrow I$ une fonction contractante de rapport k < 1. Alors :

- **1** Il existe un et un seul point $a \in I$ vérifiant f(a) = a.
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \to I$ une fonction contractante de rapport k < 1. Alors :

- **1** Il existe un et un seul point $a \in I$ vérifiant f(a) = a.
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \to I$ une fonction contractante de rapport k < 1. Alors :

- 1 Il existe un et un seul point $a \in I$ vérifiant f(a) = a.
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.
- 4 Pour contrôler l'approximation on a l'estimation de l'écart

$$|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|.$$

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \to I$ une fonction contractante de rapport k < 1. Alors :

- If f(a) = a If f(a) = a If f(a) = a f(a) = a
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.
- 4 Pour contrôler l'approximation on a l'estimation de l'écart

$$|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|.$$

On ignore souvent la limite a mais on peut facilement calculer la suite itérative u_n : c'est elle qui permet d'approcher la valeur cherchée a.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \to I$ une fonction contractante de rapport k < 1. Alors :

- **1** Il existe un et un seul point $a \in I$ vérifiant f(a) = a.
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.
- 4 Pour contrôler l'approximation on a l'estimation de l'écart

$$|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|.$$

On ignore souvent la limite a mais on peut facilement calculer la suite itérative u_n : c'est elle qui permet d'approcher la valeur cherchée a.

Pour contrôler la qualité de l'approximation u_n , on majore l'écart $|u_n-a|$ entre u_n et la limite inconnue par la quantité $\frac{k}{1-k}|u_n-u_{n-1}|$.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \rightarrow I$ une fonction contractante de rapport k < 1. Alors :

- If f(a) = a If f(a) = a If f(a) = a f(a) = a
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.
- 4 Pour contrôler l'approximation on a l'estimation de l'écart

$$|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|.$$

On ignore souvent la limite a mais on peut facilement calculer la suite itérative u_n : c'est elle qui permet d'approcher la valeur cherchée a.

Pour contrôler la qualité de l'approximation u_n , on majore l'écart $|u_n-a|$ entre u_n et la limite inconnue par la quantité $\frac{k}{1-k}|u_n-u_{n-1}|$.

Tout est parfaitement explicite et immédiatement calculable.

Exemple d'application (1/3)

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Exemple d'application (1/3)

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour appliquer le théorème du point fixe, il faut d'abord trouver un intervalle I sur lequel $f(x) = \cos(x)$ satisfasse aux hypothèses :

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour appliquer le théorème du point fixe, il faut d'abord trouver un intervalle I sur lequel $f(x) = \cos(x)$ satisfasse aux hypothèses :

$$f(I) \subset I \quad \text{et} \quad f|_I \colon I \to I \quad \text{est contractante.}$$

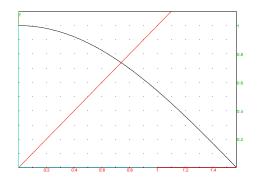
Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour appliquer le théorème du point fixe, il faut d'abord trouver un intervalle I sur lequel $f(x) = \cos(x)$ satisfasse aux hypothèses :

$$f(I) \subset I$$
 et $f|_I \colon I \to I$ est contractante.

Un dessin aidera!



Exemple

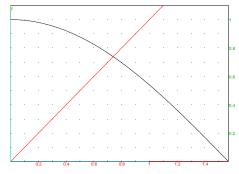
On se propose de résoudre l'équation $x = \cos(x)$.

Pour appliquer le théorème du point fixe, il faut d'abord trouver un intervalle I sur lequel $f(x) = \cos(x)$ satisfasse aux hypothèses :

$$f(I) \subset I$$
 et $f|_I \colon I \to I$ est contractante.

Un dessin aidera!

$$plot([x,cos(x)],x=0..pi/2)$$



Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

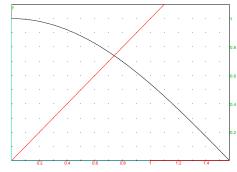
Pour appliquer le théorème du point fixe, il faut d'abord trouver un intervalle I sur lequel $f(x) = \cos(x)$ satisfasse aux hypothèses :

$$f(I) \subset I$$
 et $f|_I \colon I \to I$ est contractante.

Un dessin aidera!

$$plot([x,cos(x)],x=0..pi/2)$$

On voit qu'une solution se trouve dans [0.6, 0.8]



Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f \colon I \to I$.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f: I \to I$.

Essayons l'intervalle $I = [0, \pi/2]$:

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f: I \to I$.

Essayons l'intervalle $I=[0,\pi/2]$:

■ On a $f(I) = [0,1] \subset I$, donc c'est bon.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f: I \to I$.

Essayons l'intervalle $I=[0,\pi/2]$:

- On a $f(I) = [0,1] \subset I$, donc c'est bon.
- On a $f'(x) = -\sin(x)$, donc $-1 \le f' \le 0$.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f: I \to I$.

Essayons l'intervalle $I = [0, \pi/2]$:

- On a $f(I) = [0,1] \subset I$, donc c'est bon.
- On a $f'(x) = -\sin(x)$, donc $-1 \le f' \le 0$.

Malheureusement $|f'(\pi/2)| = 1$, donc $f|_I$ n'est pas contractante.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8]:

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f: I \rightarrow I$.

Essayons l'intervalle $I = [0, \pi/2]$:

- On a $f(I) = [0,1] \subset I$, donc c'est bon.
- On a $f'(x) = -\sin(x)$, donc -1 < f' < 0.

Malheureusement $|f'(\pi/2)| = 1$, donc $f|_I$ n'est pas contractante.

🔼 Le théorème ne s'applique pas bêtement :

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Pour $f(x) = \cos(x)$ essayons l'intervalle I = [0.6, 0.8] :

■ On a f(0.6) = 0.825... > 0.8, donc $f(I) \not\subset I$. Ainsi f ne se restreint pas à $f: I \to I$.

Essayons l'intervalle $I=[0,\pi/2]$:

- lacksquare On a $f(I)=[0,1]\subset I$, donc c'est bon.
- On a $f'(x) = -\sin(x)$, donc $-1 \le f' \le 0$.

Malheureusement $|f'(\pi/2)| = 1$, donc $f|_I$ n'est pas contractante.

Le théorème ne s'applique pas bêtement :
Il faut bien choisir l'intervalle puis vérifier les hypothèses.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle $I=\left[0,1\right]$:

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

■ On a $f'(x) = -\sin(x) \le 0$ sur [0, 1],

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

■ On a $f'(x) = -\sin(x) \le 0$ sur [0, 1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

■ On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à $f(1) = 0.5403\ldots > 0.5$. On conclut que $f(I) \subset [0.5,1] \subset I$.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0, 1],

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0,1], donc f' décroît de f'(0) = 0 à f'(1) = -0.8414... > -0.85.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0,1], donc f' décroît de f'(0) = 0 à f'(1) = -0.8414... > -0.85. On conclut que $|f'| \le 0.85 =: k$ sur I.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0,1], donc f' décroît de f'(0) = 0 à f'(1) = -0.8414... > -0.85. On conclut que $|f'| \le 0.85 =: k$ sur I.

On peut donc appliquer le théorème.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0, 1], donc f' décroît de f'(0) = 0 à f'(1) = -0.8414... > -0.85. On conclut que $|f'| \le 0.85 =: k$ sur I.

On peut donc appliquer le théorème. Pour $u_0 = 1$ on obtient la suite

$$u_1 = 0.5403023058...$$
 $u_9 = 0.7314040424...$ $u_{19} = 0.7389377567...$ $u_2 = 0.8575532158...$ $u_{10} = 0.7442373549...$ $u_{20} = 0.7391843997...$

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0, 1], donc f' décroît de f'(0) = 0 à f'(1) = -0.8414... > -0.85. On conclut que $|f'| \le 0.85 =: k$ sur I.

On peut donc appliquer le théorème. Pour $u_0 = 1$ on obtient la suite

$$u_1 = 0.5403023058\dots$$
 $u_9 = 0.7314040424\dots$ $u_{19} = 0.7389377567\dots$ $u_2 = 0.8575532158\dots$ $u_{10} = 0.7442373549\dots$ $u_{20} = 0.7391843997\dots$

On trouve $|u_{20} - u_{19}| < 0.00025$ et $\frac{k}{1-k} = 5.666 \dots < 6$.

Exemple

On se propose de résoudre l'équation $x = \cos(x)$.

Essayons l'intervalle I = [0, 1]:

- On a $f'(x) = -\sin(x) \le 0$ sur [0,1], donc f décroît de f(0) = 1 à f(1) = 0.5403... > 0.5. On conclut que $f(I) \subset [0.5,1] \subset I$.
- On a $f''(x) = -\cos(x) < 0$ sur [0,1], donc f' décroît de f'(0) = 0 à f'(1) = -0.8414... > -0.85. On conclut que |f'| < 0.85 =: k sur I.

On peut donc appliquer le théorème. Pour $u_0=1$ on obtient la suite

$$u_1 = 0.5403023058...$$
 $u_9 = 0.7314040424...$ $u_{19} = 0.7389377567...$ $u_2 = 0.8575532158...$ $u_{10} = 0.7442373549...$ $u_{20} = 0.7391843997...$

On trouve $|u_{20} - u_{19}| < 0.00025$ et $\frac{k}{1-k} = 5.666 \dots < 6$. On conclut que $|u_{20} - a| \le \frac{k}{1-k} |u_{20} - u_{19}| < 0.0015$.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f \colon I \to I$ une fonction contractante de rapport k < 1. Alors :

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \rightarrow I$ une fonction contractante de rapport k < 1. Alors :

1 Il existe un et un seul point $a \in I$ vérifiant f(a) = a.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \rightarrow I$ une fonction contractante de rapport k < 1. Alors :

- If f(a) = a If f(a) = a If f(a) = a f(a) = a If f(a) = a f(a) = a
- Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \rightarrow I$ une fonction contractante de rapport k < 1. Alors :

- **1** Il existe un et un seul point $a \in I$ vérifiant f(a) = a.
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.

Soit $I \subset \mathbb{R}$ un intervalle fermé : $[x_1, x_2]$ ou $[x_1, +\infty[$ ou $]-\infty, x_2]$ ou \mathbb{R} .

Théorème (du point fixe, Banach 1922)

Soit $f: I \rightarrow I$ une fonction contractante de rapport k < 1. Alors :

- **1** Il existe un et un seul point $a \in I$ vérifiant f(a) = a.
- **2** Pour tout $u_0 \in I$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.
- 3 On a $|u_n a| \le k^n |u_0 a|$, la convergence vers a est donc au moins aussi rapide que celle de la suite géométrique k^n vers 0.
- 4 Pour contrôler l'approximation on a l'estimation de l'écart

$$|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|.$$

Le théorème du point fixe est un important principe constructif :

Le théorème du point fixe est un important principe constructif :

■ Il assure l'existence et l'unicité d'une solution.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de $\mathbb R$ à $\mathbb R^n$ voire à tout espace métrique complet.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de $\mathbb R$ à $\mathbb R^n$ voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f: X \to X$ contractante de rapport k < 1.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de $\mathbb R$ à $\mathbb R^n$ voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f \colon X \to X$ contractante de rapport k < 1. Alors il existe un et un seul point $a \in X$ vérifiant a = f(a).

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de $\mathbb R$ à $\mathbb R^n$ voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f \colon X \to X$ contractante de rapport k < 1. Alors il existe un et un seul point $a \in X$ vérifiant a = f(a).

Pour tout $u_0 \in X$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de $\mathbb R$ à $\mathbb R^n$ voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f \colon X \to X$ contractante de rapport k < 1. Alors il existe un et un seul point $a \in X$ vérifiant a = f(a).

Pour tout $u_0 \in X$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a.

On a $|u_n - a| \le k^n |u_0 - a|$ ainsi que $|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|$.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de $\mathbb R$ à $\mathbb R^n$ voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X\subset\mathbb{R}^n$ fermé et soit $f\colon X\to X$ contractante de rapport k<1. Alors il existe un et un seul point $a\in X$ vérifiant a=f(a). Pour tout $u_0\in X$ la suite itérative $u_{n+1}=f(u_n)$ converge vers a. On a $|u_n-a|\leq k^n|u_0-a|$ ainsi que $|u_n-a|\leq \frac{k}{1-k}\cdot|u_n-u_{n-1}|$.

Démonstration. Notre preuve se généralise mot à mot.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de \mathbb{R} à \mathbb{R}^n voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f \colon X \to X$ contractante de rapport k < 1. Alors il existe un et un seul point $a \in X$ vérifiant a = f(a). Pour tout $u_0 \in X$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a. On a $|u_n - a| \le k^n |u_0 - a|$ ainsi que $|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|$.

Démonstration. Notre preuve se généralise mot à mot.

Exemple illustratif:

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de \mathbb{R} à \mathbb{R}^n voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f \colon X \to X$ contractante de rapport k < 1. Alors il existe un et un seul point $a \in X$ vérifiant a = f(a). Pour tout $u_0 \in X$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a. On a $|u_n - a| \le k^n |u_0 - a|$ ainsi que $|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|$.

Démonstration. Notre preuve se généralise mot à mot.

Exemple illustratif:

Plaçons une carte de Grenoble sur la table.

Le théorème du point fixe est un important principe constructif :

- Il assure *l'existence* et *l'unicité* d'une solution.
- Il donne aussi une *méthode* pour approcher la solution.

Il se généralise de \mathbb{R} à \mathbb{R}^n voire à tout espace métrique complet.

Théorème (du point fixe, Banach 1922)

Soit $X \subset \mathbb{R}^n$ fermé et soit $f \colon X \to X$ contractante de rapport k < 1. Alors il existe un et un seul point $a \in X$ vérifiant a = f(a). Pour tout $u_0 \in X$ la suite itérative $u_{n+1} = f(u_n)$ converge vers a. On a $|u_n - a| \le k^n |u_0 - a|$ ainsi que $|u_n - a| \le \frac{k}{1-k} \cdot |u_n - u_{n-1}|$.

Démonstration. Notre preuve se généralise mot à mot.

Exemple illustratif:

Plaçons une carte de Grenoble sur la table.

Existe-t-il un point sur la carte qui se trouve exactement à l'endroit qu'il désigne ?

Sommaire

- 1 Systèmes dynamiques et points fixes
- 2 Le théorème du point fixe de Banach
- 3 La méthode de Newton
 - Points fixes super-attractifs
 - L'idée et la formule de Newton
 - Fonctions convexes et convergence monotone
 - Critères de convergence, bassin d'attraction

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif \Rightarrow convergence linéaire :

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V = [a - \varepsilon, a + \varepsilon]$ sur lequel $|\phi'| \leq \frac{1}{2}$.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V=[a-\varepsilon,a+\varepsilon]$ sur lequel $|\phi'|\leq \frac{1}{2}$. Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\phi(V)\subset V$.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V = [a - \varepsilon, a + \varepsilon]$ sur lequel $|\phi'| \leq \frac{1}{2}$.

Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\tilde{\phi}(V) \subset V$.

Pour tout $u_0 \in V$ la suite itérative $u_n = \phi^n(u_0)$ converge donc vers a.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V=[a-\varepsilon,a+\varepsilon]$ sur lequel $|\phi'|\leq \frac{1}{2}.$

Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\tilde{\phi}(V) \subset V$.

Pour tout $u_0 \in V$ la suite itérative $u_n = \phi^n(u_0)$ converge donc vers a.

Point fixe super-attractif \Rightarrow convergence quadratique :

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V=[a-\varepsilon,a+\varepsilon]$ sur lequel $|\phi'|\leq \frac{1}{2}.$

Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\tilde{\phi}(V) \subset V$.

Pour tout $u_0 \in V$ la suite itérative $u_n = \phi^n(u_0)$ converge donc vers a.

Point fixe super-attractif \Rightarrow convergence quadratique :

Soit $M := \max_V |\phi''|$.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V = [a - \varepsilon, a + \varepsilon]$ sur lequel $|\phi'| \le \frac{1}{2}$. Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\phi(V) \subset V$.

Pour tout $u_0 \in V$ la suite itérative $u_n = \phi^n(u_0^2)$ converge donc vers a.

Point five super-attractif → convergence guadratique

Point fixe super-attractif \Rightarrow convergence quadratique : Soit $M := \max_V |\phi''|$. Pour $x \in V$ le développement de Taylor donne

$$\phi(x) = \phi(a) + \phi'(a)(x - a) + \frac{1}{2}\phi''(\xi)(x - a)^{2}.$$

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V=[a-\varepsilon,a+\varepsilon]$ sur lequel $|\phi'|\leq \frac{1}{2}$. Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\phi(V)\subset V$. Pour tout $u_0\in V$ la suite itérative $u_n=\phi^n(u_0)$ converge donc vers a.

Point fixe super-attractif \Rightarrow convergence quadratique :

Soit $M:=\max_V |\phi''|$. Pour $x\in V$ le développement de Taylor donne

$$\phi(x) = \phi(a) + \phi'(a)(x - a) + \frac{1}{2}\phi''(\xi)(x - a)^{2}.$$

Ainsi
$$|\phi(x)-a| \leq \frac{M}{2}|x-a|^2$$
 ou encore $\left(\frac{M}{2}|\phi(x)-a|\right) \leq \left(\frac{M}{2}|x-a|\right)^2$.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V=[a-\varepsilon,a+\varepsilon]$ sur lequel $|\phi'|\leq \frac{1}{2}$. Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\phi(V)\subset V$. Pour tout $u_0\in V$ la suite itérative $u_n=\phi^n(u_0)$ converge donc vers a.

Point fixe super-attractif \Rightarrow convergence quadratique :

Soit $M:=\max_V |\phi''|$. Pour $x\in V$ le développement de Taylor donne

$$\phi(x) = \phi(a) + \phi'(a)(x - a) + \frac{1}{2}\phi''(\xi)(x - a)^{2}.$$

Ainsi $|\phi(x)-a| \leq \frac{M}{2}|x-a|^2$ ou encore $\left(\frac{M}{2}|\phi(x)-a|\right) \leq \left(\frac{M}{2}|x-a|\right)^2$. Pour $u_n \in V$ on en déduit que $\left(\frac{M}{2}|\phi^m(u_n)-a|\right) \leq \left(\frac{M}{2}|u_n-a|\right)^{2^m}$.

Soit $\phi \colon \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 .

Définition

Un point fixe $a = \phi(a)$ est dit *super-attractif* si $\phi'(a) = 0$.

Point fixe attractif ⇒ convergence linéaire :

Il existe un voisinage $V=[a-\varepsilon,a+\varepsilon]$ sur lequel $|\phi'|\leq \frac{1}{2}.$ Ceci implique que $\phi|_V$ contracte de rapport $\frac{1}{2}$ et assure $\phi(V)\subset V.$ Pour tout $u_0\in V$ la suite itérative $u_n=\phi^n(u_0)$ converge donc vers a.

Point fixe super-attractif \Rightarrow convergence quadratique :

Soit $M:=\max_V |\phi''|$. Pour $x\in V$ le développement de Taylor donne

$$\phi(x) = \phi(a) + \phi'(a)(x - a) + \frac{1}{2}\phi''(\xi)(x - a)^{2}.$$

Ainsi $|\phi(x)-a| \leq \frac{M}{2}|x-a|^2$ ou encore $\left(\frac{M}{2}|\phi(x)-a|\right) \leq \left(\frac{M}{2}|x-a|\right)^2$. Pour $u_n \in V$ on en déduit que $\left(\frac{M}{2}|\phi^m(u_n)-a|\right) \leq \left(\frac{M}{2}|u_n-a|\right)^{2^m}$. Dès que $M|u_n-a|\leq 1$ ceci assure une convergence quadratique !

L'idée est de tirer profit du calcul différentiel, un outil très puissant!

L'idée est de tirer profit du calcul différentiel, un outil très puissant!

On part d'une approximation $u_n \approx r$ d'une solution r de l'équation f(r) = 0.

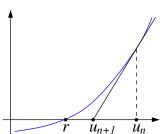
L'idée est de tirer profit du calcul différentiel, un outil très puissant!

On part d'une approximation $u_n \approx r$ d'une solution r de l'équation f(r) = 0.

On approche f par la tangente en u_n :

$$t(x) := f(u_n) + f'(u_n) \cdot (x - u_n).$$

C'est l'approximation de Taylor d'ordre 1.



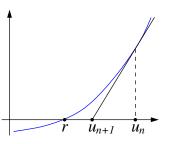
L'idée est de tirer profit du calcul différentiel, un outil très puissant!

On part d'une approximation $u_n \approx r$ d'une solution r de l'équation f(r) = 0.

On approche f par la tangente en u_n :

$$t(x) := f(u_n) + f'(u_n) \cdot (x - u_n).$$

C'est l'approximation de Taylor d'ordre 1.



Pour u_{n+1} on prendra l'unique solution de l'équation affine t(x)=0 :

$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}.$$

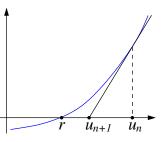
L'idée est de tirer profit du calcul différentiel, un outil très puissant!

On part d'une approximation $u_n \approx r$ d'une solution r de l'équation f(r) = 0.

On approche f par la tangente en u_n :

$$t(x) := f(u_n) + f'(u_n) \cdot (x - u_n).$$

C'est l'approximation de Taylor d'ordre 1.



Pour u_{n+1} on prendra l'unique solution de l'équation affine t(x)=0 :

$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}.$$

Autrement dit, on itère *l'application de Newton* ϕ définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}.$$

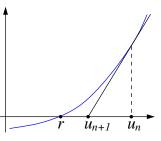
L'idée est de tirer profit du calcul différentiel, un outil très puissant!

On part d'une approximation $u_n \approx r$ d'une solution r de l'équation f(r) = 0.

On approche f par la tangente en u_n :

$$t(x) := f(u_n) + f'(u_n) \cdot (x - u_n).$$

C'est l'approximation de Taylor d'ordre 1.



Pour u_{n+1} on prendra l'unique solution de l'équation affine t(x)=0 :

$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}.$$

Autrement dit, on itère *l'application de Newton* ϕ définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}.$$

Exemple : pour $f(x) = x^n - a$ la solution de f(r) = 0 vérifie $r^n = a$.

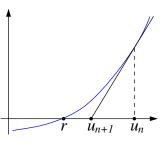
L'idée est de tirer profit du calcul différentiel, un outil très puissant!

On part d'une approximation $u_n \approx r$ d'une solution r de l'équation f(r) = 0.

On approche f par la tangente en u_n :

$$t(x) := f(u_n) + f'(u_n) \cdot (x - u_n).$$

C'est l'approximation de Taylor d'ordre 1.



Pour u_{n+1} on prendra l'unique solution de l'équation affine t(x) = 0:

$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}.$$

Autrement dit, on itère *l'application de Newton* ϕ définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}.$$

Exemple : pour $f(x) = x^n - a$ la solution de f(r) = 0 vérifie $r^n = a$. Ici on trouve la formule $\phi(x) = \frac{1}{n} \left[(n-1)x + a/x^{n-1} \right]$ déjà vue !

Définition

Soit $f : \mathbb{R} \supset U \to \mathbb{R}$ une fonction continûment dérivable.

Définition

Soit $f \colon \mathbb{R} \supset U \to \mathbb{R}$ une fonction continûment dérivable. L'application de Newton $\phi \colon U^* \to \mathbb{R}$ associée à f est définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$
 sur $U^* = \{x \in U \mid f'(x) \neq 0\}.$

Définition

Soit $f \colon \mathbb{R} \supset U \to \mathbb{R}$ une fonction continûment dérivable. L'application de Newton $\phi \colon U^* \to \mathbb{R}$ associée à f est définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$
 sur $U^* = \{x \in U \mid f'(x) \neq 0\}.$

Proposition (Les zéros de f sont les points fixes de ϕ .)

Pour tout $r \in U^*$ on a f(r) = 0 si et seulement si $\phi(r) = r$.

Définition

Soit $f: \mathbb{R} \supset U \to \mathbb{R}$ une fonction continûment dérivable. L'application de Newton $\phi: U^* \to \mathbb{R}$ associée à f est définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$
 sur $U^* = \{x \in U \mid f'(x) \neq 0\}.$

Proposition (Les zéros de f sont les points fixes de ϕ .)

Pour tout $r \in U^*$ on a f(r) = 0 si et seulement si $\phi(r) = r$. Si f est de classe C^2 , alors tout point fixe $r = \phi(r)$ vérifie $\phi'(r) = 0$.

Définition

Soit $f: \mathbb{R} \supset U \to \mathbb{R}$ une fonction continûment dérivable. L'application de Newton $\phi: U^* \to \mathbb{R}$ associée à f est définie par

$$\phi(x) = x - \frac{f(x)}{f'(x)}$$
 sur $U^* = \{x \in U \mid f'(x) \neq 0\}.$

Proposition (Les zéros de f sont les points fixes de ϕ .)

Pour tout $r\in U^*$ on a f(r)=0 si et seulement si $\phi(r)=r$. Si f est de classe C^2 , alors tout point fixe $r=\phi(r)$ vérifie $\phi'(r)=0$.

 \bigcirc Si l'on choisit u_0 proche d'une solution r de l'équation f(r) = 0, alors la suite $u_n = \phi^n(u_0)$ converge vers r de manière quadratique !

Exemple classique : $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

Exemple classique : $f \colon \mathbb{R} \to \mathbb{R}, \, f(x) = \arctan(x).$

L'unique solution de l'équation f(r) = 0 est r = 0.

Exemple classique : $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

L'unique solution de l'équation f(r) = 0 est r = 0.

On a f'(0) = 1, donc r = 0 est bien une racine simple.

Exemple classique : $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

L'unique solution de l'équation f(r) = 0 est r = 0.

On a f'(0) = 1, donc r = 0 est bien une racine simple.

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - (1 + x^2)\arctan(x).$$

Exemple classique : $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

L'unique solution de l'équation f(r) = 0 est r = 0.

On a f'(0) = 1, donc r = 0 est bien une racine simple.

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - (1 + x^2)\arctan(x).$$

Pour u_0 proche de 0 on trouve $\phi^n(u_0) \to 0$, comme il faut.

Exemple classique : $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

L'unique solution de l'équation f(r) = 0 est r = 0.

On a f'(0) = 1, donc r = 0 est bien une racine simple.

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - (1 + x^2)\arctan(x).$$

Pour u_0 proche de 0 on trouve $\phi^n(u_0) \to 0$, comme il faut.

À titre d'avertissement, prenons une valeur initiale u_0 loin de 0 :

Exemple classique : $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

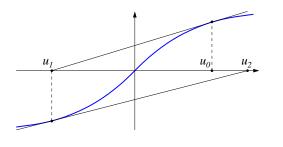
L'unique solution de l'équation f(r) = 0 est r = 0.

On a f'(0) = 1, donc r = 0 est bien une racine simple.

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - (1 + x^2)\arctan(x).$$

Pour u_0 proche de 0 on trouve $\phi^n(u_0) \to 0$, comme il faut.

À titre d'avertissement, prenons une valeur initiale u_0 loin de 0:



$$u_0 = +1.5$$

 $u_1 = -1.6940796...$

$$u_2 = +2.3211269\dots$$

$$u_3 = -5.1140878\dots$$

$$u_4 = +32.2956839\dots$$

$$|u_n| \to \infty$$

Exemple classique : $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$.

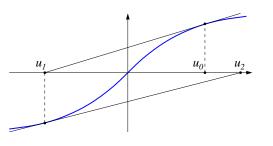
L'unique solution de l'équation f(r) = 0 est r = 0.

On a f'(0) = 1, donc r = 0 est bien une racine simple.

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - (1 + x^2)\arctan(x).$$

Pour u_0 proche de 0 on trouve $\phi^n(u_0) \to 0$, comme il faut.

À titre d'avertissement, prenons une valeur initiale u_0 loin de 0:



$$u_0 = +1.5$$

 $u_1 = -1.6940796...$

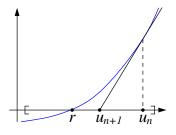
$$u_2 = +2.3211269\dots$$

$$u_3 = -5.1140878\dots$$

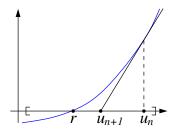
$$u_4 = +32.2956839\dots$$
$$|u_n| \to \infty$$

Le bassin d'attraction de
$$r=0$$
 est l'intervalle $]-a,+a[$ où a est la solution positive de $\phi(a)=-a.$ Numériquement on trouve $a\approx 1.3917.$

Reconsidérons l'itération de Newton dans la situation suivante :



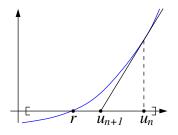
Reconsidérons l'itération de Newton dans la situation suivante :



Théorème (convergence monotone)

Soit $f \colon [a,b] \to \mathbb{R}$ une fonction deux fois dérivable, vérifiant $f(a) \le 0 < f(b)$ et f'(a) > 0 et $f'' \ge 0$ sur [a,b].

Reconsidérons l'itération de Newton dans la situation suivante :

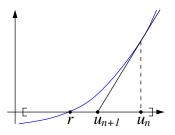


Théorème (convergence monotone)

Soit $f \colon [a,b] \to \mathbb{R}$ une fonction deux fois dérivable, vérifiant $f(a) \le 0 < f(b)$ et f'(a) > 0 et $f'' \ge 0$ sur [a,b].

Alors il existe une unique solution $r \in [a, b[$ vérifiant f(r) = 0.

Reconsidérons l'itération de Newton dans la situation suivante :



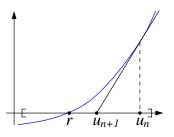
Théorème (convergence monotone)

Soit $f: [a,b] \to \mathbb{R}$ une fonction deux fois dérivable, vérifiant f(a) < 0 < f(b) et f'(a) > 0 et f'' > 0 sur [a,b].

Alors il existe une unique solution $r \in [a, b[$ vérifiant f(r) = 0.

Pour tout $u_0 \in [a,b]$ vérifiant $f(u_0) > 0$ la suite $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ est définie pour tout $n \in \mathbb{N}$, décroissante, et converge vers r.

Reconsidérons l'itération de Newton dans la situation suivante :



Théorème (convergence monotone)

Soit $f: [a,b] \to \mathbb{R}$ une fonction deux fois dérivable, vérifiant $f(a) \le 0 < f(b)$ et f'(a) > 0 et $f'' \ge 0$ sur [a,b].

Alors il existe une unique solution $r \in [a, b[$ vérifiant f(r) = 0.

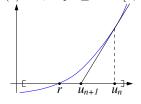
Pour tout $u_0 \in [a,b]$ vérifiant $f(u_0) > 0$ la suite $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ est définie pour tout $n \in \mathbb{N}$, décroissante, et converge vers r.

De plus on peut majorer l'erreur par $0 \le u_n - r \le \frac{f(u_n)}{f'(u_n)}$.

Supposons f(r)=0 et $f'(r)\neq 0$. Quatre cas typiques se présentent :

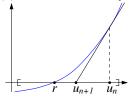
Supposons f(r) = 0 et $f'(r) \neq 0$. Quatre cas typiques se présentent :

f croissante & convexe : f'(a) > 0, et $f'' \ge 0$ sur [a, b].

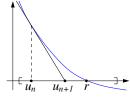


Supposons f(r) = 0 et $f'(r) \neq 0$. Quatre cas typiques se présentent :

f croissante & convexe : f'(a) > 0, et $f'' \ge 0$ sur [a, b].

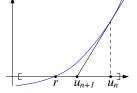


f décroissante & convexe : f'(b) < 0, et $f'' \ge 0$ sur [a,b].



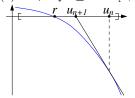
Supposons f(r) = 0 et $f'(r) \neq 0$. Quatre cas typiques se présentent :

f croissante & convexe : f'(a) > 0, et $f'' \ge 0$ sur [a, b].

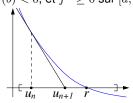


f décroissante & concave :

$$f'(a) < 0$$
, et $f'' \le 0$ sur $[a, b]$.

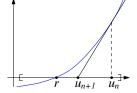


f décroissante & convexe : f'(b) < 0, et $f'' \ge 0$ sur [a,b].

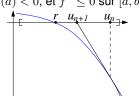


Supposons f(r) = 0 et $f'(r) \neq 0$. Quatre cas typiques se présentent :

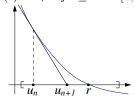
f croissante & convexe : f'(a) > 0, et $f'' \ge 0$ sur [a, b].



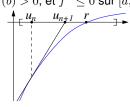
f décroissante & concave : f'(a) < 0, et f'' < 0 sur [a, b].



f décroissante & convexe : f'(b) < 0, et $f'' \ge 0$ sur [a,b].



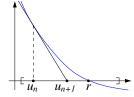
f croissante & concave : f'(b) > 0, et $f'' \le 0$ sur [a, b].



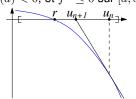
Supposons f(r) = 0 et $f'(r) \neq 0$. Quatre cas typiques se présentent :

$$f$$
 croissante & convexe : $f'(a) > 0$, et $f'' \ge 0$ sur $[a,b]$.

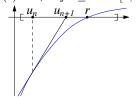
f décroissante & convexe : f'(b) < 0, et $f'' \ge 0$ sur [a,b].



f décroissante & concave : f'(a) < 0, et $f'' \le 0$ sur [a, b].



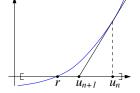
f croissante & concave : f'(b) > 0, et $f'' \le 0$ sur [a, b].



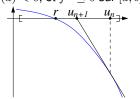
On choisit u_0 tel que $f(u_0) > 0$ (convexe) resp. $f(u_0) < 0$ (concave).

Supposons f(r) = 0 et $f'(r) \neq 0$. Quatre cas typiques se présentent :

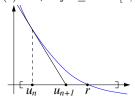
f croissante & convexe : f'(a) > 0, et $f'' \ge 0$ sur [a, b].



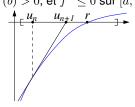
f décroissante & concave : f'(a) < 0, et $f'' \le 0$ sur [a, b].



f décroissante & convexe : f'(b) < 0, et $f'' \geq 0$ sur [a,b].



f croissante & concave : f'(b) > 0, et $f'' \le 0$ sur [a, b].



On choisit u_0 tel que $f(u_0) > 0$ (convexe) resp. $f(u_0) < 0$ (concave).

On a la majoration $|u_n - r| \leq \frac{|f(u_n)|}{\min |f'|}$ où $\min |f'| = |f'(a)|$ resp. |f'(b)|.

Si la méthode de Newton converge, elle converge finalement très vite.

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

Tout d'abord il faut assurer que la solution r visée soit une racine simple : f(r) = 0 et $f'(r) \neq 0$.

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

- Tout d'abord il faut assurer que la solution r visée soit une racine simple : f(r) = 0 et $f'(r) \neq 0$.
- **2** Ensuite il faut bien choisir une valeur initiale u_0 proche de r.

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

- Tout d'abord il faut assurer que la solution r visée soit une racine simple : f(r) = 0 et $f'(r) \neq 0$.
- **2** Ensuite il faut bien choisir une valeur initiale u_0 proche de r.

Question pratique : comment choisir u_0 pour assurer la convergence ?

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

- Tout d'abord il faut assurer que la solution r visée soit une racine simple : f(r) = 0 et $f'(r) \neq 0$.
- **2** Ensuite il faut bien choisir une valeur initiale u_0 proche de r.

Question pratique : comment choisir u_0 pour assurer la convergence ?

Le bassin d'attraction d'une racine r est $A(r) := \{u_0 \mid \phi^n(u_0) \to r\}.$

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

- Tout d'abord il faut assurer que la solution r visée soit une racine simple : f(r) = 0 et $f'(r) \neq 0$.
- **2** Ensuite il faut bien choisir une valeur initiale u_0 proche de r.

Question pratique : comment choisir u_0 pour assurer la convergence ?

Le bassin d'attraction d'une racine r est $A(r) := \{u_0 \mid \phi^n(u_0) \to r\}.$

Illustration.

La question de convergence de $\phi^n(u_0)$ donne lieu à de jolies images fractales !

Si la méthode de Newton converge, elle converge finalement très vite. Mais la suite $\phi^n(u_0)$ ne converge pas pour toute valeur initiale u_0 !

- Tout d'abord il faut assurer que la solution r visée soit une racine simple : f(r) = 0 et $f'(r) \neq 0$.
- **2** Ensuite il faut bien choisir une valeur initiale u_0 proche de r.

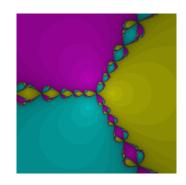
Question pratique : comment choisir u_0 pour assurer la convergence ?

Le bassin d'attraction d'une racine r est $A(r) := \{u_0 \mid \phi^n(u_0) \to r\}$.

Illustration.

La question de convergence de $\phi^n(u_0)$ donne lieu à de jolies images fractales !

Vous voyez ici les bassins d'attraction des trois racines complexes du polynôme $f: \mathbb{C} \to \mathbb{C}, f(z) = z^3 - 1$.



Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique :

$$|u_n - r| \le \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|.$$

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|$.

Notation:

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|$.

Notation:

boule ouverte $B(a, \rho) := \{x \mid |x - a| < \rho\},\$

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|$.

Notation:

boule ouverte $B(a,\rho):=\{x \mid |x-a|<\rho\}$, boule fermée $\bar{B}(a,\rho):=\{x \mid |x-a|\leq\rho\}$.

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|$.

Notation:

boule ouverte $B(a,\rho):=\{x \mid |x-a|<\rho\}$, boule fermée $\bar{B}(a,\rho):=\{x \mid |x-a|\leq\rho\}$.

Dans \mathbb{R} on a bien sûr

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|$.

Notation:

boule ouverte $B(a,\rho):=\{x \mid |x-a|<\rho\}$, boule fermée $\bar{B}(a,\rho):=\{x \mid |x-a|\leq\rho\}$.

Dans \mathbb{R} on a bien sûr $B(a,\rho)=]a-\rho,a+\rho[$ et

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|$.

Notation:

boule ouverte $B(a,\rho):=\{x \mid |x-a|<\rho\},$ boule fermée $\bar{B}(a,\rho):=\{x \mid |x-a|\leq\rho\}.$

Dans \mathbb{R} on a bien sûr

$$B(a, \rho) =]a - \rho, a + \rho[$$
 et $\bar{B}(a, \rho) = [a - \rho, a + \rho].$

Théorème (bassin de super-attraction)

Soit f une fonction de classe C^2 . Supposons que f(r)=0 ainsi que $|f'|\geq m>0$ et $|f''|\leq M$ sur $\bar{B}(r,\eta)$. On pose $\varepsilon:=\min(\eta,\frac{m}{M})>0$.

Alors pour toute valeur initiale $u_0 \in \bar{B}(r,\varepsilon)$ la suite de Newton $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$ converge vers r à une vitesse quadratique : $|u_n - r| \leq \left(\frac{1}{2}\right)^{2^n - 1} \cdot |u_0 - r|.$

Notation:

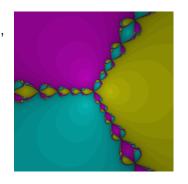
boule ouverte $B(a,\rho):=\{x \mid |x-a|<\rho\}$, boule fermée $\bar{B}(a,\rho):=\{x \mid |x-a|\leq\rho\}$.

Dans $\ensuremath{\mathbb{R}}$ on a bien sûr

$$B(a, \rho) =]a - \rho, a + \rho[$$
 et $ar{B}(a, \rho) = [a - \rho, a + \rho].$

Généralisation:

Le théorème et sa preuve se généralisent de \mathbb{R} à \mathbb{C} et à \mathbb{R}^n .



Un critère local de convergence

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Un critère local de convergence

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Un critère local de convergence

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$. Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit
$$f$$
 une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit
$$u_0$$
 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit
$$\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$$
 le pas initial dans l'itération de Newton.

Supposons que
$$f$$
 est définie sur $V:=\bar{B}(u_0,2\eta)$ et vérifie

$$\frac{|f''(x)|}{|f'(x)|} \le \frac{1}{8\eta} \qquad \text{pour tout } x \in V.$$

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Supposons que f est définie sur $V:=\bar{B}(u_0,2\eta)$ et vérifie

$$\frac{|f''(x)|}{|f'(x)|} \le \frac{1}{8\eta} \quad \text{pour tout } x \in V.$$

Alors $\phi|_V$ est contractante de rapport $\frac{1}{2}$ et vérifie $\phi(V) \subset V$.

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Supposons que f est définie sur $V:=\bar{B}(u_0,2\eta)$ et vérifie

$$\frac{|f''(x)|}{|f'(x)|} \le \frac{1}{8n} \quad \text{pour tout } x \in V.$$

Alors $\phi|_V$ est contractante de rapport $\frac{1}{2}$ et vérifie $\phi(V) \subset V$.

Par conséquent $f|_V$ admet une unique racine $r \in V$, f(r) = 0,

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Supposons que f est définie sur $V:=\bar{B}(u_0,2\eta)$ et vérifie

$$\frac{|f''(x)|}{|f'(x)|} \le \frac{1}{8\eta} \qquad \text{pour tout } x \in V.$$

Alors $\phi|_V$ est contractante de rapport $\frac{1}{2}$ et vérifie $\phi(V) \subset V$. Par conséquent $f|_V$ admet une unique racine $r \in V$, f(r) = 0, et la suite itérative $u_n = \phi^n(u_0)$ converge vers r.

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Supposons que f est définie sur $V:=\bar{B}(u_0,2\eta)$ et vérifie

$$\frac{|f''(x)|}{|f'(x)|} \le \frac{1}{8\eta} \qquad \text{pour tout } x \in V.$$

Alors $\phi|_V$ est contractante de rapport $\frac{1}{2}$ et vérifie $\phi(V) \subset V$. Par conséquent $f|_V$ admet une unique racine $r \in V$, f(r) = 0, et la suite itérative $u_n = \phi^n(u_0)$ converge vers r.

Finalement la vitesse de convergence sera quadratique.

Étant donné f et une valeur initiale u_0 , comment savoir si l'itération de Newton $u_n = \phi^n(u_0)$ convergera?

Théorème

Soit f une fonction de classe C^2 . On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta := |u_1 - u_0| = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Supposons que f est définie sur $V:=\bar{B}(u_0,2\eta)$ et vérifie

$$\frac{|f''(x)|}{|f'(x)|} \le \frac{1}{8\eta} \quad \text{pour tout } x \in V.$$

Alors $\phi|_V$ est contractante de rapport $\frac{1}{2}$ et vérifie $\phi(V) \subset V$. Par conséquent $f|_V$ admet une unique racine $r \in V$, f(r) = 0, et la suite itérative $u_n = \phi^n(u_0)$ converge vers r.

- Finalement la vitesse de convergence sera quadratique.
- \diamondsuit Le théorème et sa preuve se généralisent de $\mathbb R$ à $\mathbb C$ et à $\mathbb R^n$.

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$. Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

On suppose que $f(z) - \sum_{n=0}^{\infty} a_n(z - u_n)^k$ pour tout $z \in R(u_n, 2n)$

On suppose que
$$f(z) = \sum_{k=0}^{\infty} a_k (z - u_0)^k$$
 pour tout $z \in B(u_0, 2\eta)$. Si $|a_k| \leq (8\eta)^{1-k} |a_1|$ pour tout $k \geq 2$,

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

On suppose que $f(z) = \sum_{k=0}^{\infty} a_k (z-u_0)^k$ pour tout $z \in B(u_0, 2\eta)$. Si

$$|a_k| \le (8\eta)^{1-k} |a_1|$$
 pour tout $k \ge 2$,

alors f admet une unique racine r dans la boule $B(u_0, 2\eta)$

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

On suppose que $f(z) = \sum_{k=0}^{\infty} a_k (z - u_0)^k$ pour tout $z \in B(u_0, 2\eta)$. Si

$$|a_k| \le (8\eta)^{1-k} |a_1|$$
 pour tout $k \ge 2$,

alors f admet une unique racine r dans la boule $B(u_0,2\eta)$ et la suite de Newton $u_n=\phi^n(u_0)$ converge quadratiquement vers r:

$$|u_n - r| \le (\frac{1}{2})^{2^n - 1} \cdot |u_0 - r|.$$

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

On suppose que $f(z) = \sum_{k=0}^{\infty} a_k (z - u_0)^k$ pour tout $z \in B(u_0, 2\eta)$. Si

$$|a_k| \le (8\eta)^{1-k}|a_1|$$
 pour tout $k \ge 2$,

alors f admet une unique racine r dans la boule $B(u_0,2\eta)$ et la suite de Newton $u_n=\phi^n(u_0)$ converge quadratiquement vers r:

$$|u_n - r| \le (\frac{1}{2})^{2^n - 1} \cdot |u_0 - r|.$$

Ce théorème s'applique particulièrement bien aux polynômes.

Le critère suivant se passe de l'étude de f dans un voisinage de u_0 : il repose uniquement sur les dérivées de f en u_0 .

Théorème (Smale, 1986)

Soit f une fonction analytique. On pose $\phi(x) := x - \frac{f(x)}{f'(x)}$.

Soit u_0 une valeur initiale telle que $f(u_0) \neq 0$ et $f'(u_0) \neq 0$.

Soit $\eta = \frac{|f(u_0)|}{|f'(u_0)|}$ le pas initial dans l'itération de Newton.

On suppose que $f(z) = \sum_{k=0}^{\infty} a_k (z - u_0)^k$ pour tout $z \in B(u_0, 2\eta)$. Si

$$|a_k| \le (8\eta)^{1-k} |a_1|$$
 pour tout $k \ge 2$,

alors f admet une unique racine r dans la boule $B(u_0,2\eta)$ et la suite de Newton $u_n=\phi^n(u_0)$ converge quadratiquement vers r:

$$|u_n - r| \le (\frac{1}{2})^{2^n - 1} \cdot |u_0 - r|.$$

- Ce théorème s'applique particulièrement bien aux polynômes.
- Pour une preuve voir Blum & Cucker & Shub & Smale : Complexity and Real Computation, Springer, New York 1998, chap. 8.

Résumé

- Systèmes dynamiques et points fixes
 - Suites itératives, convergence, points fixes
 - Approximation de racines d'après Newton-Héron
 - Instabilité numérique : l'effet papillon
 - Dynamique locale autour d'un point fixe
- 2 Le théorème du point fixe de Banach
 - Fonctions contractantes
 - Le théorème du point fixe de Banach
 - Démonstration du théorème
 - Avertissements et généralisations
- 3 La méthode de Newton
 - Points fixes super-attractifs
 - L'idée et la formule de Newton
 - Fonctions convexes et convergence monotone
 - Critères de convergence, bassin d'attraction